EP0054695B1 - Procédé pour la fabrication galvanique de dendrites et appareil pour la mise en oeuvre de ce procédé - Google Patents

Procédé pour la fabrication galvanique de dendrites et appareil pour la mise en oeuvre de ce procédé Download PDF

Info

Publication number
EP0054695B1
EP0054695B1 EP81108986A EP81108986A EP0054695B1 EP 0054695 B1 EP0054695 B1 EP 0054695B1 EP 81108986 A EP81108986 A EP 81108986A EP 81108986 A EP81108986 A EP 81108986A EP 0054695 B1 EP0054695 B1 EP 0054695B1
Authority
EP
European Patent Office
Prior art keywords
electrolytic solution
cathode
dendrites
electroplating
electroplated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81108986A
Other languages
German (de)
English (en)
Other versions
EP0054695A1 (fr
Inventor
Edward Joseph Armstrong
Joseph Michael Sirsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of EP0054695A1 publication Critical patent/EP0054695A1/fr
Application granted granted Critical
Publication of EP0054695B1 publication Critical patent/EP0054695B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers

Definitions

  • the invention relates to a method for producing dendrites by electroplating and to an apparatus for carrying out the method.
  • German patent specification 2 816 328 describes another advantageous use of dendrites as the main connecting elements in effecting both an initial electrical and a mechanical coupling in a detachable microminiaturized contact connection.
  • the dendrites are formed by electroplating under conditions that promote their growth rather than relying on mechanical deformation and the time-delayed growth that it causes.
  • This electrical contact connection is particularly suitable for those applications in which a large number of detachable connections have to be made in a fairly limited space, as is the case with monolithically integrated semiconductor circuits.
  • the dendrites of this miniature contact compound are formed from a noble metal, in this case palladium, by electroplating under abnormal conditions.
  • US Patent 2,783,193 describes a "plating" process in which both a metal salt solution and a salt reducing solution are sprayed onto a substrate where they chemically react with a sensitizer previously applied to the substrate to form a metal film to build. This particular method has been shown to be limited in application because the chemically plated film was not of a high enough quality to be used for a contact connection.
  • US Pat. No. 2,854,387 describes the method of nozzle electroplating in connection with the electroplating of a very small metal ball on a semiconductor, which serves as a potential barrier in a transistor.
  • Nozzle electroplating is a process in which a solution of a metal salt or electrolyte is pressed through a nozzle opening to strike the surface to be electroplated perpendicularly.
  • the material to which the precipitate is to be electroplated serves as the cathode. This electroplating process is limited in the amount and type of metal that can be electroplated.
  • dendrites which have been electroplated according to the usual methods have too thin or too narrow a cross-sectional area at their base and have a pronounced tendency to break when they are brought into engagement with corresponding contact connection areas.
  • stirring the electrolytic bath was of no help in this situation, since the dendrites now showed a marked tendency to form thinner and elongated shapes which were not suitable for the intended purpose in a contact connection.
  • other electroplating methods did not promise a solution to this problem either because they were either limited in the quality of the coating produced or in the type and amount of the coating that could be produced.
  • the invention seeks to remedy this.
  • the invention as characterized in the claims, achieves the object of specifying a method for producing dendrites by electroplating, which provides dendrites which have larger cross-sections of acceptable quality and quantity on their base areas.
  • the process should be easy to automate.
  • a first device for carrying out the method according to claim 1, which has a container for an electrolytic solution and a cathode, an anode and a device for spraying the electrolytic solution onto the surface of the cathode to be provided with dendrites, is characterized in that the bottom the cathode is mounted close to the surface of the electrolytic solution contained in the container and a pump for spraying the electrolytic solution is arranged therein.
  • a second device for carrying out the method according to claim 1, which has a container for an electrolytic solution and a cathode, an anode and a device for spraying the electrolytic solution onto the surface of the cathode to be provided with dendrites, is characterized in that the bottom the cathode is mounted just above the surface of the electrolytic solution contained in the container and that a pump for spraying the electrolytic solution is arranged outside of it.
  • FIG. 1 shows a contact 10 that uses a series of dendritic protrusions 12 that have been electroplated onto an electrically conductive base or support member 14.
  • the base 14 includes a substrate part 16 and a thin layer 18 of a noble metal which has been electroplated thereon in the usual way.
  • the protrusions 12 are electroplated onto the layer 18 using an electrolytic bath containing less than the normal concentration of metal ions and operating at a greater than normal current density. This electroplating process gives the type of dendritic crystal growth shown in Figure 1.
  • a normal concentration of palladium ions would be on the order of 100 millimolar, as opposed to the range of 5 to 50 millimolar given above.
  • a current density on the order of 100 milliamperes / cm 2 of the surface to be electroplated has been found to be effective in electroplating to achieve dendritic crystal growth.
  • the normal current density for electroplating with palladium without producing dendritic crystal growth is on the order of 10 milliamperes / cm 2 .
  • the above information is only an example of dendritic electroplating and other noble metals can be used instead of palladium.
  • the modified electroplating assembly 20 'that is obtained is shown schematically in FIG. 3.
  • a container 22 which contains a suitably determined amount of an electrolytic solution or a bath 24.
  • the object to be electroplated is connected directly to the cathode 28 and is electrically identical to it, or it can itself serve directly as the cathode.
  • An anode 30 is connected to a direct current source 32 and serves to form a closed electrical circuit from there to ground or a return point 34 through the electrolytic bath into which the object 26 to be galvanized is immersed.
  • Control of the electroplating process is accomplished using a switch 36 that closes or breaks the electrical circuit for electroplating. More complex control circuits can be used, but a simple plating arrangement is sufficient for purposes of explanation.
  • the pump 38 and its spray nozzle 40 are carried in the container 22 'by a lower part 42.
  • Pump 42 may be a submersible pump or a pump compatible with the electrolyte that has the required capacity and is made from parts capable of withstanding the effects of bath 24 '.
  • the pump 42 can also be mounted outside the tank 22 ', as shown in dashed lines in Fig. 3, using suitably arranged hoses to collect and then supply the electrolyte 24'.
  • the pump 42 is movably mounted by conventional means, not shown, so that its space can be easily changed in any direction to suit different sized objects to be electroplated.
  • the object 26 'to be electroplated or the cathode 28' has been moved upwards out of the container 22 'and fastened to the container wall 22h above and completely outside the bath 24' by means of the supports 44.
  • the cathode 28 ' can be secured on a support, not shown, which is not part of the container 22', above the bath surface.
  • the cathode 28 ' is movably attached by conventional means not shown, so that its position relative to the surface of the bath or the position of the pump 42 can be easily adjusted in any direction in order to easily adapt to objects of different sizes to be galvanized.
  • the distance D which separates the bottom of the object 26 'or the cathode 28' from the bath surface, is 12 to 19 mm in this example.
  • the distance D can vary and, depending on the particular electroplating task, can be smaller or larger than the range given for the distance D above. It is therefore important to recognize that it is the location of the surface to be electroplated, be it separate from or identical to the cathode 28 ', which is critical in the method of the invention and the means for carrying it out.
  • the pump 38 and the spray nozzle 40 are therefore selected in accordance with the amount 46 of the electrolyte 24 'which is sprayed onto the entire surface of the object 26'.
  • the size of the pump is also determined by the volume of the electrolyte 24 'needed to completely cover the surface of the article 26' and at the same time a continuous curtain 48 of the electrolyte 24 'as an uninterrupted electrical path between the cathode 28' and / or the article 26 'and the floor surface.
  • the continued supply of fresh and unused electrolyte 24 ' enables the bases of the dendrites formed on the surface of the article 26' to be thicker than was possible using the prior art device shown in FIG. Spraying the electrolyte 24 'onto the surface of the object 26', which in practice represents the surface 14, results in dendrites which are thicker and stronger over their length, particularly also on their base surfaces.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Claims (3)

1. Procédé pour réaliser des dendrites par gal- vanoplatie, selon lequel on travaille avec une solution électrolytique possédant une concentration plus faible en ions métalliques que cela est usuel et avec un courant plus intense que cela est usuel et selon lequel la cathode ainsi que la surface devant être recouverte par galvanoplastie sont situées entièrement à l'extérieur de la solution électrolytique, qui est pulvérisée sur la surface devant être recouverte par galvanoplastie, caractérisé en ce qu'on dispose la cathode à proximité directe au-dessus de la surface de la solution électrolytique, qu'on pulvérise sur la surface devant être munie de dentrites une quantité telle de la solution électrolytique que l'ensemble de la surface est recouverte par la solution et qu'un rideau ininterrompu formé avec la solution électrolytique est maintenu entre la base de la cathode et la surface de la solution électrolytique.
2. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, comportant un récipient pour une solution électrolytique ainsi qu'une cathode, une anode et un dispositif pour pulvériser la solution électrolytique sur la surface, devant être munie de dendrites, de la cathode, caractérisé en ce que la base de la cathode est disposée à proximité directe au-dessus de la surface de la solution électrolytique contenue dans le récipient et qu'une pompe utilisée pour pulvériser la solution électrolytique est disposée dans cette dernière.
3. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, comportant un récipient pour une solution électrolytique ainsi qu'une cathode, une anode et un dispositif pour pulvériser la solution électrolytique sur la surface de la cathode, qui doit être munie de dendrites, caractérisé en ce que la base de la cathode est disposée à proximité immédiate au-dessus de la surface de la solution électrolytique contenue dans le récipient, et qu'une pompe servant à pulvériser la solution électrolytique est disposée à l'extérieur de cette dernière.
EP81108986A 1980-12-24 1981-10-27 Procédé pour la fabrication galvanique de dendrites et appareil pour la mise en oeuvre de ce procédé Expired EP0054695B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21966080A 1980-12-24 1980-12-24
US219660 1980-12-24

Publications (2)

Publication Number Publication Date
EP0054695A1 EP0054695A1 (fr) 1982-06-30
EP0054695B1 true EP0054695B1 (fr) 1985-09-11

Family

ID=22820192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81108986A Expired EP0054695B1 (fr) 1980-12-24 1981-10-27 Procédé pour la fabrication galvanique de dendrites et appareil pour la mise en oeuvre de ce procédé

Country Status (3)

Country Link
EP (1) EP0054695B1 (fr)
JP (1) JPS57110690A (fr)
DE (1) DE3172253D1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137461A (en) * 1988-06-21 1992-08-11 International Business Machines Corporation Separable electrical connection technology
US5185073A (en) * 1988-06-21 1993-02-09 International Business Machines Corporation Method of fabricating nendritic materials
CA2110472C (fr) 1993-03-01 1999-08-10 Anilkumar Chinuprasad Bhatt Methode et appareil de verification in situ de puces de circuits integres
AU3765097A (en) * 1997-08-08 1999-03-01 Vladimir Dvorak Method of electrodeposition of metallic layers and equipment for implementing this method
DE102005011298A1 (de) * 2005-03-04 2006-09-07 Gebr. Schmid Gmbh & Co. Vorrichtung und Verfahren zum Ätzen von Substraten

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2854387A (en) * 1955-11-21 1958-09-30 Philco Corp Method of jet plating
DE2504780A1 (de) * 1975-02-05 1976-08-19 Siemens Ag Verfahren und vorrichtung zur spruehgalvanisierung
FR2381567A1 (fr) * 1977-02-24 1978-09-22 Fmc Corp Dispositif d'electrolyse par projection
IT1112620B (it) * 1977-04-15 1986-01-20 Ibm Connettore elettrico perfezionato

Also Published As

Publication number Publication date
EP0054695A1 (fr) 1982-06-30
JPS57110690A (en) 1982-07-09
DE3172253D1 (en) 1985-10-17

Similar Documents

Publication Publication Date Title
DE19803490A1 (de) Maschenelektrode sowie Abscheidevorrichtung und Abscheideverfahren unter Verwendung der Maschenelektrode
DE3323476C2 (fr)
DE69122910T2 (de) Verfahren zur Kupfer-Elektroplattierung
DE10311575B4 (de) Verfahren zum elektrolytischen Metallisieren von Werkstücken mit Bohrungen mit einem hohen Aspektverhältnis
DE2061225A1 (de) Verfahren zum elektrolytischen Abscheiden von legierten Duennschichten
EP1688518A2 (fr) Procédé et appareil pour l'électroplacage en continu de pieces
CH629542A5 (de) Verfahren und vorrichtung zur galvanischen materialablagerung.
DE3233010A1 (de) Verfahren und vorrichtung zum elektroplattieren
DE2718556A1 (de) Verfahren zum betrieb eines bades fuer die chemische metallabscheidung
DE3208035A1 (de) Galvanisierverfahren
DE1077024B (de) Verfahren zum elektrolytischen Strahlplattieren von Indium oder Gallium
EP0054695B1 (fr) Procédé pour la fabrication galvanique de dendrites et appareil pour la mise en oeuvre de ce procédé
DE3012999A1 (de) Galvanisches bad zur abscheidung von gold- und goldlegierungsueberzuegen
DE3123833C2 (de) Verfahren zur Steuerung der Zusammensetzung von elektrolytisch abgeschiedenen Nickel-Kobalt-Legierungen
DE2654476C3 (de) Verfahren zur Herstellung einer Schottky-Sperrschicht
DE2337899B2 (de) Verfahren zur Herstellung einer negativen Kadmiumelektrode für galvanische Elemente
DE69607130T2 (de) Elektroplattieren von Nickel auf Nickel-Ferrit Vorrichtungen
DE2032867B2 (de) Galvanisches Goldbad und Verfahren zur Abscheidung gleichmäßiger, dicker Goldüberzüge
EP0079032B1 (fr) Appareil pour le dépôt électrolytique d'une pièce métallique
DE3027982A1 (de) Bad fuer die galvanische abscheidung einer im wesentlichen schwarzen nickelauflage
EP0061130A1 (fr) Procédé de dépôt galvanique d'une couche d'alliage zinc-nickel sur un objet métallique, en particulier sur une bande en acier
DE102009040632B4 (de) Halbleiter-Bauelement und Verfahren zum Herstellen eines Halbleiter-Bauelements und damit hergestelltes Halbleiter-Bauelement
CH616178A5 (en) Plating appliance for thin plates, foils or similar sheet-like material.
DE19861248B4 (de) Verfahren zum Beschichten einer Oberfläche eines Wafers
DE68908089T2 (de) Eintauchbare elektrische Stromversorgungsvorrichtung für die Elektroplattierung von Bändern.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811027

AK Designated contracting states

Designated state(s): DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3172253

Country of ref document: DE

Date of ref document: 19851017

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931004

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931023

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940915

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951027

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951027