EP0004665B1 - Korrosionsinhibitor für Brauchwassersysteme - Google Patents

Korrosionsinhibitor für Brauchwassersysteme Download PDF

Info

Publication number
EP0004665B1
EP0004665B1 EP19790101022 EP79101022A EP0004665B1 EP 0004665 B1 EP0004665 B1 EP 0004665B1 EP 19790101022 EP19790101022 EP 19790101022 EP 79101022 A EP79101022 A EP 79101022A EP 0004665 B1 EP0004665 B1 EP 0004665B1
Authority
EP
European Patent Office
Prior art keywords
water
corrosion
quantities
systems
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19790101022
Other languages
English (en)
French (fr)
Other versions
EP0004665A2 (de
EP0004665A3 (en
Inventor
Manfred Dr. Dohr
Volker Dr. Wehle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0004665A2 publication Critical patent/EP0004665A2/de
Publication of EP0004665A3 publication Critical patent/EP0004665A3/xx
Application granted granted Critical
Publication of EP0004665B1 publication Critical patent/EP0004665B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/147Nitrogen-containing compounds containing a nitrogen-to-oxygen bond

Definitions

  • the invention relates to the use of tris (2-carboxyethyl) nitromethane - hereinafter abbreviated TCN - to prevent corrosion of metals in service water systems.
  • TCN tris (2-carboxyethyl) nitromethane - hereinafter abbreviated TCN -
  • TCN tris (2-carboxyethyl) nitromethane
  • the treatment of water-bearing systems such as steam generation systems, heating systems, cooling water circuits and water supply systems to protect against the corrosive attack of water, which is primarily directed against base materials such as steel, brass, aluminum, zinc or galvanized steel, has long been carried out in technology.
  • phosphorus-containing compounds such as phosphonic acids or inorganic phosphates, optionally in combination with zinc salts, has proven particularly useful.
  • TCN is used to prevent corrosion of metals in aqueous systems in the pH range from 6-9.
  • the amounts which are expediently added to the aqueous system are in the range from 0.5-100 g / m 3 , preferably 1-10 g / m 3 .
  • TCN is produced by methods known per se and is not the subject of the invention.
  • TCN extraordinarily good corrosion-inhibiting effect of TCN is surprising insofar as other similarly built compounds, such as tris (hydroxymethyl) nitromethane, do not have a corrosion protection effect which is adequate in practice.
  • the already high corrosion-inhibiting effect of the TCN without any addition is remarkable.
  • the stone protection and dispersing agents listed above are used in combination with TCN in amounts of 1-50 g / m 3 , preferably 3-10 g / m 3 .
  • non-ferrous metals such as in particular benzimidazole, benzotriazole or tolyltriazole
  • TCN benzimidazole
  • benzimidazole benzotriazole
  • tolyltriazole tolyltriazole
  • TCN can also be used in combination with zinc salts and / or compounds containing phosphorus.
  • Zinc chloride and zinc sulfate are particularly suitable as zinc salts. Quantities (calculated as zinc) of 0.5-10 g / m 3 , preferably 1-4 g / m 3 corresponding to an amount of 0.5-10 0 or 1-4 ppm are used.
  • phosphonic acids such as, for example, 1-hydroxyethane-1,1-diphosphonic acid, aminotrimethylenephosphonic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid and their water-soluble salts or mixtures of these compounds, are particularly suitable as the phosphorus-containing compound. Quantities of 0.5-10 g / m 3 are used. Such a combination can significantly increase the protection against corrosion.
  • biocidal substances such as glutaraldehyde, glyoxal, pentachlorophenol sodium or alkyloligoamides, preferably in the form of a reaction product of dodecylpropylenediamine and s-caprolactam in a ratio of 1: 2.
  • a treatment agent for metal surfaces is known, which to this is intended to form a film on the treated surface.
  • Lubricants, coating materials and paints can be used as film-forming materials.
  • the anti-corrosion treatment agents contain a small amount of a fat series nitrosic acid or a derivative thereof. This is a different way of working with a different objective, whereby the use of TCN is not mentioned anywhere else. The subject of the application could therefore not be derived from this reference.
  • the corrosive behavior was determined using the method described below: A carefully cleaned test plate (75 x 12 x 1.5 mm) is placed in a 1 liter beaker filled with 1 liter water and a certain amount of the substance to be examined is immersed at room temperature for 24 hours. During the test period, the aqueous solutions are stirred at 100 revolutions per minute in a row arrangement of a total of 10 beakers. The sheets are then cleaned of corrosion products and the weight loss is determined. The corrosion protection rates of the products, based on a blank value, are determined from the mean values of three tests each.
  • test water used as the corrosive medium had the following analytical data:
  • the table below shows the reduction in the corrosive attack of a water by adding the specified agents compared to the untreated water.
  • a technical cooling system with a content of 1.2 m 3 and a circulation of 8 m 3 / h is operated with Düsseldorf city water.
  • the evaporation losses are compensated by adding fresh water to such an extent that the salt content does not exceed twice the original value.
  • an electrochemically measured corrosion rate of 0.18 mm / a occurs in the system.
  • composition according to the invention has the following composition:
  • TCN was used together with other inhibitors and the corrosion rates, expressed in mm / year, were determined using the coupon method by testing water under the same conditions through a double test section in accordance with ASTM (D 2688/70) was pumped.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

  • Gegenstand der Erfindung ist die Verwendung von Tris-(2-carboxyäthyl)-nitromethan - im folgenden abgekürzt TCN - zur Verhinderung der Korrosion von Metallen in Brauchwassersystemen. Die Behandlung von wasserführenden Anlagen wie Dampferzeugungsanlagen, Heizsystemen, Kühlwasserkreisläufen und Wasserleitungssystemen zum Schutz gegen den korrosiven Angriff des Wassers, der sich vorwiegend gegen unedle Werkstoffe, beispielsweise Stahl, Messing, Aluminium, Zink oder verzinkter Stahl richtet, wird seit langem in der Technik durchgeführt. Besonders bewährt hat sich hierbei die Verwendung von phosphorhaltigen Verbindungen, wie zum Beispiel Phosphonsäuren oder anorganische Phosphate, gegebenenfalls in Kombination mit Zinksalzen.
  • Diese Kombinationen haben eine gute technische Wirksamkeit. Ihre Verwendung wird in jüngster Zeit jedoch mehr und mehr eingeschränkt durch die ökologischen und gesetzgeberischen Forderungen nach weitgehender oder absoluter Phosphor-Freiheit derartiger Produkte. Vom technischen Standpunkt haben derartige phosphathaltige Kombinationen weiter den Nachteil, daß sie häufig durch Eutrophierung des Kühlsystems zu verstärktem biologischem Wachstum führen und die zusätzliche Verwendung von Mikrobiziden erforderlich machen.
  • Die Verwendung dieser phosphorhaltigen Kombinationen kann weiterhin beim Einsatz in größeren Wasserhärten zur Bildung von Apatit- oder apatitähnlichen Ablagerungen führen, die zu Betriebsstörungen führen und nur schwer zu entfernen sind. Der Einsatz dieser Kombinationen mit Zinksalzen bei höheren pH-Werten (pH > 8,0) führt im allgemeinen zu verstärkter Verschlammung des Systems durch die Ausfällung von Zinkhydroxid.
  • Vom ökologischen Standpunkt aus ist in nicht geschlossenen Kühlsystemen die Verwendung von Zinksalzen in derartigen Kombinationsprodukten ebenfalls problematisch, da diese aufgrund der hohen Fischtoxizität zu einer starken Abwasserbelastung führen. Außerdem wird die Selbstreinigungskraft des Gewässers bereits ab 0,1 ppm Zink deutlich gehemmt.
  • Es wurde nun gefunden, daß man diese Nachteile vermeiden kann, wenn man TCN zur Verhinderung der Korrosion von Metallen in wäßrigen Systemen im pH-Bereich von 6-9 verwendet.
  • Die Mengen, die dem wäßrigen System zweckmäßigerweise zugegeben werden, liegen im Bereich von 0,5―100 g/m3, vorzugsweise 1―10 g/m3.
  • Die Herstellung von TCN erfolgt nach an sich bekannten Methoden und ist nicht Gegenstand der Erfindung.
  • Die außerordentlich gute korrosionsinhibierende Wirkung von TCN ist insofern überraschend, als andere ähnlich gebaute Verbindungen, wie zum Beispiel Tris(hydroxymethyl)nitromethan, keine für die Praxis ausreichende Korrosionsschutzwirkung aufweisen. Bemerkenswert ist die bereits hohe korrosionsinhibierende Wirkung des TCN ohne jeden Zusatz.
  • In der Praxis spielt für das korrosive Verhalten eines Brauchwassers in hohem Maße die Anwesenheit oder Entstehung von ablagerungsbildenden Trübstoffen wie zum Beispiel Härteausfällungen, Tonsubstanzen und Eisenhydroxide eine wesentliche Rolle. Durch Verhinderung dieser Ablagerungen wird das korrosive Verhalten eines Wassers weiterhin verbessert. Daher ist es im allgemeinen vorteilhaft, dem zu behandelnden Wasser außer TCN weitere an sich bekannte Steinschutz- und Dispergiermittel zuzusetzen. Als geeignete Zusätze haben sich insbesondere Polyacrylate oder Acrylsäure-Methacrylsäurecopolymerisate mit einem Molgewicht von 500-4000 oder Äthylenoxid-Propylenoxid-Blockpolymere mit einem Molgewicht von 500-3000 und einem Äthylenoxid-Propylenoxidverhältnis von 10 90 bis 30: 70 erwiesen.
  • Die oben angeführten Steinschutz- und Dispergiermittel werden bei Kombination mit TCN in Mengen von 1 ― 50 g/m3, vorzugsweise 3-10 g/m3 verwendet.
  • Je nach den Verhältnissen in der Praxis kann es vorteilhaft sein, zusammen mit TCN spezielle Inhibitoren für Buntmetalle, wie insbesondere Benzimidazol, Benzotriazol oder Tolyltriazol, in Kombination zu verwenden. Die verwendeten Mengen liegen im Bereich von 0,1 - g/m3.
  • Spielen die ökologischen Aspekte keine gravierende Rolle, wie insbesondere bei geschlossenen Kühlsystemen, so kann TCN auch mit Zinksalzen und/oder phosphorhaltigen Verbindungen kombiniert eingesetzt werden.
  • Als Zinksalze kommen insbesondere Zinkchlorid und Zinksulfat in Betracht. Dabei werden Mengen (berechnet als Zink) von 0,5 - 10 g/m3, vorzugsweise 1 -4 g/m3 entsprechend einer Menge von 0,5 - 10 0 beziehungsweise 1 -4 ppm verwendet.
  • Als phosphorhaltige Verbindung kommen insbesondere komplexierende Phosphonsäuren, wie beispielsweise 1-Hydroxyäthan-1,1-diphosphonsäure, Aminotrimethylenphosphonsäure und 2-Phos- phonobutan-1,2,4-tricarbonsäure sowie deren wasserlösliche Salze oder Gemische dieser Verbindungen in Betracht. Dabei werden Mengen von 0,5-10 g/m3 verwendet. Durch derartige Kombination kann der Korrosionsschutz noch erheblich verstärkt werden.
  • In bestimmten Fällen kann es auch vorteilhaft sein, weiterhin biozide Substanzen wie Glutaraldehyd, Glyoxal, Pentachlorphenolnatrium oder Alkyloligoamide, vorzugsweise in Form eines Umsetzungsproduktes von Dodecylpropylendiamin und s-Caprolactam im Verhältnis 1 : 2 zuzusetzen.
  • Aus der CH-A-262802 ist ein Behandlungsmittel für Metalloberflächen bekannt, welches dazu bestimmt ist, auf der behandelten Oberfläche einen Film zu bilden. Dabei kommen als filmbildende Materialien Schmiermittel, Überzugsmaterialien und Farbanstriche in Frage. Außer dem filmbildenden Material enthalten die Behandlungsmittel zur Korrosionsverhinderung eine geringe Menge einer Nitrosäure der Fettreihe oder eines Derivats hiervon. Es handelt sich hierbei um eine andere Arbeitsweise mit einer unterschiedlichen Zielsetzung, wobei im übrigen auch die Verwendung von TCN nirgends erwähnt ist. Der Anmeldungsgegenstand konnte daher aus dieser Literaturstelle nicht hergeleitet werden.
  • Beispiel 1
  • Die Bestimmung des korrosiven Verhaltens erfolgte nach der nachstehend beschriebenen Methode: Je ein sorgfältig gereinigtes Testblech (75 x 12 x 1,5 mm) wird in ein 1-I-Becherglas, das mit 1 I Wasser und einer bestimmten Menge der zu untersuchenden Substanz gefüllt ist, bei Raumtemperatur 24 Stunden eingetaucht. Während der Versuchsdauer werden in einer Reihenanordnung von insgesamt 10 Bechergläsern die wäßrigen Lösungen mit 100 Umdrehungen pro Minute gerührt. Anschließend werden die Bleche von Korrosionsprodukten gereinigt und die Gewichtsverluste bestimmt. Aus den Mittelwerten von je drei Versuchen werden die Korrosionsschutzraten der Produkte, bezogen auf einen Blindwert, ermittelt.
  • Das als korrosives Medium benutzte Versuchswasser hatte folgende analytische Daten:
    Figure imgb0001
  • Die nachstehende Tabelle gibt die Verringerung des korrosiven Angriffs eines Wassers bei Zusatz der im einzelnen aufgeführten Mittel gegenüber dem unbehandelten Wasser wieder.
    Figure imgb0002
  • Beispiel 2
  • Ein technisches Kühlsystem mit einem Inhalt von 1,2 m3 und einer Umwälzung von 8 m3/h wird mit Düsseldorfer Stadtwasser betrieben. Die Verdampfungsverluste werden durch Frischwasserzugabe soweit ausgeglichen, daß der Salzgehalt nicht den 2fachen Wert des ursprünglichen Wertes übersteigt. Ohne jede Korrosionsschutzbehandlung des Kreislaufwassers stellt sich im System eine elektrochemisch gemessene Korrosionsrate von 0,18 mm/a ein.
  • Bei Zugabe des erfindungsgemäßen Korrosionsinhibitors in Mengen von 50 g/m3, bezogen auf das Kreislaufwasser, stellt sich eine Korrosionsrate von 0,064 mm/a ein. Dieser Wert ist als hervorragend anzusehen.
  • Das erfindungsgemäße Mittel hat folgende Zusammensetzung:
    Figure imgb0003
  • Beispiel 3
  • In einem Langzeitversuch über 4 Wochen wurde TCN mit anderen Inhibitoren zusammen eingesetzt und die Korrosionsraten, in mm/Jahr ausgedrückt, mittels der Coupon-Methode bestimmt, indem unter jeweils gleichen Bedingungen das Testwasser durch eine Doupon-Versuchsstrecke gemäß ASTM (D 2688/70) gepumpt wurde.
  • Die Versuchsbedingungen waren weiterhin folgende:
    Figure imgb0004
    Skizze der apparativen Anordnung
    Figure imgb0005
    Figure imgb0006

Claims (8)

1. Verwendung von Tris-(2-carboxyäthyl)-nitromethan zur Verhinderung der Korrosion von Metallen in wäßrigen Systemen im pH-Bereich von 6-9.
2. Verwendung nach Anspruch 1 in einer Menge von 0,5-100 g/m3, vorzugsweise 1-10 g/m3.
3. Verwendung nach Anspruch 1 -2 in Kombination mit zusätzlichen Steinschutz- und Dispergiermitteln auf Basis von Polyacrylaten bzw. Acrylsäure-Methacrylsäurecopolymerisaten oder Äthylenoxid-Propylenoxid-Blockpolymeren.
4. Verwendung nach Anspruch 1-3 in Kombination mit Benzimidazol.
5. Verfahren zur Verhinderung der Korrosion von Metallen in Brauchwassersystemen, dadurch gekennzeichnet, daß dem Wasser, welches einen pH-Wert von 6-9 aufweist, Tris-(2-carboxyäthyl)-nitromethan in einer Menge von 0,5 ― 100 g/m3, vorzugsweise 1 -10 g/m3, zugefügt wird.
6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß zusätzlich Steinschutz- und Dispergiermittel auf Basis von Polyacrylaten beziehungsweise Acrylsäure-Methacrylsäurecopolymerisaten oder Äthylenoxid-Propylenoxid-Blockpolymeren in Mengen von 1-50 g/m3, vorzugsweise 3―10 g/m3, zugefügt werden.
7. Verfahren gemäß Anspruch 5 und 6, dadurch gekennzeichnet, daß zusätzlich Benzimidazol in Mengen von 0,1 -5 g/m3 hinzugefügt wird.
8. Verfahren gemäß Anspruch 5-7, dadurch gekennzeichnet, daß bei geschlossenen Kühlsystemen weiterhin Zinksalze und/oder komplexierende Phosphonsäuren in Mengen von 0,5-10g/m3 hinzugefügt werden.
EP19790101022 1978-04-07 1979-04-04 Korrosionsinhibitor für Brauchwassersysteme Expired EP0004665B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19782815016 DE2815016C2 (de) 1978-04-07 1978-04-07 Korrosionsinhibitor für Brauchwassersysteme
DE2815016 1978-04-07

Publications (3)

Publication Number Publication Date
EP0004665A2 EP0004665A2 (de) 1979-10-17
EP0004665A3 EP0004665A3 (en) 1979-10-31
EP0004665B1 true EP0004665B1 (de) 1981-09-02

Family

ID=6036367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19790101022 Expired EP0004665B1 (de) 1978-04-07 1979-04-04 Korrosionsinhibitor für Brauchwassersysteme

Country Status (3)

Country Link
EP (1) EP0004665B1 (de)
AT (1) AT360303B (de)
DE (1) DE2815016C2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4442114A1 (de) * 1994-11-25 1996-05-30 Buna Sow Leuna Olefinverb Gmbh Nitrit-, phosphat- und aminfreies Kühl- und Wärmeübertragungsmittel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU28635A1 (de) * 1946-10-25
DE1221993B (de) * 1960-09-30 1966-07-28 Argentox Ges Fuer Wasserreinig Verfahren zur Korrosionsverhinderung bei gleichzeitiger Kesselsteinverhuetung
FR1405565A (fr) * 1963-08-15 1965-07-09 Commercial Solvents Corp Composé nitré et son procédé de préparation
US4033896A (en) * 1976-06-18 1977-07-05 Monsanto Company Method of corrosion inhibition and compositions therefor

Also Published As

Publication number Publication date
EP0004665A2 (de) 1979-10-17
DE2815016A1 (de) 1979-10-18
EP0004665A3 (en) 1979-10-31
AT360303B (de) 1980-01-12
ATA248979A (de) 1980-05-15
DE2815016C2 (de) 1986-04-10

Similar Documents

Publication Publication Date Title
EP0127572B1 (de) Verfahren zur Inhibierung der Korrosion und/oder der Kesselsteinablagerung
DE1937617C3 (de) Korrosionshemmendes Mittel
EP0074336B1 (de) Gegen Korrosion und/oder Kesselsteinablagerung inhibierte Systeme
DE60025164T2 (de) Zusammensetzung zur verhinderung von ablagerungen und/oder korrosion
DE2505435C3 (de) Verwendung von Carboxy-alkan-Verbindungen des Phosphors als Korrosionsinhibitoren
EP0118395B1 (de) Verfahren zur Inhibierung der Korrosion von Metalloberflächen und/oder der Kesselsteinablagerung darauf
DE2447895A1 (de) Korrosions-schutzmittel
DE2918967C2 (de)
DE2624572A1 (de) Verfahren zur inhibierung der korrosion von metallen
DE2055779B2 (de) Korrosionsschutzmittel für Metalloberflächen und Verfahren zum Schutz von Metalloberflachen unter Verwendung desselben
DE2225645A1 (de) Verfahren zur verhinderung von korrosion und steinansatz in wasserfuehrenden systemen
DE1903651A1 (de) Korrosionsinhibierende Zubereitungen,Verfahren zu ihrer Herstellung und Verfahren zur Korrosionsinhibierung
DE2556657A1 (de) Verfahren zum hemmen der korrosion von metallen
EP0025863B1 (de) Verwendung von 1,2,4-Triazolderivaten als Korrosionsinhibitoren für Buntmetalle
CH631212A5 (de) Verwendung von cyclohexanhexacarbonsaeure als korrosionsinhibitor fuer brauchwassersysteme.
DE3137525A1 (de) Behandlung von waessrigen systemen zur korrosionshemmung
DE2601402A1 (de) Verfahren zur hemmung von korrosion und belagbildung an eisenoberflaechen
DE2123808A1 (de) Mittel zur Inhibierung der Korrosion und der Kesse lsteinabscheidung in einem Kuhlsystem
DE2338352A1 (de) Korrosionsschutzmittel zur inhibierung der wasserkorrosion
DE3414748C2 (de)
DE2016686A1 (de) Korrosionsschutzmittel
DE2233312A1 (de) Polyalkylenpolyamin-korrosionsinhibitoren
EP0025125B1 (de) Verwendung schwefelhaltiger Hydroxycarbonsäuren als Korrosionsinhibitoren für wässrige Systeme
DE1621440B2 (de) Korrosions und steinansatzverhuetungsmittel fuer kuehl wasser sowie verfahren zur verhinderung der korrosion und steinsalzbildung durch kuehlwasser
DE19648843C2 (de) Melamin-polycarbonsäureamide und ihre Verwendung als Korrosionsschutzmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE CH FR IT NL

AK Designated contracting states

Designated state(s): BE CH FR IT NL

17P Request for examination filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH FR IT NL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890323

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890412

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890428

Year of fee payment: 11

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890430

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900430

Ref country code: CH

Effective date: 19900430

BERE Be: lapsed

Owner name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN

Effective date: 19900430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19901101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT