EP0033441B1 - Transformateur d'impulsions et son utilisation comme transformateur d'isolation - Google Patents

Transformateur d'impulsions et son utilisation comme transformateur d'isolation Download PDF

Info

Publication number
EP0033441B1
EP0033441B1 EP81100159A EP81100159A EP0033441B1 EP 0033441 B1 EP0033441 B1 EP 0033441B1 EP 81100159 A EP81100159 A EP 81100159A EP 81100159 A EP81100159 A EP 81100159A EP 0033441 B1 EP0033441 B1 EP 0033441B1
Authority
EP
European Patent Office
Prior art keywords
conductors
printed circuit
circuit board
series
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81100159A
Other languages
German (de)
English (en)
Other versions
EP0033441A1 (fr
Inventor
Heinrich Ryser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hasler AG
Original Assignee
Hasler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hasler AG filed Critical Hasler AG
Priority to AT81100159T priority Critical patent/ATE9419T1/de
Publication of EP0033441A1 publication Critical patent/EP0033441A1/fr
Application granted granted Critical
Publication of EP0033441B1 publication Critical patent/EP0033441B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/04Arrangements of electric connections to coils, e.g. leads
    • H01F2005/046Details of formers and pin terminals related to mounting on printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F2017/065Core mounted around conductor to absorb noise, e.g. EMI filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • H01F2019/085Transformer for galvanic isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • H01F2027/2861Coil formed by folding a blank

Definitions

  • the invention relates to a pulse transformer with an annular, seamlessly closed core and with primary and secondary windings according to the preamble of claim 1.
  • Pulse transformers also called pulse transformers, should be small and have good transmission properties, which means above all rapid pulse rise and fall times. This leads to the preference of closed, seamless toroids as the transformer core.
  • toroidal cores have the disadvantage that the windings cannot be attached in a way that is favorable to the work.
  • pulse transmitters on the market today, the wire turns of which are formed by U-shaped wire brackets, which are connected by soldering to star-shaped conductor tracks of a supporting printed circuit board to form “windings” (described, for example, by the document FR-A-2394878). Furthermore, pulse transmitters are known in which magnetic material is introduced in a special way into the central, concentric opening of the primary and secondary windings, so that a complete transformer transmitter results. A similar way is shown by the document US-A-3 659 240, according to which two coils and thus a complete pulse transmitter are formed by successively applying thick film conductor segments to a closed magnetic core.
  • a toroidal coil with a printed winding is known, which is suitable as a transmitter for high frequencies.
  • the printed winding is composed of U-shaped conductor tracks, which are arranged on a rigid, appropriately shaped circuit board, and which, after being inserted with one leg of the U through the toroid, are soldered to the conductor tracks of a supporting circuit board in such a way that there are several complete windings.
  • a transducer is known from IBM Technical Disclosure Bulletin, volume 12, number 6, November 1969, New York, in which a flexible carrier plate with a plurality of printed parallel conductor lines is used to form a coil.
  • the carrier plate together with the conductor tracks is pulled through the opening of a rectangular core and bent together in a loop in such a way that the conductor tracks join together.
  • the conductor tracks are then soldered or otherwise electrically connected to one another.
  • the object of the invention is therefore to provide an easy-to-manufacture pulse transformer, the windings of which are shielded against all electromagnetic interference coming from outside.
  • the aim is to shield such faults that are introduced via line shields and / or grounded line parts of connecting lines, etc.
  • Claims 2 to 13 represent different embodiments of the invention, while claims 14 to 16 provide information about the use of the pulse transmitters defined by the preceding claims and about the arrangement of the pulse transmitter on a printed circuit board in this use.
  • the pulse transmitter according to the invention has very good electrical properties, that the digital signals transmitted by the transmitter are hardly influenced by external interference and that the manufacturing costs are significantly reduced compared to the known pulse transmitters. Furthermore, when using the pulse transmitter, there are simplifications in the connection electronics and elegant possibilities for the combination of signal and feed lines, which meet the highest security requirements.
  • Fig. 1 shows a section through a pulse transmitter mounted on a supporting circuit board.
  • 11 is this printed circuit board, which is composed of a three-layer plate made of insulating material 12, a lower conductor layer 13, an upper conductor layer 14 and a middle conductor layer 15.
  • a coaxial cable 20, preferably via a coaxial connector, is connected to the printed circuit board 11.
  • the central conductor 21 of the coaxial cable 20 is conductively connected to a conductor path in the central conductor layer 15 via a cutout 22 in the upper conductor layer 14.
  • 23 is a cross connection via which the shielding of the coaxial cable 20 is connected to the lower (13) and the upper conductor layer 14 of the supporting printed circuit board 11.
  • the width of the conductor strip 15 in the middle conductor layer is designed such that, together with the distance between the layers 15, 13 and 14 and with the electrical properties of the insulating material 12, there is a characteristic impedance which corresponds to that of the coaxial cable 20.
  • This characteristic impedance can be, for example, 75 ⁇ .
  • Both printed circuit boards are loop-shaped and mechanically and at least partially electrically connected to the supporting printed circuit board 11 via pins 36 to 39 or 46 to 49.
  • the pin 39 connects the lower (13) and upper (14) conductor layers of the load-bearing circuit board 11 with corresponding layers of the flexible circuit board 31.
  • the pin 36 connects the conductor track 15 to the start of the primary winding.
  • the remaining pins 37 and 38 exclusively connect points of the flexible printed circuit board 31 to one another. The type of connection is discussed in detail below with reference to FIG. 2.
  • a non-conductive intermediate area 42 which corresponds to a corresponding intermediate area 41 on the underside of the printed circuit board 11.
  • These intermediate regions 41 and 42 provide a galvanic separation between the conductor regions 13 and 14 which are at the potential of the coaxial cable sheath and the conductor regions 43 and 44 which are at the arbitrary reference potential of an electronic circuit, for example an amplifier or driver circuit. This creates a complete electrical isolation between the input and the output area of the pulse transmitter.
  • FIG. 2 shows an exploded drawing of the printed circuit board designated 31 in FIG. 1, which has the shape of a flat strip.
  • 51 to 57 are seven superimposed and welded layers, of which layers 51, 53, 55 and 57 consist of insulating material and layers 52, 54 and 56 consist of metal, for example copper. All layers have a distinct longitudinal direction, which is large compared to their transverse direction. All layers have no holes or connections in the middle area. Rather, these are arranged at the ends of the multilayer printed circuit board.
  • the dimensions of the circuit board can be, for example, 0.5 x 5 x 50 mm.
  • the upper metal layer 52 has two cutouts 71 and 72 and a solder connection 70.
  • the lower metal layer 56 has corresponding cutouts 87 and 86 and a solder connection 88, which are arranged in mirror image to the corresponding cutouts or connections of the layer 52.
  • the middle metal layer 54 comprises, for example, three conductor tracks 82 to 84, which are delimited by two solder connections 75 to 81, which are arranged in two rows one behind the other in the longitudinal direction.
  • All layers 51 to 57 lying one above the other in the welded state have through-holes 60 to 67 which are plated through at the locations where a soldering support point is arranged in any of the layers, i.e. the walls of which are metallically conductive and are electrically connected to the soldering point (s) in the various metal layers 52, 54 and / or 56.
  • a winding of three turns is formed, which is connected to the central conductor 21 of the coaxial cable 20 via the conductor 15 and the pin 36.
  • the three windings consist of the conductors 82, 83 and 84 and the pins 37 and 38. The end of this winding is connected via the pin 39 to the conductor layers 13 and 14 of the supporting printed circuit board 11 and thus to the potential of the jacket of the coaxial cable 20.
  • the layers 52 and 56 of the flexible printed circuit board 31 are each connected via a point to the conductive layers 13 and 14 in the soldered state and form two shielding layers which almost completely surround the winding described. Although these shielding layers are bent in a ring, they do not form closed rings.
  • the bending direction of the shielding layers with respect to their connection points 70 and 88 is in opposite directions and their width is so large that they broadly cover the conductor runs 82 to 84 between them, which form the winding. Taking into account the small layer thicknesses of layers 53 to 54, this ensures that the conductor tracks are shielded on all sides against electromagnetic interference.
  • the primary and secondary windings can be formed by flexible printed circuit boards 31 and 32 of the same type be educated.
  • a pulse transformer is created with a gear ratio of 1: 1.
  • other transmission ratios can also be produced in a simple manner.
  • a connecting pin can be provided as the center tap, which results in a winding with two plus two turns.
  • FIGS. 1 and 2 there are a number of variants.
  • One of these variants consists in forming the layers 52 and 56 of the flexible printed circuit board not in mirror image, but rather in an identical manner. When the circuit board is bent in a loop, two shielding layers are created which have the same bending direction with regard to their connection points.
  • a conductor layer which has more or less than three conductor tracks can be used instead of a layer 54 which has three parallel conductor tracks 82 to 84. Furthermore, instead of such a layer, a plurality of such layers can be arranged one above the other, as a result of which windings with more than three turns can be produced.
  • a two-layer plate according to FIG. 3 can be provided.
  • the four conductor tracks 90 to 93 which have connection points at their two ends and are used for winding production, are arranged on one side 94 of the plate.
  • By folding the plate parallel to the conductor tracks 90 to 93 one half of the layer 96 is placed over these conductor tracks 90 to 93, while the other half remains on the underside. In this way, a unit is created which is made up of interconnects which are insulated from one another and which is shielded on all sides from the outside.
  • An insulating cover layer 97 provides insulation from the outside and enables welding at the otherwise open fold end 98.
  • a functionally identical unit can be constructed in which the conductor tracks for forming the winding consist of insulated wires, for example enamelled wires.
  • 4a shows a top view of these staggered parallel wires 101 to 103, which are held on the top and bottom by an insulating layer each carrying a conductor layer, so that in turn there is a unit in which conductors lying in the middle with connection points are shielded from the outside by shielding layers at both ends.
  • the connection points can either be formed by the wires 101 to 103 being led out to the side or by drill holes 104 to 106 which are provided in such a way that one wire is drilled to the side and thus stripped.
  • the holes formed in this way can be plated through and thus correspond completely to the holes 60 to 67 of FIG. 2.
  • Fig. 4b shows such a unit that is bent into a loop.
  • the protruding wires 101 to 103 are soldered with their stripped ends directly in the holes 104 to 106.
  • the pins 36 to 39 and 46 to 49 shown in FIG. 1 are therefore unnecessary.
  • two or more ferrite cores 30.1, 30.2, 30.3 arranged coaxially next to one another can serve as the transformer core, through whose openings the flexible printed circuit boards 31 and 32 pass (FIG. 6).
  • the coaxial cable 20 can only be mechanically fastened to the supporting printed circuit board 11 and its central conductor 21 can be connected directly to the start of the winding of the flexible printed circuit board 31.
  • the shielding layers 52 and 56 of the flexible printed circuit board can be narrowed in the shape of a dumbbell in the middle in order to obtain improved insulating ability of the insulating layer welding at the bending points.
  • the flexible printed circuit boards 31 and 32 can also push through the core in a slightly arcuate manner as shown in FIG. 5.
  • the flexible printed circuit board 89 is fixed electrically and mechanically on both sides of the toroidal core 30 with pins 191 to 198 on a supporting printed circuit board 11.
  • the conductor tracks corresponding to 82, 83 and 84 of FIG. 2 can either be supplemented by conductor tracks 90 on the supporting printed circuit board 11 or by a second flexible printed circuit board which does not penetrate the toroidal core 30.
  • FIG. 6 shows schematically a holder 110 for a complete pulse transmitter, which is composed of three seamless ferrite cores 30.1, 30.2 and 30.3 which are coaxially one above the other and two loop-shaped winding units, for example printed circuit boards 31 and 32 of the type described with reference to FIG. 2.
  • the pins 112 and 113 of the right unit connect the conductor tracks forming the winding in the manner described and fix the unit to the holder.
  • the remaining pins 111 and 114 are led out of the holder 110 and serve as a soldering pin for connection to the carrier circuit board 11.
  • the winding unit shows an extension 115 which has an additional shielding layer electrically connected to the shielding layers of the flexible circuit board 31. This extension 115 is bent in a lug shape over the pin ends and shields them electrically.
  • the layer 14 of the carrier circuit board 11 takes over the corresponding function. This further improves the shielding properties.
  • the winding sense of the loops of the two winding units of a pulse transformer can be na of course in the same direction according to Fig. or in slightly changed geometry also in opposite directions.
  • Pulse transformers of the type described are used, for example, as isolating transformers between an electronic circuit arrangement and a transmission line for the transmission of fast digital signals.
  • the transmission line can, as shown in FIG. 1, be designed as a coaxial cable 20 or as another cable suitable for digital signals, for example a four-wire line consisting of two wire pairs.
  • a feed current can flow on this in a manner known per se.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Dc Digital Transmission (AREA)

Claims (17)

1. Transformateur d'impulsions comportant un noyau annulaire fermé (30) exempt de soudure ainsi que des enroulements primaire et secondaire, de façon
que soit prévu au moins un support (31; 32) en forme de plaquette en un matériau isolant, qui supporte des fils conducteurs (82...84; 90...93; 101...103) juxtaposés et isolés électriquement les uns des autres,
que chaque fil conducteur (82...84; 90...93; 101...103) soit de forme oblongue et comporte des points de raccordement (75...81; 104...106) à ses deux extrémités,
que chaque support (31; 32) soit enfilé conjointement à ses fils conducteurs (82...84; 90...93; 101...103) à travers le noyau (30),
et que les fils conducteurs (82...84; 90...93; 101...103) de chaque support soient reliés électriquement les uns aux autres à l'extérieur du noyau (30), par l'intermédiaire de leurs deux points de raccordement (75...81; 104...106), afin de former des spires des enroulements, caractérisé par le fait
- que sont prévus des conducteurs de blindage (52, 56, 96) présentant chacun un seul et unique point de raccordement (70, 88) et comportant une superficie plus grande que celles des fils conducteurs (82...84; 90...93; 101...103) et
- que chaque support (31, 32) possède des couches de matériau isolant (51, 53, 55, 57, 97) entre lesquelles sont intercalées des couches (54) de fils conducteurs (82...84; 90...93; 101...103) et des couches de conducteurs de blindage (52, 56, 96), de telle sorte - que les couches (51, 53, 55, 57, 97) et les couches
(54) soient reliées mécaniquement les unes aux autres et forment globalement une unité flexible (31; 32) et
- que les conducteurs de blindage (52, 56, 96) soient disposés de manière qu'ils recouvrent vers l'extérieur les fils conducteurs (82...84; 90...93; 101...103) sur une partie prépondérante et les protègent ainsi électriquement.
2. Transformateur d'impulsions selon la revendication 1, caractérisé par le fait que des supports flexibles (31, 32) mutuellement indépendants sont prévus pour les enroulements primaire et secondaire (figs 1 et 6).
3. Transformateur d'impulsions selon les revendications 1 et 2, caractérisé par le fait
que le support, les fils conducteurs (82...84; 90...93) et les conducteurs de blindage (52, 56, 96) sont réalisés en tant que plaquette conductrice flexible imprimée (31; 32) en forme de bande et à plusieurs couches (figs 2 et 3).
4. Transformateur d'impulsions selon les revendications 1 à 3, caractérisé par le fait
- que la plaquette conductrice flexible (31; 32) comporte trois couches conductrices,
- que la couche conductrice intermédiaire (54) présente au moins deux fils conducteurs (82...84) qui sont sensiblement parallèles et dont les points de raccordement (75...81) se succèdent dans le sens longitudinal,
- que les deux couches conductrices externes possèdent chacune un conducteur de blindage (52, 56) et
- que ces conducteurs de blindage (52, 56) sont percés d'évidements (71, 72; 86, 87) disposés de manière que les points de raccordement (75...81) des fils conducteurs (82...84) ne soient pas recouverts (fig. 2).
5. Transformateur d'impulsions selon les revendications 1 à 3, caractérisé par le fait
- que la plaquette conductrice flexible (31; 32) comporte deux couches conductrices,
- que l'une de ces couches présente au moins un fil conducteur (90...93) et l'autre couche conductrice présente un conducteur de blindage (96),
- et que la plaquette conductrice flexible (31; 32) est repliée sur elle-même, parallèlement à sa direction longitudinale, de manière que les fils conducteurs (90...93) soient recouverts sensiblement de toutes parts par le conducteur de blindage (96) (fig. 3).
6. Transformateur d'impulsions selon les revendications 1 et 2, caractérisé par le fait que le support et le conducteur de blindage sont réalisés sous la forme d'une plaquette conductrice flexible (31; 32) repliée, à une seule couche et comportant, dans sa région interne formée par le pli, des tronçons parallèles de fils isolants (101...103) dont l'une des extrémités est dirigée de l'intérieur vers l'extérieur (figs 4a et 4b).
7. Transformateur d'impulsions selon les revendications 1 à 4, caractérisé par le fait que les points de raccordement (70, 88) des conducteurs de blindage (52, 56) sont disposés à la même extrémité de la plaquette conductrice.
8. Transformateur d'impulsions selon les revendications 1 à 4, caractérisé par le fait que les points de raccordement (70, 88) des conducteurs de blindage (52, 56) sont agencés en étant répartis aux deux extrémités de la plaquette conductrice flexible (fig. 2).
9. Transformateur d'impulsions selon les revendications 1 à 6, caractérisé par te fait
que deux supports sont emboîtés à travers le noyau (30) conjointement à leurs fils conducteurs (82...84; 90...93; 101...103) et sont cintrés en forme de boucle, les points de raccordement (75...81; 104...106) des fils conducteurs (82...84;
90...93; 101...103) de chaque support flexible (31; 32) étant en liaison électrique par paires (figs 1 et 6).
10. Transformateur d'impulsions selon la revendication 9, caractérisé par le fait que les points de raccordement (75...81) sont reliés les uns aux autres au moyen de broches (36...49; 46...49) et peuvent être raccordés à d'autres conducteurs (15) (fig. 1).
11. Transformateur d'impulsions selon les revendications 1 à 10, caractérisé par le fait
- qu'une couche du support flexible présente un prolongement (115) supportant un conducteur de blindage et
- que ce prolongement (115) est cintré en forme de patte au-dessus des extrémités supérieures des broches (111-114) (fig. 6).
12. Transformateur d'impulsions selon les revendications 1 à 6, caractérisé par le fait
- que deux supports flexibles (31; 32) traversent en arc de cercle le noyau (30) conjointement à leurs fils conducteurs (82...84; 90...93; 101...103) et
- qu'il est prévu une plaquette conductrice de support (11) avec les conducteurs (90) de laquelle les fils conducteurs (82...84; 90...93; 101...103) sont en liaison électrique au moyen de broches (191-198) (fig. 5).
13. Transformateur d'impulsions selon la revendication 1, caractérisé par le fait
que le noyau (30) se compose de trois noyaux en ferrite (30.1...30.3) indépendants et coaxiaux (fig. 6).
14. Utilisation du transformateur d'impulsions selon l'une des revendications précédentes en guise de transformateur d'isolation entre un circuit électronique et une ligne en vue de transmettre des signaux numériques.
15. Agencement du transformateur d'impulsions selon l'une des revendications 1 à 13 en cas d'utilisation en guise de transformateur d'isolation selon la revendication 14, caractérisé par le fait
- qu'il est prévu une plaquette conductrice de support (11) à trois couches pour la fixation du transformateur d'impulsions et de l'extrémité d'un câble coaxial (20) faisant office de ligne,
- que, dans la région dans laquelle le transformateur d'impulsions est disposé, se trouvent des zones intercalaires non conductrices (41, 42) qui sont interposées entre les conducteurs (13, 43; 14, 44) des couches externes de la plaquette conductrice et qui séparent ces couches,
- que certains (13, 14) des conducteurs des couches externes de la plaquette conductrice sont reliés électriquement au blindage du câble coaxial (20), aux conducteurs de blindage (52, 56, 96) et seulement à l'une (81) des extrémités de l'un (31) des enroulements, et
- qu'un fil conducteur (15) de la couche intermédiaire de la plaquette conductrice est relié électriquement au conducteur central (21) et à l'autre extrémité (77) de l'un (31) des enroulements.
16. Agencement selon la revendication 15, caractérisé par le fait
que l'un (15) des fils conducteurs de la couche intermédiaire de la plaquette conductrice est réalisé avec une largeur telle qu'on obtienne, en combinaison avec la distance entre les couches (13, 15, 14) et avec les propriétés électriques du matériau isolant (12), une impédance caractéristique correspondant à celle du câble coaxial (20).
EP81100159A 1980-02-01 1981-01-12 Transformateur d'impulsions et son utilisation comme transformateur d'isolation Expired EP0033441B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81100159T ATE9419T1 (de) 1980-02-01 1981-01-12 Impulsuebertrager und dessen verwendung als trennuebertrager.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH814/80 1980-02-01
CH81480 1980-02-01

Publications (2)

Publication Number Publication Date
EP0033441A1 EP0033441A1 (fr) 1981-08-12
EP0033441B1 true EP0033441B1 (fr) 1984-09-12

Family

ID=4195809

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81100159A Expired EP0033441B1 (fr) 1980-02-01 1981-01-12 Transformateur d'impulsions et son utilisation comme transformateur d'isolation

Country Status (6)

Country Link
US (1) US4342976A (fr)
EP (1) EP0033441B1 (fr)
JP (1) JPS56129305A (fr)
AT (1) ATE9419T1 (fr)
CA (1) CA1144247A (fr)
DE (1) DE3165884D1 (fr)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2154068B (en) * 1984-02-07 1987-07-22 Marconi Co Ltd Transformers
GB2163908B (en) * 1984-09-01 1987-12-23 Marconi Co Ltd A transformer
US4689593A (en) * 1984-09-01 1987-08-25 The Marconi Company Limited Transformer with balanced transmission lines
US4677538A (en) * 1986-07-02 1987-06-30 Zenith Electronics Corporation Sweep transformer with terminating PC board
US4873757A (en) * 1987-07-08 1989-10-17 The Foxboro Company Method of making a multilayer electrical coil
EP0328941A1 (fr) * 1988-02-16 1989-08-23 Siemens Aktiengesellschaft Procédé et dispositif de commutation du courant entre des valves déconnectables dans un redresseur de courant
US5025211A (en) * 1989-12-20 1991-06-18 At&T Bell Laboratories Technique for reducing electromagnetic interference
DK64690D0 (da) * 1990-03-12 1990-03-12 Ntp Elektronik A S Omkoblingssystem
JPH0459885U (fr) * 1990-09-27 1992-05-22
JPH0496781U (fr) * 1991-01-31 1992-08-21
US5257000A (en) * 1992-02-14 1993-10-26 At&T Bell Laboratories Circuit elements dependent on core inductance and fabrication thereof
JPH06104488A (ja) * 1992-09-17 1994-04-15 Rohm Co Ltd ドットマトリクス表示装置
JPH0660113U (ja) * 1993-01-28 1994-08-19 横河電機株式会社 平面型トランス
JP3573487B2 (ja) * 1994-03-25 2004-10-06 花王株式会社 使い捨ておむつ
US5801602A (en) * 1996-04-30 1998-09-01 3Com Corporation Isolation and signal filter transformer
US6252532B1 (en) 1998-02-26 2001-06-26 3Com Corporation Programmable compensation and frequency equalization for network systems
JP4496508B2 (ja) * 1999-03-12 2010-07-07 日立金属株式会社 トロイダル状フェライトコア
US6040753A (en) * 1999-04-06 2000-03-21 Lockheed Martin Corp. Ultra-low-profile tube-type magnetics
US6674355B2 (en) 2000-05-19 2004-01-06 M-Flex Multi-Fineline Electronix, Inc. Slot core transformers
JP4247518B2 (ja) 2000-09-22 2009-04-02 エム−フレクス マルティ−ファインライン エレクトロニクス インコーポレイテッド 小型インダクタ/変圧器及びその製造方法
US7135952B2 (en) 2002-09-16 2006-11-14 Multi-Fineline Electronix, Inc. Electronic transformer/inductor devices and methods for making same
US7009486B1 (en) * 2003-09-18 2006-03-07 Keithley Instruments, Inc. Low noise power transformer
DE102004037853A1 (de) * 2004-08-04 2006-03-16 Epcos Ag Halterung für eine Drosselspule und ein induktives Bauelement mit der Halterung
AU2005314077B2 (en) 2004-12-07 2010-08-05 Multi-Fineline Electronix, Inc. Miniature circuitry and inductive components and methods for manufacturing same
US7436282B2 (en) 2004-12-07 2008-10-14 Multi-Fineline Electronix, Inc. Miniature circuitry and inductive components and methods for manufacturing same
CN101268532B (zh) * 2005-09-20 2011-07-06 斯堪的诺维亚系统公司 箔绕组脉冲变压器
US7645941B2 (en) 2006-05-02 2010-01-12 Multi-Fineline Electronix, Inc. Shielded flexible circuits and methods for manufacturing same
TWM390532U (en) * 2010-05-19 2010-10-11 Advanced Connection Technology Inc Iron core coil assembly
US9190204B1 (en) 2013-05-12 2015-11-17 Marion Harlan Cates, Jr. Multilayer printed circuit board having circuit trace windings
US10141107B2 (en) 2013-10-10 2018-11-27 Analog Devices, Inc. Miniature planar transformer
US9959967B2 (en) 2014-05-15 2018-05-01 Analog Devices, Inc. Magnetic devices and methods for manufacture using flex circuits
GB201500772D0 (en) * 2015-01-16 2015-03-04 Rybtchinskaia Elena Transmission line transformer
JP6490227B2 (ja) * 2015-09-01 2019-03-27 三菱電機株式会社 電力変換装置
GB201612032D0 (en) * 2016-07-11 2016-08-24 High Speed Trans Solutions Ltd Isolating transformer
DE102017100458A1 (de) * 2017-01-11 2018-08-09 Kaschke Components Gmbh Induktives Bauteil
US10826373B2 (en) * 2017-07-26 2020-11-03 Nxp B.V. Current pulse transformer for isolating electrical signals
KR102579295B1 (ko) * 2018-05-17 2023-09-15 현대자동차주식회사 인쇄회로기판을 이용한 변압기 및 그 제조방법
DE202020001160U1 (de) 2020-03-16 2020-04-16 Michael Dienst Elektrischer Spulenkörper für Hubkraftmaschinen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3102245A (en) * 1959-08-03 1963-08-27 Caledonia Electronics And Tran Electrical transformer
US3303449A (en) * 1962-02-28 1967-02-07 Stimler Morton Toroidal magnetic cores having varying cross-sectional areas
US3267402A (en) * 1964-10-27 1966-08-16 Automatic Elect Lab Multi-turn wrap-around solenoids
DE1931594U (de) * 1965-06-14 1966-01-27 Graetz Kommanditgesellschaft Gedruckte ringkernspule.
GB1105425A (en) * 1966-05-27 1968-03-06 Communications Patents Ltd Improvements in or relating to electric transformers
GB1136966A (en) * 1966-08-25 1968-12-18 Communications Patents Ltd Improvements in or relating to electric transformers
JPS4425055Y1 (fr) * 1966-11-12 1969-10-22
US3659240A (en) * 1970-04-30 1972-04-25 Bourns Inc Thick-film electric-pulse transformer
JPS5072125A (fr) * 1973-10-31 1975-06-14
US4103267A (en) * 1977-06-13 1978-07-25 Burr-Brown Research Corporation Hybrid transformer device
JPS547038A (en) * 1977-06-15 1979-01-19 Yasuo Mori Method of multiipurp0se utilization of hot water thermal energy by extracted water
JPS5821140Y2 (ja) * 1977-08-05 1983-05-04 八木アンテナ株式会社 プリント板を利用した変成器
US4249229A (en) * 1978-08-28 1981-02-03 Litton Systems, Inc. Transformer having novel multiple winding and support structure and method of making same

Also Published As

Publication number Publication date
DE3165884D1 (en) 1984-10-18
ATE9419T1 (de) 1984-09-15
CA1144247A (fr) 1983-04-05
JPS56129305A (en) 1981-10-09
US4342976A (en) 1982-08-03
JPS6335089B2 (fr) 1988-07-13
EP0033441A1 (fr) 1981-08-12

Similar Documents

Publication Publication Date Title
EP0033441B1 (fr) Transformateur d'impulsions et son utilisation comme transformateur d'isolation
DE69023790T2 (de) LC-Störschutzfilter.
DE19633354C2 (de) Abschirmvorrichtung und Kommunikationsvorrichtung mit einer Abschirmanordnung
DE69210458T2 (de) Bus-Ankoppler in Strombetriebsart mit flachen Spulen und Abschirmungen
DE69012732T2 (de) Durchgehende Verbindungen in Mehrschichtschaltungen.
EP2818031B1 (fr) Transformateur planaire
DE3871961T3 (de) Entstörfilter mit verteilten Konstanten.
DE3731286A1 (de) Laminierter transformator
DE2645499A1 (de) Elektrisches kabel und induktiv gekoppelter kabelanschluss bzw. induktiv gekoppelte kabelanordnung
DE69507938T2 (de) Zusammenbau von Leiterplatten mit einer verbesserten Isolierung der Bezugsebene
DE3912697A1 (de) Stoerschutzfilter
DE3731394C2 (de) Hochfrequenz-Entstörfilter für eine an eine Leitung anzuschließende Schaltung, insbesondere für Zweidraht-Sensoren
DD290738A5 (de) Sende- und/oder empfangsspule aus mehrebenenleiterplatte
EP0178591B1 (fr) Montage de composants de commande d'un ballast électronique pour fonctionnement avec une lampe à décharge à faible pression
DE4137776C2 (de) Hochfrequenzleistungsübertrager in Multilayer-Technik
WO2015086584A1 (fr) Dispositif de séparation galvanique pour appareils de mesure de processus
DE3708209C2 (de) Hochfrequenz-Bauelement
DE19963290B4 (de) Planare Induktivität
DE19652039A1 (de) Transformator
DE19958484A1 (de) Mehrfach-Filter
DE2434906C3 (de) Dr osselspule für Hochfrequenz mit Leitungseigenschaften
DE3534006C2 (fr)
DE1591038B1 (de) Transformator zur uebertragung eines breiten hochfrequenz bandes
DE2257960A1 (de) Richtungsabhaengiger breitbanduebertrager
DE9217070U1 (de) Leiterplattenantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19810822

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 9419

Country of ref document: AT

Date of ref document: 19840915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3165884

Country of ref document: DE

Date of ref document: 19841018

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19881208

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19881209

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19890105

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890112

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890131

Year of fee payment: 9

Ref country code: FR

Payment date: 19890131

Year of fee payment: 9

Ref country code: SE

Payment date: 19890131

Year of fee payment: 9

Ref country code: NL

Payment date: 19890131

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890428

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19900112

Ref country code: GB

Effective date: 19900112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900131

Ref country code: CH

Effective date: 19900131

Ref country code: LI

Effective date: 19900131

BERE Be: lapsed

Owner name: HASLER A.G.

Effective date: 19900131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900801

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19901002

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81100159.3

Effective date: 19901106