EP0011097A2 - Verfahren zur elektrolytischen Färbung von auf Aluminium erzeugten anodischen Oxidschichten - Google Patents

Verfahren zur elektrolytischen Färbung von auf Aluminium erzeugten anodischen Oxidschichten Download PDF

Info

Publication number
EP0011097A2
EP0011097A2 EP79103288A EP79103288A EP0011097A2 EP 0011097 A2 EP0011097 A2 EP 0011097A2 EP 79103288 A EP79103288 A EP 79103288A EP 79103288 A EP79103288 A EP 79103288A EP 0011097 A2 EP0011097 A2 EP 0011097A2
Authority
EP
European Patent Office
Prior art keywords
acid
tin
iron
sulfuric acid
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79103288A
Other languages
English (en)
French (fr)
Other versions
EP0011097A3 (en
EP0011097B1 (de
Inventor
Erich Dr. Ruf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
TH Goldschmidt AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6055052&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0011097(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TH Goldschmidt AG filed Critical TH Goldschmidt AG
Priority to AT79103288T priority Critical patent/ATE87T1/de
Publication of EP0011097A2 publication Critical patent/EP0011097A2/de
Publication of EP0011097A3 publication Critical patent/EP0011097A3/xx
Application granted granted Critical
Publication of EP0011097B1 publication Critical patent/EP0011097B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • C25D11/22Electrolytic after-treatment for colouring layers

Definitions

  • the invention relates to a process for the electrolytic metal salt coloring of aluminum, in which a defined oxide layer is first generated by means of direct current in an acidic solution and this is then colored by means of alternating current using an acidic, preferably sulfuric acid, electrolyte containing tin (II) salts.
  • anodized aluminum is colored in the aqueous phase with suitable organic and / or inorganic compounds without the influence of electricity.
  • the process of electrolytic coloring can be carried out in one or two stages.
  • aluminum is usually both anodized and colored using direct current in one process step, with sulfuric acid mixed with suitable organic acids, e.g. Maleic acid, oxalic acid, sulfosalicylic acid, sulfophthalic acid, is used.
  • suitable organic acids e.g. Maleic acid, oxalic acid, sulfosalicylic acid, sulfophthalic acid
  • the so-called electrolytic metal salt coloring a defined oxide layer is first generated in the first process step using direct current with sulfuric acid or sulfuric acid and oxalic acid as the electrolyte liquid.
  • the anodized aluminum is then electrolytically colored in a second process step using alternating current and the use of solutions of certain metal salts or metal salt mixtures.
  • the electrolytic coloring processes are mainly used for coloring aluminum due to their advantages such as higher light resistance and economy.
  • the electrolytic metal salt coloring clearly outweighs the lower costs and therefore greater economy, with tin (II) sulfate-containing solutions preferably being used here.
  • the present invention relates to the two-step process of electrolytic metal salt coloring.
  • color tones can be produced between light silver, light, medium and dark bronze to black, which are resistant to light and are normal atmospheric influences.
  • Sulfuric acid tin (II) sulfate-containing solutions such as those used for the electrolytic metal salt coloring of aluminum, however, increasingly separate tin compounds which are sparingly soluble and which are ineffective for coloring aluminum by hydrolysis and / or oxidation in accordance with the service life.
  • the invention is therefore based on the object of finding compounds which do not have these disadvantages, and are therefore more environmentally friendly and as completely as possible prevent the formation of precipitates in tin (II) sulfate-containing solutions when standing.
  • this object can be achieved in a simple manner by carrying out the electrolytic metal salt dyeing process with an electrolyte containing tin (II) salts which contains 1-10 g / l of one or more iron (II) salts (s) of acids from the group comprising sulfuric acid, a sulfonic acid having at most 8 carbon atoms and the amidosulfonic acid.
  • an electrolyte containing tin (II) salts which contains 1-10 g / l of one or more iron (II) salts (s) of acids from the group comprising sulfuric acid, a sulfonic acid having at most 8 carbon atoms and the amidosulfonic acid.
  • the additives are effective in an amount of 1 - 10 g / l.
  • About 5 g / l of one or more of the compounds mentioned in the patent claim is preferably added to the sulfuric acid electrolyte containing tin (II) salts.
  • coals hydrogen radical can be an optionally substituted alkyl, aryl or alkaryl radical.
  • a particular advantage of the process according to the invention is that the addition of the aforementioned iron (II) salts, in addition to the suppression of the formation of sparingly soluble precipitates, results in a considerable color-enhancing effect in many cases.
  • a particularly preferred embodiment of the process according to the invention in view of both the color-enhancing effect and the suppression of sparingly soluble tin-containing precipitates is therefore that the electrolyte containing iron (II) salts used is one which contains iron (II) sulfosalicylate and / or contains iron (II) sulfophthalate.
  • the electrolytes used for the coloring and containing the additives according to the invention can contain further compounds as are known from the prior art. For example, it is possible to add amines or phenols or phenol derivatives to these solutions in a manner known per se.
  • scmit succeeds in a simple and particularly economical manner in practically completely preventing the formation of sparingly soluble precipitates in sulfuric acid tin (II) salt solutions and at the same time achieving a deepening of color during the coloring of the aluminum.
  • the efficacy of the compounds according to the invention contained in the electrolyte was determined by that 20 ml 0, sulfate of a tin sulfate solution containing sulfuric acid, as it is used for the electrolytic coloring of aluminum for use with 14 g of tin (II) and 16 g conc. Sulfuric acid / l as such or with the compounds additionally listed in the following table were left to stand for 1 week. The precipitates that formed were filtered off and determined by weight analysis.
  • the electrolytic coloring of previously anodized aluminum was carried out with the individual solutions.
  • the sanctities (L) of the colored aluminum sheets obtained in this way were determined after compression and drying using a color and color difference measuring device, the measuring device being scaled from 0-100 and meaning 100 white and O black. Differences in brightness could thus be correctly determined in an objective manner.
  • Group I lists free acids and amines, phenolsulfonic acid, cresolsulfonic acid and amidosulfonic acid being added in accordance with the prior art to tin sulfate solutions containing sulfuric acid. With the exception of the environmentally harmful cresol sulfonic acid, the suppression of the formation of tin-containing precipitate is completely insufficient.
  • the results of group II show that when compounds to be used according to the invention are added, the compound which forms tin-containing Kiederhchlag is practically negligible.
  • the color depth of the colored aluminum is not affected.
  • iron (II) sulfosalicylate and iron (II) sulfophthalate are used, the color intensity is additionally markedly increased, and when iron (II) sulfamate and iron (II) sulfonates are used, the color intensity is markedly increased.
  • the additives according to group III in turn have the effect that practically no appreciable precipitate forms, while the color intensity of the colored aluminum is considerably increased in all cases. It follows from this that the iron (II) compounds mentioned according to the invention reliably suppress the formation of precipitates in solutions containing tin (II) sulfate, iron (II) sulfonates and iron (II) sulfamates as such or in combination with sulfosalicylic acid or sulfophthalic acid also lead to an intensification of the color intensity.
  • Aluminum sheets (100 mm ⁇ 50 mm ⁇ 2 mm) were degreased in a known manner, alkaline and acid pickled, rinsing with water being carried out in each case between the individual operations, and using direct current with aqueous sulfuric acid (200 g conc. H 2 SO 4 / l) anodized as electrolyte liquid in such a way that an anodized layer of 20 ⁇ m was produced.
  • Cathode material stainless steel; current density: 1.3 - 1.5 amp./dm 2
  • current density 1.3 - 1.5 amp./dm 2
  • S o anodized aluminum sheet was after rinsing with water in 300 ml of an electrolyte containing 14 g of tin (II) sulfate, 16 g conc. Contained sulfuric acid and 5 g of iron (II) sulfo-salicylate / l, immersed, the liquid being in a rectangular glass cell.
  • the electrolytic metal salt coloring was carried out using two stainless steel electrodes after applying AC voltage and an electrolyte temperature of 18-20 ° C. within 5 minutes. The voltage was continuously raised to 15 volts within the first minute and kept constant for 4 minutes. The colored aluminum sheet was compacted in a known manner after the coloring process. The brightness value determined using the colorimeter was 12.7. The amount of precipitation of 200 ml of the same electrolyte fluid was 4 mg after 1 week of standing.
  • Example 2 The procedure was analogous to Example 1, except that only a sulfuric acid tin (II) sulfate solution, the 14 g tin (II) sulfate and 16 g conc. Sulfuric acid / l contained, was used instead of the electrolyte liquid mentioned in Example 1.
  • the brightness determined using the colorimeter was 22.0 and the amount of precipitation of 200 ml of this solution after 1 week of standing was 1000 mg.
  • Example 2 The procedure was analogous to Example 1, with a solution containing 14 g of tin (II) sulfate, 16 g of conc. Contained sulfuric acid and 5 g of iron (II) sulfamate / 1 was used.
  • the brightness determined using the colorimeter was 18.8.
  • the amount of precipitation of 200 ml of this solution after 1 week of standing was 6 mg.
  • Example 2 The procedure was analogous to Example 1, with a solution containing 14 g of tin (II) sulfate, 16 g of conc. Contains sulfuric acid, 5 g iron (II) sulfate and 5 g sulfophthalic acid / 1.
  • the brightness determined with the color measuring device was 13.4.
  • the amount of precipitation of 200 ml of this solution was 7 mg after standing for 1 week.
  • Example 2 The procedure was analogous to Example 1, with a solution containing 14 g of tin (II) sulfate, 16 g of conc. Contains sulfuric acid and 5 g of iron (II) sulfamate and 10 g of aminoethylethanolamine / l.
  • the brightness determined using the colorimeter was 18.1.
  • the amount of precipitation of 200 ml of this solution was 46 mg after standing for 1 week.
  • Example 2 The procedure was analogous to Example 1, with a solution containing 14 g of tin (II) sulfate, 16 g of conc. Contains sulfuric acid and 10 g aminoethylethanolamine / l was used.
  • the brightness determined using the colorimeter was 19.0.
  • the amount of precipitation of 200 ml of this solution was 820 mg after standing for 1 week.
  • Example 2 The procedure was analogous to Example 1, with a solution containing 14 g of tin (II) sulfate and 16 g as the electrolyte liquid conc. Contains sulfuric acid, 10 g phenolsulfonic acid and 5 g ice (II) sulfamate / l.
  • the brightness determined using the colorimeter was 15.8.
  • the amount of precipitation of 200 ml of this solution was 66 mg after standing for 1 week.
  • Example 2 The procedure was analogous to Example 1, with a solution containing 14 g of tin (II) sulfate, 16 g of conc. Contained sulfuric acid and 10 g phenolsulfonic acid / 1 was used.
  • the brightness determined using the colorimeter was 16.5.
  • the amount of precipitation of 200 ml of this solution was 420 mg after standing for 1 week.
  • Example 2 The procedure was analogous to Example 1, with a solution containing 14 g of tin (II) sulfate, 16 g of conc. Containing sulfuric acid, 10 g cresol sulfonic acid and 5 g iron (II) sulfamate / 1 was used.
  • the brightness determined using the colorimeter was 13.8.
  • the amount of precipitation of 200 ml of this solution was 8 mg after standing for 1 week.
  • the brightness determined using the colorimeter was 14.5.
  • the amount of precipitation of 200 ml of this solution was 18 mg after standing for 1 week.

Abstract

Die Erfindung betrifft ein zweistufiges Verfahren zur elektrolytischen Metallsalzeinfärbung von Aluminium, wobei eine durch Gleichstrom in saurer Lösung erzeugte Oxidschicht mittels Wechselstrom durch einen Zinn(II)-salze enthaltenden sauren Elektrolyten eingefärbt wird. Der Elektrolyt enthält erfindungsgemäß 1 - 10 g/l Eisen(II)-salze der Schwefelsäure, einer Sulfonsäure mit höchstens 8 C-Atomen oder der Amidosulfonsäure. Der Elektrolyt enthält vorzugsweise Eisen-(II)-sulfosalicylat und/oder Eisen(II)-sulfonphthalat und gegebenenfalls zusätzlich 1 - 10 g/l Sulfosalicylsäure und/oder Sulfophthalsäure. Die Zusätze verhindern die Bildung von Niederschlägen im Elektrolyten beim Stehen. Zusätzlich wird in vielen Fällen ein erheblicher farbverstärkender Effekt erzielt.

Description

  • Die Erfindung betrefft ein Verfahren zur elektrolytischen Metallsalzcinfärbung von Aluminium, bei dem zuerst mittels Gleichstrom in saurer Lösung eine definierte Oxidschicht erzeugt und diese anschließend mittels Wechselstrom unter Verwendung eines Zinn(II)-salze enthaltenden sauren, vorzugsweise schwefelsauren, Elektrolyten eingefärbt wird.
  • Bei den Verfahren zur Einfärbung von eloxiertem Aluminium unterscheidet man nach dem Stand der Technik die chemische und die elektrolytische Einfärbung.
  • Bei der chemischen Einfärbung wird eloxiertes Aluminium in wäßriger Phase mit geeigneten organischen und/oder anorganischen Verbindungen ohne Einwirkung von Strom eingefärbt.
  • Das Verfahren der elektrolytischen Einfärbung kann einstufig oder zweistufig erfolgen.
  • Bei der einstufigen elektrolytischen Einfärbung wird Aluminium meistens unter Verwendung von Gleichstrom in einem Verfahrensschritt sowohl eloxiert als auch eingefärbt, wobei als Elektrolytflüssigkeit Schwefelsäure in Abmischung mit geeigneten organischen Säuren, wie z.B. Maleinsäure, Oxalsäure, Sulfosalicylsäurc, Sulfophthalsäure, eingesetzt wird.
  • Bei der zweistufigen elektrolytischen Einfärbung, der sogenannten elecktrolytischen Metallsalzeinfärbung, wird zunächst im ersten Verfahrensschritt unter Verwendung von Gleichstrom mit Schwefelsäure oder Schwefelsäure und Oxalsäure als Elektrolytflüssigkeit eine definierte Oxidschicht erzeugt. Das so eloxierte Aluminium wird dann in einem zweiten Verfahrensschritt unter Anwendung von Wechselstrom und Einsatz von Lösungcn bestimmter Metallsalze bzw. Metallsalzmischungen elektrolytisch eingefärbt.
  • Die elektrolytischen Einfärbeverfahren werden für die Einfärbung von Aluminium aufgrund ihrer Vorteile, wie höherer Lichtbeständigkeit und Wirtschaftlichkeit, in überwiegendem Maße eingesetzt. Bei den elektrolytischen Einfärbeverfahren überwiegen aufgrund niedrigerer Kosten und damit höherer Wirtschaftlichkeit eindeutig die elektrolytischen Metallsalzeinfärbungen, wobei hierbei bevorzugt zinn(II)-Sulfat- haltige Lösungen verwendet werden.
  • Die vorliegende Erfindung bezieht sich auf das zweistufige Verfahren der elektrolytischen Metallsalzeinfärbung.
  • Bei Einsatz von zinn(II)-sulfathaltigen Lösungen für die elektrolytische Einfärbung von Aluminium nach dem 2-StufenVerfahren können Farbtöne, je nach Wahl der Arbeitsbedingungen, zwischen silberhell, hell-, mittel- und dunkelbronze bis schwarz erzeugt werden, die beständig gegen Licht und normale atmosphärische Einflüsse sind.
  • Schwefelsaure zinn(II)-sulfathaltige Lösungen, wie sie für die elektrolytische Metallsalzeinfärbung von Aluminium zum Einsatz kommen, scheiden jedoch durch Hydrolyse und/oder Oxydation entsprechend der Standzeit in zunehmendem Maße schwerlösliche Zinnverbindungen ab, die für die Einfärbung von Aluminium unwirksam sind.
  • Man hat bisher versucht, die Abscheidung solcher schwerlöslicher Zinaverbindungen durch Zusätze geeigneter Verbindungen, wie z.B. Phenolsulfonsäure, Kresolsulfonsäure, Phenol oder dessen Derivate, zu verringern. Diese Verbindungen sind aufgrund ihrer hohen Abwasserschädlichkeit, ihrer Giftigkeit sowie der durch sie hervorgerufenen Geruchshelästigung in erheblichem Umfang umweltbelastend geworden. Hinzu kommt als besonderer Nachteil, daß solche Verbindungen die Bildung von schwerlöslichen Zinnverbindungen nicht ausreichend unterdrücken.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, Verbindungen zu finden, die diese Nachteile nicht aufweisen, somit also umweltfreundlicher sind und die Bildung von Niederschlägen in zinn(II)-sulfathaitigen Lösungen beim Stehen möglichst vollständig verhindern.
  • Überraschenderweise wurde gefunden, daß man diese Aufgabe in einfacher Weise dadurch lösen kann, wenn man das Verfahren der elektrolytischen Metallsalzeinfärbung mit einem Zinn(II)-salze enthaltenden Elektrolyten durchführt, der 1 - 10 g/l eines oder mehrerer Eisen(II)-salze(s) von Säuren aus der Gruppe, die Schwefelsäure, eine Sulfonsäure mit höchstens 8 Kohlenstoffatomen und die Amidosulfonsäure umfaßt, enthält.
  • Dieser Effekt war für den Fachmann überraschend, da die freien Säuren, wie z.B. Schwefelsäure, Phenolsulfonsäure und Amidosulfonsäure, nicht in der Lage sind, die Bildung von Niederschlägen zu verhindern.
  • Die Zusätze sind in einer Menge von 1 - 10 g/l wirksam. Vorzugsweise setzt man dem Zinn(II)-salze enthaltenden schwefelsauren Elektrolyten etwa 5 g/l einer oder mehrerer der im Patentanspruch genannten Verbindungen zu.
  • Im Falle der Verwendung von Eisen(II)-salzen einer Sulfonsäure spielt der mit dem Schwefelatom verbundene Kohlenwasscrstoffrest, der bis zu 8 Kohlenstoffatome einschließlich enthalten darf, keine entscheidende Rolle. Der Kohlenwasserstoffrest kann ein gegebenenfalls substituierter Alkyl-, Aryl- oder Alkarylrest sein.
  • Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß durch den Zusatz der vorgenannten Eisen(II)-salze neben der Unterdrückung der Bildung von schwerlöslichen Niederschlägen in vielen Fällen ein erheblicher farbverstärkender Effekt beobachtet wird.
  • Eine besonders bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens besteht im Hinblick sowohl auf den farbverstärkenden Effekt als auch auf die Unterdrückung von schwerlöslichen zinnhaltigen Niederschlägen deshalb darin, daß man als Eisen(II)-salze enthaltenden Elektrolyten einen solchen verwendet, der Eisen(II)-sulfosalicylat und/oder Eisen(II)-sulfophthalat enthält.
  • Der gleiche Effekt, sowohl der der Farbverstärkung als auch der der Unterdrückung schwerlöslicher Niederschläge, kann aber auch dadurch erzielt werden, daß man dem entsprechend Patentanspruch 1 Eisen(II)-salze enthaltenden Elektrolyten zusätzlich 1 - 10 g/1 freie Sulfosalicylsäure und/oder Sulfophthalsäure zusetzt.
  • Die für die Einfärbung verwendeten, die erfindungsgemäßen Zusätze enthaltenden Elektrolyten können weitere Verbindungen enthalten, wie sie aus dem Stand der Technik bekannt sind. So ist es beispielsweise möglich, diesen Lösungen in an sich bekannter Weise Amine oder Phenole bzw. Phenolderivate zuzusetzen.
  • Entsprechend dem erfindungsgemäßen Verfahren gelingt es scmit, in einfacher und besonders wirtschaftlicher Weise die Bildung von schwerlöslichen Niederschlägen in schwefelsauren Zinn(II)-Salzlösungen praktisch vollständig zu verhindern und gleichzeitig eine Farbvertiefung bei der Einfärbung des Aluminiums zu erzielen.
  • Die Wirksamkeit der erfindungsgemäß im Elektrolyten enthaltenden Verbindungen wurde dadurch ermittelt, daß 200 ml einer schwefelsauren Zinnsulfatlösung, wie sie zur elektrolytischen Einfärbung von Aluminium zum Einsatz kommt, mit 14 g Zinn(II)-sulfat und 16 g konz. Schwefelsäure/l als solche bzw. mit den jeweils zusätzlich in der folgenden Tabelle genannten Verbindungen 1 Woche lang stehengelassen wurden. Die sich bildenden Niederschläge wurden abfiltriert und gewichtsanalytisch ermittelt.
  • Ferner wurde mit den einzelnen Lösungen die elektrolytische Einfärbung von zuvor eloxiertem Aluminium vorgenommen. Die Heiligkeiten (L) der hierbei erhaltenen eingefärbten Aluminiumbleche wurden nach Verdichten und Trocknen mit einem Farb- und Farbdifferenz-Meßgerät ermittelt, wobei das Meßgerät von 0 - 100 skaliert ist und 100 weiß und O schwarz bedeutet. Somit konnten in objektiver Weise Helligkeitsunterschiede einwandfrei ermittelt werden.
    Figure imgb0001
    Figure imgb0002
  • In der Gruppe I sind freie Säuren und Amine genannt, wobei Phenolsulfonsäure, Kresolsulfonsäure und Amidosulfonsäure entsprechend dem Stand der Technik schwefelsauren Zinnsulfatlösungen zugesetzt werden. Mit Ausnahme der umweltbelastenden Kresolsulfonsäure ist die Unterdrückung der Bildung von zinnhaltigem Niederschlag völlig ungenügend.
  • Die Ergebnisse der Gruppe II zeigen, daß bei Zusatz erfindungsgenmäß zu verwendender Verbindungen der sich bildende zinnhaltige Kiederhchlag praktisch vernachlässigbar ist. Die Farbtief den eingefärbten Aluminiums wird nicht beeinträchtigt. Bei Verwendung von Eisen(II)-sulfosalicylat und Eisen(II)-sulfophthalat erfolgt zusatzlich eine deutliche und bei Verwendung von Eisen(II)-sulfamat und Eisen-(II)-sulfonaten eine merkliche Verstärkung der Farbintensität.
  • Die Zusätze gemäß Gruppe III bewirken wiederum, daß sich praktisch keine nennenswerten Niederschlage bilden, während die Farbintensität den eingefärhten Aluminiums in allen Fällen erheblich gesteigert ist. Hieraus ergibt sich, daß die erfindungsgemäß genannten Eisen(II)-Verbindungen die Bildung von Niederschlägen in zinn(II)-sulfathaltigen Lösungen mit Sicherheit unterdrücken, wobei Eisen(II)-sulfonate und Eisen(II)-sulfamate als solche bzw. in Kombination mit Sulfosalicylsäure bzw. Sulfophthalsäure außerdem zu einer Verstärkung der Farbintensität führen.
  • Das erfindungsgemäße Verfahren soll anhand der folgenden Beispiele noch näher erläutert werden:
  • Beispiel 1
  • Es wurden Aluminiumbleche (100 mm · 50 mm · 2 mm) in bekannter Weise entfettet, alkalisch und sauer gebeizt, wobei zwischen den einzelnen Arbeitsgängen jeweils ein Spülen mit Wasser vorgenommen wurde, und unter Verwendung von Gleichstrom mit wäßriger Schwefelsäure (200 g konz. H2SO4/l) als Elektrolytflüssigkeit derart eloxiert, daß eine Eloxalschicht von 20 µm erzeugt wurde. (Kathodenmaterial: Edelstahl; Stromdichte: 1,3 - 1,5 Amp./dm2)
  • So eloxiertes Aluminiumblech wurde nach dem Spülen mit Wasser in 300 ml einer Elektrolytflüssigkeit, die 14 g Zinn(II)-sulfat, 16 g konz. Schwefelsäure sowie 5 g Eisen(II)-sulfo- salicylat/l enthielt, eingetaucht, wobei die Flüssigkeit sich in einer rechteckig gehaltenen Glaszelle befand.
  • Die elektrolytischß Metallsalzeinfärbung wurde unter Verwendung von zwei Edelstahlelektroden nach Anlegen von Wechselspannung und einer Elektrolyttemperatur von 18 - 20°C innerhalb 5 Minuten vorgenommen. Hierbei wurde die Spannung innerhalb der ersten Minute kontinuierlich auf 15 Volt hochgeregelt und 4 Minuten konstant gehalten. Das eingefärbte Aluminiumblech wurde nach dem Einfärbeprozeß in bekannter Weise verdichtet. Der mit dem Farbmeßgerät ermittelte Helligkeitswert betrug 12,7. Die Niederschlagsmenge von 200 ml der gleichen Elektrolytflüssjgkeit betrug nach 1-wöchiger Standzeit 4 mg..
  • Vergleichsversuch
  • Es wurde analog Beispiel 1 gearbeitet, wobei als Elektrolytflüssigkeit lediglich eine schwefelsaure Zinn(II)-sulfatLösung, die 14 g Zinn(II)-sulfat und 16 g konz. Schwefelsäure/l enthielt, anstelle der in Beispiel 1 genannten Elektrolytflüssigkeit, eingesetzt wurde.
  • Die mit dem Farbmeßgerät ermittelte Helligkeit betrug 22,0, die Niederschlagsmenge von 200 ml dieser Lösung nach 1-wöchiger Standzeit betrug 1000 mg.
  • Beispiel 2
  • Es wurde analog Beispiel 1 gearbeitet, wobei als Elektrolytflüssigkeit eine Lösung, die 14 g Zinn(II)-sulfat, 16 g konz. Schwefelsäure und 5 g Eisen(II)-sulfamat/1 enthielt, eingesetzt wurde.
  • Die mit dem Farbmeßgerät ermittelte Helligkeit betrug 18,8. Die Niederschlagsmenge von 200 ml dieser Lösung nach 1-wöchiger Standzeit betrug 6 mg.
  • Beispiel 3
  • Es wurde analog Beispiel 1 gearbeitet, wobei als Elektrolytflüssigkeit eine Lösung, die 14 g Zinn(II)-sulfat, 16 g konz. Schwefelsäure, 5 g Eisen(II)-sulfat und 5 g Sulfophthalsaure/1 enthielt, eingesetzt wurde.
  • Die mit den Farbmeßgerät ermittelte Helligkeit betrug 13,4. Die Niederschlagsmenge von 200 ml dieser Lösung betrug nach 1-wöchiger Standzeit 7 mg.
  • Beispiel 4
  • Es wurde analog Beispiel 1 gearbeitet, wobei als Elektrolytflüssigkeit eine Lösung, die 14 g Zinn(II)-sulfat, 16 g konz. Schwefelsäure und 5 g Eisen(II)-sulfamat sowie 10 g Aminoäthyläthanolamin/l enthielt, eingesetzt wurde.
  • Die mit dem Farbmeßgerät ermittelte Helligkeit betrug 18,1. Die Niederschlagsmenge von 200 ml dieser Lösung betrug nach 1-wöchiger Standzeit 46 mg.
  • Vergleicilsversuch
  • Es wurde analog Beispiel 1 gearbeitet, wobei als Elektrolytflüssigkeit eine Lösung, die 14 g Zinn(II)-sulfat, 16 g konz. Schwefelsäure und 10 g Aminoäthyläthanolamin/l enthielt, eingesetzt wurde.
  • Die mit dem Farbmeßgerät ermittelte Helligkeit betrug 19,0. Die Niederschlagsmenge von 200 ml dieser Lösung betrug nach 1-wöchiger Standzeit 820 mg.
  • Beispiel 5
  • Es wurde analog Beispiel 1 gearbeitet, wobei als Elektrolytflüssigkeit eine Lösung, die 14 g Zinn(II)-sulfat, 16 g konz. Schwefelsäure, 10 g Phenolsulfonsäure und 5 g Eiscn-(II)-sulfamat/l enthielt, eingesetzt wurde.
  • Die mit dem Farbmeßgerät ermittelte Helligkeit betrug 15,8. Die Niederschlagsmenge von 200 ml dieser Lösung betrug nach 1-wöchiger Standzeit 66 mg.
  • Vergleichsversuch
  • Es wurde analog Beispiel 1 gearbeitet, wobei als Elektrolytflüssigkeit eine Lösung, die 14 g Zinn(II)-sulfat, 16 g konz. Schwefelsäure und 10 g Phenolsulfonsäure/1 enthielt, eingesetzt wurde.
  • Die mit dem Farbmeßgerät ermittelte Helligkeit betrug 16,5. Die Niederschlagsmenge von 200 ml dieser Lösung betrug nach 1-wöchiger Standzeit 420 mg.
  • Beispiel 6
  • Es wurde analog Beispiel 1 gearbeitet, wobei als Elektrolytflüssigkeit eine Lösung, die 14 g Zinn(II)-sulfat, 16 g konz. Schwefelsäure, 10 g Kresolsulfonsäure und 5 g Eisen-(II)-sulfamat/1 enthielt, eingesetzt wurde.
  • Die mit dem Farbmeßgerät ermittelte Helligkeit betrug 13,8. Die Niederschlagsmenge von 200 ml dieser Lösung betrug nach 1-wöchiger Standzeit 8 mg.
  • Vergleichsversuch
  • Es wurde analog Beispiel 1 gearbeitet, wobei als Elektrolytflüssigkeit eine Lösung, die 14 g Zinn(II)-sulfat, 16 g konz. Schwefelsäure und 10 g Kresolsulfonsäure/1 enthielt, eingesetzt wurde.
  • Die mit dem Farbmeßgerät ermittelte Helligkeit betrug 14,5. Die Niederschlagsmenge von 200 ml dieser Lösung betrug nach 1-wöchiger Standzeit 18 mg.

Claims (3)

1. Verfahren zur elektrolytischen Mctallsalzeinfärbung von Aluminium, bei dem zuerst mittels Gleichstrom in saurer Lösung eine definierte Oxidschicht erzeugt und diese anschließend mittels Wechselstrom unter Verwendung eines Zinn(II)-salze enthaltenden sauren Elektrolyten eingefärbt wird, dadurch gekennzeichnet, daß der Zinn(II)-salze enthaltende Elektrolyt 1 - 10 g/l eines oder mehrerer Eisen(II)-salze(s) von Säuren aus der Gruppe, die Schwefelsäure, eine Sulfonsäure mit höchstens 8 Kohlenstoffatomen und die Amidosulfonsäure umfaßt, enthält.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Elektrolyt Eisen(II)-sulfosalicylat und/oder Eisen-(II)-sulfophthalat enthält.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Elektrolyt zusätzlich 1 - 10 g/l Sulfosalicylsäure und/oder Sulfophthalsäure enthält.
EP79103288A 1978-11-18 1979-09-05 Verfahren zur elektrolytischen Färbung von auf Aluminium erzeugten anodischen Oxidschichten Expired EP0011097B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79103288T ATE87T1 (de) 1978-11-18 1979-09-05 Verfahren zur elektrolytischen faerbung von auf aluminium erzeugten anodischen oxidschichten.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2850136A DE2850136B2 (de) 1978-11-18 1978-11-18 Verfahren zur elektrolytischen Färbung von auf Aluminium erzeugten anodischen Oxidschichten
DE2850136 1978-11-18

Publications (3)

Publication Number Publication Date
EP0011097A2 true EP0011097A2 (de) 1980-05-28
EP0011097A3 EP0011097A3 (en) 1980-06-11
EP0011097B1 EP0011097B1 (de) 1981-06-17

Family

ID=6055052

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79103288A Expired EP0011097B1 (de) 1978-11-18 1979-09-05 Verfahren zur elektrolytischen Färbung von auf Aluminium erzeugten anodischen Oxidschichten

Country Status (6)

Country Link
US (1) US4401525A (de)
EP (1) EP0011097B1 (de)
AT (1) ATE87T1 (de)
BR (1) BR7906756A (de)
DE (1) DE2850136B2 (de)
DK (1) DK486579A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2343681A (en) * 1998-11-16 2000-05-17 Agfa Gevaert Nv Lithographic printing plate support

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3718849A1 (de) * 1987-06-05 1988-12-15 Henkel Kgaa Elektrolytisches einfaerben von anodisiertem aluminium
DE3824403A1 (de) * 1988-07-19 1990-01-25 Henkel Kgaa Verfahren zur elektrolytischen metallsalzeinfaerbung von anodisierten aluminiumoberflaechen
EP3553208A1 (de) * 2018-04-09 2019-10-16 DURA Operating, LLC Verfahren zum herstellen eines aluminiumbauteils mit einer farbigen oberfläche

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296940A (en) * 1976-02-10 1977-08-15 Mitsui Keikinzoku Kako Electrolytic pigmentation process for aluminum or its alloy
JPS5318438A (en) * 1976-08-04 1978-02-20 Mitsui Keikinzoku Kako Process for forming electrolytic pigmentation coatings on aluminum and aluminum alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423662B2 (en) * 1975-03-05 1979-08-15 Yoshida Kogyo Kk Aruminiumu mataha aruminiumugokinno goorudoshokuhenodenkaichakushokuho
JPS5423663B2 (de) * 1975-03-06 1979-08-15
FR2384037A1 (fr) * 1977-03-17 1978-10-13 Nice Anodisation Sa Perfectionnement au procede de coloration electrolytique de l'aluminium et de ses alliages

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296940A (en) * 1976-02-10 1977-08-15 Mitsui Keikinzoku Kako Electrolytic pigmentation process for aluminum or its alloy
JPS5318438A (en) * 1976-08-04 1978-02-20 Mitsui Keikinzoku Kako Process for forming electrolytic pigmentation coatings on aluminum and aluminum alloy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Vol. 88, Nr. 6, 2. Juni 1978, Seite 360, Nr. 43155p Columbus, Ohio, U.S.A. & JP-A-52 096940 (MITSUI KEIKINZOKU KAKO K.K.) 15-08-1977 * Zusammenfassung * *
CHEMICAL ABSTRACTS, Vol. 89, Nr. 8, 21. August 1978, Seite 499, Nr. 67510x Columbus, Ohio, U.S.A. & JP-A-53 018438 (MITSUI KEIKINZOKU KAKO K.K.) 20-02-1978 * Zusammenfassung * *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2343681A (en) * 1998-11-16 2000-05-17 Agfa Gevaert Nv Lithographic printing plate support
EP1002644A2 (de) * 1998-11-16 2000-05-24 AGFA-GEVAERT naamloze vennootschap Herstellung eines Trägers für Flachdruckplatte
EP1002644A3 (de) * 1998-11-16 2004-01-14 Agfa-Gevaert Herstellung eines Trägers für Flachdruckplatte

Also Published As

Publication number Publication date
DE2850136A1 (de) 1980-05-22
US4401525A (en) 1983-08-30
DE2850136B2 (de) 1981-01-22
EP0011097A3 (en) 1980-06-11
ATE87T1 (de) 1981-07-15
EP0011097B1 (de) 1981-06-17
DK486579A (da) 1980-05-19
BR7906756A (pt) 1980-06-03

Similar Documents

Publication Publication Date Title
DE2255584C2 (de) Saures Kupfergalvanisierbad
DE2327764A1 (de) Verfahren zur elektrokoernung von aluminium
DE1446002A1 (de) Verfahren zum Anodisieren und gegebenenfalls Faerben von Aluminium und Aluminiumlegierungen
DE1007592B (de) Bad zur Herstellung von galvanischen Metallueberzuegen
DE2056954C2 (de) Wäßriges saures Bad zur galvanischen Abscheidung eines Zinnüberzugs und Verfahren hierzu
DE10025552C1 (de) Saures galvanisches Nickelbad und Verfahren zum Abscheiden eines satinglänzenden Nickel- oder Nickellegierungsüberzuges
DD284061A5 (de) Verfahren zur elektrolytischen metallsalzeinfaerbung anodisierter oberflaechen von aluminium und aluminiumlegierungen
DE3310881A1 (de) Waessriges saures bad fuer die galvanische abscheidung von nickel und ein verfahren zur galvanischen abscheidung von nickel mit diesem bad
DE2630980C2 (de)
EP0011097B1 (de) Verfahren zur elektrolytischen Färbung von auf Aluminium erzeugten anodischen Oxidschichten
DE1262722B (de) Bad und Verfahren zum galvanischen Abscheiden von Palladiumueberzuegen auf elektrischen Kontaktteilen
DE3102585C2 (de) Verfahren zur galvanischen Abscheidung von Chrom mittels eines dreiwertiges Chrom enthaltenden Bades
DE3327011C2 (de)
DE2633212A1 (de) Verfahren zur erzeugung einer gruen gefaerbten oxidschicht auf aluminium oder aluminiumlegierungen
DE2921241A1 (de) Saurer zinn-ii-haltiger elektrolyt
EP0526497B1 (de) Saure nickelbäder, enthaltend 1-(2-sulfoethyl)-pyridiniumbetain
DE2428635A1 (de) Verfahren und faerbeelektrolyt zum graufaerben von anodisch oxidierten gegenstaenden aus aluminium oder dessen legierungen
DE3019576A1 (de) Verfahren zum elektrolytischen einfaerben von eloxiertem aluminium
DE1208593B (de) Saures galvanisches Nickelbad zum Abscheiden halbglaenzender UEberzuege
EP0241415B1 (de) Saurer zinn-(II)-haltiger Elektrolyt
DE3139641A1 (de) "galvanisches bad und verfahren zur abscheidung halbglaenzender duktiler und spannungsfreier nickelueberzuege"
DE4218399C2 (de) Verfahren zur Reduzierung der Peroxidzahl
DE2251959C3 (de) Wäßriges Bad zum anodischen Erzeugen von gefärbten Oxidüberzügen auf Aluminium oder Aluminiumlegierungen
DE2713985C3 (de) Verfahren zur Herstellung eines gefärbten, anodischen Oxidfilms auf Aluminium oder Aluminiumlegierungen
DE615909C (de) Bad fuer die galvanische Kobaltabscheidung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL

17P Request for examination filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19810617

REF Corresponds to:

Ref document number: 87

Country of ref document: AT

Date of ref document: 19810715

Kind code of ref document: T

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: FIRMA KARL BIHLMAIER

Effective date: 19820317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840627

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19840807

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840910

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19840930

Year of fee payment: 6

Ref country code: BE

Payment date: 19840930

Year of fee payment: 6

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19850624

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

BERE Be: lapsed

Owner name: TH. GOLDSCHMIDT A.G.

Effective date: 19860930