EP0003032B1 - Carbonsäureester des Pentaerythrits und deren Verwendung als Basisschmieröl - Google Patents

Carbonsäureester des Pentaerythrits und deren Verwendung als Basisschmieröl Download PDF

Info

Publication number
EP0003032B1
EP0003032B1 EP78101731A EP78101731A EP0003032B1 EP 0003032 B1 EP0003032 B1 EP 0003032B1 EP 78101731 A EP78101731 A EP 78101731A EP 78101731 A EP78101731 A EP 78101731A EP 0003032 B1 EP0003032 B1 EP 0003032B1
Authority
EP
European Patent Office
Prior art keywords
acid
pentaerythritol
ester
esters
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78101731A
Other languages
English (en)
French (fr)
Other versions
EP0003032A1 (de
Inventor
Karl-Heinz Dr. Hentschel
Rolf Dr. Dhein
Hans Dr. Rudolph
Karl Dr. Nützel
Klaus Dr. Morche
Wolfgang Dr. Krüger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6027672&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0003032(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0003032A1 publication Critical patent/EP0003032A1/de
Application granted granted Critical
Publication of EP0003032B1 publication Critical patent/EP0003032B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential

Definitions

  • the present application relates to carboxylic acid esters of pentaerythritol and their use in lubricants.
  • Lubricating oils based on carboxylic acid esters generally outperform mineral oils with the same basic viscosities at higher flash points, lower volatility and better viscosity-temperature characteristics (measured by the viscosity index, "VI").
  • VI index the viscosity index
  • esters which also contain monoalcohols, dicarboxylic acids and / or monocarboxylic acids as esterification components in addition to diols / polyols, are known. Although they allow ester oils of increased intrinsic viscosity to be provided, it is known to the person skilled in the art that their preparation is difficult because of the proportions of acid or partial esters of dicarboxylic acids remaining after the esterification reaction, which are difficult to remove by refining or distillation.
  • DE-OS 2302918 also proposes the use of carboxylic acids with 14 to 22 carbon atoms per molecule, which are preferably branched in the a-position to the carboxyl group, for the production of high-viscosity ester oils, but the underlying monocarboxylic acids are not easily obtainable and require additional synthesis steps. Under strongly oxidative conditions, such oils still show noticeable evaporation losses. These oils do not quite reach the required high viscosity index values of over 140.
  • a pentaerythritol ester lubricating oil which contains 2-ethylhexanoic and isostearic acid in a molar ratio of 1: 3.
  • the pour point specified is -45 ° C., but the viscosity index is only 133 and is therefore also below 140.
  • DE-OS 2 528 526 discloses lubricating oil formulations for gas turbines and jet engines based on pentaerythritol or trimethylolpropane esters of 2-18, but are preferred Saturated monocarboxylic acids containing 5-10 carbon atoms.
  • Examples of such monocarboxylic acids include cyclohexyl carboxylic acid is also mentioned, trimethylol and pentaerythritol esters of cyclohexyl carboxylic acid are described in detail in J. of Chem. and Eng. Data 7, 547 ff. (1962). From the data listed there it can be seen that pentaerythritol esters with 1-2 moles of cyclohexylcarboxylic acid per mole of ester have up to approximately 32 total pour points down to a total carbon number of the acid portion of the esters. The viscosity-temperature behavior of these esters depends on the number of molecules of cyclohexylcarboxylic acid contained per molecule of ester.
  • the viscosity indices of the pentaerythritol esters containing 1 mol of cyclohexylcarboxylic acid in the examples mentioned are between 118 and 129, and the VI's of the esters containing 2 mol of cyclohexylcarboxylic acid per ester molecule are only between 88 and 90.
  • a further increase in the total carbon number of the acid content of these esters to about 34 has different effects on the lubrication parameters, depending on the type of monocarboxylic acids used.
  • the use of only one medium-chain fatty acid (C s ) in addition to the cyclohexyl acid gives an oil with a pour point of -20 ° C and a VI of 127, while the use of a mixture of 1 mol of tetradecanoic acid with 1 mol of cyclohexyl carboxylic acid and 2 mol of hexanoic acid results in an ester oil. with a pour point of + 4 ° C and a VI of 129.
  • ester oils with a high viscosity index and low volatility are obtained from readily available raw materials based on pentaerythritol esters of "isostearic acid", cyclohexylcarboxylic acid and other aliphatic, saturated C 6 -C 16 -monocarboxylic acids, if the total number of carbon atoms per molecule Pentaerythritol ester is between 47 and 51 and at least 22 equivalent% of the alcoholic hydroxyl groups present in pentaerythritol are esterified with "isostearic acid” and cyclohexylcarboxylic acid.
  • Isostearic acid is a mixture of weakly methyl-branched C 18 fatty acids which contains, for example, the 16-methylheptadecanoic acid as described in the company font "Unem 5680" is described by Unilever-Emery. Ester oils from pentaerythritol and the “isostearic acid” as the sole acid component are solid substances at room temperature.
  • At least 22 equivalent% of the 4 primary alcoholic hydroxyl groups present in the pentaerthritol molecule should be esterified with "isostearic acid” and likewise at least 22 equivalent% of hydroxyl groups with cyclohexylcarboxylic acid, but at most 80 equivalent% of the 4 hydroxyl groups with the "isostearic acid” / Cyclohexylcarboxylic acid mixture may be implemented.
  • the molar ratio "isostearic acid” to cyclohexylcarboxylic acid in the finished ester may vary between 1.0: 1.0 and 1.0: 2.1.
  • a third acid component of the pentaerythritol esters according to the invention are aliphatic saturated, preferably straight-chain monocarboxylic acids which contain 6-16 carbon atoms. It is preferred that all the hydroxyl groups present in the pentaerythritol be esterified as completely as possible, but the hydroxyl number of the finished ester oil may vary within a range of 0-8 mgKOH / g.
  • Pentaerythritol can be used in both pure and technical quality.
  • the “isostearic acid” is a mixture of weakly branched saturated monocarboxylic acids, such as the name “Unimac 5680" is commercially available.
  • the cyclohexylcarboxylic acid is used in pure form or with a low content of benzoic acid for the preparation of the esters according to the invention.
  • Examples of other suitable aliphatic saturated monocarboxylic acids are caproic acid, oenanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid and palmitic acid.
  • the esterification reaction for the preparation of the esters according to the invention is carried out in bulk or with an azeotrope-forming solvent at temperatures of 50-260, preferably 140-220 ° C. under inert gas.
  • inert gas nitrogen, carbon dioxide or noble gases can be used as the inert gas.
  • Compounds such as organic sulfonic acids, sulfuric acid, phosphoric acid, their acidic salts such as hydrogen sulfates and dihydrogen phosphates, phosphonic acid esters or dialkyltin oxides can be used in catalytic amounts in the reaction. 0.8 to 1.3, preferably 1-1.2 equivalents of acid groups are used per equivalent of OH groups.
  • Aromatic hydrocarbons such as benzene, toluene, xylene, chlorobenzene or halogen-containing hydrocarbons such as carbon tetrachloride or chloroform are suitable as azeotropic solvents.
  • the mixture is esterified either gradually, using the less volatile monocarboxylic acids first, then adding a small excess of the volatile monocarboxylic acids after reaching an acid number of ⁇ 5 mg KOH / g and bringing the reaction to an end, or by reacting pentaerythritol together with all the monocarboxylic acid components until the final acid number of the ester oil derived from the excess amount of monocarboxylic acids.
  • Solvents, excess acid and catalyst are removed by suitable operations such as filtration, high vacuum distillation, stripping, thin-layer evaporation and treatment with alkali or methanol.
  • esters according to the invention can be used as a base oil for the production of liquid or paste-like lubricants. They are also suitable for blending with other synthetic or mineral base lubricating oils.
  • ester oils according to the invention are notable for high flash points and low evaporation losses with higher basic viscosities than for comparison esters, but also for very high viscosity indices, as the following examples show:
  • Comparative Example 4 shows that the replacement of the isostearic acid with another aliphatic monocarboxylic acid with 18 carbon atoms leads to a significantly higher pour point and thus to significantly poorer flow properties of the oils.
  • the oils according to the invention are less degraded with the elimination of liquid constituents than, for example, pentaerythritol tetra (2-hexyl) decanoate, a state of the art according to DT-OS 2 302 918 corresponding oil, as the following table shows:
  • Table 2 shows the comparison of the properties of the two pentaerythritol esters A and B with the largest total carbon number from the Journal of Chemical and Engineering Data 7, 547 ff. (1962) and the ester oil according to the invention of the example.
  • esters A and B known from the literature do not expect that the use of fatty acids with 10 or more carbon atoms, which is necessary to increase the total carbon number, results in esters with pour points of -10 ° C. and viscosity indices greater than 130.
  • Replacing the pelargonic acid in ester B with a mixture of caproic acid and myristic acid (ester A) leads to an increase in the pour point to values above ° C.
  • Esters of 10 carbon atoms more and a C 1s fatty acid, bound has a viscosity index value of almost 150 and a pour point around -10 ° C.
  • Comparative Examples 2 and 3 show that similarly composed ester oils with less than 47 or more than 5 carbon atoms per molecule no longer result in the combination of a good pour point and a high viscosity index, like the oil according to the invention.
  • the comparison oil 2 with an average of 45 carbon atoms / molecule has a low pour point, but its viscosity index of 109 is significantly lower than that of the comparison oil 3 and the oil according to the invention.
  • Oil 3 which contains an average of 53 carbon atoms per molecule has only a VI of 129 (20 units lower than the oil according to the invention) and is also in the pour point between -10 and 0 ° C. and thus higher than in the oil according to the invention.
  • the preparation is carried out analogously to Comparative Example 1, starting from 163.2 g of pentaerythritol, 307.2 g of cyclohexane carboxylic acid, 340.8 g of "isostearic acid” and 23 g of tri-n-butyl phosphate with a reaction time of 20 h in the first stage, addition of 336 g of lauric acid and a reaction time of 6 h in the second stage. After extraction with methanol and final distillation, the final acid number is 0.1 and the yield is 859 g.
  • the preparation is carried out analogously to Example 1, starting from 108.8 g of pentaerythritol, 245.8 g of cyclohexane carboxylic acid, 159.0 g of "isostearic acid” and 10 g of tri-n-butyl phosphate with a reaction time of 10 h in the first stage, adding 176.0 g lauric acid and a reaction time of 6 h in the second stage. After extraction with methanol and final distillation, the final acid number is 0.3; the yield is 560 g.
  • the preparation is carried out analogously to Example 1, starting from 136 g of pentaerythritol and 256 g of cyclo hexane carboxylic acid, 284 g stearic acid and 4.5 g dibutyltin oxide in the first step with a reaction time of 6 h, addition of 240 g lauric acid and a reaction time of 4 h in the second step.
  • the final acid number after extraction with dilute sodium hydroxide solution is approximately 0.5, the yield 690 g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • Die vorliegende Anmeldung betrifft Carbonsäureester des Pentaerythrits und deren Verwendung in Schmiermitteln.
  • Die Anforderungen, die die Technik an Schmiermittel stellt, sind in der jüngeren Zeit derart gestiegen, daß sie in vielen Fällen von Mineralölschmiermitteln nicht mehr erfüllt werden können. Zur Schmierung von Maschinenelementen und Motoren, in welchen das Schmiermittel besonders beansprucht wird, z.B. in Turbinenmotoren der Luftfahrt, verwendet man daher synthetische Schmierstoffe. Dies sind vor allem Carbonsäureester.
  • Schmieröle auf der Basis von Carbonsäureestern übertreffen im allgemeinen Mineralöle gleicher Grundviskositäten in höheren Flammpunkten, geringerer Flüchtigkeit und einer besseren Viskositäts-Temperatur-Charakteristik (gemesser durch den Viskositätsindex, "V.I."). zur Schmierung von Maschinenelementen, welche Betriebstemperaturen größer als 170°C unterworfen werden, benötigt man Schmieröle, deren Basisöle sich durch einen Grundviskosität von mehr als 10 mm2/s bei 100°C, geringe Flüchtigkeit, hohe Viskositätsindices ("VI-Werte"), Stockpunkte under 0°C und sehr hohe Flammpunkte auszeichnen. Es besteht daher ein Bedürfnis, Esteröle bereitzustellen, welche allen diesen Anforderungen weitgehend entsprechen.
  • Sogenannte "Komplexester", welche als Veresterungskomponenten neben Diolen/Polyolen auch Monoalkohole, Dicarbonsäuren und/oder Monocarbonsäuren enthalten, sind bekannt. Sie gestatten es zwar, Esteröle, erhöhter Grundviskosität bereitzustellen, jedoch ist dem Fachmann geläufig, daß ihre Herstellung erschwert ist, infolge der nach der Veresterungsreaktion verbleibenden Anteile an Säure bzw. an Partialestern der Dicarbonsäuren, die nur schwierig durch Raffination oder Destillation entfernt werden können.
  • Die Verwendung von bevorzugt in a-Stellung zur Carboxylgruppe verzweigten Carbonsäuren mit 14 bis 22 Kohlenstoffatomen pro Molekül als einzigen Carbonsäurekomponenten wird DE-OS 2302918 ebenfalls zur Herstellung hoherviskoser Esteröle vorgeschlagen, doch sind die zugrunde gelegten Monocarbonsäuren nicht auf einfache Weise erhältlich und erfordern zusätzliche Syntheseschritte. Unter stark oxydativen Bedingungen zeigen solche Öle immer noch merkliche Verdampfungsverluste. Diese Öle erreichen auch nicht ganz die geforderten hohen Viskositätsindexwerte von über 140.
  • Aus ASLE-Trans. 14 (1971), S. 163-169 ist ein Pentaerythritester-Schmieröl bekannt, das 2-Ethylhexan- und Isostearinsäure im Molverhältnis von 1:3 enthält. Der angegebene Stockpunkt beträgt -45°C, der Viskositätsindex jedoch nur 133 und liegt somit ebenfalls unter 140. In der DE-OS 2 528 526 werden Schmierölformulierungen für Gasturbinen und Düsentriebwerke auf Basis von Pentaerythrit- bzw. Trimethylolpropanestern von 2-18, bevorzugt jedoch 5-10 Kohlenstoffatome enthaltenden gesättigten Monocarbonsäuren beschrieben. Als Beispiel für solche Monocarbonsäuren wird u.a. auch die Cyclohexylcarbonsäure erwähnt, Trimethylolund Pentaerythritester der Cyclohexylcarbonsäure werden ausführlich im J. of Chem. and Eng. Data 7, 547 ff. (1962) beschrieben. Aus den dort aufgeführten Daten geht hervor, daß Pentaerythritester mit 1-2 Mol Cyclohexylcarbonsäure pro Mol Ester bis etwa zu einer Gesamtkohlenstoffzahl des Säureanteils der Ester von 32 tiefe Stockpunkte aufweisen. Das Viskositäts-TemperaturVerhalten dieser Ester hängt von der Anzahl der pro Molekül Ester enthaltenen Moleküle Cyclohexylcarbonsäure ab. So liegen die Viskositätsindices der 1 Mol Cyclohexylcarbonsäure enthaltenden Pentaerythritester in den genannten Beispielen zwischen 118 und 129, die VI's der 2 Mol Cyclohexylcarbonsäure pro Estermolekül enthaltenden Ester nur zwischen 88 und 90.
  • Eine weitere Erhöhung der Gesamtkohlenstoffzahl des Säure anteils dieser Ester auf etwa 34 wirkt sich je nach der Art der verwendeten Monocarbonsäuren unterschiedlich auf die schmiertechnischen Kennzahlen aus. Die Verwendung nur einer mittelkettigen Fettsäure (Cs) neben der Cyclohexylsäure ergibt ein Öl mit einem Stockpunkt von -20°C und einem VI von 127, während der Einsatz eines Gemisches von 1 Mol Tetradecansäure mit 1 Mol Cyclohexylcarbonsäure und 2 mol Hexansäure ein Esteröl . mit einem Stockpunkt von +4°C und einem VI von 129 erzeugt. Eine weitere Erhöhung der Gesamtkohlenstoffzahl des Säureanteils der Pentaerythritester um 4 auf 38 und mehr läßt dagegen keine Ester mit Stockpunkten unter 0°C mehr erwarten, da z.B. schon der Übergang von Pentaerythrit-tetraheptanoat zu Pentaerythrit-tetra-octanoat den Stockpunkt von -32°C auf +4°C ansteigen läßt. Auch ist kein wesentlicher Anstieg des VI mehr zu erwarten.
  • Überraschenderweise wurde nur gefunden, daß Esteröle mit hohem Viskositätsindex und geringer Flüchtigkeit aus gut zugänglichen Rohstoffen erhalten werden auf Basis von Pentaerythritestern der "isostearinsäure", der Cyclohexylcarbonsäure und weiteren aliphatischen, gesättigten C6―C16-Monocarbonsäuren, wenn die Gesamtzahl der Kohlenstoffatome pro Molekül Pentaerythritester zwischen 47 und 51 liegt und mindestens je 22 Äquivalent-% der im Pentaerythrit vorliegenden alkoholischen Hydroxylgruppen mit "Isostearinsäure" und Cyclohexylcarbonsäure verestert werden.
  • "Isostearinsäure" ist ein Gemische schwach methylverzweigter C18-Fettsäuren, das z.B. die 16-Methylheptadecansäure enthält, wie sie in der Firmenschrift "Unem 5680" von Unilever-Emery beschrieben wird. Esteröle aus Pentaerythrit und der "Isostearinsäure" als alleiniger Säurekomponente sind bei Raumtemperatur feste Substanzen.
  • Gegenstand der Erfindung sind Esteröle aus
    • a) Pentaerythrit,
    • b) Cyclohexylcarbonsäure,
    • c) "Isostearinsäure" und
    • d) mindestens einer weiteren gesättigten aliphatischen Monocarbonsäure mit 6-16 Kohlenstoffatomen,

    dadurch gekennzeichnet, daß die Gesamtzahl der Kohlenstoffatome pro Estermolekül 47-51 beträgt, wobei 22-54 Äquivalent-% der im Pentaerythrit vorhandenen alkoholischen Hydroxylgruppen mit Cyclohexylcarbonsäure, 22-40 Äquivalent-% mit "Isostearinsäure" und 20-56 Äquivalent% mit C6--C1,-Monocarbonsäuren verestert sind und der Ester mindesters eine der "Isostearinsäure" äquivalente Menge an Cyclohexylcarbonsäure in veresterter Form enthält.
  • Es war überraschend und nicht vorherzusehen, daß gewisse Pentaerythritester, welche pro Molekül Tetraester im Mittel 47-51 Kohlenstoffatome enthalten und die durch Veresterung mit einem Gemisch aus "Isostearinsäure", Cyclohexylcarbonsäure und weitern aliphatischen, gesättigten C6―C16-Monocarbonsäuren erhalten werden, nicht nur Stockpunkte deutlich unter 0°C aufweisen, sondern auch die bekannten Pentaerythrit - Cyclohexylcarbonsäureester im Viskositäts-Temperatur-Verhalten eindeutig übertreffen.
  • Erfindungsgemäß sollen mindestens 22 Aquivalent-% der im Pentaerthrit-Molekül vorhandenen 4 primären alkoholischen Hydroxylgruppen mit "Isostearinsäure" und ebenfalls mindestens 22 Äquivalent-% Hydroxylgruppen mit Cyclohexylcarbonsäure verestert sein, wobei jedoch höchstens 80 Äquivalent-% der 4 Hydroxylgruppen mit dem "Isostearinsäure" / Cyclohexylcarbonsäure - Gemisch umgesetzt werden dürfen. Das Molverhältnis "Isostearinsäure" zu Cyclohexylcarbonsäure im fertigen Ester darf zwischen 1,0:1,0 und 1,0:2,1 variieren. Ein dritter Säurebestandteil der erfindungsgemäßen Pentaerythritester sind aliphatische gesättigte, bevorzugt geradkettige Monocarbonsäuren, welche 6-16 Kohlenstoffatomen enthalten. Bevorzugt wird eine möglichst vollständige Veresterung aller im Pentaerythrit vorhandenen Hydroxylgruppen, jedoch darf die Hydroxylzahl des fertigen Esteröls innerhalb eines Bereichs von 0-8 mgKOH/g variieren.
  • Pentaerythrit kann sowohl in der reinen als auch in der technischen Qualität eingesetzt werden.
  • Die "Isostearinsäure" ist ein Gemisch schwach verzweigter gesättigter Monocarbonsaüren, wie es z.B. unter der Bezeichnung
    "Unimac 5680" im Handel erhältlich ist.
  • Die Cyclohexylcarbonsäure wird in reiner Form oder mit einem geringen Gehalt an Benzoesäure zur Herstellung der erfindungsgemmäßen Ester verwendet.
  • Beispiele für weitere geeignete aliphatische gesättigte Monocarbonsäuren sind Capronsäure, Önanthsäure, Caprylsäure, Pelargonsäure, Caprinsäure, Undecansäure, Laurinsäure, Tridecansäure, Myristinsäure, Pentadecansäure und Palmitinsäure.
  • Die Veresterungsreaktion zur Herstellung der erfindungsgemäßen Ester erfolgt in Substanz oder mit einem Azeotrop bildenden Lösemittel bei Temperaturen von 50-260, bevorzugt von 140-220°C unter Inertgas. Als Intertgas können beispielsweise Stickstoff, Kohlendioxid oder Edelgase zur Anwendung kommen. Als Katalysator können bei der Umsetzung Verbindungen wie organische Sulfonsäuren, Schwefelsäure, Phosphorsäure, deren saure Salze wie Hydrogensulfate und Dihydrogenphosphate, Phosphonsäureester oder Dialkylzinnoxide in katalytischen Mengen eingesetzt werden. Pro Äquivalent OH-Gruppen werden 0,8 bis 1,3, bevorzugt 1-1,2 Äquivalente an Saüregruppen eingesetzt. Als Azeotrope bildende Lösungsmittel kommen aromatische Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Chlorbenzol oder halogenhaltige Kohlenwasserstoffe wie Tetrachlorkohlenstoff oder Chloroform in Frage.
  • Man verestert entweder stufenweise, indem man die weniger flüchtigen Monocarbonsäuren zuerst einsetzt, dann nach Erreichen einer Säurezahl <5 mg KOH/g die flüchtigen Monocarbonsäuren in kleinem Überschuß zugibt und die Reaktion zu Ende bringt oder indem man Pentaerythrit zusammen mit allen Monocarbonsäurekomponenten umsetzt, bis sich die aus der Überschußmenge der Monocarbonsäuren ableitende End-Säurezahl des Esteröls ergibt.
  • Lösungsmittel, uiberschüssige Säure und Katalysator werden durch geeignete Operationen wie Filtration, Hochvakuumdestillation, Strippen, Dünnschichtverdampfen und Behandlung mit Alkali oder Methanol entfernt.
  • Die erfindungsgemäßen Ester können als Basisöl zur Herstellung flüssiger oder pastenartiger Schiermittel verwendet werden. Sie sind ebenfalls für Abmischungen mit anderen synthetischen oder mineralischen Basisschmierölen geeignet.
  • Die erfindungsgemäßen Esteröle zeichnen sich durch hohe Flammpunkte und niedrige Verdampfungsverluste bei gegenüber Vergleichsestern erhöhten Grundviskositäten, aber auch durch sehr hohe Viskositätsindices aus, wie die folgende Beispiels zeigen:
  • Vergleichsbeispiel 1
  • Ester aus Pentaerythrit/Laurinsäure/2-Äthyl- hexansäure, Mol-Verhältnis 1:2:2
    • Gesamtzahl der C-Atome: 45
    • kinem. Viskosität bei 50°C: 29,0 mm2/s; bei 100°C; 7,0 mm2/s;
    • Verdampfungsverlust (nach 100 h/200°C in offener Prozellanschale): 15,4%
    • Stockpunkt: -8°C
    • Flammpunkt: 265°C
    • Viskositätsindex-Ext.: 124
    Beispiel
  • Ester aus Pentaerythrit/Isostearinsäure/Cyclohexylcarbonsäure/Laurinsäure
    • Mol.-Verh. 1:1:2:1
    • Gesamtzahl der C-Atome: 49 kinem. Viskosität bei 50°C: 79,4 mm2/s; bei 100°C: 16.7 mm2/s;
    • Verdampfungsverlust nach 100 h/200°C in offener Prozellanschale): 5,1%
    • Stockpunkt: -10°C
    • Flammpunkt: >300°C
    • Viskosität-Ext.: 149
    Vergleichsbeispiel 2
  • Ester aus Pentaerythrit/Isostearinsäure/Cyclohexylcarbonsäure/Laurinsäure
    • Mol.-Verh. 1:0,7:2,4:0,9
    • Gesamtzahl der C-Atome: 45,2 (Mittelwert) kinem. Viskosität bei 50°C: 109,8 mm2/s; bei 100°C: 18,15 mm2/s;
    • Stockpunkt: -22 bis -23°C
    • Flammpunkt: 278°C
    • Viskositätsindex-Ext.: 109
    Vergleichsbeispiel 3
  • Ester aus Pentaerythrit/Isostearinsäure/Cyclohexylcarbonsäure/Laurinsäure
    • Mol.-Verh. 1:1,2:1,4:1,4
    • Gesamtzahl der C-Atome: 53,2 (Mittelwert) kinem. Viskosität bei 50°C: 69,15 mm2/s; bei 100°C: 13,92 mm2/s;
    • Stockpunkt: -4 bis -5°C
    • Flammpunkt: 274°C
    • Viskositätsindex-Ent.: 129
    Vergleichsbeispiel 4
  • Ester aus Pentraerythrit/Stearinsäure/Cyclohexylcarbonsäure/Laurinsäure;
    • Mol.-Verh. = 1:1:2:1
    • Gesamtzahl der C-Atome: 49
    • Stockpunkt: +32°C
  • Das Vergleichsbeispiel 4 zeigt, daß der Ersatz der Isostearinsäure durch eine andere aliphatische Monocarbonsäure mit 18 Kohlenstoffatomen zu einem deutlich höheren Stockpunkt und damit zu wesentlich schlechteren Fließeigenschaften der Öle führt.
  • Under oxydativen Bedingungen und hohen Temperaturen, beispielsweise im Alterungstest nach IP 48/DIN 51352 werden die erfindungsgemäßen Öle weniger unter Abspaltung flüssiger Bestandteile abgebaut als z.B. Pentaerythrit-tetra-(2-hexyl)-decanoat, einem dem Stand der Technik gemäß DT-OS 2 302 918 entsprechenden Öl, wie die folgende Tabelle zeigt:
    Figure imgb0001
  • Die folgende Tabelle 2 zeigt die Gegenüberstellung der Eigenschaften der zwei Pentaerythritester A und B mit der größen Gesamtkohlenstoffzahl aus dem Journal of Chemical and Engineering Data 7, 547 ff. (1962) und des erfindungsgemäßen Esteröls des Beispiels.
    Figure imgb0002
  • Wie diese Tabelle zeigt, lassen die aus der Literatur bekannten Ester A und B nicht erwarten, daß eine zur Erhöhung des Gesamtkohlenstoffzahl notwendige Mitverwendung von Fettsäuren mit 10 oder mehr Kohlenstoffatomen Ester mit Stockpunkten um -10°C und Viskositätsindices größer als 130 ergibt. So führt der Ersatz der Pelargonsäure im Ester B durch ein Gemisch von Capronsäure und Myristinsäure (Ester A) zu einer Erhöhung des Stockpunktes auf Werte über °C. Demgegenüber weist der erfindungsgemäße. Ester der 10 Kohlenstoffatome mehr und eine C1s-Fettsäure, gebunden enthält, einen Viskositätsindexwert von fast 150 und einen Stockpunkt um -10°C auf.
  • Die Vergleichsbeispiel 2 und 3 zeigen, daß ähnlich zusammengesetzte Esteröle mit weniger als 47 bzw. mehr als 5 Kohlenstoffatomen pro Molekül nicht mehr die Kombination aus gutem Stockpunkt und hohem Viskositatsindex ergeben, wie das erfindungsgemäße Öl. Das Vergleichsöl 2 mit durchschnittlich 45 C-Atomen/Molekül weist zwar einen tiefen Stockpunkt auf, jedoch liegt sein Viskositätsindex mit 109 wesentlich niedriger als der des Vergleichsöles 3 und des erfindungsgemäßen Öls. Das Öl 3, welches durchschnittlich 53 C-Atome pro Molekül enthält, besitzt nur einen VI von 129 (um 20 Einheiten tiefer als das erfindungsgemäße Öl) und liegt auch im Stockpunkt zwischen -10 und 0°C und damit höher als im erfindungsgemäßen Öl.
  • Herstellungsvorschriften Vergleichsbeispiel 1
  • 204 g Pentaerythrit werden zusammen mit 600 g Laurinsäure und 26 g Tri-n-butylphosphat in 100 ml Xylol 10 h am Wasserabscheider unter Rckfluß gekocht. Nach dieser Zeit ist die Säurezahl unter 4 mg KOH/g abgesunken. Nach Zugabe von 475 g 2-Äthylhexansäure und einer Reaktionszeit von etwa 50 h ist die Veresterungsreaktion beendet. Das Reaktionsgemisch wird zunächst im Wasserstrahlvakuum von Xylol befreit, danach zur Entfernung der überschüssigen Säure mit 10%iger Natronlauge extrahiert, mit Wasser neutral gewaschen und abschließend destilliert.
  • End-Säurezahl <0,1 mg KOH/g. Ausbeute 823 g.
  • Beispiel
  • Die Herstellung erfolgt analog dem Vergleichsbeispiel 1, ausgehend von 163,2 g Pentaerythrit, 307,2 g Cyclohexancarbonsäure, 340,8 g "Isostearinsäure" und 23 g Tri-n-butylphosphat mit einer Reaktionsdauer von 20 h in der ersten Stufe, Zugabe von 336 g Laurinsäure und einer Reaktionsdauer von 6 h in der zweiten Stufe. Nach Extraktion mit Methanol und abschließender Destillation beträgt die End- säurezahl 0,1, die Ausbeute 859 g.
  • Vergleichsbeispiel 2
  • Die Herstellung erfolgt analog dem Beispiel 1, ausgehend von 108,8 g Pentaerythrit, 245,8 g Cyclohexancarbonsäure, 159,0 g "Isostearinsäure" und 10 g Tri-n-butylphosphat mit einer Reaktionszeit von 10 h in der ersten Stufe, Zugabe von 176,0 g Laurinsäure und einer Reaktionsdauer von 6 h in der zweiten Stufe. Nach Extraktion mit Methanol und abschließender Destillation ist die Endsäurezahl 0,3; die Ausbeute beträgt 560 g.
  • Vergliechsbeispiel 3
  • Herstellung analog Vergliechsbeispiel 2 aus 108,8 g Pentaerythrit, 143,4 g Cyclohexancarbonsäure, 272,6 g "isostearinsäure" und 10 g Tri-n-butylphosphat mit einer Reaktionszeit von 4 h in der ersten Stufe, Zugabe von 246,4 g Laurinsäure und einer Reaktionsdauer von 6 h in der zweiten Stufe. End-Säurezahl 0,2; Ausbeute; 671 g.
  • Vergleichsbeispiel 4
  • Die Herstellung erfolgt analog Beispiel 1, ausgehend von 136 g Pentaerythrit, 256 g Cyclohexancarbonsäure, 284 g Stearinsäure und 4,5 g Dibutylzinnoxid in der ersten Stufe mit einer Reaktionsdauer von 6 h, Zugabe von 240 g Laurinsäure und einer Reaktionsdauer von 4 h in der zweiten Stufe. Die End-Säurezahl nach Extraktion mit verdünnter Natronlauge beträgt ca. 0,5, die Ausbeute 690 g.

Claims (3)

1. Esteröle aus
a) Pentaerythrit,
b) Cyclohexylcarbonsäure,
c) "Isostearinsäure, und
d) mindestens einer weiteren gesättigten aliphatischen Monocarbonsäure mit 6-16 Kohlenstoffatomen,
dadurch gekennzeichnet, daß die Gesamtzahl der Kohlenstoffatome pro Estermolekül 47-51 beträgt, wobei 22-54 Äquivalent-% der im Pentaerythrit vorhandenen alkoholischen Hydroxylgruppen mit Cyclohexylcarbonsäure, 22-40 Äquivalent-% mit "Isostearinsäure" und 20-56 Äquivalent-% mit C6―C16-Monocarbonsäuren verestert sind und der Ester mindestens eine der "Isostearinsäure" äquivalente Menge Cyclohexylcarbonsäure in veresterter Form enthält.
2. Verwendung der Ester nach Anspruch 1 als Basisschmieröl.
3. Verwendung der Ester nach Anspruch 1 in Mischungen mit anderen synthetischen oder mineralischen Schmierstoffen.
EP78101731A 1977-12-29 1978-12-16 Carbonsäureester des Pentaerythrits und deren Verwendung als Basisschmieröl Expired EP0003032B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19772758780 DE2758780A1 (de) 1977-12-29 1977-12-29 Carbonsaeureester des pentaerythrits
DE2758780 1977-12-29

Publications (2)

Publication Number Publication Date
EP0003032A1 EP0003032A1 (de) 1979-07-25
EP0003032B1 true EP0003032B1 (de) 1980-09-17

Family

ID=6027672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78101731A Expired EP0003032B1 (de) 1977-12-29 1978-12-16 Carbonsäureester des Pentaerythrits und deren Verwendung als Basisschmieröl

Country Status (4)

Country Link
US (1) US4212816A (de)
EP (1) EP0003032B1 (de)
JP (1) JPS5496667A (de)
DE (2) DE2758780A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1132602A (en) * 1979-09-10 1982-09-28 Pier P. Rossi Esters of polyvalent alcohols, process for preparing them and their use as lubricating oils
US4313890A (en) * 1980-01-29 1982-02-02 Union Carbide Corporation Polyol ester functional fluids
US4477383A (en) * 1982-05-05 1984-10-16 National Distillers And Chemical Corporation Di- and tripentaerythritol esters of isostearic acid
JPH0631365B2 (ja) * 1985-12-27 1994-04-27 東燃株式会社 トラクシヨン流体
JPH0774350B2 (ja) * 1986-06-02 1995-08-09 東燃料株式会社 合成トラクシヨンフル−ド
US5259978A (en) * 1987-07-23 1993-11-09 Toa Nenryo Kogyo, K.K. Traction fluid composition comprising a cyclohexyl diester and branched poly-α-olefin
JPS62177099A (ja) * 1987-07-30 1987-08-03 Toa Nenryo Kogyo Kk トラクシヨン用フル−ド
JPH01299891A (ja) * 1988-05-26 1989-12-04 Asahi Glass Co Ltd チェーン用潤滑油組成物
US5080834A (en) * 1990-10-18 1992-01-14 Lce Partnership Branched ether esters as viscosity index modifiers
WO1993024585A1 (en) 1992-06-03 1993-12-09 Henkel Corporation Polyol ester lubricants for refrigerant heat transfer fluids
US5976399A (en) 1992-06-03 1999-11-02 Henkel Corporation Blended polyol ester lubricants for refrigerant heat transfer fluids
ATE194641T1 (de) * 1992-06-03 2000-07-15 Henkel Corp Polyolester als schmiermittel für hochtemperatur- kältekompressoren
ATE184310T1 (de) * 1992-06-03 1999-09-15 Henkel Corp Polyol/ester-gemisch als schmiermittel für wärmeträgerflüssigkeiten in kälteanlagen
US6183662B1 (en) 1992-06-03 2001-02-06 Henkel Corporation Polyol ester lubricants, especially those compatible with mineral oils, for refrigerating compressors operating at high temperatures
JP2613526B2 (ja) * 1992-07-04 1997-05-28 花王株式会社 冷凍機作動流体用組成物
US5318711A (en) * 1993-01-21 1994-06-07 Quaker Chemical Corporation Method for lubricating metal-metal contact systems in metalworking operations with cyclohexyl esters
AU699190B2 (en) * 1994-05-23 1998-11-26 Henkel Corporation Increasing the electrical resistivity of ester lubricants, especially for use with hydrofluorocarbon refrigerants
US20010019120A1 (en) 1999-06-09 2001-09-06 Nicolas E. Schnur Method of improving performance of refrigerant systems
US6884761B2 (en) * 2001-12-18 2005-04-26 Bp Corporation North America Inc. High temperature stable lubricant mixed polyol ester composition containing an aromatic carboxylic acid and method for making the same
US7166491B2 (en) * 2003-06-11 2007-01-23 Fry's Metals, Inc. Thermoplastic fluxing underfill composition and method
FR2917615B1 (fr) * 2007-06-21 2009-10-02 Oreal Composition cosmetique comprenant deux polyesters.
EP3556829B1 (de) * 2016-12-13 2022-02-23 Kao Corporation Schmierstoffgrundöl und schmierstoffzusammensetzung mit dem schmierstoffgrundöl
JP2018095840A (ja) * 2016-12-13 2018-06-21 花王株式会社 潤滑油基油、および該潤滑油基油を含有する潤滑油組成物
JP7216563B2 (ja) * 2019-02-12 2023-02-01 花王株式会社 グリース基油、および該グリース基油を含有するグリース組成物
CN111848403A (zh) * 2019-04-26 2020-10-30 南京纽邦生物科技有限公司 一种季戊四醇四异硬脂酸酯的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2991297A (en) * 1958-07-02 1961-07-04 Celanese Corp Process for preparing synthetic lubricants
FR95543E (fr) * 1966-03-28 1971-01-22 Nyco Sa Composition a base d'esters synthétiques utilisable notamment comme fluide de transmission hydraulique.
US3476685A (en) * 1967-05-08 1969-11-04 Texaco Inc Synthetic lubricating composition
US4053491A (en) * 1973-01-22 1977-10-11 Henkel Kommanditgesellschaft Auf Aktien Branched-chain aliphatic ester oils
FR2254633B1 (de) * 1973-12-12 1976-10-08 Inst Francais Du Petrole

Also Published As

Publication number Publication date
US4212816A (en) 1980-07-15
JPS5496667A (en) 1979-07-31
DE2758780A1 (de) 1979-07-12
EP0003032A1 (de) 1979-07-25
DE2860183D1 (en) 1980-12-18

Similar Documents

Publication Publication Date Title
EP0003032B1 (de) Carbonsäureester des Pentaerythrits und deren Verwendung als Basisschmieröl
DE2713440A1 (de) Carbonsaeureester, deren herstellung und verwendung als basisschmieroel
DE3643935C2 (de) Synthetische Polyolester
WO1996018598A1 (de) Synthetische ester aus alkoholen und fettsäuregemischen aus ölsäurereichen, stearinsäurearmen pflanzenölen
DE1281422B (de) Verfahren zur Herstellung von als Hochleistungsschmiermittel dienenden Veresterungsprodukten des Pentaerythrits mit Gemischen gesaettigter Fettsaeuren
WO1991003531A1 (de) Neues basisöl für die schmierstoffindustrie
DE2057196A1 (de) Verbesserte Schmiermittelmassen
DE2520459B2 (de) Carbonsäureestergemische und deren Verwendung ab Schmiermittel
WO1995002659A1 (de) Grundöl auf triglyceridbasis für hydrauliköle
DE2656079A1 (de) Estergemische mit schmiermittelwirkung
DE1197869B (de) Verfahren zur Herstellung von als Schmiermittel dienenden Estern der Pivalinsaeure
EP0706992A1 (de) Biologisch abbaubare, als Schmierstoff geeignete Oligoester
DE60002224T2 (de) Brennstoffzusammensetzung
EP2146950A1 (de) Oxidationsstabile carbonsäureester und deren verwendung
EP0011797A1 (de) Backtrennöl-Komponente
DE3033694A1 (de) Ester von polyvalenten alkoholen, verfahren zu ihrer herstellung und ihre verwendung als oder in schmieroelen
EP0014308A2 (de) Biologisch abbaubare, oxidationsstabile, flüssige Estergemische mit niedrigen Trübungspunkten und deren Herstellung
EP3255128B1 (de) Komplexester und ihre verwendung
DE1444852A1 (de) Schmiermittelzusammensetzung
DE976185C (de) Synthetisches Schmieroel
DE2144252C3 (de) Verfahren zur Herstellung von synthetischen Esterölen und ihre Verwendung
AT397509B (de) Zusatzstoff für mineralöle und mineralölprodukte, speziell elektroisolieröle
EP0600966B1 (de) Verwendung von isopalmitinsäureestern als schmiermittel für zweitaktmotoren
DE2339149A1 (de) Neue w/o-emulgatoren fuer kosmetische zubereitungen
DE2426925A1 (de) Neue schmiermittelkompositionen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 2860183

Country of ref document: DE

Date of ref document: 19801218

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: UNILEVER N.V.

Effective date: 19810529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19821231

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19831202

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19831230

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19840701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19840720

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO