EP0048846B1 - Fäden und Fasern aus Carboxylgruppen haltigen Acrylpolymeren, ihre Verwendung und Verfahren zu ihrer Herstellung - Google Patents

Fäden und Fasern aus Carboxylgruppen haltigen Acrylpolymeren, ihre Verwendung und Verfahren zu ihrer Herstellung Download PDF

Info

Publication number
EP0048846B1
EP0048846B1 EP81107048A EP81107048A EP0048846B1 EP 0048846 B1 EP0048846 B1 EP 0048846B1 EP 81107048 A EP81107048 A EP 81107048A EP 81107048 A EP81107048 A EP 81107048A EP 0048846 B1 EP0048846 B1 EP 0048846B1
Authority
EP
European Patent Office
Prior art keywords
acrylonitrile
fibers
filaments
polymer
tex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81107048A
Other languages
English (en)
French (fr)
Other versions
EP0048846A2 (de
EP0048846A3 (en
Inventor
Bernd Dr. Huber
Ernst Dr. Schubert
Heinz-Paul Pöter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0048846A2 publication Critical patent/EP0048846A2/de
Publication of EP0048846A3 publication Critical patent/EP0048846A3/de
Application granted granted Critical
Publication of EP0048846B1 publication Critical patent/EP0048846B1/de
Expired legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/93Water swellable or hydrophilic

Definitions

  • the invention relates to threads and fibers whose thread-forming substance contains, in addition to acrylonitrile units and other units which can be copolymerized with acrylonitrile, in particular acrylic and / or methacrylic acid esters and optionally acrylamide units, processes for their production and their use for the production of shaped structures which are distinguished by a high water retention capacity .
  • the carboxyl group content of the threads and fibers according to the invention should be 10-30, preferably 15-26% by weight.
  • the fibers and threads according to the invention can be obtained from corresponding polymer raw materials by the spinning processes customary for polyacrylonitrile and are distinguished by good textile-technological properties - particularly with regard to the tear and knot strengths - which enable problem-free further processing, e.g. allow for textile fabrics. Textile technological properties of a fiber or thread can be described as good if they reach the level of wool.
  • Threads and fibers made of acrylic polymers that contain smaller amounts of carboxyl groups are known.
  • DE-A-24 34 232 describes a process for the production of acrylic fibers with improved hygienic properties, in which raw materials containing carboxyl groups are spun into fibers, stretched, the fiber-forming substance is then burned and the carboxyl groups are converted into the corresponding salt form in an aqueous alkaline medium .
  • polymers with up to 12% acrylic acid (corresponding to 7.5% carboxyl groups) or 15% methacrylic acid (corresponding to 7.8% carboxyl groups) are used. Because of the crosslinking reactions carried out, such threads can only absorb a small amount of water.
  • DE-A-23 37 507, DE-A-23 35 696, DE-A-23 35 697 and DE-A-23 36 036 describe processes for the preparation of acrylonitrile-acrylamide copolymers by saponification of acrylonitrile copolymers described in a homogeneous phase with concentrated acids. It is important to dissolve the acrylonitrile polymers to be saponified as quickly as possible and hydrolysis in a homogeneous system in order to improve the quality of the products produced. It was found that any heterogeneity has an adverse effect on the quality of the products produced. In these prior publications, the saponification of the acrylonitrile groups is always carried out using concentrated acids in which the formation of carboxyl groups is negligibly small. The effect of concentrated acids on acrylonitrile polymers is also described in "Fiber Research and Textile Technology" 11 (1960), pages 362 and 363.
  • Fibers made from mixtures of polyacrylonitrile and homogeneously saponified polyacrylonitrile are described in "Fiber Research and Textile Technology” 14 (1963), pages 265-270. In the case of mixtures with a carboxyl group content of 8.5%, however, attention is already drawn to the strong tendency of the spinning solutions prepared from these mixtures to gel, which makes the spinning process noticeably more difficult.
  • saponified polyacrylonitriles with a carboxyl group content of up to 30% by weight can be spun in the heterogeneous phase using dilute acids by the spinning processes customary for polyacrylonitrile.
  • the threads and fibers obtained can be easily crimped, carded and further processed into wadding, yarns and textile fabrics. Mixed processing with other fibers is also possible without difficulty.
  • the sizes important for further processing such as tear and knot strength correspond to or exceed the values known from wool. In the dry state, they have tensile strengths of more than 10 cN / tex and account strengths of more than 6 cN / tex, preferably even 8 and more cN / tex.
  • the threads and fibers according to the invention are particularly suitable for processing in admixture with other fibers for the production of yarns for clothing textiles with increased wearing comfort because of the swellability which can be adjusted via the carboxyl group content and the associated high water retention capacity.
  • absorbent wadding, nonwovens, tampons, fabrics, knitted fabrics and the like can be produced, which are distinguished by their water retention capacity.
  • the carboxyl groups can be converted into the salt form.
  • the threads and fibers according to the invention and the structures produced therefrom swell very strongly in contact with alkaline aqueous media. These properties enable e.g. the production of filter fabrics that allow acidic aqueous media to pass through but block alkaline media.
  • the threads and fibers according to the invention and the structures produced therefrom are also outstandingly suitable as ion exchangers with very high exchange capacities.
  • the invention is also based on a method for producing such threads and fibers, the fiber raw material being saponified by saponification of an acrylonitrile polymer or copolymer with aqueous dilute acids is produced in the heterogeneous phase.
  • the desired degree of saponification can be set precisely, for example under constant reaction conditions, via the concentration of the acid used.
  • only carboxyl groups are preferably formed in the heterogeneous saponification with dilute aqueous acids.
  • the non-uniformity of the polymers should be considerably greater in the case of heterogeneously saponified products than in the case of homogeneously saponified polyacrylonitriles.
  • the presumed greater non-uniformity of the saponification products may be the reason for their better processability into threads and fibers.
  • the saponification of the nitrile groups can preferably be carried out using dilute sulfuric acid, which should have a concentration of 40-50, preferably 45-49,% by weight.
  • the polymers are introduced into the acid introduced and stirred for a few hours. In order to keep the reaction times short, it is advisable to work at boiling temperatures. Response times of 2.5 hours are usually sufficient.
  • the polymer is then filtered off, washed and dried. It has been found that the use of dilute acids to carry out the saponification reaction is also important for another reason. Suitable saponification products can only be obtained if the saponification reaction is carried out in a heterogeneous phase.
  • a number of acids act in higher concentrations as solvents or swelling agents for the polymer to be saponified. Such concentrations should therefore be avoided.
  • the maximum acid concentration that is still suitable is the one at which the polymer particles introduced into the hydrous acid do not yet stick together. A slight swelling is generally tolerable.
  • the saponified, dried polymer is dissolved in the solvents customary for polyacrylonitrile and spun by known methods using the dry or wet spinning process.
  • the threads drawn from the nozzle can be stretched wet before, after or during washing. After finishing, they are dried, and shrinkage can be allowed during drying. In general, the drying is followed by a further stretching process in the dry-hot state. To reduce the shrinkage, you can then shrink.
  • the cable strips produced are then usually crimped and cut to the desired length. If necessary or desired, the threads or fibers according to the invention can also be subjected to pressure damping.
  • organic solvents which are miscible with the polymer solvent such as, for example, can also be used in the precipitation, drawing and washing baths. Alcohols or ketones can be used.
  • carboxyl group content about 150 mg of the polymer were dissolved in 25 ml of dimethyl sulfoxide (DMSO), mixed with 60 ml of water and titrated potentiometrically with 0.1N sodium hydroxide solution.
  • the factor of the sodium hydroxide solution was determined with oxalic acid, dissolved in 60 ml of water and mixed with 25 ml of DMSO.
  • the titration gave a carboxyl group content of 25.5% by weight (based on -COOH) for the polymer described above, this corresponds to a content of acrylic acid of 40.7% by weight in the polymer.
  • the thread was withdrawn from the nozzle at 6.9 m / min, stretched to 20.3 m / min in a bath with 40% DMF and 60% water at 55 ° C., in a further bath, contained the water at 35 ° C, stretched to 23.3 m / min, washed in water at 50 ° C and stretched again to 26.1 m / min.
  • the thread was pre-dried with a shrinkage of 1.3 m / min on a duo at a temperature of 120 ° C and post-dried on another duo at a temperature of 165 ° C.
  • the thread was stretched to 35.0 m / min between the two duos.
  • the thread was drawn off from the second duo at 48.5 m / min and shrunk back to 47.0 m / min in a hot air duct at 155 ° C.
  • the fibers After crimping and cutting, the fibers could be processed into a worsted. A cotton was also made by carding several times. The material could be further processed without interference into these shaped structures using conventional textile machines.
  • the polymer according to Example 1 was saponified as described in the previous example. However, the sulfuric acid concentrations were varied. The following polymers could be obtained.
  • the saponified polymers of Examples 2 to 4 were dissolved in 24% strength spinning solutions in DMF and pressed at a delivery rate of 15 ml / min through a 300-hole nozzle into a precipitation bath according to Example 1.
  • the threads were drawn from the nozzle at 5.0 m / min and in a bath with 40% DMF and 60% water at 60 ° C to 20.3 m / min and in a subsequent water bath at 60 ° C to 48.5 m / min stretched. After washing and passing through an aqueous finish bath, the threads were predried in a duo at 150 ° C. and then dried in a second duo at 175 ° C., drawn off with a third duo and wound up after passing through a hot air duct at 155 ° C. The individual speeds of the duos are given in the following table.
  • the polymer from Experiment No. 5 could not be spun under the given conditions.
  • the thread was swollen too much, it often tore due to its own weight and was strongly glued after drying.
  • the polymer from experiment No. 6 was spun as described in Examples 2 to 4, but the two stretching baths were heated to 75 ° C. instead of 60.
  • the titer, tensile strength, water retention in deionized water and liquid retention in 0.1N sodium hydroxide solution were measured from the threads of Examples 1 to 6.
  • the knot strengths were determined on single filaments.
  • the samples are evacuated for 5 minutes to remove adhering air bubbles.
  • the actual centrifugation is carried out using a laboratory centrifuge from Heraeus Christ GmbH, type UJO.
  • the Containers and samples are centrifuged at 4000 rpm for 30 minutes each.
  • the distance between the cup nets and the axis of the centrifuge was 8.5 cm.
  • the centrifuged fiber samples were then weighed out and then dried in a drying cabinet at 120 ° C. to constant weight. The weight difference between the moist and dried sample, divided by the dry weight, is given below in% as water retention or liquid retention.
  • the fibers according to Examples 2, 3, 4 and 7 could also be further processed in the crimped state into wadding layers and worsted yarns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)

Description

  • Die Erfindung betrifft Fäden und Fasern, deren fadenbildende Substanz neben Acrylnitrileinheiten und anderen mit Acrylnitril copolymerisierbaren Einheiten insbesondere Acryl- und/oder Methacrylsäureste und gegebenenfalls Acrylamidbausteine enthält, Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von geformten Gebilden, die sich durch ein hohes Wasserrückhaltevermögen auszeichnen.
  • Der Carboxylgruppengehalt der erfindungsgemäßen Fäden und Fasern soll 10-30, vorzugsweise 15-26 Gew.-% betragen. Die Fasern und Fäden gemäß der Erfindung können aus entsprechenden Polymerrohstoffen nach den für Polyacrylnitril üblichen Spinnverfahren erhalten werden und zeichnen sich durch gute textiltechnologische Eigenschaften-besonders im Hinblickauf die Reiß- und Knotenfestigkeiten-aus, die eine problemlose Weiterverarbeitung, z.B. zu textilen Flächengebilden ermöglichen. Textiltechnologische Eigenschaften einer Faser oder eines Fadens können dann als gut bezeichnet werden, wenn sie das Niveau der Wolle erreichen.
  • Fäden und Fasern aus Acrylpolymeren, die geringere Mengen an Carboxylgruppen enthalten, sind bekannt. So wird z.B. in der DE-A-24 34 232 ein Verfahren zur Herstellung von Acrylfasern mit verbesserter Hykroskpizität beschrieben, bei denen Carboxylgruppen haltige Rohstoffe zu Fasern versponnen, verstreckt, die faserbildende Substanz anschließend vernitzt und die Carboxylgruppen in wäßrig-alkalischem Medium in die entsprechende Salzform überführt werden. In den Beispielen werden Polymere mit bis zu 12% Acrylsäure (entsprechend 7,5% Carboxylgruppen) bzw. 15% Methacrylsäure (entsprechend 7,8% Carboxylgruppen) eingesetzt. Aufgrund der durchgeführten Vernetzungsreaktionen können derartige Fäden nur eine geringe Menge an Wasser aufnehmen.
  • In der DE-A-23 37 507, der DE-A-23 35 696, der DE-A-23 35 697 und der DE-A-23 36 036 werden Verfahren zur Herstellung von Acrylnitril-Acrylamid-Mischpolymerisaten durch Verseifung von Acrylnitrolcopolymeren in homogener Phase mit konzentrierten Säuren beschrieben. Wert gelegt wird dabei auf ein möglichst schnelles Auflösen der zu verseifenden Acrylnitrilpolymerisate und eine Hydrolyse in homogenem System, um die Qualität der erzeugten Produkte zu verbessern. Gefunden wurde, daß jede Heterogenität sich auf die Qualität der erzeugten Produkte ungünstig auswirkt. Die Verseifung der Acrylnitrilgruppen erfolgt in diesen Vorveröffentlichungen stets mit konzentrierten Säuren, bei denen die Ausbildung von Carboxylgruppen vernachläßigbar klein ist. Die Wirkung von konzentrierten Säuren auf Acrylnitrilpolymerisate wird auch in "Faserforschung und Textiltechnik" 11 (1960), Seiten 362 und 363 beschrieben.
  • In "Faserforschung und Textiltechnik" 14 (1963), Seiten 265-270 werden Fasern aus Mischungen von Polyacrylnitril und homogen verseiften Polyacrylnitril beschrieben. Bei Mischungen mit einem Carboxylgruppengehalt von 8,5% wird jedoch bereits auf die starke Gelierungstendenz der aus diesen Mischungen hergestellten Spinnlösungen hingewiesen, die den Spinnprozeß merklich erschweren.
  • Es bestand deshalb immer noch die Aufgabe, Fäden und Fasern aus Acrylpolymerisaten mit hohem Carboxylgruppengehalt herzustellen, die zu textilen oder watteförmigen Gebilden weiterverarbeitet werden können.
  • Überraschend wurde nun gefunden, daß in heterogener Phase mit Hilfe von verdünnten Säuren verseifte Polyacrylnitrile mit einem Carboxylgruppengehalt von bis zu 30 Gew.-% nach den für Polyacrylnitril üblichen Spinnverfahren versponnen werden können. Die dabei erhaltenen Fäden und Fasern lassen sich problemlos kräuseln, kardieren und zu Watten, Garnen und textilen Flächengebilden weiterverarbeiten. Auch eine Mischverarbeitung mit anderen Fasern ist ohne Schwierigkeiten möglich. Die für eine Weiterverarbeitung wichtigen Größen wie Reiß- und Knotenfestigkeit entsprechen oder übertreffen die von der Wolle bekannten Werte. Sie weisen im trockenen Zustand Reißfestigkeiten von mehr als 10 cN/tex und Kontenfestigkeiten von mehr als 6 cN/tex vorzugsweise sogar 8 und mehr cN/tex auf.
  • Die erfindungsgemäßen Fäden und Fasern eignen sich wegen der über den Carboxylgruppengehalt einstellbaren Quellfähigkeit und dem damit verbundenen hohen Wasserrückhaltevermögen besonders zur Verarbeitung in Mischung mit anderen Fasern zur Herstellung von Garnen für Bekleidungstextilien mit erhöhtem Tragekomfort. Insbesondere bei der Reinverarbeitung der erfindungsgemäßen Fäden und Fasern können saugfähige Watten, Vliese, Tampons, Gewebe, Gewirke und dergleichen hergestellt werden, die sich durch ihr Wasserrückhaltevermögen auszeichnen. Werden derartige Fäden oder Fasern oder geformten Gebilde aus derartigen erfindungsgemäßen Produkten mit gasförmigen oder wasserfreien Basen behandelt, so können die Carboxylgruppen in die Salzform überführt werden. Durch derartige verfahren, die Gegenstand einer Parallelanmeldung sind (EP-A-0047962), kann das Quellvermögen der Fäden und Fasern um ein Vielfaches gesteigert werden, ohne daß es zu Verklebungen oder Versprödungen der Fäden kommt.
  • Im Kontakt mit alkalisch-wäßrigen Medien quellen die erfindungsgemäßen Fäden und Fasern und die daraus hergestellten Gebilde sehr stark auf. Diese Eigenschaften ermöglichen z.B. die Herstellung von Filtergeweben, die saure wäßrige Medien hindurchlassen, alkalische aber sperren. Ebenso eignen sich die erfindungsgemäßen Fäden und Fasern und die daraus hergestellten Gebilde hervorragend als Ionenaustauscher mit sehr hohen Austauscherkapazitäten.
  • Der Erfindung liegt ebenfalls ein Verfahren zur Herstellung derartiger Fäden und Fasern zugrunde, wobei der Faserrohstoff durch Verseifung eines Acrylnitrilpolymeren oder -copolymeren mit wäßrigen verdünnten Säuren in heterogener Phase hergestellt wird. Der gewünschte Verseifungsgrad kann z.B. bei konstanten Reaktionsbedingungen über die Konzentration der eingesetzten Säure genau eingestellt werden. Im Gegensatz zu den homogenen Verseifungsreaktionen von Polyacrylnitrilen mit höheren Säurekonzentrationen entstehen bei der heterogenen Verseifung mit verdünnten wäßrigen Säuren vorzugsweise nur Carboxylgruppen. Die Uneinheitlichkeit der Polymeren, besonders im Hinblick auf die Sequenzverteilungen dürfte bei heterogen verseiften Produkten erheblich größer sein als bei homogen verseiften Polyacrylnitrilen. Möglicherweise ist jedoch die vermutete größere Uneinheitlichkeit der Verseifungsprodukte der Grund für ihre bessere Verarbeitbarkeit zu Fäden und Fasern.
  • Neben Salpeter- und Phosphorsäure kann die Verseifung der Nitrilgruppen vorzugsweise mit Hilfe verdünnter Schwefelsäure durchgeführt werden, die eine Konzentration von 40-50, vorzugsweise 45-49 Gew.-% aufweisen sollte. Die Polymeren werden in die vorgelegte Säure eingetragen und einige Stunden gerührt. Um die Reaktionszeiten kurz zu halten, empfiehlt es sich, bei Siedetemperaturen zu arbeiten. Dabei reichen üblicherweise Reaktionszeiten von 2,5 Stunden aus. Auschließend wird das Polymer abfiltriert, gewaschen und getrocknet. Es wurde gefunden, daß der Einsatz von verdünnten Säuren zur Durchführung der Verseifungsreaktion auch noch aus einem anderen Grunde wichtig ist. Geeignete Verseifungsprodukte können nur erhalten werden, wenn die Verseifungsreaktion in heterogener Phase durchgeführt wird. Eine Reihe von Säuren wirken jedoch in höherer Konzentration als Lösungs- bzw. Quellmittel für das zu verseifende Polymerisat. Derartige Konzentrationen sind daher zu vermeiden. Die maximale noch geeignete Säurekonzentration ist die, bei der die in die wasserhaltige Säure eingebrachten Polymerteilchen noch nicht zusammenkleben. Eine geringfügige Quellung ist dagenen im allgemeinen tolerierbar.
  • Als Polymerrohstoffe für die Verseifung eignen sich Homo- und Copolymerisate des Acrylnitrils, wobei als Copolymere z.B. in Betracht kommen:
    • Acrylamid, Acrylsäure und deren Ester, Vinylester und -äther wie Vinylacetat, Vinylstearat, Vinylbutyl- äther, Halogenessigsäurevinylester, wie Bromessigsäurevinylester, Dichloressigsäurevinylester, Trichloressigsäurevinylester, Styrol, Maleinimid, Vinylhalogenide wie z.B. Vinylchlorid, Vinylidenchlorid, Vinylbromid sowie Sulfonatgruppen tragende ungesättigte Verbindungen.
  • Besonders kostengünstig arbeitet man dann, wenn es möglich ist, den in großen Maßstab für die Erspinnung konventioneller Acrylfasern hergestellten Faserrohstoff für die Verseifung einzusetzen. Die dabei eingesetzten Comomomeren können sich, wie dies von Acrylamid bekannt ist, vorteilhaft auf die Verseifungsgeschwindigkeit auswirken.
  • Das verseifte, getrocknete Polymer wird zur Herstellung von Spinnlösungen in den für Polyacrylnitril üblichen Lösungsmitteln gelöst und nach bekannten Verfahren nach dem Trocken- oder Naßspinnprozeß versponnen. Die von der Düse abgezogenen Fäden können vor, nach oder während des Waschens naß verstreckt werden. Nach dem Avivieren werden sie getrocknet, wobei während des Trocknens ein Schrumpf zugelassen werden kann. Im allgemeinen schließt sich an die Trocknung ein weiteres Streckverfahren im trocken-heißen Zustand an. Um den Kochschrumpf zu erniedrigen, kann anschließend noch geschrumpft werden. Bei der Herstellung von Fasern werden die erzeugten Kabelbänder üblicherweise dann noch gekräuselt und auf gewünschte Länge geschnitten. Falls erforderlich bzw. gewünscht, können die erfindungsgemäßen Fäden oder Fasern auch einer Druckdämpfung unterzogen werden.
  • Um bei hochverseiften Polymeren eine mögliche leichte Quellung der Fäden beim Spinnprozeß zu unterdrücken, können in den Fäll-, Streck- und Waschbädern anstelle von Wasser auch organische Lösungsmittel, die mit dem Polymerlösungsmittel mischbar sind, wie z.B. Alkohole oder Ketone eingesetzt werden.
  • Die Erfindung soll nachfolgend anhand von Beispielen weiter erläutert werden. Falls nicht anders angegeben, beziehen sich Prozent- und Teilangaben auf Gesichtsmengen.
  • Beispiel 1
  • 700 g eines Polymeren aus 93,7 Gew.-% Acrylnitril, 5,8% Acrylsäuremethylester und 0,5% Natriummethallylsulfonat, mit einer relativen Viskosität von 1,92, gemessen in 0,5%iger Lösung Dimethylformamid, wurden in 2800 g 48,2 gew.-%iger Schwefelsäure (Dichte 1,378 g/ml bei 20°C) 2,5 Stunden am Rückfluß gekocht. Nach dem Abkühlen wurde das Polymer sulfatfrei gewaschen und getrocknet.
  • Zur Bestimmung des Carboxylgruppengehaltes wurden etwa 150 mg des Polymeren in 25 ml Dimethylsulfoxyd (DMSO) gelöst, mit 60 ml Wasser versetzt und mit 0,1-n-Natriumhydroxydlösung potentiometrisch titriert. Der Faktor der Natronlauge wurde mit Oxalsäure, gelöst in 60 ml Wasser und mit 25 ml DMSO versetzt, bestimmt. Die Titration ergab für das oben beschriebene Polymer einen Carboxylgruppengehalt von 25,5 Gew.-% (bezogen auf -COOH), dies entspricht einem Gehalt an Acrylsäure von 40,7 Gew.-% im Polymeren.
  • 600 g des so verseiften Polymeren wurden in 1900 g Dimethylformamid (DMF) zu einer 24%igen Spinnlösung gelöst, die Lösung anschließend filtriert und mit einer Fördermenge von 17,1 ml/min durch eine 300-Loch-Düse, Lochdurchmesser 0,06 mm, in ein Fällbad mit 24,5% DMF und 75% Wasser sowie 0,5% Essigsäure bei einer Temperatur von 35°C gedrückt. Nach einer Eintauschlänge von 50 cm wurde der Faden mit 6,9 m/min von der Düse abgezogen, in einem Bad mit 40% DMF und 60% Wasser bei 55°C auf 20,3 m/min verstreckt, in einem weiteren Bad, das Wasser von 35°C enthielt, auf 23,3 m/min verstreckt, in Wasser von 50°C gewaschen und nochmals auf 26,1 m/min verstreckt. Nach dem Durchlaufen eines ethanolischen Avivagebades wurde der Faden unter Zulassung eines Schrumpfes von 1,3 m/min auf einem Duo mit einer Temperatur von 120°C vorgetrocknet und auf einem weiteren Duo mit einer Temperatur von 165°C nachgetrocknet. Zwischen den beiden Duos wurde der Faden auf 35,0 m/min verstreckt. Vom zweiten Duo wurde der Faden mit 48,5 m/min abgezogen und in einem Heißluftkanal bei 155°C auf 47,0 m/min zurückgeschrumpft.
  • Nach dem Kräuseln und Schneiden konnten die Fasern zu einem Kammgarn weiterverarbeitet werden. Ebenso wurde durch mehrfaches Krempeln eine Watte hergestellt. Das Material ließ sich dabei ohne Störungen zu diesen geformten Gebilden bei Einsatz üblicher Textilmaschinen weiterverarbeiten.
  • Die textiltechnologischen Eigenschaften der so erzeugten Fäden werden nachfolgende gemeinsam mit den Ergebnissen der Beispiele 2 bis 6 beschrieben.
  • Beispiele 2 bis 6
  • Das Polymer gemäß Beispiel 1 wurde wie im vorhergehenden Beispiel beschrieben verseift. Variiert wurden jedoch die Schwefelsäurekonzentrationen. Es konnten folgende Polymere erhalten werden.
    Figure imgb0001
  • Die verseiften Polymere der Beispiele 2 bis 4 wurden zu 24%igen Spinnlösungen in DMF gelöst und mit einer Fördermenge von 15 ml/min durch eine 300-Loch-Düse in ein Fällbad entsprechend Beispiel 1 gedrückt. Die Fäden wurden mit 5,0 m/min von der Düse abgezogen und in einem Bad mit 40% DMF und 60% Wasser bei 60°C auf 20,3 m/min und in einem nachfolgenden Wasserbad bei 60°C auf 48,5 m/min verstreckt. Nach dem Waschen und dem Durchlaufen eines wäßrigen Avivagebades wurden die Fäden auf einem Duo bei 150°C vorgetrocknet und auf einem zweiten Duo bei 175°C nachgetrocknet, mit einem dritten Duo abgezogen und nach dem Durchlaufen eines Heißluftkanales von 155°C aufgespult. Die einzelnen Geschwindigkeiten der Duos sind in der folgenden Tabelle angegeben.
    Figure imgb0002
  • Das Polymer aus dem Versuch Nr. 5 ließ sich unter den gegebenen Bedingungen nicht verspinnen. Der Faden war zu stark gequollen, er riß oft aufgrund seines Eigengewichtes und war nach dem Trocknen stark verklebt.
  • Das Polymer aus dem Versuch Nr. 6 wurde wie bei ben Beispielen 2 bis 4 beschrieben, gesponnen, die beiden Streckbäder waren aber statt auf 60 auf 75°C aufgeheizt.
  • Von den Fäden der Beispiele 1 bis 6 wurden der Titer, die Reißfestigkeit, das Wasserrückhaltevermögen in entionisiertem Wasser und das Flüssigkeitsrückhaltevermögen in 0,1-n Natriumhydroxydlösung gemessen. Die Knotenfestigkeiten wurden an Einzelfilamenten bestimmt.
  • Zur Bestimmung des Wasser- bzw. Flüssigkeitsrückhaltevermögens wurden jeweils etwa 500 mg der zerschnittenen Fäden in einen Runden Becher aus Polytetrafluoräthylen, dessen offener Boden mit einem feinmaschigen Netz aus V4a-Gewebe versehen war, eingewogen. Der Innendurchmesser des Bechers betrug 1,8 cm, die Höhe, vom Netz an gerechnet, 3,9 cm. Die Becher wurden mit Inhalt eine Stunde lang in entionisiertem Wasser bzw. einer wäßrigen 0,1-n Natriumhydroxydlösung gestellt, wobei jeweils den Flüssigkeiten 1 g/I eines Netzmittels zugesetzt wurden. Als Netzmittel hat sich das Natriumsalz von Diisobutylnaphthalinsulfonsäure bewährt. Zu Beginn der Flüssigkeitsbehandlung werden die Proben 5 Minuten evakuiert, um anhaftende Luftblasen zu entfernen. Nach der Behandlungszeit, bei der die Proben gegebenenfalls noch in der Flüssigkeit hin und her geschwenkt wurden, erfolgt die eigentliche Zentrifugierung mit Hilfe einer Laborzentrifuge der Firma Heraeus Christ GmbH, vom Typ UJO. Die Behälter und Proben werden jeweils 30 Minuten bei 4000 Upm zentrifugiert. Der Abstand der Bechernetze von der Achse der Zentrifuge betrug jeweils 8,5 cm. Anschließend wurden die zentrifugierten Faserproben ausgewogen und danach im Trockenschrank bei 120°C bis zur Gewichtskonstanz getrocknet. Die Gewichtsdifferenz zwischen feuchter und getrockneter Probe, dividiert durch das Trockengewicht sind in % als Wasserrückhaltevermögen bzw. Flüssigkeitsrückhaltevermögen nachfolgend angegeben.
    Figure imgb0003
  • Beispiel 7
  • Das Polymer aus Beispiel 3 wurde bei 80°C zu einer 29%igen Spinnlösung gelöst und mit einer Fördermenge von 36 ml/min durch eine 50-Loch-Düse, Lochdurchmesser 0,15 mm in einem Trockenspinnschacht gedrückt. In Fadenrichtung wurde auf 320°C aufgeheiztes Inertgas eingeblasen, die Schachtwand war auf 200°C aufgeheizt. Die Fäden wurden mit 220 m/min aus dem Spinnschacht abgezogen, jeweils zwei dieser Fäden wurden gefacht und unter leichter Spannung bei 50°C mit Wasser gewaschen. Auf zwei Duos, die auf 140 und 190°C aufgeheizt waren, wurden die Fäden unter leichter Verstreckung getrocknet und vom zweiten Duo mit einer Verstreckung von 1:2,1 abgezogen. Die Gesamtverstreckung betrug 1:3,0. Abschließend wurde der Faden in einem Heißluftkanal bei 180°C um 15% geschrumpft. Die so erhaltenen Einzelfilamente zeigten folgende Eigenschaften:
    • Titer: 3,2 dtex
    • Reißfestigkeit: 21 cN/tex
    • Reißdehnung: 30%
    • Knotenfestigkeit: 10 cN/tex
    • Wasserrückhaltevermögen: 29%
    • Flüssigkeitsrückhaltevermögen in 0,1-n NaOH: 788%
  • Auch die Fasern nach Beispiel 2, 3, 4 und 7 konnten im gekgräuselten Zustand zu Wattelagen und zu Kammgarnen weiterverarbeitet werden.

Claims (6)

1. Fäden und Fasern, deren fadenbildende Substanz aus einem unvernetztem Acrylpolymerisat besteht, das neben Acrylnitril-Einheiten und anderen mit Acrylnitril copolymerisierbaren Einheiten 10-30 Gew.-% Carboxylgruppen enthält, und die im trockenen Zustand Zugfestigkeiten von mehr als 10 cN/tex und Knotenfestigkeiten von mehr als 6 cN/tex aufweisen und die mit Hilfe üblicher textiltechnischer Verfahren gut zu Watten, Garnen und Flächengebilden weiterverarbeitet werden können.
2. Fäden und Fasern nach Anspruch 1, dadurch gekennzeichnet, daß ihr Flüssigkeitsrückhaltevermögen in 0,1-normaler wäßriger Natriumhydroxydlösung größer als 500% ist.
3. Verwendung der Fäden und Fasern nach den Ansprüchen 1 und 2, zur Herstellung von geformten Gebilden mit hohem Wasserrückhaltevermögen.
4. Verfahren zur Herstellung von Fäden und Fasern nach den Ansprüchen 1 und 2 durch Verspinnen eines Polymerrohstoffes nach dem für Acrylfäden und -fasern üblichen Spinnverfahren, dadurch gekennzeichnet, daß der Polymerrohstoff durch Verseifung eines Acrylnitrilpolymerisates, das neben Acrylnitril auch noch aus anderen mit Acrylnitril copolymerisierbarem Monomeren aufgebaut sein kann, in heterogener Phase mit wäßrigen verdünnten Säuren hergestellt worden ist, wobei die Säurekonzentration noch nicht zu einem Verkleben der einzelnen Teilchen des Acrylnitrilpolymerisates führt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß als Acrylnitrilpolymerisat ein Terpolymerisat aus Acrylnitril, Acrylsäuremethylester und mit Methallylsulfonat eingesetzt wird.
6. Verfahren nach den Ansprüchen 4 und 5, dadurch gekennzeichnet, daß zur Verseifung einer Schwefelsäure mit 40-50 vorzugsweise 45-49 Gew.-% eingesetzt wird.
EP81107048A 1980-09-13 1981-09-08 Fäden und Fasern aus Carboxylgruppen haltigen Acrylpolymeren, ihre Verwendung und Verfahren zu ihrer Herstellung Expired EP0048846B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3034635A DE3034635C2 (de) 1980-09-13 1980-09-13 Fäden und Fasern aus Carboxylgruppenhaltigen Acrylpolymeren, ihre Verwendung und Verfahren zu ihrer Herstellung
DE3034635 1980-09-13

Publications (3)

Publication Number Publication Date
EP0048846A2 EP0048846A2 (de) 1982-04-07
EP0048846A3 EP0048846A3 (en) 1983-06-29
EP0048846B1 true EP0048846B1 (de) 1985-08-07

Family

ID=6111898

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81107048A Expired EP0048846B1 (de) 1980-09-13 1981-09-08 Fäden und Fasern aus Carboxylgruppen haltigen Acrylpolymeren, ihre Verwendung und Verfahren zu ihrer Herstellung

Country Status (4)

Country Link
US (2) US4997610A (de)
EP (1) EP0048846B1 (de)
JP (1) JPS5777313A (de)
DE (2) DE3034635C2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3034635C2 (de) * 1980-09-13 1982-08-05 Hoechst Ag, 6000 Frankfurt Fäden und Fasern aus Carboxylgruppenhaltigen Acrylpolymeren, ihre Verwendung und Verfahren zu ihrer Herstellung
JPH01183515A (ja) * 1987-12-30 1989-07-21 Japan Exlan Co Ltd 吸水性高強度繊維
US5483716A (en) * 1994-03-28 1996-01-16 Burnaman; Earl W. Form decking apparatus for bridges
JP7187911B2 (ja) * 2017-09-22 2022-12-13 日本エクスラン工業株式会社 吸湿性アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体
JP7177986B2 (ja) * 2018-02-15 2022-11-25 日本エクスラン工業株式会社 収縮性吸湿アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体
JP7177987B2 (ja) * 2018-02-26 2022-11-25 日本エクスラン工業株式会社 易脱捲縮性吸湿アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体
JP7219418B2 (ja) * 2018-03-09 2023-02-08 日本エクスラン工業株式会社 捲縮性吸湿アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体
JPWO2022158496A1 (de) 2021-01-21 2022-07-28
JPWO2022215603A1 (de) 2021-04-08 2022-10-13

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA612989A (en) * 1961-01-24 Halbig Paul Spinning of polyacrylonitrile fibers
US2721113A (en) * 1950-06-29 1955-10-18 British Celanese Production and use of solutions of partly hydrolysed acrylonitrile polymers
GB721947A (en) * 1951-07-02 1955-01-19 British Celanese Improvements in the production and use of solutions of acrylonitrile polymers
DE1266925B (de) * 1952-06-28 1968-04-25 Dr Paul Halbig Verfahren zur Herstellung matt aussehender Faeden und Fasern aus Homo- und/oder Mischpolymerisaten des Acrylnitrils
BE536849A (de) * 1954-03-27
NL264984A (de) * 1960-06-22
FR1353521A (fr) * 1962-12-28 1964-02-28 Asahi Chemical Ind Procédé de préparation de fibres synthétiques d'acrylonitrile
CH464793A (fr) * 1966-11-23 1968-10-31 Mills Const Sa Dispositif de transfert automatique de charges le long d'un chemin horizontal
US3636187A (en) * 1967-11-09 1972-01-18 Asahi Chemical Ind Process for the manufacture of acrylonitrile synthetic fibers
US3733386A (en) * 1971-04-13 1973-05-15 American Cyanamid Co Process for producing acrylic synthetic fibers improved in the hydrophilicity
CS158845B1 (de) * 1972-07-14 1974-12-27
CS158483B1 (de) * 1972-07-14 1974-11-25
CS158484B1 (de) * 1972-07-14 1974-11-25
DE2337505A1 (de) * 1973-07-24 1975-02-13 Ceskoslovenska Akademie Ved Verfahren zur herstellung von acrylnitril - acrylamid - acrylsaeure - mischpolymerisaten
GB1416810A (en) * 1973-07-27 1975-12-10 Ceskoslovenska Akademie Ved Method of preparing acrylonitrile-acrylamide-acrylic acid copolymers
JPS5145695B2 (de) * 1973-08-24 1976-12-04
GB1447536A (en) * 1973-11-14 1976-08-25 Mitsubishi Rayon Co Fibres having high water swelling ability
DE2426675C2 (de) * 1974-06-01 1984-04-12 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von kochschrumpfenden gefärbeten Fasern oder Fäden aus Acrylnitrilpolymerisaten
DE2607071C2 (de) * 1976-02-21 1985-09-19 Bayer Ag, 5090 Leverkusen Synthesefasern und -fäden mit hoher Feuchtigkeitsaufnahme und großem Wasserrückhaltevermögen
JPS5598915A (en) * 1979-01-16 1980-07-28 Japan Exlan Co Ltd Production of fiber swelling with water
DE2903267A1 (de) * 1979-01-29 1980-08-07 Hoechst Ag Verfahren zur herstellung von acrylpolymeren mit hoher wasserquellfaehigkeit und deren verwendung
DE3034635C2 (de) * 1980-09-13 1982-08-05 Hoechst Ag, 6000 Frankfurt Fäden und Fasern aus Carboxylgruppenhaltigen Acrylpolymeren, ihre Verwendung und Verfahren zu ihrer Herstellung
JPS57139510A (en) * 1981-02-16 1982-08-28 Toray Ind Inc Special acrylic fiber

Also Published As

Publication number Publication date
DE3034635C2 (de) 1982-08-05
DE3034635A1 (de) 1982-04-22
DE3171704D1 (en) 1985-09-12
US5109092A (en) 1992-04-28
EP0048846A2 (de) 1982-04-07
JPH02451B2 (de) 1990-01-08
JPS5777313A (en) 1982-05-14
EP0048846A3 (en) 1983-06-29
US4997610A (en) 1991-03-05

Similar Documents

Publication Publication Date Title
DE69416051T2 (de) Wasserlösliche Faser auf Polyvinylalkohol-Basis
DE2554124C3 (de) Verfahren zur Herstellung von hydrophilen Fasern und Fäden aus Acrylnitrilpolymerisaten
DE10137171A1 (de) Verfahren zur Herstellung von cellulosischen Formkörpern mit superabsorbierenden Eigenschaften
DE2403947A1 (de) Schmelzspinnverfahren zur herstellung von geformten gegenstaenden aus acrylnitrilpolymerisaten
EP0044534A2 (de) Hochmodul-Polyacrylnitrilfäden und -fasern sowie Verfahren zu ihrer Herstellung
EP0048846B1 (de) Fäden und Fasern aus Carboxylgruppen haltigen Acrylpolymeren, ihre Verwendung und Verfahren zu ihrer Herstellung
DE2607996C2 (de) Hydrophile Fasern und Fäden aus einem Acrylnitrilpolymerisat
EP0047962B1 (de) Verfahren zur Herstellung von quellfähigen Fäden, Fasern und geformten Gebilden aus Acrylpolymeren sowie die dabei erhaltenen Produkte
DE1030970B (de) Verfahren zur Herstellung von Faeden und Fasern aus Polyacrylsaeurenitril
DE69721791T2 (de) Verwendung von linearen syntethischen polymeren zur verbesserung der eigenschaften von cellulosischen formkörpern hergestellt nach dem tertiären-aminoxid-verfahren
DE970677C (de) Verfahren zur Herstellung von kuenstlichen Gebilden aus acrylnitrilhaltigen Polymerisationsprodukten
EP0019870B1 (de) Fäden und Fasern aus Acrylnitril-Copolymer-Mischungen sowie Verfahren zu ihrer Herstellung
DE2504079C2 (de) Verfahren zur Herstellung von hochschrumpffähigen, trockengesponnenen Acrylnitrilfasern oder -fäden
DE2922809A1 (de) Acrylfasern mit grosser schrumpfung und verfahren zu ihrer herstellung
DE2609829C2 (de) Verfahren zur Herstellung von hydrophilen Fasern und Fäden aus synthetischen Polymeren
WO1997004148A1 (de) Cellulosefaser
DE2607659C2 (de) Hydrophile Fasern und Fäden aus synthetischen Polymeren
EP0029949B1 (de) Verfahren zur Herstellung von querschnittstabilen, hygroskopischen Kern/Mantelstruktur aufweisenden Fasern und Fäden nach einem Trockenspinnprozess
DE2009708A1 (de) Naßspinnverfahren zur Herstellung von fadenartigem Material aus einer Spinnlösung von Acrylnitrilmischpolymerisaten
DE832654C (de) Verfahren zur Herstellung von kuenstlichen Gebilden, wie Faeden, Fasern, kuenstliches Rosshaar oder Spaene, aus Polyvinylchlorid
WO1998026116A1 (de) Hochfeste polyacrylnitrilfasern hohen moduls, verfahren zu deren herstellung und deren verwendung
DE2909785A1 (de) Verfahren zur herstellung von faeden oder fasern aus acrylnitril enthaltenden polymerisaten mit erhoehtem wasserretentionsvermoegen
DE2165396A1 (de) Verfahren zur Herstellung von lactonisierten Acrylfasern
DE2854314A1 (de) Verfahren zur herstellung von hydrophilen faeden oder fasern aus einem acrylnitrilhomo- oder acrylnitrilmischpolymerisat
DE2357587C3 (de) Verfahren zur Herstellung von gegebenenfalls mit einem Aldehyd acetalisierten Fäden und Folien aus einer Polyvinylalkohol als Matrix enthaltenden wäßrigen Spinnemulsion eines Vinylchlorid- und/oder Vinylidenchlorid-Polymerisats sowie Polymeremulsion zur Durchführung dieses Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19830903

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3171704

Country of ref document: DE

Date of ref document: 19850912

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930812

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930820

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931118

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940908

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST