EP0046959B2 - Elektrophotographisches Aufzeichnungsmaterial - Google Patents
Elektrophotographisches Aufzeichnungsmaterial Download PDFInfo
- Publication number
- EP0046959B2 EP0046959B2 EP81106554A EP81106554A EP0046959B2 EP 0046959 B2 EP0046959 B2 EP 0046959B2 EP 81106554 A EP81106554 A EP 81106554A EP 81106554 A EP81106554 A EP 81106554A EP 0046959 B2 EP0046959 B2 EP 0046959B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- recording material
- binder
- polyisocyanate
- hydroxyl groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims description 22
- 239000010410 layer Substances 0.000 claims description 123
- 239000011230 binding agent Substances 0.000 claims description 28
- 238000005299 abrasion Methods 0.000 claims description 24
- 229920001228 polyisocyanate Polymers 0.000 claims description 20
- 239000005056 polyisocyanate Substances 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 19
- 238000004132 cross linking Methods 0.000 claims description 14
- -1 polypropylene Polymers 0.000 claims description 14
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 13
- 239000004925 Acrylic resin Substances 0.000 claims description 9
- 229920000178 Acrylic resin Polymers 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 claims description 8
- 230000001681 protective effect Effects 0.000 claims description 8
- 230000032258 transport Effects 0.000 claims description 8
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 229920001220 nitrocellulos Polymers 0.000 claims description 6
- 239000011368 organic material Substances 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 6
- 239000003822 epoxy resin Substances 0.000 claims description 5
- 229920000647 polyepoxide Polymers 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- 150000001491 aromatic compounds Chemical class 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 239000002800 charge carrier Substances 0.000 claims description 4
- 239000013034 phenoxy resin Substances 0.000 claims description 4
- 229920006287 phenoxy resin Polymers 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 239000000020 Nitrocellulose Substances 0.000 claims description 3
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 claims description 3
- 238000007605 air drying Methods 0.000 claims description 3
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 125000004663 dialkyl amino group Chemical group 0.000 claims description 3
- 150000002391 heterocyclic compounds Chemical class 0.000 claims description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 239000002033 PVDF binder Substances 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 229920005749 polyurethane resin Polymers 0.000 claims description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 2
- 239000004721 Polyphenylene oxide Substances 0.000 claims 2
- 229920000570 polyether Polymers 0.000 claims 2
- 239000011229 interlayer Substances 0.000 claims 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 11
- 230000036211 photosensitivity Effects 0.000 description 11
- 238000004140 cleaning Methods 0.000 description 8
- 239000000975 dye Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229920002678 cellulose Chemical class 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 2
- 229920001756 Polyvinyl chloride acetate Polymers 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001913 cellulose Chemical class 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- 125000004182 2-chlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(*)C([H])=C1[H] 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000005046 Chlorosilane Substances 0.000 description 1
- 239000004793 Polystyrene Chemical class 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920002223 polystyrene Chemical class 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- JOUDBUYBGJYFFP-FOCLMDBBSA-N thioindigo Chemical compound S\1C2=CC=CC=C2C(=O)C/1=C1/C(=O)C2=CC=CC=C2S1 JOUDBUYBGJYFFP-FOCLMDBBSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 150000001651 triphenylamine derivatives Chemical class 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14708—Cover layers comprising organic material
- G03G5/14713—Macromolecular material
- G03G5/14747—Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- G03G5/14769—Other polycondensates comprising nitrogen atoms with or without oxygen atoms in the main chain
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14708—Cover layers comprising organic material
- G03G5/14713—Macromolecular material
- G03G5/14717—Macromolecular material obtained by reactions only involving carbon-to-carbon unsaturated bonds
- G03G5/14734—Polymers comprising at least one carboxyl radical, e.g. polyacrylic acid, polycrotonic acid, polymaleic acid; Derivatives thereof, e.g. their esters, salts, anhydrides, nitriles, amides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14708—Cover layers comprising organic material
- G03G5/14713—Macromolecular material
- G03G5/14747—Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- G03G5/14752—Polyesters
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14708—Cover layers comprising organic material
- G03G5/14713—Macromolecular material
- G03G5/14747—Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- G03G5/14756—Polycarbonates
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14708—Cover layers comprising organic material
- G03G5/14713—Macromolecular material
- G03G5/14747—Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- G03G5/1476—Other polycondensates comprising oxygen atoms in the main chain; Phenol resins
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14708—Cover layers comprising organic material
- G03G5/14713—Macromolecular material
- G03G5/14791—Macromolecular compounds characterised by their structure, e.g. block polymers, reticulated polymers, or by their chemical properties, e.g. by molecular weight or acidity
Definitions
- the invention relates to an electrophotographic recording material composed of an electrically conductive layer support, optionally an insulating intermediate layer and a photoconductive layer system consisting of organic materials consisting of a layer optionally containing a binder with a charge-generating compound and a layer with charge-transporting compound which has a monomeric aromatic or heterocyclic compound is at least one dialkylamino group or two alkoxy groups, and a protective transparent cover layer in a thickness of 0.5 to 10 pm.
- Photoconductive layer comprising at least one layer with a charge-generating and charge-transporting compound
- highly sensitive, organic photoconductor layers (DE-B-23 14 051) are used on conductive carrier films or tapes due to their high elasticity.
- very highly sensitive photoconductor systems according to, for example, DE-A-27 34 288 can be used as endless belts because of their great flexibility, which can be guided over deflecting rollers with a relatively small diameter.
- cover layers on mono- or multiple photoconductor layers with inorganic or preferably organic photoconductor consist of a very specific combination of crosslinking agent with crosslinkable polymer or copolymer in a weight ratio of 1 to 9 .
- crosslinking agents e.g. Prepolymers containing melamine formaldehyde and imino groups and, as crosslinkable polymers, those which have ⁇ , ⁇ -ethylenically unsaturated carboxylic acid or partial ester configurations. From this it can be seen that only these agents provide the physical properties which are essential and advantageous for a cover layer on a photoconductive layer.
- the photoconductive multilayer is three layers of different thicknesses of different organic material. A top layer is applied to this, which is 20 pm thick and normally more than about 10 pm thick.
- an electrophotographic recording material mentioned in claim 1 which is characterized in that the top layer consists of a surface abrasion-resistant organic binder made of phenoxy resin, purely acrylic resin, preferably of an aqueous dispersion of polyisocyanate and hydroxyl group-containing polyester or ether Polyisocyanate and hydroxyl group-containing acrylic or epoxy resin, or of polyisocyanate prepolymer or polyisocyanates with temporarily blocked isocyanate groups and that the top layer is 0.5 to 15.5 ⁇ m thick.
- the top layer consists of a surface abrasion-resistant organic binder made of phenoxy resin, purely acrylic resin, preferably of an aqueous dispersion of polyisocyanate and hydroxyl group-containing polyester or ether Polyisocyanate and hydroxyl group-containing acrylic or epoxy resin, or of polyisocyanate prepolymer or polyisocyanates with temporarily blocked isocyanate groups and that the top layer is 0.5 to 15.5 ⁇ m thick.
- electrophotographic recording materials can be made available which, with almost the same photosensitivity, significantly improve the abrasion resistance and the service life.
- the abrasion-resistant top layer can be applied by coating, dipping or also (electrostatic) spraying with subsequent drying and optionally hardening.
- the multi-layer arrangements can be used more profitably not only on flexible conductive substrates, but also on drums.
- the photoconductive layer can be in the form of a single layer, as indicated in position 6 in FIG. 1. It can also be in the form of a double-layer arrangement which consists of a layer 2 containing charge carrier-producing compounds, as shown in FIGS. 2 and 3, and a layer containing charge-transporting compounds under the respective position 3, which is generally preferred .
- the conductive layer support is indicated with 1 in each case.
- An insulating intermediate layer is indicated at position 4.
- Position 5 shows a layer of charge generating compounds in dispersion.
- Position 7 indicates the protective cover layer according to the invention.
- aluminum foil optionally transparent, aluminum vapor-coated or laminated polyester foil, is used as the conductive layer support, but any other layer support made sufficiently conductive can be used.
- the insulating intermediate layer can be produced by a thermally, anodically or chemically produced aluminum oxide intermediate layer. It can also consist of organic materials. For example, different natural or synthetic resin binders are used that adhere well to a metal or aluminum surface and dissolve little when the other layers are subsequently applied, such as polyamide resins, polyvinylphosphonic acid, polyurethanes, polyester resins or specifically alkali-soluble binders, such as Example styrene-maleic anhydride copolymers.
- the thickness of such organic intermediate layers can be up to 5 pm, that of the aluminum oxide layer is largely in the range of 0.01-1 pm.
- Chem. Soc. Japan 25,411-413 / 1952 can be prepared from perylene-3,4,9,10-tetracarboxylic anhydride and o-phenylenediamine or 1,8-diaminophthalene, according to DE-A-2 314 051.
- Dyes according to DE-A-2 246 255, 2 353 639 and 2 356 370 can also be used, for example.
- the application of a homogeneous, densely packed layer 2 is preferably obtained by vacuum deposition.
- An advantageous layer thickness range of layer 2 is between 0.005 and 3 ⁇ m, since the adhesive strength and homogeneity of the vapor-deposited compound are particularly favorable here.
- homogeneous, well-covering dye layers with thicknesses of the order of 0.1-3 ⁇ m can also be obtained by grinding the dye with a binder, in particular with highly viscous cellulose nitrates and / or crosslinking binder systems, for example polyisocyanate crosslinkable systems Acrylic resins, lacquers based on polyisocyanates and hydroxyl-containing polyester or ether, and by subsequently applying these dye dispersions 5 to the layer support, as can be seen from FIG. 4.
- Compounds which have an extensive n-electron system are particularly suitable as the charge transport material in layers 3 and 6. These include, in particular, monomeric aromatic or heterocyclic compounds, such as those which have at least one dialkylamino group or two alkoxy groups.
- Oxdiazole derivatives which are mentioned in German Patent 1,058,836, have proven particularly useful. These include in particular 2,5-bis (p-diethylaminophenyl) oxidiazole-1,3,4.
- Suitable monomeric electron donor compounds are, for example, triphenylamine derivatives, more highly condensed aromatic compounds such as pyrene, benzo-condensed heterocycles, and also pyrazoline or imidazole derivatives (DE-B-10 60 714, 11 06 599), which also include triazole, thiadiazole and especially oxazole derivatives, for example 2-phenyl-4- (2-chlorophenyl) -5- (4-diethylamino) oxazole, as are disclosed in German patents 1,060,260,1,299,296,120,875.
- the charge transport layer 3 has practically no photosensitivity in the visible range (420-750 nm). It preferably consists of a mixture of an electron donor compound with a resin binder if negative charging is to be carried out.
- Layer 3 is preferably transparent. However, it is also possible that it does not need to be transparent, for example in the case of a transparent, conductive layer support. It has a high electrical resistance ( ⁇ 10120) and prevents the discharge of electrostatic charge in the dark. When exposed, it transports the charges generated in the organic dye layer.
- the added binder influences both the mechanical behavior such as abrasion, flexibility, film formation etc. and to a certain extent the electrophotographic behavior such as photosensitivity, residual charge and cyclic behavior.
- Film-forming compounds such as polyester resins, polyvinyl chloride / polyvinyl acetate copolymers, styrene / maleic anhydride copolymers, polycarbonates, silicone resins, polyurethanes, epoxy resins, acrylates, polyvinyl acetals, polystyrenes, cellulose derivatives such as cellulose acetobutyrates etc. are used as binders.
- Post-crosslinking binder systems such as DD lacquers (for example Desmophen / Desmodur @ , Bayer AG), polyisocyanate-crosslinkable acrylate resins, melamine resins, unsaturated polyester resins etc. are also successfully used.
- the mixing ratio of the charge transporting compound to the binder can vary. However, the requirement for maximum photosensitivity, i.e. the largest possible proportion of charge-transporting compound and after crystallization to be avoided and increase in flexibility, i.e. as large a proportion of binders as possible, relatively certain limits.
- a mixing ratio of about 1: 1 parts by weight has generally been found to be preferred, but ratios between 4: 1 to 1: 2 are also suitable.
- the thicknesses of layers 3 and 6 are preferably between about 3 and 20 pm.
- Leveling agents such as silicone oils, wetting agents, in particular nonionic substances, are the usual additives.
- micronized organic powders of up to approximately 30% by weight, preferably 10% by weight, have also proven to be advantageous. To a certain extent, this improves the abrasion resistance and significantly improves the rougher, matt surface, in particular the adhesion promoter for the subsequent top layer.
- Preferred organic powders can be: micronized polypropylene waxes, polyethylene waxes, polyamide waxes or polytetrafluoroethylene and polyvinylidene fluoride powders.
- Both non-crosslinking and postcrosslinking and self-crosslinking binders are suitable as surface abrasion-resistant organic binders for the top layer.
- Phenoxy resin is mentioned as the non-crosslinking, organic binder.
- Suitable postcrosslinking binders are: two-component systems made from crosslinking with aliphatic and / or aromatic polyisocyanate resin. Hydroxyl group-containing, saturated or unsaturated polyisocyanate resin-crosslinking, hydroxyl group-containing, saturated or unsaturated polyester or ether or polyisocyanate-crosslinking hydroxyl group-containing acrylic or epoxy resins, one-component systems made of air-drying polyurethane resin (polyurethane alkyd resin), or temporarily blocked isocyanate-curing polyisocyanates with er -Groups.
- Pure acrylic resins preferably aqueous dispersions, are suitable as self-crosslinking, optionally thermosetting binders.
- the cover layer consists of a self-crosslinking polyisocyanate and the photoconductive layer contains a compound with hydroxyl groups.
- the organic binders mentioned for the protective cover layer 7 are outstandingly suitable because of their homogeneous film formation and flexibility, their abrasion behavior and the application possibilities. The influence on the photosensitivity of the recording material is negligible.
- the protective cover layer is optically transparent in a thin arrangement.
- the continuous layer produced on an organic photoconductor system in a double layer arrangement has a uniform thickness of about 0.5-10 ⁇ m, preferably of 0.5-5.0 ⁇ m.
- the film surface turns out to be smooth, which is necessary for optimal cleaning.
- the adhesion between the cover layer and the photoconductor system is also high enough to withstand mechanical influences, for example from the cleaning brush.
- the abrasion is significantly improved compared to the photoconductor system to be coated. It is essential that the cover layer behaves triboelectrically like the photoconductor layer. At 40 ⁇ 50 ° C as the storage temperature, the cover layer does not stick and no component exudes from the photoconductor layer.
- the cover layer also serves to prevent crystallization effects which can arise from contact with the photoconductor surface.
- the electrical conductivity of the cover layer is low enough not to influence the charge acceptance of the photoconductor.
- the materials mentioned allow the cover layer to be electrically permeable, so that charges can flow off from the surface when exposed to light, possibly down to a slight residual voltage.
- the electrostatic charge image remains until after exposure completely preserved for image development, which is necessary, otherwise the resolution of the copy decreases.
- the specific electrical resistance is not changed by moisture in the environment.
- the film surface is free of hydrophilic components so that the surface resistance is not changed by the climate.
- the preferred application systems are coatings on a coating machine, preferably by means of flow application on, for example, photoconductor tapes, and spray technologies, optionally also electrostatically for applying the top layer on drums.
- a coating machine preferably by means of flow application on, for example, photoconductor tapes, and spray technologies, optionally also electrostatically for applying the top layer on drums.
- a particular embodiment of the recording material according to the invention consists in dispersing additives of micronized organic powders in the photoconductive layer; this significantly improves adhesion and abrasion properties.
- photoconductive layers are coated with, for example, hydroxyl-containing binders, in particular with cellulose esters such as cellulose nitrates, with a polyfunctional aromatic / aliphatic polyisocyanate or polyisocyanate prepolymer, thereby producing an adhesion-promoting transition zone of curing between the photoconductive layer / cover layer.
- hydroxyl-containing binders in particular with cellulose esters such as cellulose nitrates
- a polyfunctional aromatic / aliphatic polyisocyanate or polyisocyanate prepolymer thereby producing an adhesion-promoting transition zone of curing between the photoconductive layer / cover layer.
- the residual charge (U R ) after 0.1 sec, determined from the above bright discharge curves, is a further measure of the discharge of a photoconductor layer.
- the abrasion of both materials is measured on a standard abrasion device (Taber Abrasser type 352) under the following conditions:
- the abrasion in g / m 2 is the quotient of the gravimetrically determined abrasion in mg and the abrasion area.
- the thickness of this protective cover layer is about 0.5 pm after drying; with constant photosensitivity, the applied, glossy layer improves abrasion and increases the fatigue strength.
- a photoconductive system produced in accordance with Example 2 is tested in a dry toner copier with regard to its surface properties and its photosensitivity.
- a magnetic brush device with a two-component toner mixture is used for development; the layer is guided past a rotating brush to clean the residual toner from the photoconductor surface. It shows that under the same copying conditions the copy quality is the same with and without the top layer.
- strong surface films are already visible on the photoconductor layer without a protective cover layer and the surface is matte, on the other hand only minor surface films are visible on one with a cover layer and the surface is still shiny.
- micronized polyethylene wax (PE) or micronized polytetrafluoroethylene (PTEE) can also be dispersed into a charge transport layer composed of 65 parts of To and 35 parts of cellulose nitrate.
- PE polyethylene wax
- PTEE micronized polytetrafluoroethylene
- Photosensitivity and abrasion are determined according to the information in Example 1.
- micronized powder additives especially in combination with cover layers, result in a significant reduction in abrasion.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Photoreceptors In Electrophotography (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19803032774 DE3032774A1 (de) | 1980-08-30 | 1980-08-30 | Elektrophotographisches aufzeichnungsmaterial |
DE3032774 | 1980-08-30 |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0046959A2 EP0046959A2 (de) | 1982-03-10 |
EP0046959A3 EP0046959A3 (en) | 1982-07-28 |
EP0046959B1 EP0046959B1 (de) | 1985-10-02 |
EP0046959B2 true EP0046959B2 (de) | 1990-12-19 |
Family
ID=6110782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81106554A Expired - Lifetime EP0046959B2 (de) | 1980-08-30 | 1981-08-24 | Elektrophotographisches Aufzeichnungsmaterial |
Country Status (5)
Country | Link |
---|---|
US (1) | US4390609A (enrdf_load_stackoverflow) |
EP (1) | EP0046959B2 (enrdf_load_stackoverflow) |
JP (1) | JPS5789764A (enrdf_load_stackoverflow) |
AU (1) | AU540031B2 (enrdf_load_stackoverflow) |
DE (2) | DE3032774A1 (enrdf_load_stackoverflow) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58117554A (ja) * | 1982-01-04 | 1983-07-13 | Kanto Denka Kogyo Kk | 電子写真用キヤリア− |
US4482599A (en) * | 1982-07-06 | 1984-11-13 | Exxon Research & Engineering Co. | Support layer for electric discharge transfer materials |
US4495263A (en) * | 1983-06-30 | 1985-01-22 | Eastman Kodak Company | Electrophotographic elements containing polyamide interlayers |
US4599286A (en) * | 1984-12-24 | 1986-07-08 | Xerox Corporation | Photoconductive imaging member with stabilizer in charge transfer layer |
US4563408A (en) * | 1984-12-24 | 1986-01-07 | Xerox Corporation | Photoconductive imaging member with hydroxyaromatic antioxidant |
US5250990A (en) * | 1985-09-30 | 1993-10-05 | Canon Kabushiki Kaisha | Image-bearing member for electrophotography and blade cleaning method |
US4863822A (en) * | 1987-03-09 | 1989-09-05 | Ricoh Company Ltd. | Electrophotographic photoconductor comprising charge generating and transport layers containing adjuvants |
JPS6479752A (en) * | 1987-09-21 | 1989-03-24 | Seiko Epson Corp | Organic electrophotographic sensitive body |
US4939056A (en) * | 1987-09-25 | 1990-07-03 | Minolta Camera Kabushiki Kaisha | Photosensitive member |
JP2719141B2 (ja) * | 1988-01-20 | 1998-02-25 | 株式会社リコー | 電子写真用感光体 |
US5888654A (en) * | 1988-02-08 | 1999-03-30 | Courtaulds Performance Films | High performance epoxy based laminating adhesive |
JP2595635B2 (ja) * | 1988-03-24 | 1997-04-02 | 富士電機株式会社 | 電子写真用感光体 |
US5102757A (en) * | 1988-09-13 | 1992-04-07 | Fuji Xerox Co., Ltd. | Electrophotographic photosensitive member and image forming process |
US5006435A (en) * | 1988-10-05 | 1991-04-09 | Fuji Xerox Co., Ltd. | Electrophotographic photosensitive member with additive in charge generating layer |
US4983481A (en) * | 1989-01-03 | 1991-01-08 | Xerox Corporation | Electrostatographic imaging system |
JP2567090B2 (ja) * | 1989-04-20 | 1996-12-25 | キヤノン株式会社 | 電子写真感光体 |
US5037718A (en) * | 1989-12-22 | 1991-08-06 | Eastman Kodak Company | Thermally assisted method of transferring small electrostatographic toner particles to a thermoplastic bearing receiver |
US5043242A (en) * | 1989-12-22 | 1991-08-27 | Eastman Kodak Company | Thermally assisted transfer of electrostatographic toner particles to a thermoplastic bearing receiver |
US5055366A (en) * | 1989-12-27 | 1991-10-08 | Xerox Corporation | Polymeric protective overcoatings contain hole transport material for electrophotographic imaging members |
US5096795A (en) * | 1990-04-30 | 1992-03-17 | Xerox Corporation | Multilayered photoreceptor containing particulate materials |
US5096796A (en) * | 1990-05-31 | 1992-03-17 | Xerox Corporation | Blocking and overcoating layers for electroreceptors |
US5089364A (en) * | 1990-10-26 | 1992-02-18 | Xerox Corporation | Electrophotographic imaging members containing a polyurethane adhesive layer |
US5187496A (en) * | 1990-10-29 | 1993-02-16 | Xerox Corporation | Flexible electrographic imaging member |
JP2790380B2 (ja) * | 1990-12-07 | 1998-08-27 | キヤノン株式会社 | 電子写真感光体、それを用いた電子写真装置及びファクシミリ |
US5149609A (en) * | 1990-12-14 | 1992-09-22 | Xerox Corporation | Polymers for photoreceptor overcoating for use as protective layer against liquid xerographic ink interaction |
US5166021A (en) * | 1991-04-29 | 1992-11-24 | Xerox Corporation | Photoconductive imaging members with polycarbonate fluorosiloxane polymer overcoatings |
US5686214A (en) * | 1991-06-03 | 1997-11-11 | Xerox Corporation | Electrostatographic imaging members |
JPH0588382A (ja) * | 1991-09-30 | 1993-04-09 | Idemitsu Petrochem Co Ltd | 電子写真感光体 |
US5626998A (en) * | 1995-06-07 | 1997-05-06 | Xerox Corporation | Protective overcoating for imaging members |
US5728499A (en) * | 1997-06-13 | 1998-03-17 | Sinonar Corp. | Protective layer composition of electrophotographic photoreceptor |
US6197463B1 (en) | 1998-05-15 | 2001-03-06 | Mitsubishi Chemical Corporation | Electrophotographic photosensitive bodies |
US6326429B1 (en) * | 1999-08-04 | 2001-12-04 | Pcc Structurals, Inc. | Polymeric organic carbonate materials useful as fillers for investment casting waxes |
US7147978B2 (en) * | 2001-10-26 | 2006-12-12 | Samsung Electronics Co., Ltd. | Electrophotographic photoreceptors with novel overcoats |
KR100503076B1 (ko) * | 2002-11-28 | 2005-07-21 | 삼성전자주식회사 | 오버코트층 형성용 조성물 및 이를 채용한 유기감광체 |
US20070092817A1 (en) * | 2005-10-25 | 2007-04-26 | Xerox Corporation | Imaging member |
US7759032B2 (en) * | 2005-12-13 | 2010-07-20 | Xerox Corporation | Photoreceptor with overcoat layer |
US8883384B2 (en) * | 2005-12-13 | 2014-11-11 | Xerox Corporation | Binderless overcoat layer |
US7572561B2 (en) * | 2006-02-22 | 2009-08-11 | Xerox Corporation | Imaging member |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA639318A (en) * | 1962-04-03 | Agfa Aktiengesellschaft | Photo-conductive layers for electrophotography | |
US2901348A (en) * | 1953-03-17 | 1959-08-25 | Haloid Xerox Inc | Radiation sensitive photoconductive member |
US3140174A (en) * | 1955-01-19 | 1964-07-07 | Xerox Corp | Process for overcoating a xerographic plate |
US3870516A (en) * | 1970-12-01 | 1975-03-11 | Xerox Corp | Method of imaging photoconductor in change transport binder |
US3894868A (en) * | 1970-12-01 | 1975-07-15 | Xerox Corp | Electron transport binder structure |
US3810759A (en) * | 1971-01-27 | 1974-05-14 | Eastman Kodak Co | Matte photoconductive layers for use in electrophotography |
JPS49135633A (enrdf_load_stackoverflow) * | 1973-04-26 | 1974-12-27 | ||
JPS5050929A (enrdf_load_stackoverflow) * | 1973-09-04 | 1975-05-07 | ||
GB1587312A (en) * | 1976-05-17 | 1981-04-01 | Canon Kk | Image holding member e.g.for electrophotography |
US4203764A (en) * | 1976-05-17 | 1980-05-20 | Canon Kabushiki Kaisha | Polyester or polyurethane coated electrostatic image holding member |
JPS5315141A (en) | 1976-07-27 | 1978-02-10 | Fuji Xerox Co Ltd | Photosensitive member for electrophotography |
JPS5337430A (en) * | 1976-09-20 | 1978-04-06 | Canon Inc | Electrophotographic light sensitive element |
JPS543538A (en) * | 1977-06-10 | 1979-01-11 | Canon Inc | Electrophotographic photoreceptor |
US4251612A (en) * | 1978-05-12 | 1981-02-17 | Xerox Corporation | Dielectric overcoated photoresponsive imaging member |
-
1980
- 1980-08-30 DE DE19803032774 patent/DE3032774A1/de not_active Withdrawn
-
1981
- 1981-08-07 US US06/291,050 patent/US4390609A/en not_active Expired - Lifetime
- 1981-08-18 AU AU74265/81A patent/AU540031B2/en not_active Ceased
- 1981-08-24 DE DE8181106554T patent/DE3172532D1/de not_active Expired
- 1981-08-24 EP EP81106554A patent/EP0046959B2/de not_active Expired - Lifetime
- 1981-08-28 JP JP56134387A patent/JPS5789764A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5789764A (en) | 1982-06-04 |
EP0046959A3 (en) | 1982-07-28 |
AU540031B2 (en) | 1984-10-25 |
DE3172532D1 (en) | 1985-11-07 |
EP0046959B1 (de) | 1985-10-02 |
EP0046959A2 (de) | 1982-03-10 |
DE3032774A1 (de) | 1982-05-06 |
JPH0363064B2 (enrdf_load_stackoverflow) | 1991-09-27 |
US4390609A (en) | 1983-06-28 |
AU7426581A (en) | 1982-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0046959B2 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
DE3046240C2 (enrdf_load_stackoverflow) | ||
DE60032397T2 (de) | Elektrophotographisches lichtempfindliches Element, Verfahren zu dessen Herstellung, Prozesskartusche und elektrophotographischer Apparat | |
DE2939483C2 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
EP0210521B1 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
DE2737516C3 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
EP0066215B1 (de) | Elektrophotographisches Aufzeichnungsmaterial und Verfahren zu seiner Herstellung | |
DE2917151A1 (de) | Bildtraegerelement | |
DE2411178A1 (de) | Photoleitende schichtstruktur | |
DE69630637T2 (de) | Elektrophotographische Elemente mit Ladungen transportierenden Schichten, die Polyester-Bindemittel hoher Mobilität enthalten | |
DE112005001471T5 (de) | Elektrophotographischer Photorezeptor | |
DE3790394C2 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
DE2654873C2 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
EP0040402B1 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
DE69030866T2 (de) | Elektrophotographischer Photorezeptor | |
DE2734288C2 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
DE69705076T2 (de) | Verbesserte ladungserzeugende Schicht in einem elektrophotographischen Element | |
DE19612681A1 (de) | Elektrophotographischer Photoleiter und Verfahren zu seiner Herstellung | |
DE2822761A1 (de) | Elektrophotographisches aufzeichnungsmaterial | |
DE3439850C2 (enrdf_load_stackoverflow) | ||
EP0046960B1 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
DE10236427A1 (de) | Positiv arbeitender organischer Einzelschicht-Photorezeptor für die Flüssigentwicklung | |
DE102018130071B4 (de) | Elektrofotografisches lichtempfindliches element, prozesskartusche und elektrofotografisches gerät | |
DE4028519C2 (de) | Elektrofotografisches Aufzeichnungsmaterial | |
DE3040047A1 (de) | Elektrofotografisches, lichtempfindliches material vom laminattyp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): CH DE FR GB NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): CH DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19830117 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): CH DE FR GB LI NL |
|
REF | Corresponds to: |
Ref document number: 3172532 Country of ref document: DE Date of ref document: 19851107 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: OCE-NEDERLAND B.V. Effective date: 19860616 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: OCE-NEDERLAND B.V. |
|
26 | Opposition filed |
Opponent name: FUJI PHOTO FILM CO., LTD. Effective date: 19860702 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: FUJI PHOTO FILM CO.,LTD. |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19880831 Ref country code: CH Effective date: 19880831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19901219 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): CH DE FR GB LI NL |
|
ET3 | Fr: translation filed ** decision concerning opposition | ||
NLR2 | Nl: decision of opposition | ||
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19920831 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19940301 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19981015 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990618 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990625 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000824 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |