DE2718878B2 - Verfahren zur Herstellung von 1,2-Dichloräthan durch Oxychlorierung von Äthylen - Google Patents

Verfahren zur Herstellung von 1,2-Dichloräthan durch Oxychlorierung von Äthylen

Info

Publication number
DE2718878B2
DE2718878B2 DE19772718878 DE2718878A DE2718878B2 DE 2718878 B2 DE2718878 B2 DE 2718878B2 DE 19772718878 DE19772718878 DE 19772718878 DE 2718878 A DE2718878 A DE 2718878A DE 2718878 B2 DE2718878 B2 DE 2718878B2
Authority
DE
Germany
Prior art keywords
dichloroethane
ethylene
gas
oxygen
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19772718878
Other languages
English (en)
Other versions
DE2718878C3 (de
DE2718878A1 (de
Inventor
Ernst Dipl.-Ing. 5302 Bornheim Hoeller
Guenter Dipl.-Chem. Dr. 5040 Bruehl Legutke
Guenther 5042 Erftstadt Liesenfelder
Gerhard Dipl.- Chem. Dr. Rechmeier
Harald Dipl.-Chem. Dr. 5042 Erftstadt Scholz
Kurt 5040 Bruehl Schuchardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Priority to DE19772718878 priority Critical patent/DE2718878C3/de
Priority to ES468300A priority patent/ES468300A1/es
Priority to GB13516/78A priority patent/GB1575883A/en
Priority to CA300,922A priority patent/CA1114402A/en
Priority to BE186934A priority patent/BE866157A/xx
Priority to DD78204927A priority patent/DD136832A5/de
Priority to US05/898,711 priority patent/US4310713A/en
Priority to NL7804406A priority patent/NL7804406A/xx
Priority to BR7802608A priority patent/BR7802608A/pt
Priority to IT49063/78A priority patent/IT1105401B/it
Priority to MX173264A priority patent/MX147525A/es
Priority to NO781489A priority patent/NO151821C/no
Priority to SE7804878A priority patent/SE442745B/sv
Priority to JP5071978A priority patent/JPS549207A/ja
Priority to CS782731A priority patent/CS207608B2/cs
Priority to FR7812841A priority patent/FR2388784A1/fr
Publication of DE2718878A1 publication Critical patent/DE2718878A1/de
Publication of DE2718878B2 publication Critical patent/DE2718878B2/de
Application granted granted Critical
Publication of DE2718878C3 publication Critical patent/DE2718878C3/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/152Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons
    • C07C17/156Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons of unsaturated hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

55
50
Die bekannte Oxychlorierung erfolgt nach der Reaktionsgleichung
2 C2H4+ O2+ 4 HCI - 2 CH2Cl-CH2Cl + 2 H2O.
Die DE-AS 16 18 701 beschreibt bereits ein derartiges Verfahren, bei dem 1,6 bis 2,5 Mol Äthylen mit 2,0 Mol Chlorwasserstoff und 0,6 bis 1,0 Mol Sauerstoff in Gegenwart von 0,5 bis 3,0 Mol Kohlenmonoxid an einem Kupfer-Aluminiumoxid-Katalysator umgesetzt eo werden, an dem gleichzeitig ein Teil des CO zu CO2 oxidiert wird.
Nach der Kondensation der Reaktionsprodukte müssen die nichtumgesetzten Ausgangsstoffe zur Erhaltung der Wirtschaftlichkeit im Kreislauf geführt werden. Für die Aufrechterhaltung der Wirbelbettschicht ist ein konstanter CO-Spiegel im Kreislaufgas erforderlich, der über dem besonders hergestellten Katalysator durch Oxidation von CO zu CO2 und Entfernung des Kohlendioxids durch eine Wäsche mit Natronlauge erreicht wird.
Nachteilig ist bei jenem Verfahren die Einhaltung besonderer Sicherheitsvorkehrungen bei der Zugabe des reinen Sauerstoffs zwecks Vermeidung spontaner Zersetzungen infolge des hohen Gehaltes an Äthylen und Kohlenmonoxid. Weiterhin ist es nachteilig, daB das durch Oxidation gebildete Kohlendioxid aus dem Kreislaufgas ausgewaschen werden muß. Anschließend müssen Dichloräthan und andere chlorierte Kohlenwasserstoffe in gesonderten Verfahren aus dem Waschwasser entfernt werden.
In der DE-AS 15 18 930 ist ein Verfahren beschrieben, bei dem Äthylen, Sauerstoff und Chlorwasserstoff im Molverhältnis (etwa 1,02 bis etwa 1,2): (0,5 bis 1,0): 2,0 bei 200 bis 250°C und 0,7 bis 34 bar Oberdruck an einem CuCVAlÄ-Katalysator im Wirbelbett umgesetzt werden. Bei dem unter gleichen Bedingungen arbeitenden Verfahren der DE-AS 1518 931 werden die Reaktionsgase unter Druck in einer 1. Kondensationsstufe auf 70 bis 1000C und in einer 2. Kondensationsstufe auf 0 bis 40° C abgekühlt Aus den nicht kondensierbaren Gasanteilen wird schließlich gemäß dem unter den gleichen Bedingungen arbeitenden Verfahren der DE-AS 15 18932 restliches U-Dichloräthan mit einem organischen Lösemittel herausgewaschen, aus dem in einer Fraktionierkolonne 1,2-Dichloräthan abgetrennt wird. Die gewaschenen Gase, die erfahrungsgemäß immer noch Anteile chlorierter Kohlenwasserstoffe und das organische Lösemittel enthalten, werden entweder verbrannt oder direkt ins Freie geleitet Gemäß DE-AS 15 18 931 und 15 18 932 kann als Katalysatorträger statt A12O3 auch Siliciumdioxid, Kieselgur, Fullererde oder Ton eingesetzt werden.
Die Menge des Abgases ist bei dem bevorzugten Einsatz von Luft als Sauerstoffträger so groß und der Gehalt an brennbaren Verbindungen so klein, daß Fremdheizmittel, z. B. Heizöl, aufgewendet werden müssen, um die für die Verbrennung erforderliche Temperatur einzuhalten.
Eine direkte Ableitung der Abgase ins Freie ist angesichts des Gehaltes an chlorierten und anderen Kohlenwasserstoffen, z. B. Lösemittel, aufgrund bestehender Gesetze heute kaum noch zu verwirklichen.
Neben diesen Schwierigkeiten bei der Handhabung so großer Abgasmengen treten zwangsweise auch Verluste an Äthylen, Dichloräthan und organischen Lösemitteln auf.
Schließlich beschreibt die DE-OS 26 26133 ein zyklisches Verfahren zur Herstellung von 1,2-Dichloräthan durch Oxychlorierung von Äthylen, bei dem 80 bis 98 Volumen% der nicht kondensierbaren Gase ohne Wäsche im Kreislauf geführt werden. Das Kreislaufgas enthält je etwa 0,1 bis 10 Volumen% Äthylen und Sauerstoff und weniger als 20 Volumen0/) 1,2-Dichloräthan. 2 bis 20 Volumen0/) des Kreislaufgases werden jeweils aus dem System ausgeschleust. Die Reaktionsgase werden nacheinander in einem Kühlturm auf 82 bis 121°C, in einem 1. Kondensator auf 32 bis 490C und in einem 2. Kondensator auf 27 bis 38° C gekühlt um Dichloräthan und Wasser im wesentlichen daraus zu entfernen. Als Oxidationsgas wird bei diesem Verfahren im wesentlichen reiner Sauerstoff verwendet.
Die Sauerstoffzugabe erfolgt beim Verfahren der DE-OS 26 26 133 mit dem Strom der Ausgangsstoffe unmittelbar in die Reaktionszone und stellt damit ein Sicherheitsrisiko dar, da ein Zusammentreffen von im
wesentlichen reinem Sauerstoff und Äthylen kaum zu vermeiden ist Die Zugabe von im wesentlichen reinem Sauerstoff zum Kreislaufgas vor dem Reaktor ist bei der im Beispiel der DE-OS 26 26 133 angegebenen Gaszusammensetzung des Kreislaufgases von s
1,7 VoL-% Kohlenmonoxid
1,9 VoL-% Äthylen
5-6 VoL-% 1,2-Dichloräthan
auch nicht möglich, denn dieses Gemisch läge innerhalb der Explosionsgrenze, die bei z. B. 21 VoL-% Sauerstoff etwa 4VoL-% als Summe der 3 brennbaren Gase beträgt Aus diesen niedrigen Explosionsgrenzen der 3 Stoffe Äthylen, Kohlenmonoxid und 1,2-Dichloräthan ergeben sich erhebliche Schwierigkeiten, die wohl auch der Grund dafür sind, daß alle bisherigen Kreislaufgasverfahren technisch keine Bedeutung erlangt haben.
Gegenstand der Erfindung ist somit das im vorstehenden Patentanspruch aufgezeigte Verfahren zur Herstellung von 1,2-Dichloräthan durch Oxychlorierung.
Das molare Verhältnis der Ausgangsgase Äthylen zu Sauerstoff zu Chlorwasserstoff beträgt vorzugsweise (1,02 bis 1,20): (0,5 bis 1,0): 2. Die Umsetzung wird vorzugsweise bei einem Druck von 0,7 bis 3,5 bar durchgeführt Derselbe Druckbereich ist dann auch bei den drei Kondensationsstufen wirksam. Als Katalysator kann beispielsweise der in der DE-AS 15 18 932 beschriebene CuCb/AI2O3-Katalysator verwendet werden. Das Kreislaufgas wird weder mit einem organischen Lösemittel noch mit Natronlauge gewaschen, sondern direkt in den Reaktor zurückgeleitet
Für das Verfahren der Erfindung ist es von entscheidender Wichtigkeit, daß der Gehalt an Äthylen und Kohlenmonoxid im Kreislaufgas niedrig gehalten wird, denn die bei der Oxychlorierung auftretenden Gasgemische sind explosiv, sofern die Summe von Äthylen, Kohlenmonoxid und 1,2-Dichloräthan etwa 4 Volumen% bei 21 Volumen% Sauerstoff beträgt. Es ist daher erforderlich, das Verfahren nahe am stöchiometrischen Verhältnis von Äthylen zu Sauerstoff zu betreiben. 1,2-Dichloräthan im Kreislaufgas steigert den Äthylenumsatz im Reaktor, ohne daß die Verbrennung von Äthylen zu CO und CO2 zunimmt Dies bedeutet, daß weiteres Äthylen zu 1,2-Dichloräthan umgesetzt wird. Doch stellt 1,2-Dichloräthan eine Belastung der Explosionsgrenze dar, da die Summe aller 3 Stoffe je nach Sauerstoffgehalt 3 bis 6 Volumen% nicht übersteigen darf.
Der verwendete CuCl2/Al2O3-KataIysator oxidiert CO zu CO2 unter den angegebenen Reaktionsbedingungen, so daß sich der CO-Gehalt des Kreislaufgases bald auf einen konstanten Gehalt von 0,5 bis 2,5 Volumen% einstellt. Kohlendioxid kann im Gegensatz zu DE-AS 16 18 701 im Kreislauf geführt werden, ohne daß die Wirksamkeit des Katalysators dadurch beeinträchtigt wird.
Für die Aufarbeitung der nicht kondensierbaren Gase sind schon verschiedene Vorschläge gemacht worden. So wurde z. B. beschrieben, das Gas kctalytisch zu verbrennen und Chlorwasserstoff wiederzugewinnen, oder es mit Chlor weiterzubehandeln und 1,2-Dichloräthan zu gewinnen, oder es als Gesamtmenge über eine Absorptionsanlage zu führen und die Reste von Kohlenwasserstoffen herauszuholen, oder es mit einem organischen Lösemittel zu waschen und anschließend zu verbrennen. Alle diese Verfahren sind sehr aufwendig.
Nach dem Verfahren gemäß der Erfindung brauchen aus dem Kreislaufgas zur Mengeneinhaltung nur die Mengen CO und CO2 entfernt zu werden, die durch Verbrennung von Äthylen bei jedem Durchgang durch den Wirbelbettreaktor neu entstehen. Diese Abgasmenge entspricht 1 bis 10 Volumen% der Menge des Kreislaufgases. Um die bei dieser Menge noch auftretenden geringen Verluste zu vermeiden, kann dieses Abgas über Absorptionsmittel, z. B. Aktivkohle, geleitet werden, wobei das bei der Wiederbelebung der Aktivkohle anfallende Wasser-Kohlenwasserstoff-Gemisch dem in der 2. Kondensationsstufe anfallenden Kondensat zugesetzt werden kann. Man kann aber auch die geringe Menge an Abgas über eine Verbrennungsanlage leiten.
Ein weiterer Vorteil des Verfahrens liegt darin, daß es erlaubt mit der Menge an Sauerstoff, der ergänzt wird, die Katalysatorleistung zu variieren. Bei gleichbleibender Kreislaufgasmenge und damit Aufrechterhaltung des Katalysatorwirbelbettes kann die Frischzugabe an Sauerstoff so weit verändert werden, daß 10 bis 100% der Raum-Zeit-Ausbeute einstellbar sind. Diese Möglichkeit erlaubt es, Reaktoren in diesem weiten Bereich zu benutzen.
Gemäß dem Verfahren der Erfindung werden Ausbeuten an 1,2-Dichloräthan erreicht, die, bezogen auf eingesetztes Äthylen, um den Betrag höher liegen, der bisher im Abgas verbrannt wurde. Es treten Verbesserungen um 2,5 bis 5% d. Th. ein. Die Ausbeute, bezogen auf eingesetzten Chlorwasserstoff, liegt bei 98 bis i 00% d. Th.
Anhand der Zeichnung sei das Verfahren gemäß der Erfindung näher erläutert Über Leitung 1 und Vorwärmer 2 wird Äthylen gleichzeitig mit Chlorwasserstoff über Leitung 3 und Vorwärmer 4 dem Wirbelbettreaktor 7 zugeführt Über Leitung 5 und Vorwärmer 6 wird Luft in den Reaktor 7 geleitet. Im Reaktor 7 befindet sich ein Kupfer(II)-chlorid Katalysator. Die Oxychlorierung ist exotherm, die Temperatur wird durch einen Heißwasserkreislauf z. B. auf 220 bis 235° C gehalten. Der Druck im gesamten System beträgt dabei 3 bar. Über einen Zyklon gelangt das Gas über Leitung 8 in die erste Kondensationsstufe 9, wo das Gas mit Reaktionswasser aus Trennbehälter 12 über Pumpe 17 und Leitung 18 auf etwa 8O0C gekühlt wird. Dabei kondensieren nichtverbrauchter Chlorwasserstoff und die größte Menge an Reaktionswasser. Über Leitung 10 und Kühler 11 (2. Kondensationsstufe) wird das Gas auf etwa 40°C gekühlt. 1,2-Dichloräthan und restliches Wasser kondensieren und werden im Trenngefäß 12 grob getrennt Das Wasser wird zur Kondensationsstufe 9 zurückgeführt und über Leitung 26 zur Aufarbeitung abgezogen. Rohdichloräthan wird aus dem Trenngefäß 12 über Leitung 15 und Pumpe 16 zur Reinigungsstufe abgezogen. Die nicht kondensierten Gasanteile werden im Kühler 13 (3. Kondensationsstufe) so weit auf eine zwischen 5 und 18°C liegende Temperatur gekühlt, daß 0,5 bis 3 Volumen% 1,2-Dichloräthan im Gas verbleiben. Im Abscheider 14 wird nachkondensiertes 1,2-Dichloräthan aufgefangen und zum Trenngefäß 12 zurückgeleitet. Das verbleibende Gas wird über Leitung 20, Kompressor 21, Leitung 22, Vorheizer 24 und Leitung 25 zum Reaktor 7 zurückgeführt. Vorher wird dem Kreislaufgas in Leitung 22 über Leitung 23 so viel Sauerstoff unter intensiver Durchmischung zugeführt, daß die Gesamtmenge O2 im Kreislaufgas einen zwischen 12 und 25 Volumen% liegenden gewünschten Wert annimmt. Die Gaszusammensetzung wird nach der Sauerstoffzugabe vor dem Reaktor laufend analytisch überwacht, um das Auftreten zündfähiger
Gemische im Kreislaufgas zu vermeiden. Nach Erreichen der notwendigen Gasmenge wird die Zuführung von Luft über Leitung 5 eingeschränkt, d. h. es wird nur noch so viel Luft zugeführt, daß der Stickstoffgehalt im System in etwa konstant bleibt. Zur Konstanthaltung der Gasmengen wird über Leitung 19 die Menge an Gas abgenommen, die der Verbrennung von Äthylen zu CO und CO2 entspricht, und in an sich bekannter Weise aufgearbeitet.
In den nachfolgenden Beispielen 1 bis 5 sind alle Ergebnisse in einem Wirbelbettreaktor mit einem Innendurchmesser von 3,0 m und einer Gesamthöhe von 29,9 m erzielt worden. Als Katalysator wurde Kupfer(II)-chlorid, aufgetragen auf Aluminiumoxid, mit etwa 4 Gewichts-% Kupfer eingesetzt. Die Katalysatormenge betrug im Durchschnitt 48 700 kg.
Beispiel 1
(gemäß dem Stand der Technik;
Betriebsweise bei einmaligem Gasdurchgang
mit Luft als Sauerstoffträger)
Äthylen und Chlorwasserstoff werden im Molverhältnis 1:1,9 getrennt auf 145 bis 1500C erwärmt und dann gemeinsam dem Verteilerboden des Reaktors zugeführt Gleichzeitig wird Luft auf 150 bis 160° C vorgewärmt und unterhalb des Reaktorbodens eingeleitet. Im Reaktor liegen Äthylen, Chlorwasserstoff und Sauerstoff im Molverhältnis 1:1,9 :0,6 vor und setzen sich hauptsächlich zu 1,2-Dichloräthan unter Wärmeentwicklung um. Die frei werdende Wärme wird in bekannter Weise mit Hochdruckwasserkühlung unter Dampfgewinnung abgeführt Die Temperatur im Reaktor ist 223°C, der Druck 3 bar. Durch 2stufige Kondensation (1. Stufe 900C; 2. Stufe 10°C) wird 1,2-Dichloräthan abgeschieden. Das nicht kondensierbare Gas wird über eine Absorptionswäsche mit aromatischen Kohlenwasserstoffen als Absorptionsmittel geleitet und einer Verbrennungsanlage zugeführt. Hinter der Wäsche hatte das Gas folgende Zusammensetzung:
Sauerstoff
Stickstoff
Kohlenmonoxid
Kohlendioxid
1,2-Dichloräthan
Äthylen
Aromatische Kohlenwasserstoffe
9 Volumen%
87,75 Volumen%
0,5 Volumen%
1,5 Volumen°/o
50bisl00ppm
1,2 Volumen%
20 ppm
Da dieses Gas nur einen geringen Heizwert hat, muß seine Verbrennungstemperatur durch Fremdheizmittel, z. B. Heizöl, erreicht werden.
Das Absorptionsmittel wird in einer getrennten Desorptionsanlage von den gelösten Kohlenwasserstoffen befreit Das Absorptionsmittel wird wieder der Wäsche aufgegeben, die desorbierten Kohlenwasserstoffe werden in die 2. Kondensationsstufe zurückgeführt
Der Äthylenumsatz beträgt 95,9%, die Kontaktleistung 255 g 1,2-Dichloräthan/kg Katalysator und Stunde. Die Ausbeute an 1,2-Dichloräthan liegt bei 92,1% d Th, berechnet auf eingesetztes Äthylen.
Die Beispiele 2 bis 5 sind Beispiele gemäß der Erfindung.
Beispiel 2
Äthylen, Chlorwasserstoff und Luft werden wie irr Beispiel 1 dem Reaktor zugegeben. Nach der erster Reaktorfüllung wird anstelle der Zufuhr von Luft da; nicht kondensierbare Reaktionsgas, ohne über eine Absorptionswäsche geleitet zu werden, auf 5,5 bai komprimiert und mit reinem Sauerstoffgas auf einer Sauerstoffgehalt von 21 Vol.-% aufkonzentriert. Nacl Vorheizung auf 150 bis 1600C wird es unter den Verteilerboden dem Reaktor zugegeben. Die Abfüh rung der Reaktionswärme und die Kondensatiot erfolgen wie im Beispiel 1, jedoch wird das Reaktions gas in der 2. Kondensationsstufe auf 37 bis 40° C und ii der 3. .Kondensationsstufe auf 7°C abgekühlt.
Vor der Sauerstoffzugabe hat das Kreislaufgai folgende Zusammensetzung in Volumen%:
Sauerstoff 10,3
Stickstoff 32,20
Kohlenmonoxid 2,5
Kohlendioxid 52,5
1,2-Dichloräthan 0,81
Äthylen 0,62
Sonstige organische Bestandteile <l,00
Da nur geringe Mengen dieses Gases ausgeschleus werden, beträgt der Äthylenumsatz 99,81%. Zui Ausschleusung gelangen nur die Gasmengen, die durcr Verbrennung von Äthylen zu Kohlenmonoxid unc Kohlendioxid entstehen.
Die Ausbeute an 1,2-Dichloräthan beträgt 96,48°/< d. Th, bezogen auf den Äthyleneinsatz. Die Kontaktlei stung liegt bei 280 g/kg Katalysator und Stunde.
Beispiel 3
Äthylen, Chlorwasserstoff und Luft werden wie irr Beispiel 2 dem Reaktor zugeführt Die Sauerstoffzugabe erfolgt so weit, daß das Kreislaufgas nur auf 16,5 Volumen % Sauerstoff angereichert wird.
Die Kontaktleistung beträgt 166 g 1,2-Dichlor äthan/kg Katalysator und Stunde.
Der Äthylenumsatz liegt bei 99,78% und die Ausbeute an 1,2-Dichloräthan bei 96,52% d.Th, bezogen auf der Äthyleneinsatz.
Das Kreislaufgas hat vor der Sauerstoffzugabi folgende Zusammensetzung in Volumen%:
Sauerstoff 10,5
Stickstoff 54,9
Kohlenmonoxid 2,2
Kohlendioxid 30,0
1,2-Dichloräthan 0,8
Äthylen 0,6
Sonstige organische Bestandteile <l,0
Beispiel 4
Wird bei sonst gleichen Arbeitsbedingungen wie ir den Beispielen 2 und 3 die Sauerstoffanreichening des Kreislaufgases nur auf 13,0 Volumen% durchgeführt dann sinkt bei gleicher Katalysatormenge und gleichet Kreislaufgasmenge die Katalysatorleistung auf 84 g 1,2-Dichloräthan/kg Katalysator und Stunde ab.
Der Umsatz und auch die Ausbeute sind kaurr verändert Der Äthylenumsatz beträgt 99,71%, die Ausbeute an 1,2-Dichloräthan 96,49% dTh, bezoger auf den Äthyleneinsatz. Das Kreislaufgas hat vor dei Sauerstoffzugabe folgende Zusammensetzung in VoIumen%:
Sauerstoff
Stickstoff
Kohlenmonoxid
Kohlendioxid
1,2-Dichloräthan
Äthylen
Sonstige organische Bestandteile
11 Sauerstoff 10,3
69,60 Stickstoff 32,00
1,72 Kohlenmonoxid 2,40
15,3 Kohlendioxid 52,00
0,79 5 1,2-Dichloräthan 1,20
0,6 Äthylen 0,38
< 1,0 Sonstige organische Bestandteile < 1,0
Beispiel 5
Man arbeitet wie im Beispiel 2 mit einer Sauerstoffanreicherung auf 21 Volumen% im Kreislaufgas. In der 3. Kondensationsstufe wird das Reaktionsgas auf 140C gekühlt (Druck: 3 bar), so daß das Kreislaufgas vor der Sauerstoffzugabe folgende Zusammensetzung in VoIumen°/o hat:
Tabelle
Der Äthylenumsatz beträgt 99,86%, die Ausbeute an
ίο 1,2-Dichloräthan, bezogen auf den Äthyleneinsatz,
96,62% d. Th. Ohne daß die Verbrennung von Äthylen
zugenommen hat (siehe Tabelle), ist der Äthylenanteil
im Kreislaufgas zurückgegangen.
Die Katalysatorleistung beträgt 280 g 1,2-Dichlor-15 äthan/kg Katalysator und Stunde.
Das über Leitung 19 ausgeschleuste Gas wird zur Wiedergewinnung von 1,2-Dichioräthan über ein Aktivkohlefilter geleitet.
Beispiel Nr. 1,2-Dichloräthan-
Ausbeute, bezogen
auf eingesetztes
Äthylen
Äthylenumsatz Katalysatorleistung
(g 1,2-Dichlor-
äthan/kg
Katalysator und
Stunde
Verbrennung von
C2H4 zu CO und
CO2
1,2-Dichloräthan
hinter letzter
Kondensations
stufe
(% d. Th.) (%) (Gewichts%) (Volumen0/.)
1 92,1 95,9 255 3,3 0,9
2 96,48 99,81 280 3,3 0,81
3 96,52 99,78 166 3,26 0,80
4 96,49 99,71 84 3,27 0,79
5 96,62 99,86 280 3,24 1,20
Hierzu 1 Blatt Zeichnungen

Claims (1)

  1. Patentanspruch:
    Verfahren zur Herstellung von 1,2-Dichloräthan durch
    a) Oxychlorierung von Äthylen mit Chlorwasserstoff und einem molekularen Sauerstoff enthaltenden Gas, vorzugsweise Luft, in der Gasphase bei Temperaturen von 200 bis 2500C in Gegenwart eines aus Kupfer(H)-chlorid auf einem Träger bestehenden Katalysators im Wirbelbett,
    b) Abkühlung der Reaktionsgase unter Druck in einer 1. Kondensationsstufe auf 70 bis 100°C,
    c) desgleichen in einer 2. Kondensationsstufe auf 0 bis 400C,
    d) Abziehen von auskondensiertem 1,2-Dichloräthar. und Wasser, überwiegende Kreislaufführung der nichtumgesetzten Ausgangsgase und Inertgase, dadurch gekennzeichnet, daB man
    e) die Reaktionsgase in der 2. Kondensationsstufe auf 37 bis 40° C und
    f) anschließend an das unter d) genannte Abziehen des 1,2-Dichloräthans, in einer 3. Kondensa- tionsstufe unter Druck nur soweit auf eine zwischen 5 und 18° C liegende Temperatur abkühlt, daß noch 0,5 bis 3 Volumen0/), vorzugsweise 0,5 bis 1,5 Volumen%, 1,2-Dichloräthan im Kreislaufgas verbleiben,
    g) den verbrauchten Sauerstoff durch Zuleiten reinen Sauerstoffs direkt zum Kreislaufgas vor dem Reaktor bis zu einem Gehalt von 12 bis 25 Volumen0/», vorzugsweise 15 bis 21 Volumen0/), ergänzt, und aus dem Kreislaufgas nur die Mengen CO und CO2 entfernt, die durch Verbrennung von Äthylen bei jedem Durchgang durch den Wirbelbettreaktor neu entstehen, und
    h) den Gesamtgehalt des Kreislaufgases an Äthylen, 1,2-Dichloräthan und Kohlenmonoxid auf Werte unterhalb der, je nach Sauerstoffgehalt, zwischen 3 und 6 Volumen0/) liegenden unteren Explosionsgrenze einstellt, indem man die Ausgangsstoffe Äthylen und Sauerstoff in etwa stöchiometrischem Molverhältnis einsetzt.
DE19772718878 1977-04-28 1977-04-28 Verfahren zur Herstellung von 1,2-Dichloräthan durch Oxychlorierung von Äthylen Expired DE2718878C3 (de)

Priority Applications (16)

Application Number Priority Date Filing Date Title
DE19772718878 DE2718878C3 (de) 1977-04-28 1977-04-28 Verfahren zur Herstellung von 1,2-Dichloräthan durch Oxychlorierung von Äthylen
ES468300A ES468300A1 (es) 1977-04-28 1978-03-28 Procedimiento para la preparacion de 1,2-dicloroetano.
GB13516/78A GB1575883A (en) 1977-04-28 1978-04-06 Production of 1,2-dichloroethane
CA300,922A CA1114402A (en) 1977-04-28 1978-04-11 Production of 1,2-dichloroethane
BE186934A BE866157A (fr) 1977-04-28 1978-04-19 Procede de preparation du 1,2-dichlorethane
DD78204927A DD136832A5 (de) 1977-04-28 1978-04-20 Verfahren zur herstellung von 1,2-dichloraethan
US05/898,711 US4310713A (en) 1977-04-28 1978-04-24 Production of 1,2-dichloroethane
NL7804406A NL7804406A (nl) 1977-04-28 1978-04-25 Werkwijze voor de bereiding van 1.2-dichloorethaan.
BR7802608A BR7802608A (pt) 1977-04-28 1978-04-26 Processo para a preparacao de 1,2-di-cloroetano
IT49063/78A IT1105401B (it) 1977-04-28 1978-04-26 Procedimento ed impianto per produrre 1/2-di-cloroetano
MX173264A MX147525A (es) 1977-04-28 1978-04-27 Procedimiento mejorado para la obtencion de 1,2-dicloroetano
NO781489A NO151821C (no) 1977-04-28 1978-04-27 Fremgangsmaate til fremstilling av 1,2-diklor-etan ved oksyklorering av etylen
SE7804878A SE442745B (sv) 1977-04-28 1978-04-27 Forfarande for framstellning av 1,2-dikloretan
JP5071978A JPS549207A (en) 1977-04-28 1978-04-27 Process for preparing 1*22dichloro ethane
CS782731A CS207608B2 (en) 1977-04-28 1978-04-27 Method of making the 1,2-dichlorethan
FR7812841A FR2388784A1 (fr) 1977-04-28 1978-04-28 Procede de preparation du 1,2-dichlorethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19772718878 DE2718878C3 (de) 1977-04-28 1977-04-28 Verfahren zur Herstellung von 1,2-Dichloräthan durch Oxychlorierung von Äthylen

Publications (3)

Publication Number Publication Date
DE2718878A1 DE2718878A1 (de) 1978-11-09
DE2718878B2 true DE2718878B2 (de) 1979-07-26
DE2718878C3 DE2718878C3 (de) 1980-03-27

Family

ID=6007486

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19772718878 Expired DE2718878C3 (de) 1977-04-28 1977-04-28 Verfahren zur Herstellung von 1,2-Dichloräthan durch Oxychlorierung von Äthylen

Country Status (2)

Country Link
BE (1) BE866157A (de)
DE (1) DE2718878C3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2819308A1 (de) * 1978-05-02 1979-11-15 Hoechst Ag Verfahren zur herstellung von 1,2-dichloraethan

Also Published As

Publication number Publication date
DE2718878C3 (de) 1980-03-27
DE2718878A1 (de) 1978-11-09
BE866157A (fr) 1978-10-19

Similar Documents

Publication Publication Date Title
DE2426640C2 (de) Verfahren zur Herstellung von Allylchlorid
EP0005176B1 (de) Verfahren zur Herstellung von 1,2-Dichloräthan
DE2536286A1 (de) Verfahren zur gewinnung von 1,2- dichloraethan
DE3604968A1 (de) Verfahren zur herstellung von dichlorethan
DE3226042C2 (de)
DE2718878C3 (de) Verfahren zur Herstellung von 1,2-Dichloräthan durch Oxychlorierung von Äthylen
DE3044854A1 (de) &#34;verfahren zur herstellung von 1,2-dichlorethan&#34;
DE2742409C3 (de) Verfahren zur Herstellung von 1,2 Dichloräthan
DE1018853B (de) Verfahren zur Herstellung von 1, 1, 1-Trifluor-2-brom-2-chloraethan
DE2629775B2 (de) Verfahren zur Herstellung von Brom-(chlor)-fluorkohienwasserstoffen
DE2800153A1 (de) Verfahren zur herstellung von methylisocyanat
DE2127485C3 (de) Verfahren zur Herstellung von 1,1,1-Trichloräthan
DE1793051C3 (de) Verfahren zur Aufarbeitung der bei der Herstellung von 1,2-Dichloräthan durch Oxychlorierung von Äthylen anfallenden Umsetzungsgemische
DE3620069A1 (de) Verfahren zur beseitigung von dimethylether in methylchlorid
DE2608465A1 (de) Verfahren zur herstellung von brom
EP0034762B1 (de) Verfahren zur Gewinnung von Malonsäuredinitril
DE2449563A1 (de) Verfahren zur herstellung von aethylendichlorid und/oder vinylchlorid
DE2336497A1 (de) Chlorierung von aethan und/oder aethylen
DE2151546B2 (de) Verfahren zum Nutzbarmachen der bei der Herstellung von C tief 1 - und/ oder C tief 2 -Chlorkohlenwasserstoffen anfallenden schweren Rückstände
DE1468807C3 (de) Verfahren zur kontinuierlichen Herstellung chlorierter Äthylenderivate
AT276323B (de) Verfahren zur Herstellung von Vinylchlorid und 1,2-Dichloräthan enthaltenden Gemischen
DE2026671C (de) Verfahren zur Herstellung von 1,1,1-Trichloräthan durch Photochlorierung von 1,1-Dichloräthan
DE2401412C3 (de) Verfahren zur Herstellung von Chlorcyan und Chlorwasserstoff
DE2145975A1 (de) Verfahren zur kontinuierlichen herstellung von vinylidenfluorid
DE1793316A1 (de) Verfahren zur Herstellung polychlorierter AEthane

Legal Events

Date Code Title Description
OAP Request for examination filed
OD Request for examination
C3 Grant after two publication steps (3rd publication)