EP0059927A1 - Dispositif de réception à micro-ondes - Google Patents

Dispositif de réception à micro-ondes Download PDF

Info

Publication number
EP0059927A1
EP0059927A1 EP82101608A EP82101608A EP0059927A1 EP 0059927 A1 EP0059927 A1 EP 0059927A1 EP 82101608 A EP82101608 A EP 82101608A EP 82101608 A EP82101608 A EP 82101608A EP 0059927 A1 EP0059927 A1 EP 0059927A1
Authority
EP
European Patent Office
Prior art keywords
waveguide
receiving device
polarization
feed waveguide
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82101608A
Other languages
German (de)
English (en)
Other versions
EP0059927B1 (fr
Inventor
Günther Dr.-Ing. Mörz
Wilhelm Dipl.-Ing. Milcz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Telecom GmbH
Original Assignee
ANT Nachrichtentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6126637&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0059927(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ANT Nachrichtentechnik GmbH filed Critical ANT Nachrichtentechnik GmbH
Priority to AT82101608T priority Critical patent/ATE15960T1/de
Publication of EP0059927A1 publication Critical patent/EP0059927A1/fr
Application granted granted Critical
Publication of EP0059927B1 publication Critical patent/EP0059927B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0208Corrugated horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/172Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a dielectric element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/193Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with feed supported subreflector

Definitions

  • the present invention relates to a receiving device for left-handed and right-handed circularly polarized microwave signals, consisting of a receiving antenna with a feed system, a polarization converter, a polarization switch and a circuit for converting the microwave signals of both polarization directions from the radio frequency to the intermediate frequency level.
  • Conventional microwave receivers generally have such a structure.
  • the antenna is followed by the polarization converter and the polarization switch, both using waveguide technology.
  • a reception train with a converter is connected to each of the two arms of the polarization switch assigned to the different polarization directions.
  • a bandpass filter connected as a waveguide and a low-noise preamplifier are connected upstream of the converter.
  • a mirror selection filter and an intermediate frequency follow the converter amplifier. Are preamplifiers, converters, mirror selection filters and. Intermediate frequency amplifier designed as an integrated microwave circuit, so transitions from the waveguide bandpass filters to microstrip lines are required.
  • Such a conventional microwave receiver is not suitable for use as a TV satellite home reception system, which is to be dealt with in particular here.
  • the conventional receiving device described above has a construction which is much too complex and therefore too expensive. In addition, it is not designed so that it has the smallest possible spatial dimensions.
  • a part of the feed waveguide belonging to the feed system of the receiving antenna is designed as a bandpass filter acting for both polarization directions, that a microstrip substrate carrying the converter circuit is connected to the outlet of the feed waveguide, on which means projecting into the feed waveguide for coupling Waveguide waves of both polarization directions are arranged, and that either the polarization converter is integrated directly in the feed waveguide, or the polarization conversion takes place with the coupling of the waveguide waves to the microstrip circuit.
  • the polarization separation results in a highly integrated receiving device.
  • the conventional receiving device mentioned at the beginning uses separate components for the polarization conversion, the polarization separation and the waveguide-microstrip line transitions, which leads to a large overall length.
  • FIG. 1 shows the basic structure of a TV satellite home reception system.
  • the receiving device with two receiving trains allows the simultaneous reception of, for example, TV programs which are assigned to both the right-handed and the left-handed circular polarization.
  • the circuit part which begins with the antenna and extends to terminals 1 and 2, to which the receiving trains and the receiving train are connected, will now be described in detail below.
  • the receiving trains are not discussed in detail here since they are in accordance with the prior art can be built.
  • FIG. 3a shows a perspective view of the feed waveguide H for the receiving antenna constructed according to the Cassegrain principle.
  • the feed waveguide ends with a funnel-like exciter horn E, in which a dielectric, conical insert D is inserted.
  • a dielectric, conical insert D is inserted.
  • the end face of this insert is metallized and thus acts as a subreflector SR.
  • the dielectric insert D is provided with two cylindrical X / 4 transformers T1 and T2 which protrude into the feed waveguide H for impedance matching.
  • the transformation element T1 has a reduced cross section compared to the transformation element T2.
  • a transformation element can be used that tapers continuously towards the inside of the waveguide.
  • the two transformation elements T1 and T2 simultaneously fulfill the function of a polarization converter, which converts the received right-handed or left-handed circularly polarized waves into horizontally or vertically linearly polarized waves.
  • a polarization converter which converts the received right-handed or left-handed circularly polarized waves into horizontally or vertically linearly polarized waves.
  • the cylindrical transformation members have two opposite flats A1 and A1 'or A2 and A2' running along the cylinder axis. The flats are arranged so that their normals enclose an angle of 45 ° with the horizontal axis (x-axis) or the vertical axis (y-axis) of the feed waveguide.
  • the dimensions of the flattenings can influence the intrinsic ellipticity of the polarization converter, whose course plotted against the frequency should be as flat as possible.
  • the dielectric fill level of the waveguide at the location of the transformation elements must be selected so that an optimal distance between the operating frequency and the cutoff frequency of the Waveguide arises. If the distance were too small or too large, the course of the intrinsic ellipticity would become significantly slanted and the polarization decoupling would deteriorate considerably.
  • the transformation elements T1 and T2 can also be provided with thickenings and / or recesses, not shown in FIGS. 3a and 3b, in order to reduce self-reflections.
  • the part of the feed waveguide into which the transformation elements of the dielectric insert protrude is dimensioned in such a way that it has the properties of a high-pass filter.
  • this high-pass waveguide piece HP has a cut-off frequency, which ensures a sufficiently high blocking attenuation for the oscillator signal (e.g. 10.8 GHz).
  • the distance between the cut-off frequency (e.g. 11.0 GHz) and the useful signal frequencies must not be too small, otherwise the attenuation would be too high for the useful signals and the electrical parameters, such as cross-polarization decoupling, would be too strong from the mechanical tolerances of the waveguide become dependent.
  • the high-pass waveguide piece HP is followed by a further part of the feed waveguide, which is designed as a bandpass filter BP.
  • a bandpass filter BP This is, for example, a three-circuit bandpass filter which has identical transmission properties in the horizontal (x) and vertical (y) direction of oscillation.
  • the four diaphragms B1 to B4, which divide the waveguide into three resonators R1, R2 and R3, have circular coupling openings.
  • the first diaphragm B1 or the other diaphragms B2, B3, B4 can be provided with a cross-shaped coupling opening.
  • the feed waveguide H is terminated with a substrate MS which carries the microstrip circuit of the receiving train (s); namely, the feed waveguide is perpendicular to the ground surface of the substrate soldered to it.
  • a substrate MS which carries the microstrip circuit of the receiving train (s); namely, the feed waveguide is perpendicular to the ground surface of the substrate soldered to it.
  • four coupling pins K1 to K4 are arranged on the substrate MS, which protrude into the feed waveguide. Two of these coupling pins are arranged on the horizontal axis (x-axis) and the other two on the vertical axis (y-axis) of the waveguide.
  • the coupling pins projecting into the waveguide in the axial direction each have an end S1, S2, S3 or S4 that is angled radially to the direction of wave propagation.
  • each coupling pin also has an extension BL1, BL2, BL3 or BL4, which acts as a dummy line and points in the axial direction into the interior of the feed waveguide.
  • extension BL1, BL2, BL3 or BL4 acts as a dummy line and points in the axial direction into the interior of the feed waveguide.
  • the length of the three-circuit bandpass filter shown in Fig. 3a can be further shortened in that the fourth aperture B4 is omitted, and the resonator R3 is limited on the one hand by the aperture B3 and on the other hand by the ground surface of the substrate MS, whereby the waveguide space for the wave coupling at the same time takes over the function of the third resonator R3.
  • P1, P2, P3 and p 4 denote the base points of the coupling pins K1, K2, K3 and K4 projecting through the substrate.
  • the signals on the two each Because on one axis - the vertical or horizontal - lying base points P1 and P2 or P3 and P4 have a phase difference of 180 ° to each other. This phase difference must be corrected again when the signals at the base points are combined. In the present exemplary embodiment, this is done, as indicated in FIG. 4, by means of different line lengths of the microstrip lines L1, L2, L3 and L4 starting from the base points. However, the phase correction can also be carried out, for example, in a known manner using 180 ° ring hybrids.
  • the branch conductors SL1, SL2, SL3 and SL4 branching off from the microstrip lines are used to compensate for mismatches.
  • the total energy from the horizontally polarized field becomes one input and the total energy from the vertically polarized field becomes fed another input of a 90 ° ring hybrid.
  • the information from the right-handed circularly polarized and the left-handed circularly polarized receive signal are then present separately, provided that no separate polarization converter is provided in the feed waveguide. If this is available, the 90 ° hybrid can be dispensed with and the oppositely polarized received signals are available after the conductors L1, L2 and L3, L4 have been brought together in phase.
  • a base point on the horizontal axis with a base point on the vertical axis (eg 1 with 3 and 2 with 4) via microstrip lines.
  • a phase difference of 90 ° between the line shafts must be compensated for, which can be done using a 90 ° ring hybrid or 3dB Coupler can happen.
  • a 180 ° ring hybrid generates unique information from the clockwise or counterclockwise circularly polarized received signal from the energy parts combined in this way. This again applies in the event that no separate polarization converter is present in the feed waveguide.
  • an input of the 90 ° ring hybrid RH or 3dB coupler is preceded by a 180 ° phase switch PS (see FIG. 4) .
  • PS 180 ° phase switch
  • it enables either the information from the clockwise circularly polarized input signal or the information from the counterclockwise circularly polarized input signal to be present at an output of the ring hybrid.
  • the second superfluous exit of the ring hybrid can be closed with an absorber.
  • the 180 ° phase changeover switch PS has, for example, the shape of a pre-magnetized ferrite body which is either arranged above the microstrip line leading to the ring hybrid or is attached to a location on the back of the substrate which is etched free from the ground line. With the exception of the separating surface from the substrate, the ferrite body can be metallized, which enables simple soldering onto the substrate. The magnetization of the ferrite body can be switched over by means of a magnetization coil through which a current pulse flows, with one or more turns.
  • the 180 ° phase switch can also be implemented using a switching circulator or a 3dB directional coupler with PIN diodes.
  • FIG. 5 shows another form of the exciter with which the cross-polarization properties of the antenna can be improved.
  • the exciter E shown in FIG. 3a in the form of a smooth-walled funnel is replaced here by a groove exciter (corrugated horn), the advantageous properties of which are exploited with respect to cross-polarization that should; namely, the groove exciter is integrated in the dielectric insert D, the end face of which, as described above, is designed as a sub-reflector SR.
  • the groove structure R is applied to the initial area of the dielectric insert D protruding from the high-pass waveguide piece HP. This groove structure can be produced in a rational manner together with the dielectric insert in the injection molding process.
  • the groove structure R perpendicular to the axis of the insert D and, moreover, to make the grooves trapezoidal so that the workpiece can be separated more easily from the injection mold.
  • the area provided with the groove structure R and a part TM of the dielectric insert which is inserted in the high-pass waveguide piece HP is coated with a metal layer which is identified in FIG. 5 by a puncturing.
  • the dielectric insert D can be fastened in the high-pass waveguide piece by gluing the metallized part TM, which is cylindrical or slightly conical. No electrical contact between the waveguide and the metallization is required, provided that the adhesive layer is sufficiently thin.
  • the dielectric insert D in turn has two transformation elements T1 and T2, which are not configured here for the purpose of polarization conversion.
  • the insert D can also have a conical cavity which is closed with a half-shell serving as a subreflector.
  • FIG. 6 A further form of excitation is shown in FIG. 6. It was created from the combination of a classic stem radiator with a dielectric holder of the subreflector SR.
  • the stem radiator consists of a plug in the high-pass waveguide piece HP, also with transformation elements T1 and T2 provided, dielectric insert DS, which tapers towards the subreflector SR.
  • a stable dielectric sheath DH is placed on the high-pass waveguide piece, which carries the metallized subreflector shell SR.
  • the interior of this envelope DH can be filled with a light foam SCH with a low dielectric constant. This exciter achieves very good cross-polarization properties if there is a sufficiently large difference between the dielectric constants of the dielectric insert DS and the foam SCH.
  • the receiving device Since the aim is to keep the costs for the receiving device described above as low as possible, simple and quickly implementable methods of electrical balancing, which otherwise takes up a large part of the manufacturing costs, should be discussed in the end.
  • the receiving device On the one hand, the receiving device should have high electrical qualities, on the other hand, the use of tuning screws should be avoided.
  • the particularly tolerance-sensitive components such as high-pass filters and band-pass filters, are provided with alignment marks on which, for example, the waveguide wall is pressed in using a computer-controlled device.
  • corrections of the intrinsic ellipticity can hereby be brought about, whereby, as can be seen from FIG.

Landscapes

  • Waveguide Aerials (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • External Artificial Organs (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Non-Reversible Transmitting Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Threshing Machine Elements (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Micromachines (AREA)
EP82101608A 1981-03-07 1982-03-03 Dispositif de réception à micro-ondes Expired EP0059927B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82101608T ATE15960T1 (de) 1981-03-07 1982-03-03 Mikrowellen-empfangseinrichtung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3108758A DE3108758A1 (de) 1981-03-07 1981-03-07 Mikrowellen-empfangseinrichtung
DE3108758 1981-03-07

Publications (2)

Publication Number Publication Date
EP0059927A1 true EP0059927A1 (fr) 1982-09-15
EP0059927B1 EP0059927B1 (fr) 1985-10-02

Family

ID=6126637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82101608A Expired EP0059927B1 (fr) 1981-03-07 1982-03-03 Dispositif de réception à micro-ondes

Country Status (11)

Country Link
US (1) US4498061A (fr)
EP (1) EP0059927B1 (fr)
AT (1) ATE15960T1 (fr)
CA (1) CA1179753A (fr)
DE (2) DE3108758A1 (fr)
DK (1) DK90282A (fr)
ES (1) ES8302974A1 (fr)
FI (1) FI820784L (fr)
GR (1) GR76035B (fr)
IE (1) IE53573B1 (fr)
NO (1) NO154510C (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0073511A2 (fr) * 1981-08-31 1983-03-09 Nec Corporation Récepteur pour radiodiffusion par satellite
EP0110324A1 (fr) * 1982-11-30 1984-06-13 Kabushiki Kaisha Toshiba Récepteur à hyperfréquences comportant un filtre à guide d'ondes
EP0121294A2 (fr) * 1983-01-26 1984-10-10 Fujitsu Limited Diviseur/additionneur de puissance du type à cavités résonnantes couplées
JPS60236301A (ja) * 1984-04-26 1985-11-25 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン 高周波信号用受信装置
WO1986000761A1 (fr) * 1984-07-02 1986-01-30 The Marconi Company Limited Systeme d'antenne du type cassegrain
WO1986001339A1 (fr) * 1984-08-20 1986-02-27 The Marconi Company Limited Polariseur de radiofrequence
EP0178259A2 (fr) * 1984-10-10 1986-04-16 HUBER & SUHNER AG KABEL-, KAUTSCHUK-, KUNSTSTOFF-WERKE Guide d'ondes avec une source primaire
EP0218549A2 (fr) * 1985-10-11 1987-04-15 HUBER & SUHNER AG KABEL-, KAUTSCHUK-, KUNSTSTOFF-WERKE Dispositif à guide d'ondes
FR2591407A1 (fr) * 1985-12-10 1987-06-12 Loire Electronique Dispositif de reception, a guide d'onde et circuits superheterodynes, de deux signaux hyperfrequences a polarisation de sens inverses
FR2591406A1 (fr) * 1985-12-10 1987-06-12 Loire Electronique Dispositif de reception simultanee de deux signaux hyperfrequences a polarisation circulaire de sens inverses
EP0235846A2 (fr) * 1986-03-03 1987-09-09 Siemens Telecomunicazioni S.P.A. Récepteur à micro-ondes à deux polarisations pour la réception directe de signaux émis par un satellite de télécommunication
EP0252269A1 (fr) * 1986-06-07 1988-01-13 Hans Kolbe & Co. Dispositif de conversion
DE3622175A1 (de) * 1986-07-02 1988-01-21 Kolbe & Co Hans Anordnung zur auskopplung zweier orthogonal linear polarisierter wellen aus einem hohlleiter
EP0315141A1 (fr) * 1987-11-05 1989-05-10 Alcatel Espace Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
WO1990006002A1 (fr) * 1988-11-14 1990-05-31 Motson & Company Limited Appareil de reception de signaux de micro-ondes
EP0440421A2 (fr) * 1990-02-02 1991-08-07 Racal-Mesl Limited Dispositif de commutation de polarisation pour signaux à radio
WO1991013473A1 (fr) * 1990-03-01 1991-09-05 Agence Spatiale Europeenne Radiateur en cornets pour ondes electromagnetiques

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198906A (ja) * 1985-02-28 1986-09-03 Mitsubishi Electric Corp 高周波増幅装置
JPH0174613U (fr) * 1987-07-06 1989-05-19
US5109232A (en) * 1990-02-20 1992-04-28 Andrew Corporation Dual frequency antenna feed with apertured channel
US5568158A (en) * 1990-08-06 1996-10-22 Gould; Harry J. Electronic variable polarization antenna feed apparatus
US5517203A (en) * 1994-05-11 1996-05-14 Space Systems/Loral, Inc. Dielectric resonator filter with coupling ring and antenna system formed therefrom
EP0683561A1 (fr) * 1994-05-18 1995-11-22 Guan-Wu Wang Convertisseur de fréquence, pour des récepteurs à satellite, à coût réduit, à faible niveau de bruit, comprenant un mélangeur auto-oscillant
KR100223375B1 (ko) * 1997-06-11 1999-10-15 윤종용 마이크로웨이브 시스템에 사용하기 위한 주파수변환기
US6075497A (en) * 1997-06-30 2000-06-13 Acer Neweb Corp. Multiple-feed electromagnetic signal receiving apparatus
FR2766625B1 (fr) * 1997-07-28 1999-09-03 Alsthom Cge Alcatel Antenne a polarisation circulaire un sens
US5796319A (en) * 1997-08-26 1998-08-18 Hughes Electronics Corporation Dual mode cavity resonator with coupling grooves
FR2777700B1 (fr) * 1998-04-20 2000-07-07 Org Europeenne Telecommunications Par Satellite Eutelsat Agencement de convertisseur de frequences pour antennes parabolique
JP3692273B2 (ja) * 2000-02-03 2005-09-07 アルプス電気株式会社 一次放射器
US6593893B2 (en) * 2000-03-06 2003-07-15 Hughes Electronics Corporation Multiple-beam antenna employing dielectric filled feeds for multiple and closely spaced satellites
US6727776B2 (en) 2001-02-09 2004-04-27 Sarnoff Corporation Device for propagating radio frequency signals in planar circuits
US6717552B2 (en) * 2002-01-08 2004-04-06 The Boeing Company Communications antenna system and mobile transmit and receive reflector antenna
CN1682402B (zh) 2002-08-20 2010-09-29 爱罗莎特股份有限公司 有宽带天线的通信系统
WO2005043677A1 (fr) * 2003-10-30 2005-05-12 Mitsubishi Denki Kabushiki Kaisha Unite antenne
JP4084299B2 (ja) * 2003-12-26 2008-04-30 シャープ株式会社 フィードホーン、電波受信用コンバータおよびアンテナ
US8427384B2 (en) * 2007-09-13 2013-04-23 Aerosat Corporation Communication system with broadband antenna
US7957692B2 (en) * 2007-10-19 2011-06-07 Chaparral Communications, Inc. Signal receiver circuit and method of implementation
FR2926680B1 (fr) * 2008-01-18 2010-02-12 Alcatel Lucent Reflecteur-secondaire d'une antenne a double reflecteur
CN103703609B (zh) * 2012-07-04 2015-09-09 华为技术有限公司 微波通信设备和微波通信系统
US9568675B2 (en) * 2013-07-03 2017-02-14 City University Of Hong Kong Waveguide coupler
WO2015000376A1 (fr) * 2013-07-03 2015-01-08 City University Of Hong Kong Coupleur de guides d'ondes
US9252470B2 (en) * 2013-09-17 2016-02-02 National Instruments Corporation Ultra-broadband diplexer using waveguide and planar transmission lines
US9273989B2 (en) 2014-03-28 2016-03-01 Honeywell International Inc. Foam filled dielectric rod antenna
CN106099386B (zh) * 2016-06-02 2018-12-14 南京航空航天大学 一种具有低频吸波与极化转换的装置及工作方法
US11929552B2 (en) 2016-07-21 2024-03-12 Astronics Aerosat Corporation Multi-channel communications antenna
US10992052B2 (en) 2017-08-28 2021-04-27 Astronics Aerosat Corporation Dielectric lens for antenna system
CN110021816A (zh) * 2019-03-18 2019-07-16 北京微度芯创科技有限责任公司 宽频带双圆极化微带转波导馈源天线系统

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2684445A (en) * 1946-03-29 1954-07-20 Us Navy Lobe switching antenna
DE1056210B (de) * 1956-10-29 1959-04-30 Csf Abgeschirmte Ringgabel, bei der nach dem Prinzip der Dreifachbandleitungen ein ringfoermiger Bandleiter zwischen zwei leitenden Platten angeordnet ist
US3001193A (en) * 1956-03-16 1961-09-19 Pierre G Marie Circularly polarized antenna system
US3059186A (en) * 1960-11-30 1962-10-16 Philip J Allen Polarization resolver and mixer
US3216017A (en) * 1962-12-04 1965-11-02 Martin Marietta Corp Polarizer for use in antenna and transmission line systems
CH416763A (de) * 1964-07-08 1966-07-15 Patelhold Patentverwertung Ubergangsanordnung zur Verbindung einer Koaxialleitung mit einer rechteckigen Hohlleitung
GB1080546A (en) * 1963-12-05 1967-08-23 Western Electric Co Improvements in or relating to antennae
FR1540513A (fr) * 1967-08-18 1968-09-27 Alcatel Sa Dispositif séparateur d'ondes polarisées circulairement
FR1562149A (fr) * 1968-02-13 1969-04-04
DE1918084A1 (de) * 1969-04-09 1970-10-29 Kathrein Werke Kg Empfangssystem mit Parabolantenne und Frequenzumsetzer
US3611396A (en) * 1970-06-18 1971-10-05 Us Army Dual waveguide horn antenna
US3758882A (en) * 1970-11-11 1973-09-11 Licentia Gmbh Polarization converter for microwaves
US3778717A (en) * 1971-04-30 1973-12-11 Hitachi Ltd Solid-state oscillator having such a structure that an oscillating element, a resonator and a radiator of electromagnetic waves are unified in one body
DE2329555A1 (de) * 1973-06-09 1974-12-19 Philips Patentverwaltung Hochpassfilter fuer den ghz-bereich
DE2645700A1 (de) * 1976-10-09 1978-04-13 Licentia Gmbh Antennensystem fuer sehr kurze elektrische wellen

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR940113A (fr) * 1947-01-16 1948-12-03 Sadir Carpentier Perfectionnements aux dispositifs de communications par ondes ultracourtes
DE973679C (de) * 1952-07-25 1960-04-28 Telefunken Gmbh Schaltungsanordnung zur Unterdruckung der Ausstrahlung der Oberwellen eines Oszillators eines UKW-Empfaengers
US3233241A (en) * 1955-05-25 1966-02-01 Alford Andrew Horn for radiating circularly polarized waves
US3034118A (en) * 1957-05-28 1962-05-08 Gen Electronic Lab Inc Omnipolarized antenna horn
GB901005A (en) * 1959-05-18 1962-07-11 Tesla Np Improvements in or relating to a parabolic reflector antenna for waves polarized in two directions
US3092828A (en) * 1961-04-28 1963-06-04 Philip J Allen Polarization modulation apparatus
GB973583A (en) * 1962-04-11 1964-10-28 Post Office Improvements in or relating to microwave aerials
FR1392013A (fr) * 1964-01-31 1965-03-12 Nouveaux aériens pour micro-ondes
US3430244A (en) * 1964-11-25 1969-02-25 Radiation Inc Reflector antennas
DE1466067A1 (de) * 1965-06-05 1969-05-29 Karlheinz Elgert Bereichssperre 80 bis 130 MHz zur Unterdrueckung von Oszillatorgrundfrequenzen im Fernseh-Band I
US3611391A (en) * 1970-03-27 1971-10-05 Us Army Cassegrain antenna with dielectric guiding structure
US3697898A (en) * 1970-05-08 1972-10-10 Communications Satellite Corp Plural cavity bandpass waveguide filter
US3955202A (en) * 1975-04-15 1976-05-04 Macrowave Development Laboratories, Inc. Circularly polarized wave launcher
NL180623C (nl) * 1977-01-12 1987-08-17 Philips Nv Belichter voor een antenne.
DE2938187A1 (de) * 1979-09-21 1981-04-02 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Cassegrain-erreger-system fuer eine parabolantenne
JPS5683101A (en) * 1979-12-07 1981-07-07 Fujitsu Ltd Generator for circular polarized wave

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2684445A (en) * 1946-03-29 1954-07-20 Us Navy Lobe switching antenna
US3001193A (en) * 1956-03-16 1961-09-19 Pierre G Marie Circularly polarized antenna system
DE1056210B (de) * 1956-10-29 1959-04-30 Csf Abgeschirmte Ringgabel, bei der nach dem Prinzip der Dreifachbandleitungen ein ringfoermiger Bandleiter zwischen zwei leitenden Platten angeordnet ist
US3059186A (en) * 1960-11-30 1962-10-16 Philip J Allen Polarization resolver and mixer
US3216017A (en) * 1962-12-04 1965-11-02 Martin Marietta Corp Polarizer for use in antenna and transmission line systems
GB1080546A (en) * 1963-12-05 1967-08-23 Western Electric Co Improvements in or relating to antennae
CH416763A (de) * 1964-07-08 1966-07-15 Patelhold Patentverwertung Ubergangsanordnung zur Verbindung einer Koaxialleitung mit einer rechteckigen Hohlleitung
FR1540513A (fr) * 1967-08-18 1968-09-27 Alcatel Sa Dispositif séparateur d'ondes polarisées circulairement
FR1562149A (fr) * 1968-02-13 1969-04-04
DE1918084A1 (de) * 1969-04-09 1970-10-29 Kathrein Werke Kg Empfangssystem mit Parabolantenne und Frequenzumsetzer
US3611396A (en) * 1970-06-18 1971-10-05 Us Army Dual waveguide horn antenna
US3758882A (en) * 1970-11-11 1973-09-11 Licentia Gmbh Polarization converter for microwaves
US3778717A (en) * 1971-04-30 1973-12-11 Hitachi Ltd Solid-state oscillator having such a structure that an oscillating element, a resonator and a radiator of electromagnetic waves are unified in one body
DE2329555A1 (de) * 1973-06-09 1974-12-19 Philips Patentverwaltung Hochpassfilter fuer den ghz-bereich
DE2645700A1 (de) * 1976-10-09 1978-04-13 Licentia Gmbh Antennensystem fuer sehr kurze elektrische wellen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NACHRICHTENTECHNISCHE ZEITSCHRIFT NTZ, Band 34, Nr. 9, September 1981, Seiten 576-578, Berlin, DE. *
PATENTS ABSTRACTS OF JAPAN, Band 5, Nr. 149(E-75)(821) & JP - A - 56 83101 (FUJITSU K.K.) 07-07-1981 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0073511A3 (en) * 1981-08-31 1985-05-22 Nec Corporation Satellite broadcasting receiver
EP0073511A2 (fr) * 1981-08-31 1983-03-09 Nec Corporation Récepteur pour radiodiffusion par satellite
EP0110324A1 (fr) * 1982-11-30 1984-06-13 Kabushiki Kaisha Toshiba Récepteur à hyperfréquences comportant un filtre à guide d'ondes
US4547901A (en) * 1982-11-30 1985-10-15 Tokyo Shibaura Denki Kabushiki Kaisha Microwave receiving apparatus using a waveguide filter
EP0121294A3 (en) * 1983-01-26 1986-03-19 Fujitsu Limited A cavity resonator coupling type power distributor/power combiner
EP0121294A2 (fr) * 1983-01-26 1984-10-10 Fujitsu Limited Diviseur/additionneur de puissance du type à cavités résonnantes couplées
US4686494A (en) * 1983-01-26 1987-08-11 Fujitsu Limited Cavity resonator coupling type power distributor/power combiner comprising coupled input and output cavity resonators
US4653118A (en) * 1984-04-26 1987-03-24 U.S. Philips Corporation Printed circuit transition for coupling a waveguide filter to a high frequency microstrip circuit
EP0162506A1 (fr) * 1984-04-26 1985-11-27 Koninklijke Philips Electronics N.V. Dispositif de réception pour signaux HF
JPS60236301A (ja) * 1984-04-26 1985-11-25 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン 高周波信号用受信装置
AU571326B2 (en) * 1984-04-26 1988-04-14 Philips Electronics N.V. Microstrip to waveguide coupling
WO1986000761A1 (fr) * 1984-07-02 1986-01-30 The Marconi Company Limited Systeme d'antenne du type cassegrain
JPS61502651A (ja) * 1984-07-02 1986-11-13 ザ マ−コニ カンパニ− リミテツド カセグレンアンテナ装置
WO1986001339A1 (fr) * 1984-08-20 1986-02-27 The Marconi Company Limited Polariseur de radiofrequence
EP0178259A2 (fr) * 1984-10-10 1986-04-16 HUBER & SUHNER AG KABEL-, KAUTSCHUK-, KUNSTSTOFF-WERKE Guide d'ondes avec une source primaire
EP0178259A3 (fr) * 1984-10-10 1988-07-20 HUBER & SUHNER AG KABEL-, KAUTSCHUK-, KUNSTSTOFF-WERKE Guide d'ondes avec une source primaire
EP0218549A3 (fr) * 1985-10-11 1988-10-05 HUBER & SUHNER AG KABEL-, KAUTSCHUK-, KUNSTSTOFF-WERKE Dispositif à guide d'ondes
EP0218549A2 (fr) * 1985-10-11 1987-04-15 HUBER & SUHNER AG KABEL-, KAUTSCHUK-, KUNSTSTOFF-WERKE Dispositif à guide d'ondes
EP0228947A1 (fr) * 1985-12-10 1987-07-15 Société S E R E L Dispositif de réception, à guide d'onde et circuits superhétérodynes, de deux signaux hyperfréquences à polarisation de sens inverses
FR2591406A1 (fr) * 1985-12-10 1987-06-12 Loire Electronique Dispositif de reception simultanee de deux signaux hyperfrequences a polarisation circulaire de sens inverses
FR2591407A1 (fr) * 1985-12-10 1987-06-12 Loire Electronique Dispositif de reception, a guide d'onde et circuits superheterodynes, de deux signaux hyperfrequences a polarisation de sens inverses
EP0235846A2 (fr) * 1986-03-03 1987-09-09 Siemens Telecomunicazioni S.P.A. Récepteur à micro-ondes à deux polarisations pour la réception directe de signaux émis par un satellite de télécommunication
EP0235846A3 (fr) * 1986-03-03 1988-09-14 Siemens Telecomunicazioni S.P.A. Récepteur à micro-ondes à deux polarisations pour la réception directe de signaux émis par un satellite de télécommunication
EP0252269A1 (fr) * 1986-06-07 1988-01-13 Hans Kolbe & Co. Dispositif de conversion
DE3622175A1 (de) * 1986-07-02 1988-01-21 Kolbe & Co Hans Anordnung zur auskopplung zweier orthogonal linear polarisierter wellen aus einem hohlleiter
EP0315141A1 (fr) * 1987-11-05 1989-05-10 Alcatel Espace Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
FR2623020A1 (fr) * 1987-11-05 1989-05-12 Alcatel Espace Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
US5010348A (en) * 1987-11-05 1991-04-23 Alcatel Espace Device for exciting a waveguide with circular polarization from a plane antenna
WO1990006002A1 (fr) * 1988-11-14 1990-05-31 Motson & Company Limited Appareil de reception de signaux de micro-ondes
EP0440421A2 (fr) * 1990-02-02 1991-08-07 Racal-Mesl Limited Dispositif de commutation de polarisation pour signaux à radio
EP0440421A3 (fr) * 1990-02-02 1991-08-14 Racal-Mesl Limited Dispositif de commutation de polarisation pour signaux à radio
US5128637A (en) * 1990-02-02 1992-07-07 Racal-Mesl Limited Radio signal polarization switching arrangement
WO1991013473A1 (fr) * 1990-03-01 1991-09-05 Agence Spatiale Europeenne Radiateur en cornets pour ondes electromagnetiques
FR2659172A1 (fr) * 1990-03-01 1991-09-06 Europ Agence Spatiale Element rayonnant en guide d'ondes a couplage electromagnetique.

Also Published As

Publication number Publication date
ES510038A0 (es) 1983-01-16
US4498061A (en) 1985-02-05
GR76035B (fr) 1984-08-03
ATE15960T1 (de) 1985-10-15
IE820498L (en) 1982-09-07
CA1179753A (fr) 1984-12-18
ES8302974A1 (es) 1983-01-16
NO820692L (no) 1982-09-08
NO154510B (no) 1986-06-23
EP0059927B1 (fr) 1985-10-02
NO154510C (no) 1986-10-01
DK90282A (da) 1982-09-08
DE3108758A1 (de) 1982-09-16
FI820784L (fi) 1982-09-08
DE3266606D1 (en) 1985-11-07
IE53573B1 (en) 1988-12-21

Similar Documents

Publication Publication Date Title
EP0059927B1 (fr) Dispositif de réception à micro-ondes
DE1002828B (de) Richtungskoppler im Mikrowellenbereich fuer unsymmetrische Bandleitungen
DE2726799C2 (de) Frequenzweiche
EP2897213B1 (fr) Séparateur de signaux à larges bandes avec absorption du signal de la somme
DE2811070C2 (de) Filteranordnung aus mehreren Hohlraumresonator-Bandpaßfiltern
DE2800101A1 (de) Strahler fuer eine antenne, u.a. fuer satellitensignale
DE10202699B4 (de) Nichtreziprokes Schaltungsbauelement und Kommunikationsvorrichtung, die dasselbe enthält
EP0041077A2 (fr) Dispositif d'alimentation d'antenne pour une antenne de poursuite
EP0639902A1 (fr) Dispositif pour une installation d'antennes pour distribuer les signaux reçus d'un satellite
DE2708306A1 (de) Frequenzweiche
EP0154692A1 (fr) Filtre de polarisation pour deux bandes de fréquences
DE2459045C3 (de) Ankopplungs-Vorrichtung
DE2828047C2 (de) Frequenzabhängiges Koppelsystem
DE2322549A1 (de) Antennenweiche fuer eine hoechstfrequenzantenne
DE3543229C1 (de) Hausverteilnetz fuer Einzel- und Gemeinschafts-Antennenanlagen
DE60016320T2 (de) Ultrahochfrequenz-Oszillator mit dielectrischem Resonator
WO2000046934A1 (fr) Unite emettrice/receptrice pour une premiere et une seconde frequence d'emission/de reception
DE102010014864B4 (de) Hohlleiterverbindung für ein Antennensystem und Antennensystem
EP0905813B1 (fr) Filtre de polarisation pour l' illumination d' une antenne
DE2800913A1 (de) Kombinationsantenne, insbesondere fuer automatischen radiokompass-empfaenger
DE2339441C3 (de) Frequenzabhängiges Koppelsystem
DE3920937C1 (en) Microwave signal generating circuitry - provides two signal components from circular polarised microwave signal in hybrid and supplied to separation filter
DE3538342C2 (fr)
DE3843259C1 (fr)
DE2842522A1 (de) Brueckenweiche zur rueckwirkungsfreien zusammenfuehrung zweier hochfrequenter schwingungen unterschiedlicher frequenzlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19821013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AEG - TELEFUNKEN NACHRICHTENTECHNIK GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANT NACHRICHTENTECHNIK GMBH

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 15960

Country of ref document: AT

Date of ref document: 19851015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3266606

Country of ref document: DE

Date of ref document: 19851107

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860331

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HANS KOLBE & CO.

Effective date: 19860614

NLR1 Nl: opposition has been filed with the epo

Opponent name: HANS KOLBE & CO.

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19880605

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900315

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900320

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900322

Year of fee payment: 9

Ref country code: AT

Payment date: 19900322

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900331

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900402

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900517

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910303

Ref country code: AT

Effective date: 19910303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910331

Ref country code: CH

Effective date: 19910331

Ref country code: BE

Effective date: 19910331

BERE Be: lapsed

Owner name: ANT NACHRICHTENTECHNIK G.M.B.H.

Effective date: 19910331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911001

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930517

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941201

EUG Se: european patent has lapsed

Ref document number: 82101608.6

Effective date: 19911009