EP0582835A1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP0582835A1
EP0582835A1 EP93110974A EP93110974A EP0582835A1 EP 0582835 A1 EP0582835 A1 EP 0582835A1 EP 93110974 A EP93110974 A EP 93110974A EP 93110974 A EP93110974 A EP 93110974A EP 0582835 A1 EP0582835 A1 EP 0582835A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
profile
cooling
exchanger according
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93110974A
Other languages
English (en)
French (fr)
Other versions
EP0582835B1 (de
Inventor
Erwin Dipl.-Ing. Haas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus Osterreich AG
Original Assignee
Steyr Nutzfahrzeuge AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steyr Nutzfahrzeuge AG filed Critical Steyr Nutzfahrzeuge AG
Publication of EP0582835A1 publication Critical patent/EP0582835A1/de
Application granted granted Critical
Publication of EP0582835B1 publication Critical patent/EP0582835B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/14Fastening; Joining by using form fitting connection, e.g. with tongue and groove

Definitions

  • the invention relates to a heat exchanger for cooling at least one medium flowing through by a cooling medium, in particular for water and / or charge air and / or oil cooling of an internal combustion engine of a motor vehicle.
  • a water cooler was used regularly, which consists of an upper and a lower water box, each connected to the cooling water circuit of the internal combustion engine, between which pipes with a continuous circular cross-section flow through which cooling water flows.
  • the said pipes are arranged in several pipe levels.
  • Between the tubes there are meandering strips of corrugated sheet metal that are used for heat dissipation to the cooling air flowing through the gaps. Since these outer corrugated sheets are not in direct contact with the medium to be cooled, there is a comparatively poor heat transfer, which in some cases can be compensated for by a relatively high cooling air output.
  • Charge air coolers have generally been built on a principle similar to that of water coolers. On the other hand, a different construction principle was used for oil coolers.
  • the heat exchanger according to the invention allows a very compact production due to its construction principle, and it can also be used universally for cooling a wide variety of media. Another particular advantage is the high efficiency of the heat exchanger, since the partition walls given internally to the profile tubes are in direct contact with the medium to be cooled and the cooling medium, thus ensuring excellent heat transfer. Since the heat exchanger according to the invention is composed only of a large number of extruded profiles which can easily be produced on an industrial scale in corresponding systems, it can also be implemented at a reasonable cost. A special design of the partition walls also ensures that both the cooling medium and the medium to be cooled remain exactly separated when flowing through within a profile tube.
  • the heat exchanger is composed of a large number of polygonal, mutually toothed profile tubes 1 (see FIGS. 1 and 2) or 2, 3 (see FIGS. 3 and 4), the interiors of which are each provided by a large number of axially parallel, heat-dissipating partition walls 4 are divided into a plurality of flow channels 5, 6, 7 for such a separate passage of cooling media and media to be cooled.
  • profile tubes 1 of a single type with the same cross-section are used, with interiors of the same shape through the partitions 4.
  • two cross-section different profile tube types 2, 3, each with the same interior space designed specifically by the partition walls 4, but always the same, are used.
  • each of the profile tubes 1, 2, 3 is divided in the illustrated embodiments by the partitions 4 into three different flow areas, namely a central one with a single flow channel 5, an annular around this given with the flow channels 6 and an annular around this given outer with the flow channels 7.
  • the interior of each profile tube 1, 2, 3 is divided by the partitions 4 so that the different media can flow through the respective flow areas 5, 6, 7 separated from each other.
  • each of the profile tubes 1, 2, 3 including all of its partitions 4 can each be made in one piece by extrusion.
  • the outer wall 8, 9, 10 of each profiled tube 1, 2, 3 and the entirety of the associated internal partition walls 4 can each be realized separately by means of a separate extruded profile.
  • the outer wall 8, 9, 10 of each profile tube 1, 2, 3 can be realized together with some of the associated internal partitions 4 by an extruded profile, while the rest of the internal partitions 4 is realized by at least one further extruded profile.
  • each profile tube 1, 2, 3 and the associated partition walls 4 can, however, also be realized by a plurality of extruded profiles which are inserted coaxially one into the other, which case is shown in the drawing.
  • the outer wall 8 (Fig. 1, 2) or 9, 10 (Fig. 3, 4) of each profile tube 1, 2, 3 is realized by its own extruded profile, while the associated partition walls 4 are realized by two different extruded profiles. This embodiment is discussed in more detail below.
  • the identical profile tubes 1 of the heat exchanger according to FIGS. 1 and 2 have an outer wall 8 which is approximated to a hexagon and made of six different outer wall parts 8/1, 8/2, 8/3, 8/4, 8/5, 8/6 is that the profile tubes 1 are all in the same relative position, that is, not rotated relative to one another about their longitudinal axis, and can be assembled and when they are joined together, their profiled outer wall parts - as can be seen in FIG. 1 - interlockingly interlocked with one another to the system come.
  • the one profile tube type 3 has an outer wall 10 which is approximated to an octagon. Specifically, it consists of four identical, flat, crosswise opposite outer wall parts 10/1, 10/2, 10/3, 10/4 and four, each arranged between two of the aforementioned outer wall parts, and thus also crosswise diametrically opposite same longitudinal grooves 10 / 5, 10/6, 10/7, 10/8 with flat groove base.
  • the other profile tube type 2 however, has an outer wall 9 which is approximated to a square.
  • each other diametrically opposed outer wall parts 9/1, 9/2 which are essentially flat in parallel, but in the middle of their longitudinal extent a projecting, form-fitting into a longitudinal groove 10/5, 10/6, 10/7, 10 / 8 of the other profile tube type 10 have a matching longitudinal web 9/11, 9/21.
  • the other two, mirror images of each other diametrically opposed outer wall parts 9/3, 9/4 are formed by a projecting longitudinal web 9/31, 9/41 having longitudinal constrictions having such a shape that in each of them when joining the profile tubes 9, 10 a profile tube 10 with any two of it flat side surfaces and the groove in between fits exactly.
  • a projecting longitudinal web 9/31, 9/41 having longitudinal constrictions having such a shape that in each of them when joining the profile tubes 9, 10 a profile tube 10 with any two of it flat side surfaces and the groove in between fits exactly.
  • the profile tubes 1, 2, 3 are not each made in one piece with their internal partition walls by appropriate extruded profiles, it is advisable to ensure an exact separation between the media flows to be passed through within a profile tube 1, 2, 3 or to realize several of the partitions 4 by an unprofiled or profiled tube.
  • the flow channel 5 is delimited by a partition 4/1, which are provided by a profiled tube, on which it integrally integrates with it, several other partition walls 4 directed radially towards the outer wall 8 of the profile tube 1. In this way, a defined separation between the central throughflow channel 5 and the central throughflow region containing the flow channels 6 is ensured.
  • a further partition 4/2 is formed by a profiled tube which is integrally united with several other partitions 4 directed radially towards the outer wall 8 of the profile tube 1.
  • the partitions 4 given radially on the inner tubular partition 4/1 extend to the inside of the outer part annular partition 4/2, two adjacent ones of said partition walls 4 together with the two tubular partition walls 4/1, 4/2 delimiting a flow channel 6.
  • the outgoing on the outer tubular partition 4/2 partitions 4 extend to the inside of the outer wall 8 of the profile tube 1, two of said partition walls together with the outer tubular partition 4/2 and the outer wall 8 of the profile tube 1 each having a flow channel 7 limit.
  • both tubular partitions 4/1, 4/2 can (as shown) radially outwards in the direction of the center of the profile tube 1, axially parallel and in the middle in a flow channel 6 or in the flow channel 5 projecting longitudinal webs 11 are formed, which for Serve to increase the heat transfer.
  • the arranged on the outer tubular partition 4/2 partitions 4 have a different length, so that this extruded profile can only be inserted into the profile tube 1 in a single possible position and thus precisely in terms of position.
  • the outer tubular partition 4/2 preferably has a rosette shape with eight wave crests and wave troughs which extend approximately sinusoidally along a pitch circle.
  • the partition walls 4 arranged on the preferably also rosette-shaped inner partition 4/1 all have the same length, so that this extruded profile can be inserted into the outer tubular partition 4/2 in eight different angular positions (each rotated by 45 °), the respective one Partition 4 extends into the interior of a wave crest.
  • the one profile tube 3 according to FIGS. 3 and 4 and its internal partitions 4,4 / 1, 4/2 are constructed.
  • real dividing walls 4 are arranged on the inside of the outer tubular dividing wall 4/2 radially to the center of the profiled tube 3, which extend to the outer surface of the inner tubular dividing wall 4/1.
  • a flow channel is formed in each case by a partition 4 projecting on the inside of the outer tubular partition 4/2 and a partition 4 projecting on the outside by the inner tubular partition 4/1 together with the inner and outer tubular partition 4/1, 4/2 6 limited.
  • the inner tubular partition 4/1 is designed as an unprofiled flat tube with a smooth outer wall.
  • the flow channels 6 are delimited here in each case by dividing walls 4 protruding on the inside from the outer tubular dividing wall 4/2 and reaching to the outer surface of the inner tubular dividing wall 4/1 together with the two tubular dividing walls 4/1, 4/2.
  • the heat exchanger composed of such internally divided profile tubes 1 or 2, 3 can be used in a variety of ways.
  • the central flow area of the profile pipes 1 or 2, 3 with the flow channels 6 given there by the cooling water of the internal combustion engine and the central (5) and outer flow area of the profile pipes 1 or 2, 3 with the Flow channels 7 flows through the cooling air generated by a cooling fan or an alternative cooling medium.
  • the central flow area 6 of the profile pipes 1 or 2, 3 is from the charge air to be cooled and the central (5) and outer flow area 7 of the profile pipes 1 or 2, 3 from that of one Cooling fan generated cooling air or an alternative cooling medium flows through
  • the central flow area 6 of the profile pipes 1 and 2, 3 is generated by the engine oil to be cooled and the central (5) and outer flow area 7 of the profile pipes 1 and 2, 3 are generated by a cooling fan Cooling air or an alternative cooling medium flows through.
  • the heat exchanger according to the invention advantageously allows the same to be used as a combined water and charge air and / or oil cooler of a supercharged internal combustion engine.
  • the profile tubes 1 or 2, 3 are a coherent heat exchanger area 12 for water cooling and the profile tubes 1 and 2, 3 of another connected heat exchanger area 13 for charge air cooling.
  • 6 schematically shows the use of the heat exchanger according to the invention as a combined water, charge air and oil cooler, the profile tubes 1 and 2, 3 of a first coherent heat exchanger area 14 for water cooling, the profile tubes 1 and 2, 3 of a second coherent Heat exchanger area 15 for charge air cooling and the profile tubes 1 and 2, 3 of a third coherent heat exchanger area 16 are used for oil cooling.
  • FIG. 7 it can be seen that for the supply of the medium to be cooled - water and / or charge air and / or oil - an inflow tank 17 is arranged on the front of the heat exchanger according to the invention and an outflow tank 18 is arranged on the rear of the heat exchanger according to the invention for collecting the cooled medium.
  • FIG. 8 shows an example for the supply of the medium to be cooled from the inflow container 17 and for the supply of the cooling medium into the heat exchanger according to the invention.
  • connecting pieces 19 which are connected at the end to the flow channels 6 and are sealed by sealing means.
  • a feed pipe 20 leads in from the side, which is connected and sealed at the end to the central flow channel 5 of the profile pipe 1 or 2 or 3 in question and serves to supply the cooling medium.
  • the cooling medium can enter from the environment around a connecting piece 19 on the end face.
  • This solution shown for the inlet area can equally be used for the outlet area of the heat exchanger according to the invention for connection to the outflow tank 18 given there.
  • the profile tubes 1, 2, 3 and the internal partitions 4, 4, 1, 4, 2 and heat dissipation webs 11 can be made of a highly thermally conductive metallic material, for example aluminum or an aluminum alloy. However, it is also possible to make the outer walls 8, 9, 10 of the profiled tubes 1, 2, 3 from plastic, the partitions 4,4 / 1,4 / 2 and heat dissipation webs 11 from metal, eg aluminum or an aluminum alloy. It is also conceivable, in order to facilitate assembly, to paint the different extrusions in different colors or to produce them from differently colored materials.
  • the inflow container 17 and outflow container 18 are preferably formed together with the connecting piece 19 and feed pipes 20 by essentially one-piece plastic parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft einen Wärmetauscher zur Kühlung wenigstens eines durchströmenden Mediums durch ein Kühlmedium, insbesondere zur Wasser- und/oder Ladeluft- und/oder Ölkühlung einer Brennkraftmaschine eines Kraftfahrzeuges. Um eine universelle Verwendbarkeit des Wärmetauschers mit sehr guter Wärmeabfuhrleistung sicherzustellen, ist der Wärmetauscher aus einer Vielzahl polygonaler, miteinander verzahnt direkt aneinander anliegender Profilrohre (1, 2, 3) zusammengesetzt, deren Innenräume jeweils durch eine Vielzahl von achsparallelen, wärmeableitenden Trennwänden (4, 4/1, 4/2) in eine Vielzahl von Strömungskanälen (5, 6, 7) für eine solchermaßen getrennte Hindurchleitung von Kühlmedien und zu kühlenden Medien unterteilt sind. <IMAGE>

Description

  • Die Erfindung betrifft einen Wärmetauscher zur Kühlung wenigstens eines durchströmenden Mediums durch ein Kühlmedium, insbesondere zur Wasser- und/oder Ladeluft- und/oder Ölkühlung einer Brennkraftmaschine eines Kraftfahrzeuges.
  • In Verbindung mit einer Brennkraftmaschine eines Fahrzeuges sind bisher zur Kühlung des Motorkühlwassers, der Ladeluft und des Motoröles jeweils eigene, ihrem Bauprinzip nach verschiedene Kühlertypen verwendet worden, jeder seinem speziellen Einsatzzweck entsprechend ausgestaltet und bemessen. Als Wasserkühler kam dabei regelmäßig ein solcher zur Anwendung, der aus einem oberen und einem unteren, jeweils an den Kühlwasserkreislauf der Brennkraftmaschine angeschlossenen Wasserkasten besteht, zwischen denen kühlwasserdurchflossene Rohre mit durchgehend kreisringförmigem Querschnitt verlaufen. Die besagten Rohre sind dabei in mehreren Rohrebenen angeordnet. Zwischen den Rohren sind mäanderförmig gefaltete Wellblechstreifen gegeben, die zur Wärmeableitung an die durch die Lücken durchströmende Kühlluft dienen. Da diese äußeren Wellbleche nicht in unmittelbarem Kontakt mit dem zu kühlenden Medium stehen, ergibt sich ein vergleichsweise schlechter Wärmeübergang, wasteilweise durch eine relativ hohe Kühlluftleistung kompensierbar ist.
  • Ladeluftkühler wurden bisher in der Regel nach einem ähnlichen Prinzip wie Wasserkühler gebaut. Für Ölkühler dagegen kam ein anderes Bauprinzip zur Anwendung.
  • Es ist daher Aufgabe der Erfindung, einen Wärmetauscher der gattungsgemäßen Art dahingehend auszubilden, daß er universell zur Kühlung unterschiedlichster Medien wie Wasser, Luft oder Öl bei ein und demselben Kühlmedium, insbesondere Luft, verwendbar ist und gegenüber herkömmlichen Kühlern einen höheren Kühlwirkungsgrad erbringt.
  • Diese Aufgabe ist erfindungsgemäß durch einen Wärmetauscher mit den im Anspruch 1 angegebenen Merkmalen gelöst.
  • Vorteilhafte Ausgestaltungen des erfindungsgemäßen Wärmetauschers sind in den Unteransprüchen gekennzeichnet.
  • Der erfindungsgemäße Wärmetauscher erlaubt aufgrund seines Bauprinzipes eines sehr kompakte Herstellung, außerdem ist er universell zur Kühlung der unterschiedlichsten Medien einsetzbar. Ein weiterer, besonderer Vorteil ist der hohe Wirkungsgrad des Wärmetauschers, da die intern der Profilrohre gegebenen Trennwände in unmittelbarem Kontakt mit dem zu kühlenden Medium und dem Kühlmedium stehen und somit ein hervorragender Wärmeübergang sichergestellt ist. Da der erfindungsgemäße Wärmetauscher sich nur aus einer Vielzahl von Strangpreßprofilen zusammensetzt, die großtechnisch in entsprechenden Anlagen leicht herstellbar sind, ist er auch mit vertretbarem Kostenaufwand realisierbar. Durch eine spezielle Gestaltung der Trennwände ist außerdem sichergestellt, daß innerhalb eines Profilrohres sowohl das Kühlmedium als auch das zu kühlende Medium beim Durchströmen exakt getrennt bleibt.
  • Nachstehend ist der erfindungsgemäße Wärmetauscher anhand mehrerer in der Zeichnung dargestellter Ausführungsbeispiele noch näher erläutert. In der Zeichnung zeigen:
  • Fig. 1
    einen Querschnitt durch einen Ausschnitt aus einem erfindungsgemäßen Wärmetauscher, wobei eine erste Ausführungsform von Profilrohren und internen Trennwänden zur Anwendung kommt,
    Fig. 2
    ein bei der Ausführungsform gemäß Fig. 1 zur Anwendung kommendes Profilrohr samt internen Trennwänden in vergrößerter Einzeldarstellung,
    Fig. 3
    einen Querschnitt durch einen Ausschnitt aus einem erfindungsgemäßen Wärmetauscher, wobei eine zweite Ausführungsform von Profilrohren und internen Trennwänden zur Anwendung kommt,
    Fig. 4
    in vergrößerter Einzeldarstellung die beiden beim Ausführungsbeispiel gemäß Fig. 3 zur Anwendung kommenden Profilrohr-Typen samt interner Trennwände,
    Fig. 5
    in Prinzipdarstellung eine Anwendung des erfindungsgemäßen Wärmetauschers,
    Fig. 6
    in Prinzipdarstellung eine andere Verwendungsform des erfindungsgemäßen Wärmetauschers,
    Fig. 7
    in Prinzipdarstellung einen erfindungsgemäßen Wärmetauscher zusammen mit Zu- und Abflußorganen für Kühlmedium und zu kühlendes Medium, und
    Fig. 8
    eine Ausführungsform des Anschlusses des erfindungsgemäßen Wärmetauschers für Zu- bzw. Abführung des Kühlmediums und des zu kühlenden Mediums.
  • Grundsätzlich ist der Wärmetauscher aus einer Vielzahl polygonaler, miteinander verzahnt direkt aneinander anliegender Profilrohre 1 (siehe Fig. 1 und 2) bzw. 2,3 (siehe Fig. 3 und 4) zusammengesetzt, deren Innenräume jeweils durch eine Vielzahl von achsparallelen, wärmeableitenden Trennwänden 4 in eine Vielzahl von Strömungskanälen 5, 6, 7 für eine solchermaßen getrennte Hindurchleitung von Kühlmedien und zu kühlenden Medien unterteilt sind. Im Beispiel gemäß Fig. 1 und 2 kommen dabei nur querschnittsgleiche Profilrohre 1 eines einzigen Typs mit durch die Trennwände 4 gleichgestalten Innenräumen zur Anwendung. Beim Beispiel gemäß Fig. 3 und 4 dagegen kommen zwei querschnittsverschiedene Profilrohr-Typen 2,3 mit jeweils speziell durch die Trennwände 4 gestalteten, je Profilrohr-Typ aber immer gleichen Innenräumen zur Anwendung.
  • Der Innenraum jedes der Profilrohre 1, 2, 3 ist bei den dargestellten Ausführungsbeispielen durch die Trennwände 4 in drei unterschiedliche Durchströmbereiche unterteilt, nämlich in einen zentralen mit einem einzigen Strömungskanal 5, einen ringförmig um diesen gegebenen mittleren mit den Strömungskanälen 6 und einen ringförmig um diesen gegebenen äußeren mit den Strömungskanälen 7. Grundsätzlich ist der Innenraum jedes Profilrohres 1, 2, 3 durch die Trennwände 4 so unterteilt, daß die unterschiedlichen Medien exakt von einander getrennt die jeweiligen Durchströmbereiche 5, 6, 7 durchströmen können.
  • Für die Realisierung der Profilrohre 1, 2, 3 und deren Innenraumaufteilung durch die Trennwände sind generell verschiedene Lösungen möglich. Beispielsweise kann jedes der Profilrohre 1, 2, 3 einschließlich aller seiner Trennwände 4 jeweils einstückig durch Strangpressen realisiert sein. Alternativ hierzu kann die Außenwand 8, 9, 10 jedes Profilrohres 1, 2, 3 und die Gesamtheit der zugehörigen internen Trennwände 4 getrennt davon jeweils durch ein eigenes Strangpreßprofil realisiert sein. In weiterer Alternative kann die Außenwand 8, 9, 10 jedes Profilrohres 1, 2, 3 zusammen mit einigen der zugehörigen internen Trennwände 4 durch ein Strangpreßprofil realisiert sein, während der Rest der internen Trennwände 4 durch wenigstens ein weiteres Strangpreßprofil realisiert ist. Schließlich können die Profilrohre 1, 2, 3 und die zugehörigen Trennwände 4 jedoch auch durch mehrere, koaxial ineinander gesteckte Strangpreßprofile realisiert sein, welcher Fall in der Zeichnung dargestellt ist. Dabei ist die Außenwand 8 (Fig. 1, 2) bzw. 9, 10 (Fig. 3, 4) jedes Profilrohres 1, 2, 3 durch ein eigenes Strangpreßprofil realisiert, während die zugehörigen Trennwände 4 durch zwei verschiedene Strangpreßprofile realisiert sind. Auf diese Ausführungsform ist nachfolgend näher eingegangen.
  • Die identischen Profilrohre 1 des Wärmetauschers gemäß Fig. 1 und 2 weisen eine Außenwand 8 auf, die an ein Hexagon angenähert ist und aus sechs verschiedenen, derart in sich profilierten Außenwandteilen 8/1, 8/2, 8/3, 8/4, 8/5, 8/6 besteht, daß die Profilrohre 1 alle in gleicher Relativlage, das heißt, nicht gegeneinander um ihre Längsachse verdreht, zusammensetzbar sind und beim Zusammenfügen deren profilierte Außenwandteile - wie aus Fig. 1 ersichtlich - formschlüssig verzahnt ineinandergreifend aneinander zur Anlage kommen.
  • Beim Wärmetauscher gemäß Fig. 3 und 4 weist der eine Profilrohrtyp 3 eine Außenwand 10 auf, die an ein Oktogon angenähert ist. Im einzelnen besteht sie aus vier gleichen, ebenen, kreuzweise einander gegenüberliegenden Außenwandteilen 10/1, 10/2, 10/3, 10/4 und vier, jeweils zwischen zwei der vorgenannten Außenwandteilen angeordneten, einander somit auch kreuzweise diametral gegenüberliegenden gleichen Längsnuten 10/5, 10/6, 10/7, 10/8 mit ebenem Nutgrund. Der andere Profilrohrtyp 2 dagegen weist eine Außenwand 9 auf, die an ein Quadrat angenähert ist. Sie umfaßt zwei einander spiegelbildlich diametral gegenüberliegende Außenwandteile 9/1, 9/2, die parallel verlaufend im wesentlichen eben sind, aber in der Mitte ihrer Längserstreckung einen vorspringenden, formschlüssig in eine Längsnut 10/5, 10/6, 10/7, 10/8 des anderen Profilrohrtyps 10 einpassenden Längssteg 9/11, 9/21 haben. Die beiden anderen, einander spiegelbildlichen diametral gegenüberliegenden Außenwandteile 9/3, 9/4 sind durch am Grund einen vorspringenden Längssteg 9/31, 9/41 aufweisende Längseinschnürungen mit solcher Form gebildet sind, daß in jede derselben beim Zusammenfügen der Profilrohre 9,10 ein Profilrohr 10 mit zwei beliebigen seiner ebenen Seitenflächen und der dazwischen liegenden Nut exakt formschlüssig einpaßt. An drei solchermaßen in der Reihenfolge 2, 3, 2 zusammengesetzten Profilrohren (siehe Fig. 3 linke Vertikalreihe) schließen sich beim Zusammenbau seitlich drei in der Reihenfolge 3, 2, 3 zusammengesetzte Profilrohre an (siehe Fig. 3 rechte Vertikalreihe), wobei jedes der beiden Profilrohre 3 mit einer seiner Längsnuten 10/5, 10/6, 10/7, 10/8 den Längssteg 9/11 bzw. 9/21 des in der oberen und unteren Querreihe benachbarten Profilrohres 2 übergreift und das dazwischen gegebene Profilrohr 2 mit einem seiner Längsstege 9/11,9/21 in die zugewandte Längsnut des in der mittleren Querreihe benachbarten Profilrohres 3 eingreift sowie mit den beiderseits dieses Längssteges 9/11 bzw. 9/21 gegebenen Flächenteilen der Seitenfläche 9/1 bzw. 9/2 jeweils an den beiden einander benachbarten Flächenteilen der Seitenflächen 9/1 bzw. 9/2 der in der benachbarten Vertikalreihe gegebenen Profilrohre 2 zur Anlage kommt.
  • Für den Fall, daß die Profilrohre 1, 2, 3 nichtjeweils einstückig mit ihren intern gegebenen Trennwänden durch entsprechende Strangpreßprofile realisiert sind, ist es, um innerhalb eines Profilrohres 1, 2, 3 eine exakte Trennung zwischen den durchzuleitenden Medienströmen zu gewährleisten, zweckmäßig, eine oder mehrere der Trennwände 4 selbst durch ein unprofiliertes bzw. profiliertes Rohr zu realisieren. Beim Ausführungsbeispiel gemäß Fig. 1 und 2 ist der Strömungskanal 5 durch eine Trennwand 4/1 begrenzt, die durch ein profiliertes Rohr, an dem einstückig mit diesem vereinigt, mehrere andere strahlenförmig zur Außenwand 8 des Profilrohres 1 hin gerichtete Trennwände 4 gegeben sind. Auf diese Weise ist eine definierte Trennung zwischen dem zentralen Durchströmkanal 5 und dem die Strömungskanäle 6 enthaltenden mittleren Durchströmbereich gewährleistet. Eine exakte Trennung zwischen dem mittleren und dem äußeren Durchströmbereich ist dadurch gewährleistet, daß eine weitere Trennwand 4/2 durch ein profiliertes Rohr gebildet ist, das einstückig mit mehreren anderen, strahlenförmig zur Außenwand 8 des Profilrohres 1 hin gerichteten Trennwänden 4 vereinigt ist. Dabei erstrecken sich die strahlenförmig an der inneren rohrförmigen Trennwand 4/1 gegebenen Trennwände 4 bis zur Innenseite der äußeren ringförmigen Trennwand 4/2, wobei jeweils zwei benachbarte dieser besagten Trennwände 4 zusammen mit den beiden rohrförmigen Trennwänden 4/1, 4/2 einen Strömungskanal 6 begrenzen. Die an der äußeren rohrförmigen Trennwand 4/2 nach außen abgehenden Trennwände 4 reichen bis zur Innenseite der Außenwand 8 des Profilrohres 1, wobei jeweils zwei dieser besagten Trennwände zusammen mit der äußeren rohrförmigen Trennwand 4/2 und der Außenwand 8 des Profilrohres 1 jeweils einen Strömungskanal 7 begrenzen. An beiden rohrförmigen Trennwänden 4/1, 4/2 können (wie dargestellt) innen strahlenförmig in Richtung Zentrum des Profilrohres 1 abgehende , achsparallel verlaufende und jeweils mittig in einen Strömungskanal 6 bzw. in den Strömungskanal 5 hineinragende Längsstege 11 mit angeformt sein, die zur Erhöhung des Wärmeüberganges dienen. Die an der äußeren rohrförmigen Trennwand 4/2 angeordneten Trennwände 4 haben eine unterschiedliche Länge, so daß dieses Strangpreßprofil nur in einer einzig möglichen Stellung und damit exakt lagemäßig vorgegeben in das Profilrohr 1 eingeschoben werden kann. Ferner hat die äußere rohrförmige Trennwand 4/2 vorzugsweise eine Rosettenform mit acht Wellenbergen und Wellentälern, die sich etwa sinusförmig längs eines Teilkreises erstrecken. Die an der vorzugsweise ebenfalls rosettenförmigen inneren Trennwand 4/1 angeordneten Trennwände 4 haben alle die gleiche Länge, so daß dieses Strangpreßprofil in acht verschiedenen Winkelstellungen (jeweils um 45° verdreht) in die äußere rohrförmige Trennwand 4/2 einsteckbar ist, wobei sich die jeweilige Trennwand 4 in das Innere eines Wellenberges hinein erstreckt.
  • Ähnlich wie das Profilrohr 1 und dessen interne Trennwände 4,4/1,4/2 sind auch das eine Profilrohr 3 gemäß Fig. 3 und 4 sowie dessen interne Trennwände 4,4/1, 4/2 aufgebaut. Unterschiedlich ist jedoch dort, daß anstelle der Längsstege 11 hier echte Trennwände 4 an der äußeren rohrförmigen Trennwand 4/2 innen strahlenförmig zum Zentrum des Profilrohres 3 hingerichtet angeordnet sind, die bis zur Außenfläche der inneren rohrförmigen Trennwand 4/1 reichen. Auf diese Weise wird jeweils von einer innen an der äußeren rohrförmigen Trennwand 4/2 vorspringenden Trennwand 4 und einer außen an der inneren rohrförmigen Trennwand 4/1 vorspringenden Trennwand 4 zusammen mit innerer und äußerer rohrförmiger Trennwand 4/1, 4/2 jeweils ein Strömungskanal 6 begrenzt.
  • Innerhalb des anderen Profilrohres 2 gemäß Fig. 3 und 4 sind geringfügige Abweichungen bei der Gestaltung der Trennwände 4,4/1,4/2 gegeben, insofern, als hier die innere rohrförmige Trennwand 4/1 als unprofiliertes Flachrohr mit glatter Außenwand ausgebildet ist. Außerdem werden hier die Strömungskanäle 6 jeweils durch innen an der äußeren rohrförmigen Trennwand 4/2 abragende und bis zur Außenfläche der inneren rohrförmigen Trennwand 4/1 reichende Trennwände 4 zusammen mit den beiden rohrförmigen Trennwänden 4/1, 4/2 begrenzt.
  • Der aus solchen intern aufgeteilten Profilrohren 1 bzw. 2, 3 zusammengesetzte Wärmetauscher ist in vielfältiger Weise anwendbar.
  • Bei Verwendung des erfindungsgemäßen Wärmetauschers als Wasserkühler einer Brennkraftmaschine werden der mittlere Durchströmbereich der Profilrohre 1 bzw. 2, 3 mit den dort gegebenen Strömungskanälen 6 vom Kühlwasser der Brennkraftmaschine und der zentrale (5) sowie äußere Durchströmbereich der Profilrohre 1 bzw. 2, 3 mit den Strömungskanälen 7 von der von einem Kühllüfter erzeugten Kühlluft oder einem alternativen Kühlmedium durchströmt.
  • Bei Verwendung des erfindungsgemäßen Wärmetauschers als Ladeluftkühler einer aufgeladenen Brennkraftmaschine werden der mittlere Durchströmbereich 6 der Profilrohre 1 bzw. 2, 3 von der zu kühlenden Ladeluft und der zentrale (5) sowie äußere Durchströmbereich 7 der Profilrohre 1 bzw. 2, 3 von der von einem Kühllüfter erzeugten Kühlluft oder einem alternativen Kühlmedium durchströmt
  • Bei Verwendung des erfindungsgemäßen Wärmetauschers als Ölkühler einer Brennkraftmaschine werden der mittlere Durchströmbereich 6 der Profilrohre 1 bzw. 2, 3 vom zu kühlenden Motoröl und der zentrale (5) sowie äußere Durchströmbereich 7 der Profilrohre 1 bzw. 2, 3 von der von einem Kühllüfter erzeugten Kühlluft oder einem alternativen Kühlmedium durchströmt.
  • Der erfindungsgemäße Wärmetauscher läßt in vorteilhafter Weise eine Verwendung desselben als kombinierter Wasser- und Ladeluft- und/oder Ölkühler einer aufgeladenen Brennkraftmaschine zu.
  • Bei Verwendung des erfindungsgemäßen Wärmetauschers als kombinierter Wasser- und Ladeluftkühler, was schematisiert in Fig. 5 angedeutet ist, sind die Profilrohre 1 bzw. 2, 3 eines zusammenhängenden Wärmetauscherbereiches 12 zur Wasserkühlung und die Profilrohre 1 bzw. 2, 3 eines anderen zusammenhängenden Wärmetauscherbereiches 13 zur Ladeluftkühlung herangezogen. In Fig.6 ist schematisch die Verwendung des erfindungsgemäßen Wärmetauschers als kombinierter Wasser-, Ladeluft- und Ölkühler dargestellt, wobei die Profilrohre 1 bzw. 2, 3 eines ersten zusammenhängenden Wärmetauscherbereiches 14 zur Wasserkühlung, die Profilrohre 1 bzw. 2, 3 eines zweiten zusammenhängenden Wärmetauscherbereiches 15 zur Ladeluftkühlung und die Profilrohre 1 bzw. 2, 3 eines dritten zusammenhängenden Wärmetauscherbereiches 16 zur Ölkühlung herangezogen sind.
  • Aus Fig. 7 ist ersichtlich, daß zur Zuführung des zu kühlenden Mediums - Wasser und /oder Ladeluft und/oder Öl - frontseitig des erfindungsgemäßen Wärmetauschers ein Zuströmbehälter 17 und rückseitig des erfindungsgemäßen Wärmetauschers ein Abströmbehälter 18 zur Sammlung des gekühlten Mediums angeordnet ist.
  • In Fig. 8 ist ein Beispiel für die Zuführung des zu kühlenden Mediums aus dem Zuströmbehälter 17 und für die Zuführung des Kühlmediums in den erfindungsgemäßen Wärmetauscher dargestellt. Dabei sind zur Verbindung des Zuströmbehälters 17 mit den Profilrohren 1 bzw. 2, 3 Anschlußstutzen 19 gegeben, die stirnseitig an den Strömungskanälen 6 angeschlossen und durch Dichtungsmittel abgedichtet sind. In jeden dieser Anschlußstutzen 19 führt seitlich ein Zuführrohr 20 herein, das am zentralen Strömungskanal 5 des betreffenden Profilrohres 1 bzw. 2 bzw. 3 stirnseitig angeschlossen und abgedichtet ist und zur Zuführung des Kühlmediums dient. In die äußeren Strömungskanäle 7 der Profilrohre 1 bzw. 2 bzw. 3 kann das Kühlmedium aus dem Umfeld um einen Anschlußstutzen 19 stirnseitig eintreten. Diese für den Eintrittsbereich dargestellte Lösung kann gleichermaßen auch für den Austrittsbereich des erfindungsgemäßen Wärmetauschers zur Verbindung mit dem dort gegebenen Abströmbehälter 18 verwendet werden.
  • Die Profilrohre 1, 2, 3 und die intern derselben gegebenen Trennwände 4,4/1,4/2 sowie Wärmeableitstege 11 können aus gut wärmeleitendem metallischem Material, z.B. Aluminium bzw. einer Aluminiumlegierung, hergestellt werden. Es ist jedoch auch möglich, die Außenwände 8, 9, 10 der Profilrohre 1, 2, 3 aus Kunststoff, die Trennwände 4,4/1,4/2 und Wärmeableitstege 11 dagegen aus Metall, z.B. Aluminium bzw. einer Aluminiumlegierung, herzustellen. Ebenso ist es denkbar, um das Zusammenfügen zu erleichtern, die unterschiedlichen Strangpreßteile farbunterschiedlich zu lackieren bzw. diese aus unterschiedlich eingefärbten Materialien herzustellen. Der Zuströmbehälter 17 und Abströmbehälter 18 werden zusammen mit den Anschlußstutzen 19 und Zuführrohren 20 vorzugsweise durch im wesentlichen einstückige Kunststoffteile gebildet.

Claims (20)

  1. Wärmetauscher zur Kühlung wenigstens eines durchströmenden Mediums durch ein Kühlmedium, insbesondere zur Kühlwasser- und/oder Ladeluft- und/oder Ölkühlung einer Brennkraftmaschine eines Kraftfahrzeuges, dadurch gekennzeichnet, daß der Wärmetauscher aus einer Vielzahl polygonaler, miteinander verzahnt direkt aneinander anliegender Profilrohre (1 bzw. 2, 3) zusammengesetzt ist, deren Innenräume jeweils durch eine Vielzahl von achsparallelen, wärmeableitenden Trennwänden (4, 4/1, 4/2) in eine Vielzahl von Strömungskanälen (5, 6, 7) für eine solchermaßen getrennte Hindurchleitung von Kühlmedien und zu kühlenden Medien unterteilt sind.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Profilrohre (1, 2, 3) einschließlich ihrer Trennwände (4, 4/1, 4/2) jeweils einstückig durch ein Strangpreßprofil realisiert sind.
  3. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Außenwand (8, 9, 10) der Profilrohre (1, 2, 3) und zugehörigen Trennwände (4, 4/1, 4/2) durch mehrere, koaxial ineinander steckbare Strangpreßprofile realisiert sind.
  4. Wärmetauscher nach Anspruch 3, dadurch gekennzeichnet, daß die Außenwand (8, 9, 10) eines Profilrohres (1, 2, 3) und die Trennwände (4, 4/1, 4/2) jeweils durch ein eigenes Strangpreßprofil realisiert sind.
  5. Wärmetauscher nach Anspruch 3, dadurch gekennzeichnet, daß die Außenwand (8, 9, 10) eines Profilrohres (1, 2, 3) und einige der hieran anschließenden Trennwände (4) durch ein Strangpreßprofil realisiert sind, während der Rest der Trennwände (4, 4/1, 4/2) durch wenigstens ein weiteres Strangpreßprofil realisiert ist.
  6. Wärmetauscher nach Anspruch 3, dadurch gekennzeichnet, daß die Außenwand (8, 9, 10) eines Profilrohres (1, 2, 3) durch ein Strangpreßprofil und die Trennwände (4, 4/1, 4/2) durch wenigstens zwei verschiedene Strangpreßprofile realisiert sind.
  7. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er aus Profilrohren (1), die einschließlich ihrer Trennwände (4, 4/1, 4/2) alle die gleiche Querschnittsform aufweisen, zusammengesetzt ist.
  8. Wärmetauscher nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß er aus wenigstens zwei querschnittsverschiedenen Typen von Profilrohren (2, 3) zusammengesetzt ist, in denen auch die Anordnung und Zuordnung der internen Trennwände (4, 4/1, 4/2) unterschiedlich ist.
  9. Wärmetauscher nach Anspruch 7, dadurch gekennzeichnet, daß die Profilrohre (1) eine Außenwand (8) aufweisen, die an ein Hexagon angenähert ist und aus sechs verschiedenen, derart profilierten Außenwandteilen (8/1, 8/2, 8/3, 8/4, 8/5, 8/6) besteht, daß beim Zusammensetzen der Profilrohre (1) diese mit ihren profilierten Außenwandteilen formschlüssig miteinander verzahnt ineinandergreifend aneinander zur Anlage kommen.
  10. Wärmetauscher nach Anspruch 8, dadurch gekennzeichnet, daß der eine Profilrohrtyp (3) eine Außenwand (10) aufweist, die an ein Oktogon angenähert ist und aus vier gleichen, ebenen, kreuzweise einander gegenüberliegenden Außenwandteilen (10/1, 10/2, 10/3, 10/4) und vier, jeweils zwischen zwei der vorgenannten Außenwandteile angeordneten, einander somit auch kreuzweise diametral gegenüberliegenden gleichen Längsnuten (10/5, 10/6, 10/7, 10/8) mit ebenem Nutgrund besteht, während der zweite, für Anschluß an den ersten entsprechend ausgebildete Profilrohrtyp (2) eine Außenwand (9) aufweist, die an ein Quadrat angenähert ist, wobei zwei einander diametral gegenüberliegende Außenwandteile (9/1, 9/2) im wesentlichen eben sind, aber in der Mitte jeweils einen vorspringenden, formschlüssig in eine Längsnut (10/5, 10/6, 10/7, 10/8) des anderen Profilrohrtyps (3) einpassenden Längssteg (9/11, 9/21) haben, und wobei die beiden anderen, einander diametral gegenüberliegenden Außenwandteile (9/3, 9/4) durch am Grund einen vorspringenden Längssteg (9/31, 9/41) aufweisende Längseinschnürungen mit solcher Form gebildet sind, daß beim Zusammenfügen der beiden Profilrohrtypen (2, 3) zwei ebene Seitenflächen (10/1, 10/4 bzw. 10/2, 10/3) und die dazwischenliegende Nut (10/8, 10/6) formschlüssig in die Längseinschnürung (9/3, 9/4) mit Längssteg (9/31, 9/41) einpassen.
  11. Wärmetauscher nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß eine oder mehrere der Trennwände (4) durch ein profiliertes oder unprofiliertes Rohr (4/1, 4/2) gebildet ist/sind.
  12. Wärmetauscher nach Anspruch 11, dadurch gekennzeichnet, daß mit einer durch ein profiliertes Rohr gebildeten Trennwand (4/1, 4/2) mehrere andere strahlenförmig zur Außenwand (8, 9, 10) des Profilrohres (1, 2, 3) hin gerichtete Trennwände (4) einstückig vereinigt sind.
  13. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Innenraum jedes der Profilrohre (1, 2, 3) durch die Trennwände (4, 4/1, 4/2) in drei unterschiedliche Durchströmbereiche unterteilt ist, nämlich einen zentralen (5), einen ringförmig um diesen gegebenen mittleren mit den Strömungskanälen (6) und einen ringförmig um diesen gegebenen äußeren mit den Strömungskanälen (7).
  14. Wärmetauscher nach Anspruch 13, dadurch gekennzeichnet, daß bei dessen Verwendung als Wasserkühler einer Brennkraftmaschine die Strömungskanäle (6) des mittleren Durchströmbereiches der Profilrohre (1; 2, 3) vom Kühlwasser der Brennkraftmaschine und der zentrale (5) sowie der durch die äußeren Strömungskanäle (7) gebildete Durchströmbereich der Profilrohre (1; 2, 3) von der von einem Kühllüfter erzeugten Kühlluft oder einem hierzu alternativen Kühlmedium durchströmt werden.
  15. Wärmetauscher nach Anspruch 13, dadurch gekennzeichnet, daß bei dessen Verwendung als Ladeluftkühler einer aufgeladenen Brennkraftmaschine der mittlere, durch die Strömungskanäle (6) gegebene Durchströmbereich der Profilrohre (1; 2, 3) von der zu kühlenden Ladeluft und der zentrale (5) sowie äußere, durch die Strömungskanäle (7) gegebene Durchströmbereich der Profilrohre (1; 2, 3) von der von einem Kühllüfter erzeugten Kühlluft oder einem hierzu alternativen Kühlmedium durchströmt werden.
  16. Wärmetauscher nach Anspruch 13, dadurch gekennzeichnet, daß bei dessen Verwendung als Ölkühler einer Brennkraftmaschine der mittlere, durch die Strömungskanäle (6) gegebene Durchströmbereich der Profilrohre (1; 2, 3) von zu kühlenden Motoröl und der zentrale (5) sowie äußere, durch die Strömungskanäle (7) gegebene Durchströmbereich der Profilrohre (1; 2, 3) von der von einem Kühllüfter erzeugten Kühlluft oder einem hierzu alternativen Kühlmedium durchströmt werden.
  17. Wärmetauscher nach den Ansprüchen 14 und 15, dadurch gekennzeichnet, daß bei dessen Verwendung als kombinierter Wasser- und Ladeluftkühler einer aufgeladenen Brennkraftmaschine die Profilrohre (1; 2, 3) eines zusammenhängenden Wärmetauscherbereiches (12) zur Wasserkühlung und die Profilrohre (1; 2, 3) eines anderen zusammenhängenden Wärmetauscherbereiches (13) zur Ladeluftkühlung herangezogen sind.
  18. Wärmetauscher nach den Ansprüchen 14 bis 16, dadurch gekennzeichnet, daß bei dessen Verwendung als kombinierter Wasser-, Ladeluft- und Ölkühler einer aufgeladenen Brennkraftmaschine die Profilrohre (1; 2, 3) eines ersten zusammenhängenden Wärmetauscherbereiches (14) zur Wasserkühlung, die Profilrohre (1; 2, 3) eines zweiten zusammenhängenden Wärmetauscherbereiches (15) zur Ladeluftkühlung und die Profilrohre (1; 2, 3) eines dritten zusammenhängenden Wärmetauscherbereiches (16) zur Ölkühlung herangezogen sind.
  19. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Profilrohre (1; 2, 3), die in ihrem Innenraum gegebenen Trennwände (4, 4/1, 4/2) und die gegebenenfalls vorhandenen Längsstege (11) aus Wärme gut ableitendem metallischem Werkstoff hergestellt sind.
  20. Wärmetauscher nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß die Außenwände (8; 9, 10) der Profilrohre (1; 2, 3) aus Kunststoff, die Trennwände (4, 4/1, 4/2) und die gegebenenfalls vorhandenen Längsstege (11) dagegen aus Metall, wie Aluminium bzw. einer Aluminiumlegierung, hergestellt sind.
EP19930110974 1992-08-11 1993-07-09 Wärmetauscher Expired - Lifetime EP0582835B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT161492A AT401431B (de) 1992-08-11 1992-08-11 Wärmetauscher
AT1614/92 1992-08-11

Publications (2)

Publication Number Publication Date
EP0582835A1 true EP0582835A1 (de) 1994-02-16
EP0582835B1 EP0582835B1 (de) 1997-04-16

Family

ID=3517233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930110974 Expired - Lifetime EP0582835B1 (de) 1992-08-11 1993-07-09 Wärmetauscher

Country Status (3)

Country Link
EP (1) EP0582835B1 (de)
AT (1) AT401431B (de)
DE (1) DE59306161D1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6019168A (en) * 1994-09-02 2000-02-01 Sustainable Engine Systems Limited Heat exchangers
ES2161581A1 (es) * 1998-06-17 2001-12-01 Santaolalla Milla Carlos Dispositivo para la refrigeracion de liquidos.
WO2002001133A1 (de) * 2000-06-28 2002-01-03 Ultrafilter International Ag Wärmetauscher für kältetrockneranlagen
EP1178278A2 (de) 2000-08-03 2002-02-06 F.W. Brökelmann Aluminiumwerk GmbH & Co.KG Wärmeübertragungsrohr mit gedrallten Innenrippen
EP1300636A2 (de) * 2001-10-06 2003-04-09 Robert Bosch Gmbh Wärmetauscher für ein Gasheizgerät, insbesondere ein Brennwertgerät
EP1434023A3 (de) * 2002-12-24 2005-08-03 Kaeser Kompressoren GmbH Kältetrockner
WO2007125118A1 (en) * 2006-04-28 2007-11-08 Dayco Ensa, S.L. Aluminium heat exchanger for an 'egr' system
EP2146173A1 (de) * 2008-07-17 2010-01-20 MAHLE International GmbH Kunststoffwärmetauscher
US20140182828A1 (en) * 2012-02-17 2014-07-03 Obschestvo S Ogranichennoi Otvetstvennostju "Proryvnye Innovatsionnye Tekhnologii" Heat-Exchange Apparatus
JP2015102277A (ja) * 2013-11-25 2015-06-04 協同アルミ株式会社 複穴管
EP3356167A4 (de) * 2015-06-03 2019-06-19 Sfercoci, Petru Klimaanlage und motorkühlung für fahrzuege mittels abgas
EP3455384A4 (de) * 2016-05-10 2019-11-13 Momentive Performance Materials Inc. Thermische pyrolytische graphitrohrvorrichtung zur gerichteten wärmeverwaltung
US20220196332A1 (en) * 2020-12-18 2022-06-23 Hamilton Sundstrand Corporation Multi-scale unitary radial heat exchanger core

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1008331B (de) * 1955-04-06 1957-05-16 Waagner Biro Ag Waermetauscherrohr
DE2222610A1 (de) * 1972-05-09 1973-10-31 Hagedorn Und Bailly Waermeuebertragungsanlage
EP0061779A2 (de) * 1981-03-31 1982-10-06 Feraton Anstalt Wärmetauscher
GB2254687A (en) * 1991-04-10 1992-10-14 Int Radiator Services Ltd Heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2615168A1 (de) * 1976-04-07 1977-10-27 Gartner & Co J Waermeuebertragungseinrichtung mit zumindest einem laengsrippen aufweisenden rohr
US4345644A (en) * 1980-11-03 1982-08-24 Dankowski Detlef B Oil cooler
NL8200058A (nl) * 1982-01-08 1983-08-01 Droogtech Warmtewisselaar, werkwijze voor het vervaardigen daarvan, en van een dergelijke warmtewisselaar voorziene gasdroger.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1008331B (de) * 1955-04-06 1957-05-16 Waagner Biro Ag Waermetauscherrohr
DE2222610A1 (de) * 1972-05-09 1973-10-31 Hagedorn Und Bailly Waermeuebertragungsanlage
EP0061779A2 (de) * 1981-03-31 1982-10-06 Feraton Anstalt Wärmetauscher
GB2254687A (en) * 1991-04-10 1992-10-14 Int Radiator Services Ltd Heat exchanger

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6019168A (en) * 1994-09-02 2000-02-01 Sustainable Engine Systems Limited Heat exchangers
ES2161581A1 (es) * 1998-06-17 2001-12-01 Santaolalla Milla Carlos Dispositivo para la refrigeracion de liquidos.
WO2002001133A1 (de) * 2000-06-28 2002-01-03 Ultrafilter International Ag Wärmetauscher für kältetrockneranlagen
EP1178278A2 (de) 2000-08-03 2002-02-06 F.W. Brökelmann Aluminiumwerk GmbH & Co.KG Wärmeübertragungsrohr mit gedrallten Innenrippen
DE10038624A1 (de) * 2000-08-03 2002-02-21 Broekelmann Aluminium F W Wärmeübertragungsrohr mit gedrallten Innenrippen
DE10038624C2 (de) * 2000-08-03 2002-11-21 Broekelmann Aluminium F W Wärmeübertragungsrohr mit gedrallten Innenrippen
US6533030B2 (en) 2000-08-03 2003-03-18 F.W. Brokelmann Aluminiumwerk Gmbh & Co. Kg Heat transfer pipe with spiral internal ribs
EP1300636A2 (de) * 2001-10-06 2003-04-09 Robert Bosch Gmbh Wärmetauscher für ein Gasheizgerät, insbesondere ein Brennwertgerät
EP1300636A3 (de) * 2001-10-06 2004-04-07 Robert Bosch Gmbh Wärmetauscher für ein Gasheizgerät, insbesondere ein Brennwertgerät
EP1434023A3 (de) * 2002-12-24 2005-08-03 Kaeser Kompressoren GmbH Kältetrockner
US7040100B2 (en) 2002-12-24 2006-05-09 Kaeser Kompressoren Gmbh Low-temperature dryer
WO2007125118A1 (en) * 2006-04-28 2007-11-08 Dayco Ensa, S.L. Aluminium heat exchanger for an 'egr' system
EP2146173A1 (de) * 2008-07-17 2010-01-20 MAHLE International GmbH Kunststoffwärmetauscher
US20140182828A1 (en) * 2012-02-17 2014-07-03 Obschestvo S Ogranichennoi Otvetstvennostju "Proryvnye Innovatsionnye Tekhnologii" Heat-Exchange Apparatus
JP2015102277A (ja) * 2013-11-25 2015-06-04 協同アルミ株式会社 複穴管
EP3356167A4 (de) * 2015-06-03 2019-06-19 Sfercoci, Petru Klimaanlage und motorkühlung für fahrzuege mittels abgas
EP3455384A4 (de) * 2016-05-10 2019-11-13 Momentive Performance Materials Inc. Thermische pyrolytische graphitrohrvorrichtung zur gerichteten wärmeverwaltung
US11255613B2 (en) 2016-05-10 2022-02-22 Momentive Performance Materials Quartz, Inc. Thermal pyrolytic graphite tube device for directional thermal management
US20220196332A1 (en) * 2020-12-18 2022-06-23 Hamilton Sundstrand Corporation Multi-scale unitary radial heat exchanger core
US11781813B2 (en) * 2020-12-18 2023-10-10 Hamilton Sundstrand Corporation Multi-scale unitary radial heat exchanger core

Also Published As

Publication number Publication date
ATA161492A (de) 1996-01-15
AT401431B (de) 1996-09-25
EP0582835B1 (de) 1997-04-16
DE59306161D1 (de) 1997-05-22

Similar Documents

Publication Publication Date Title
DE60319986T2 (de) Plattenwärmetauscher
DE69008681T2 (de) Duplex-Wärmetauscher.
DE60005602T2 (de) Flüssigkeitsführendes Rohr und seine Verwendung in einem Kraftfahrzeugkühler
DE69315281T2 (de) Plattenwärmetauscher und Verfahren zu dessen Herstellung
DE69219421T2 (de) Wärmetauscher
EP0964218B1 (de) Wärmetauscher mit verrippten Flachrohren, insbesondere Heizungswärmetauscher, Motorkühler, Verflüssiger oder Verdampfer, für Kraftfahrzeuge
DE3106075C2 (de) Wärmetauscher
DE69210452T2 (de) Wärmetauscher mit Rohrbündel, insbesondere für Kraftfahrzeug
DE4432972B4 (de) Wärmetauscher mit zwei Rohrreihen, insbesondere für Kraftfahrzeuge
EP0582835B1 (de) Wärmetauscher
DE69411677T2 (de) Lamellenwärmetauscher, insbesondere Ölkühler für Kraftfahrzeug
DE2951352C2 (de) Flachrohr-Wärmetauscher
DE69007709T2 (de) Stapelverdampfer.
EP0305702B1 (de) Wärmetauscher mit einer Rippenrohranordnung
DE3406682C2 (de)
DE3826244C2 (de) Ölkühler
DE2855285C2 (de)
DE6602685U (de) Waermaustauscher, insbesondere kuehler fuer kraftfahrzeug-verbrennungsmotore, mit zwischen kuehlmittelleitungen desselben angeordneten, als abstandshalter dienenden beitblechen zur fuehrung eines kuehlluftstromes und vorrichtung zur herstellung der
DE69507074T2 (de) Lamellenwärmeaustauscher mit einem einzigen Sammelkanal
DE4327213C2 (de) Rekuperativer Wärmetauscher, insbesondere Kühler für Kraftfahrzeuge
DE3148941A1 (de) Oelkuehler in scheibenbauweise
DE2013940A1 (de) Wärmeübertrager für flüssige und gasförmige Medien
EP3001130A1 (de) Heizkörper, kühlkreislauf, klimagerät für eine kraftfahrzeug-klimaanlage sowie klimaanlage für ein kraftfahrzeug
DE69404108T2 (de) Wärmetauscher, insbesondere als Ölkühler benutzt
DE19746371A1 (de) Wärmetauscher mit einem Sammelkasten mit zwei aneinander angrenzenden Kammern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19941118

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DIPL.-ING. ETH H. R. WERFFELI PATENTANWALT

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970422

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59306161

Country of ref document: DE

Date of ref document: 19970522

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990614

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990616

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990617

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990622

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990624

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990626

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000709

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 93110974.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010330

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050709