DE112012001158B4 - Mosfet mit ausgesparter Kanaldünnschicht und abrupten Übergängen - Google Patents
Mosfet mit ausgesparter Kanaldünnschicht und abrupten Übergängen Download PDFInfo
- Publication number
- DE112012001158B4 DE112012001158B4 DE112012001158.9T DE112012001158T DE112012001158B4 DE 112012001158 B4 DE112012001158 B4 DE 112012001158B4 DE 112012001158 T DE112012001158 T DE 112012001158T DE 112012001158 B4 DE112012001158 B4 DE 112012001158B4
- Authority
- DE
- Germany
- Prior art keywords
- soi
- channel
- soi layer
- source
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007704 transition Effects 0.000 title claims description 44
- 239000010409 thin film Substances 0.000 title abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 45
- 238000000151 deposition Methods 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 238000005530 etching Methods 0.000 claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 110
- 239000000758 substrate Substances 0.000 claims description 70
- 239000002019 doping agent Substances 0.000 claims description 39
- 125000006850 spacer group Chemical group 0.000 claims description 26
- 239000012212 insulator Substances 0.000 claims description 20
- 239000010408 film Substances 0.000 abstract description 41
- 230000008569 process Effects 0.000 description 48
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 19
- 229910052710 silicon Inorganic materials 0.000 description 19
- 239000010703 silicon Substances 0.000 description 19
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 17
- 239000004065 semiconductor Substances 0.000 description 15
- 238000011065 in-situ storage Methods 0.000 description 14
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 11
- 238000011066 ex-situ storage Methods 0.000 description 11
- 230000008021 deposition Effects 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 238000005468 ion implantation Methods 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000005465 channeling Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910020175 SiOH Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- AXQKVSDUCKWEKE-UHFFFAOYSA-N [C].[Ge].[Si] Chemical compound [C].[Ge].[Si] AXQKVSDUCKWEKE-UHFFFAOYSA-N 0.000 description 2
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 2
- AUEPDNOBDJYBBK-UHFFFAOYSA-N [Si].[C-]#[O+] Chemical compound [Si].[C-]#[O+] AUEPDNOBDJYBBK-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000002052 molecular layer Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 238000001289 rapid thermal chemical vapour deposition Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000000038 ultrahigh vacuum chemical vapour deposition Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000295146 Gallionellaceae Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- XWCMFHPRATWWFO-UHFFFAOYSA-N [O-2].[Ta+5].[Sc+3].[O-2].[O-2].[O-2] Chemical compound [O-2].[Ta+5].[Sc+3].[O-2].[O-2].[O-2] XWCMFHPRATWWFO-UHFFFAOYSA-N 0.000 description 1
- CEPICIBPGDWCRU-UHFFFAOYSA-N [Si].[Hf] Chemical compound [Si].[Hf] CEPICIBPGDWCRU-UHFFFAOYSA-N 0.000 description 1
- ILCYGSITMBHYNK-UHFFFAOYSA-N [Si]=O.[Hf] Chemical compound [Si]=O.[Hf] ILCYGSITMBHYNK-UHFFFAOYSA-N 0.000 description 1
- INQLNSVYIFCUML-QZTLEVGFSA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2r,3s,4r,5r)-5-(4-carbamoyl-1,3-thiazol-2-yl)-3,4-dihydroxyoxolan-2-yl]methyl hydrogen phosphate Chemical compound NC(=O)C1=CSC([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=N1 INQLNSVYIFCUML-QZTLEVGFSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- VKJLWXGJGDEGSO-UHFFFAOYSA-N barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Ba+2] VKJLWXGJGDEGSO-UHFFFAOYSA-N 0.000 description 1
- 210000000746 body region Anatomy 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000000224 chemical solution deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- BABWHSBPEIVBBZ-UHFFFAOYSA-N diazete Chemical compound C1=CN=N1 BABWHSBPEIVBBZ-UHFFFAOYSA-N 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000007737 ion beam deposition Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- JQJCSZOEVBFDKO-UHFFFAOYSA-N lead zinc Chemical compound [Zn].[Pb] JQJCSZOEVBFDKO-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- UVGLBOPDEUYYCS-UHFFFAOYSA-N silicon zirconium Chemical compound [Si].[Zr] UVGLBOPDEUYYCS-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- CZXRMHUWVGPWRM-UHFFFAOYSA-N strontium;barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Ti+4].[Sr+2].[Ba+2] CZXRMHUWVGPWRM-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- -1 tungsten nitride Chemical class 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/84—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
- H01L29/4236—Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66613—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
- H01L29/66621—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66613—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
- H01L29/66628—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66651—Lateral single gate silicon transistors with a single crystalline channel formed on the silicon substrate after insulating device isolation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
- H01L29/66772—Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
- H01L29/1054—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66545—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66553—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using inside spacers, permanent or not
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
- HINTERGRUND DER ERFINDUNG
- Gebiet der Erfindung
- Die vorliegende Erfindung betrifft allgemein Metalloxid-Halbleiter-Feldeffekttransistoren (MOSFETs), die auf Halbleiter-auf-Isolator(Semiconductor-on-Insulator, SOI)-Substraten hergestellt werden. Insbesondere betrifft die Erfindung MOSFETs mit einer ausgesparten Kanaldünnschicht in einer SOI-Schicht. Die ausgesparte Kanaldünnschicht bildet einen abrupten Übergang.
- Beschreibung des Standes der Technik
- Die Patentschrift
US 7 041 538 B2 , erteilt am 9. Mai 2006 an leong u.a., beschreibt eine Hochleistungs-CMOS-Einheit auf einem SOI-Substrat mit einer Gate-Zone, die in eine SOI-Schicht hinein ausgespart ist, und durch Ionenimplantation erzeugten Source/Drain-Zonen mit Halo- und Erweiterungsimplantationen. - Die Patentschrift
US 6 939 751 B2 , erteilt am 6. September 2005 an Zhu u.a., beschreibt Feldeffekteinheiten mit erhöhter Source/Drain-Zone und mit einem Kanal, der in eine Siliciumgermanium-Dünnschicht hinein ausgespart ist, die sich über einer SOI-Schicht befindet. - Die Patentschrift
US 7 652 332 B2 , erteilt am 26. Januar 2010 an Cartier u.a., beschreibt einen Transistor auf äußerst dünnem Silicium-auf-Isolator mit erhöhter Source/Drain-Zone, einem Oxid hoher Dielektrizitätskonstante (High-k-Oxid) und einer Metall-Gate-Zone. - Die Patentschrift
US 7 429 769 B2 , erteilt am 30. September 2008 an Diaz u.a., beschreibt einen Feldeffekttransistor (FET) mit ausgespartem Kanal. - In einer Abhandlung des Titels „Extremely Thin SOI (ETSOI) CMOS with Record Low Variability for Low Power System-on-Chip Applications,“ von K. Cheng u.a., veröffentlicht auf dem 2009 IEEE International Electron Device Meeting, 7. bis 9. Dezember 2009, wird ein Verfahren zur Herstellung von CMOS-Transistoren auf ETSOI-Substraten offenbart.
- In einer Abhandlung des Titels „Ultra-thin SOI replacement gate CMOS with ALD TaN/high-k gate stack,“ von B. Doris u.a. auf dem IEEE VLSI-TSA International Symposium on VLSI Technology, 25. bis 27. April 2005, wird eine Einheit offenbart, die unter Verwendung eines Ersatz-Gate-Substrats auf einem ETSOI-Substrat hergestellt wird.
- In einer Abhandlung von B. Doris u.a. des Titels „FD SOI for Low Power CMOS“, 2009, abrufbar unter http://www.soiconsortium.org/pdf/fullydepletedsoi/FD%20S01%20for%20Low%20Po wer%20CMOS.pdf, wird eine Zusammenfassung von Herausforderungen für die Leistung von Einheiten und möglichen Lösungen gegeben. Einige mögliche Lösungen umfassen verschiedene Einheiten, die unter Verwendung von ETSOI-Substraten hergestellt werden.
- In einer Abhandlung des Titels „CMOS Transitions to 22 and 15 nm“ von D. Lammers, veröffentlicht am 1. Januar 2010 in Semiconductor International, werden Einheitsstrukturen und mögliche Herstellungsverfahren für FETs bei Grundabmessungen von nicht mehr als 22 nm beschrieben. Mögliche Einheiten umfassen planare MOSFETs auf ETSOI-Substraten.
- In einer Abhandlung des Titels „Tri-Gate Transistor Architecture with High-k Gate Dielectrics, Metal Gates and Strain Engineering“ von J. Kavalieros u.a., abrufbar unter http://download.intel.com/technology/silicon/tri-gate_paper-VLSI_0606.pdf, beschreiben die Autoren einen nicht planaren MOSFET auf SOI mit ausgesparten Source- und Drain-Zonen.
- Die Schrift
US 6 509 234 B1 beschreibt ein Verfahren zum Bilden eines vollständig verarmten SOI-Feldeffekttransistors. Das Verfahren umfasst ein Bilden einer T-förmigen Gateelektrode, die zumindest teilweise in einer Aussparung gebildet ist, die in einer Schicht aus Halbleitermaterial und über einem Körpergebiet gebildet ist, das zwischen einer Source und einem Drain angeordnet ist. Das Verfahren umfasst ein Beabstanden der Gate-Elektrode von dem Körper durch ein Gate-Dielektrikum, das aus einem High-K-Material hergestellt ist. - In der Schrift
US 2003 / 0 168 700 A1 ist eine Halbleitervorrichtung dargestellt, die eine Halbleiterschicht auf einer Isolierschicht, eine Gateelektrode, die auf der Halbleiterschicht mit einem dazwischen gebildeten Gateisolierfilm gebildet ist, einen Source/Drain-Bereich, der auf der Halbleiterschicht auf beiden Seiten der Gateelektrode gebildet ist, und einen Halbleiterbereich umfasst, der in der Isolierschicht in einem Bereich unterhalb der Gateelektrode vergraben ist. - Aus der Schrift
US 2007 / 0 298 561 A1 ist ein Verfahren zur Herstellung einer integrierten BiCMOS-Schaltung bekannt, wobei die Schaltung Bipolartransistoren und CMOS-Transistoren auf einem Substrat enthält. Das Verfahren umfasst den Schritt eines Bildens einer Epitaxieschicht, um einen Kanalbereich eines MOS-Transistors und einen Basisbereich eines Bipolartransistors zu bilden. Eine epitaktische Schicht wird aufgewachsen, wobei eine erste Unterschicht aus Silizium, eine erste Unterschicht aus Silizium-Germanium auf der ersten Unterschicht aus Silizium, eine zweite Unterschicht aus Silizium auf der ersten Unterschicht aus Silizium-Germanium und eine zweite Unterschicht aus Silizium-Germanium auf der zweiten Unterschicht aus Silizium aufgewachsen werden. - Die Schrift
US 2002 / 0 037 619 A1 zeigt eine Dummy-Gate-Elektrode, die gebildet wird, bevor die Gate-Elektrode gebildet wird. Es werden Erweiterungsgebiete, ein Seitenwand-Siliziumnitridfilm, Source/Draingebiete, ein Siliziumoxidfilm mit Bezug auf die Dummy-Gateelektrode gebildet. Die Dummy-Gate-Elektrode wird entfernt und es wird ein Teil der Erweiterungsgebiete entfernt, die in ein Gebiet unmittelbar unter der Dummy-Gate-Elektrode diffundiert sind. Der entfernte Teil wird mit einem Siliziumauswahl-Epitaxiefilm gefüllt. Danach wird die beabsichtigte Gateelektrode gebildet. - KURZDARSTELLUNG DER ERFINDUNG
- Eine Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung von MOSFETs auf SOl-Substraten bereitzustellen, wie durch das Verfahren gemäß dem unabhängigen Anspruch 1 gelöst wird. In den abhängigen Ansprüchen 2 bis 7 sind vorteilhaftere Ausgestaltungen davon definiert. Das Verfahren umfasst ein Ersatz-Gate-Verfahren auf der SOI-Schicht des Substrats, wobei erhöhte Source/Drain-Zonen oder Source/Drain-Zonen mit lonenimplantation gebildet werden. An diesem Punkt ist eine SOI-Schicht bereitgestellt und eine Platzhalter-Gate-Zone ist auf der SOI-Schicht gebildet. Es werden eine Vielzahl von ersten Übergängen durch Dotieren der SOI-Schicht gebildet, um eine dotierte SOI-Source/Drain-Zone zu bilden. Eine isolierende Schicht wird über der SOI-Schicht gebildet und die Platzhalter-Gate-Zone wird entfernt, um einen Abschnitt der SOI-Schicht freizulegen. Als Nächstes wird die SOI-Schicht ausgespart, um einen Teil der SOI-Schicht zu entfernen und um einen Restabschnitt der SOI-Schicht zurückzulassen. Bei dem Verfahren des Aussparens wird auch ein Abschnitt des diffusen Übergangs entfernt. In der Aussparung wird eine Kanaldünnschicht gebildet, was zu einem scharfen Übergang zwischen dem Source/Drain-dotierten Bereich des Substrats und der Kanaldünnschicht führt. Schließlich werden ein Material hoher Dielektrizitätskonstante und eine Metall-Gate-Zone gebildet.
- Gemäß einer anderen Erscheinungsform der Erfindung wird ein SOI-Substrat gemäß Anspruch 8 bereitgestellt. In den abhängigen Ansprüchen 9 bis 15 sind vorteilhaftere Ausgestaltungen davon definiert.
- Gemäß einer weiteren Erscheinungsform der Erfindung wird ein MOSFET im unabhängigen Anspruch 16 definiert. In den abhängigen Ansprüchen 17 bis 20 sind vorteilhaftere Ausgestaltungen davon definiert. Dabei weist der MOSFET ein SOI-Substrat mit einer dotierten Source- und Drain-Zone und einer dazwischen angeordneten ausgesparten Kanaldünnschicht auf. Die Kanaldünnschicht befindet sich über einer verbleibenden SOI-Schicht. Eine Isolatorschicht mit einer Öffnung befindet sich über dem Substrat. Ein Material mit hoher Dielektrizitätskonstante kleidet die Öffnung in dem Isolator aus, und eine Metall-Gate-Zone füllt die Öffnung.
- Ein Vorteil der vorliegenden Erfindung ist die verbesserte Kurzkanalsteuerung. Insbesondere wird mit der vorliegenden Erfindung ein Kurzkanaleffekt verbessert, der als Drain-induzierte Barrieresenkung (Drain Induced Barrier Lowering, DIBL) bekannt ist. Idealerweise steuert die Gate-Zone vollständig den EIN/AUS-Zustand eines Transistors, in der Realität hat jedoch auch die Drain-Zone einen Einfluss. Der Einfluss der Drain-Zone beim Steuern des EIN/AUS-Zustands des Transistors wird als DIBL bezeichnet. In einem gewünschten Zustand ist die Drain-Steuerung des EIN/AUS-Zustands eines Transistors minimal und somit beträgt die DIBL für Langkanaleinheiten idealerweise 0 mV. TCAD-Simulationen der DIBL einer Kurzkanaleinheit mit einer Gate-Länge von 25 nm zeigen einen Wert von 106 mV für die vorliegende Erfindung im Vergleich zu 172 mV für eine ETSOI-Struktur ohne den Vorteil der vorliegenden Erfindung. Somit nähert sich der Transistor mit der vorliegenden Erfindung mehr der idealen DIBL.
- Ein anderer Vorteil der vorliegenden Erfindung gegenüber anderen Techniken ist der verbesserte Betriebsstrom der Einheit. Mit der vorliegenden Erfindung zeigen Simulationen, dass bei einem vergleichbaren AUS-Strom (Iaus) des Transistors der EIN-Strom (Ion) mit dem scharfen Übergang der vorliegenden Erfindung ungefähr 17 % höher sein kann als bei herkömmlichen Dünnschicht-SOI-Strukturen.
- Andere Eigenschaften und Vorteile der Erfindung werden in Kombination mit der Beschreibung der begleitenden Zeichnungen ersichtlich, wobei dieselbe Zahl in allen Figuren für dieselben oder ähnliche Teile steht.
- Figurenliste
-
-
1 ist ein Ablaufplan der Schritte zum Erzeugen eines MOSFET mit ausgespartem Kanal und abrupten Übergängen gemäß einer Ausführungsform der vorliegenden Erfindung; -
2A ist ein erster Schritt des Verfahrens und veranschaulicht ein SOI-Substrat gemäß einer Ausführungsform der Erfindung; -
2B ist ein zweiter Schritt des Verfahrens und veranschaulicht ein SOI-Substrat mit einer Platzhalter-Gate-Zone gemäß einer Ausführungsform der Erfindung; -
2C ist ein dritter Schritt des Verfahrens und veranschaulicht ein SOI-Substrat mit einer Platzhalter-Gate-Zone gemäß einer Ausführungsform der Erfindung; -
2D veranschaulicht ein rechteckiges Übergangsprofil, welches nach dem Herstellen einer Source/Drain-Erweiterung gemäß einer Ausführungsform der Erfindung gebildet wird; -
2E veranschaulicht ein schräges Übergangsprofil, welches nach dem Herstellen einer Source/Drain-Erweiterung gemäß einer Ausführungsform der Erfindung gebildet wird; -
2F veranschaulicht eine Übergangsform und -position relativ zu einer durch die Platzhalter-Gate-Zone gezogenen vertikalen Mittellinie gemäß einer Ausführungsform der Erfindung; -
2G veranschaulicht eine Übergangsposition relativ zu einer entlang der Seitenwand der Platzhalter-Gate-Zone gezogenen vertikalen Linie gemäß einer Ausführungsform der Erfindung; -
2H veranschaulicht einen MOSFET mit Dotierstoffgradient, gemessen zwischen Punkten c und d, gemäß einer Ausführungsform der Erfindung; -
2I veranschaulicht ein Dotierstoffgradientenprofil gemäß einer Ausführungsform der Erfindung; -
2J ist ein vierter Schritt des Verfahrens und veranschaulicht den MOSFET mit Isolatorschicht, die so planarisiert ist, dass sie mit der Platzhalter-Gate-Zone coplanar ist, gemäß einer Ausführungsform der Erfindung; -
2K ist ein fünfter Schritt des Verfahrens und veranschaulicht den MOSFET nach dem Entfernen der Platzhalter-Gate-Zone gemäß einer Ausführungsform der Erfindung; -
2L ist ein fünfter Schritt des Verfahrens und veranschaulicht den MOSFET nach dem Entfernen der Platzhalter-Gate-Zone und dem Bilden optionaler innerer Abstandhalter gemäß einer Ausführungsform der Erfindung; -
2M ist ein sechster Schritt des Verfahrens und veranschaulicht den MOSFET mit einer durch ein anisotropes Ex-Situ-Ätzverfahren gebildeten Aussparung gemäß einer Ausführungsform der Erfindung; -
2N ist ein sechster Schritt des Verfahrens und veranschaulicht den MOSFET mit einer durch ein isotropes Ex-Situ-Ätzverfahren gebildeten Aussparung gemäß einer Ausführungsform der Erfindung; -
2O ist ein sechster Schritt des Verfahrens und veranschaulicht den MOSFET mit einer durch ein In-Situ-Ätzverfahren gebildeten Aussparung gemäß einer Ausführungsform der Erfindung; -
2P ist ein sechster Schritt des Verfahrens und veranschaulicht den MOSFET mit einem durch ein Verfahren des teilweisen Füllens gebildeten Kanal gemäß einer Ausführungsform der Erfindung; -
2Q ist ein sechster Schritt des Verfahrens und veranschaulicht den MOSFET mit zwei Übergangszonen gemäß einer Ausführungsform der Erfindung; -
2R ist eine graphische Auftragung der Dotierstoffkonzentration gegen die Strecke und veranschaulicht den MOSFET mit zwei Übergangszonen gemäß einer Ausführungsform der Erfindung; -
2S ist ein achter Schritt des Verfahrens und veranschaulicht den MOSFET mit Materialien hoher Dielektrizitätskonstante und Metall-Gate-Zone; -
3 veranschaulicht einen MOSFET mit abrupten Übergängen, hergestellt durch eine Voll-Epi-Rückwachs-Ausführungsform der Erfindung; -
4 veranschaulicht einen MOSFET ohne Abstandhalter gemäß einer Ausführungsform der vorliegenden Erfindung; und -
5 veranschaulicht einen MOSFET mit abrupten Übergängen, hergestellt durch eine Teil-Epi-Rückwachs-Ausführungsform der Erfindung. - DETAILLIERTE BESCHREIBUNG DER ERFINDUNG
- Das Grundprinzip der Erfindung ist ein Verfahren zum Erzeugen scharfer Übergänge in MOSFET-Transistoren. Das Verfahren wird in Verbindung mit
1 und2A bis2S beschrieben. Die Erfindung umfasst auch eine Struktur mit einem ausgesparten Kanal und scharfen Übergängen, wie sie in Verbindung mit3 bis5 beschrieben wird. Die Begriffe scharf und abrupt werden in diesem Dokument austauschbar verwendet. Eine detaillierte Beschreibung der Erfindung wird in Kombination mit den folgenden Ausführungsformen gegeben. - VERFAHREN ZUR HERSTELLUNG VON MOSFETS MIT AUSGESPARTEN KANÄLEN UND SCHARFEN ÜBERGÄNGEN
-
1 ist ein Ablaufplan 5 mit den Schritten des Erzeugens eines MOSFET mit ausgespartem Kanal und abrupten Übergängen gemäß einer Ausführungsform. Der Schritt 10 ist das Bereitstellen eines Substrats, der Schritt 20 ist das Bilden einer Platzhalter-Gate-Zone auf dem Substrat; der Schritt 30 ist das Bilden von Übergängen in dem Substrat; der Schritt 40 ist das Bilden einer isolierenden Schicht; der Schritt 50 ist das Entfernen der Platzhalter-Gate-Zone, um einen Abschnitt des Substrats zwischen den Übergängen freizulegen; der Schritt 60 ist das Ätzen des frei liegenden Abschnitts des Substrats, um eine Aussparung zu bilden; der Schritt 70 ist das Bilden einer epitaxialen Schicht (auch als „Epi“ bezeichnet), welche Silicium in der Aussparung enthält, um einen Kanal herzustellen; der achte Schritt 80 ist das Abscheiden eines Materials hoher Dielektrizitätskonstante (hierin „High-k-Material“) und das Bilden eines Gate-Stapels. Jeder der Schritte wird nachstehend detailliert beschrieben. Der Fachmann wird erkennen, dass die Schrittnummer (10, 20, 30, usw.) nicht notwendigerweise eine Reihenfolge zur Durchführung des Schritts anzeigt; stattdessen sind die Schrittnummern ein Mittel zur Schrittidentifikation. - Bereitstellen eines Substrats
- Im Schritt 10 der Erzeugung eines MOSFET mit scharfen oder abrupten Übergängen wird ein Substrat 100 bereitgestellt, wie in
2A dargestellt. Das Substrat 100 kann ein Halbleiter-auf-Isolator-Substrat (SOI) und vorzugsweise ein äußerst dünnes Halbleiter-auf-Isolator-Substrat (Extremely Thin Semiconductor on Insulator, ETSOI) sein. - Alle SOl-Substrate sind aus drei Teilen hergestellt: einem unteren massiven Halbleiterabschnitt 110, einem vergrabenen Isolatorabschnitt 105 (als „BOX“ bezeichnet) und einer Halbleiterschicht 112 auf dem BOX 105. In der vorliegenden Anmeldung wird der Halbleiter auf dem BOX als „SOI“ 112 oder „SOI-Schicht“ 112 bezeichnet. In der vorliegenden Anmeldung wird das SOI-Substrat als Ganzes (d.h. alle drei Schichten: massive Schicht 105, BOX 110 und SOI 112) als „SOI-Substrat“ 100 bezeichnet. Man beachte, bei einem SOI-Substrat 100 ist eine obere Fläche des Substrats 102 mit der oberen Fläche der SOI-Schicht 112 äquivalent.
- Weiter mit
2A , kann das BOX 105 durch ein Implantationsverfahren oder ein Bonding-Verfahren gebildet werden. Typischerweise ist die isolierende Schicht des BOX ein Oxid, vorzugsweise Siliciumdioxid. Bei der SOI-Schicht 112 kann es sich um Silicium, mit herkömmlichen ,n'- oder ,ρ'-Dotierstoffen dotiertes Silicium, Siliciumgermanium (SiGe), Siliciumgermaniumkohlenstoff (SiGeC), Siliciumkohlenstoff (SiC), III-V-Halbleiter-Verbindungen (zum Beispiel In1-xGaxAs, InP, GaAs) oder andere Variationen handeln. Die Dicke der SOI-Schicht 112 kann variieren. Eine Dicke einer SOI-Schicht 112 eines ETSOI-Substrats kann 2 nm bis 50 nm betragen, beträgt jedoch vorzugsweise 2 nm bis 20 nm oder liegt in einem beliebigen anderen Bereich dazwischen. - Herstellung einer Platzhalter-Gate-Zone
- Der Schritt 20 bei der Herstellung eines MOSFET mit scharfen oder abrupten Übergängen ist das Herstellen einer Platzhalter-Gate-Zone.
2B zeigt das SOI-Substrat 100 mit einer Platzhalter-Gate-Zone 115, die unter Anwendung herkömmlicher Strukturierungstechniken gebildet wird. Obwohl die Platzhalter-Gate-Zone 115 als einzelnes Rechteck dargestellt ist, ist sie vorzugsweise aus mehreren Materialien zusammengesetzt, und insbesondere sind die Materialien in Schichten gestapelt. Zum Beispiel kann die Platzhalter-Gate-Zone aus Siliciumnitrid (SixNyHz) auf einem dünnen Oxid (vorzugsweise SixOyHz) oder einer Nitridkappe (SixNyHz) auf Polysilicium gebildet werden. In jedem Fall kann sich zwischen der Platzhalter-Gate-Zone 115 und der SOI-Schicht 112 ein Platzhalter-Gate-Dielektrikum 117 (vorzugsweise SixOyHz) befinden. Andere Varianten der Materialien und Reihenfolgen der Schichten sind ebenfalls akzeptabel, solange die letzte (obere) Schicht der Platzhalter-Gate-Zone 115 ausreichende (Ätz- oder CMP-) Stoppeigenschaften aufweist. Die Gesamthöhe der Platzhalter-Gate-Zone kann im Bereich von 20 nm bis 100 nm oder in einem beliebigen anderen Bereich dazwischen liegen. In einer Ausführungsform, bei der erhöhte Source/Drain-Zonen verwendet werden, muss die Gesamthöhe der Platzhalter-Gate-Zone (Summe der Höhe des Platzhalter-Gate-Dielektrikums 117, falls vorhanden, und der Platzhalter-Gate-Zone 115) die Höhe der erhöhten Source/Drain-Zonen übersteigen. Typischerweise übersteigt die Gesamt-Gate-Höhe die erhöhten Source/Drain-Zonen um 5 nm bis 40 nm oder einen beliebigen anderen Bereich dazwischen. Vorzugsweise übersteigt die Gesamt-Gate-Höhe die Höhe der erhöhten Source/Drain-Zone um 15 nm bis 30 nm. Man beachte, dass die Höhe der erhöhten Source/Drain-Zonen im Bereich von 10 nm bis 50 nm oder in einem beliebigen anderen Bereich dazwischen liegen kann und vorzugsweise 20 nm bis 30 nm beträgt. - Bilden von Übergängen
- Bezug nehmend auf
2C , umfasst der dritte Schritt 30 des Herstellens eines MOSFET mit scharfen Übergängen das Bilden von Übergängen. Allgemein ausgedrückt ist ein Übergang dort, wo sich zwei Bereiche unterschiedlicher Dotierung treffen. Der Dotierungsunterschied kann in dem Typ des Dotierstoffs liegen (zum Beispiel n oder p) oder die Dotierstoffkonzentrationen (stark dotiert und schwach dotiert) betreffen, oder beides. - Um einen Übergang zu bilden, werden dotierte Source- und Drain-Zonen gebildet. Es gibt viele Wege zum Herstellen einer Source- und einer Drain-Zone, einschließlich, ohne darauf beschränkt zu sein: (1) Anwachsen einer in situ dotierten erhöhten Source- und Drain-Zone und anschließendes Tempern; (2) Implantieren von Ionen in ein Substrat und anschließendes Tempern; (3) Anwachsen einer erhöhten Source- und Drain-Zone, Implantieren von Ionen in die erhöhte Source- und Drain-Zone und anschließendes Tempern und (4) jede geeignete Kombination dieser Wege. In jedem der Verfahren können optionale Abstandhalter 135 eingesetzt werden, die vor dem Bilden der Source/Drain-Zone an den Seitenwänden der Platzhalter-Gate-Zone gebildet werden. Die optionalen Abstandhalter 135 können aus Siliciumnitrid (SixNyHz), Siliciumoxiden (SixOyHz) oder anderen Materialien hergestellt sein.
-
2C zeigt eine erhöhte Source/Drain-Zone, hergestellt durch das erste Verfahren, wobei man eine in situ dotierte erhöhte Source/Drain-Zone anwachsen lässt und anschließend tempert. Hier werden die erhöhte Source-Zone 120 und die erhöhte Drain-Zone 120 durch Epitaxie gebildet. Anschließend wird die erhöhte Source- und Drain-Zone 120 getempert, wodurch ein Teil der Dotierstoffe aus der erhöhten Source- und Drain-Zone 120 in das Substrat 100 oder speziell in einen Abschnitt der SOI-Schicht 112 getrieben wird, um Source/Drain-Erweiterungen 125 zu bilden. Der Übergang 129 der Source/Drain-Erweiterungen 125 und der SOI-Schicht 112 ist durch die Linie dargestellt, welche die dotierte Erweiterung 125 und die SOI-Schicht 112 trennt. Ein Übergang 129 ist dort, wo die niedrige Dotierung (oder keine Dotierung) der SOI-Schicht 112 auf die höhere Dotierung (oder eine andere Dotierspezies) der Source/Drain-Erweiterungen 125 trifft. - Man beachte, dass in einer Ausführungsform, wenn das zweite Verfahren angewendet wird, also das lonenimplantationsverfahren und anschließenden Tempern, (1) es keine erhöhten Source/Drain-Zonen 120 gibt und (2) Source- und Drain-Zonen die Stelle der Source- und Drain-Erweiterungen 125 einnehmen. In diesem Fall ist der Übergang 129 dort, wo die nicht vorhandene/niedrige Dotierung der SOI-Schicht 112 auf die höhere Dotierung der Source- und Drain-Zonen trifft. Alternativ kann das lonenimplantationsverfahren entweder vor oder nach dem Epitaxieverfahren der erhöhten Source/Drain-Zonen durchgeführt werden.
- In diesem Dokument werden die Source/Drain-Erweiterungen 125 eines Verfahrens mit erhöhten Source/Drain-Zonen und die Source/Drain-Zonen eines lonenimplantationsverfahrens beide allgemein als „dotierte SOI-Source/Drain-Zonen“ bezeichnet.
- In den nächsten Absätzen werden die Übergänge 129 hinsichtlich (1) der Trajektorie des Übergangs, (2) der Position des Übergangs (3) der Abruptheit des Übergangs und (4) der Breite des Übergangs weiter beschrieben.
- Die Übergänge 129 weisen verschiedene Trajektorien auf, was wiederum zu verschiedenen dotierten SOI-Source-Drain-Formen führt. Wenn der Übergang zum Beispiel weitgehend vertikal verläuft, ist die resultierende Form der dotierten SOI-Source-Drain-Zone 125 rechteckig, vgl.
2D (man beachte, dass die Elemente der erhöhten Source/Drain-Zonen und der Platzhalter-Gate-Zone aus Gründen der Klarheit weggelassen wurden). Wenn der Übergang abgeschrägt ist, ist die resultierende Form der dotierten SOI-Source-Drain-Zone 125 trapezförmig, vgl.2E (man beachte, dass die Elemente der erhöhten Source/Drain-Zonen und der Platzhalter-Gate-Zone aus Gründen der Klarheit weggelassen wurden).2F zeigt eine bevorzugte Ausführungsform, wobei der Übergang derart abgeschrägt ist, dass der Übergang im oberen Bereich 102 der SOI-Schicht 112 näher an einer vertikalen Linie 136 liegt, die von der Mitte der Platzhalter-Gate-Zone aus gezogen ist (vgl. ,a' in2F ), und wenn sich der Übergang 129 tiefer in die SOI-Schicht 112 hinein bewegt, ist der Übergang weiter entfernt von einer vertikalen Linie 136, die von der Mitte der Platzhalter-Gate-Zone aus gezogen ist (vgl. ,b' in2F ). Somit ist in einer bevorzugten Ausführungsform der Abstand des oberen Bereichs des Übergangs zu einer Gate-Mittellinie 136 geringer als der Abstand des unteren Bereichs des Übergangs zu der Gate-Mittellinie 136, was unter Bezugnahme auf2F bedeutet, a < b. Die Tiefe und Trajektorie eines Übergangs wird durch Faktoren bestimmt, welche die Dicke der SOI-Schicht 112, die Dotierstoffspezies, die Temperzeit und -temperatur und, wenn eine lonenimplantation angewendet wurde, die Implantationsenergie und den Implantationswinkel und, wenn erhöhte Source/Drain-Zonen verwendet wurden, die Höhe der erhöhten Source/Drain-Zone sowie andere Faktoren umfassen. - Die Position des Übergangs 129 kann relativ zu einer vertikalen Linie 137, die von einer Seitenwand der Platzhalter-Gate-Zone aus gezogen wird, variieren. In einer bevorzugten Ausführungsform, die in
2G dargestellt ist, ist der Übergang 129 derart abgeschrägt, dass sich ein oberer Abschnitt 129a des Übergangs (und ein Abschnitt der dotierten SOI-Source-Drain-Zone 125) unter der Platzhalter-Gate-Zone 115 und innerhalb der vertikalen Linie 137 befindet, welche sich von der Seitenwand der Platzhalter-Gate-Zone aus erstreckt, während sich ein unterer Abschnitt 129b des Übergangs (und ein Abschnitt der dotierten SOI-Source-Drain-Zone 125) nicht unter der Platzhalter-Gate-Zone befindet und sich außerhalb des Gate-Bereichs erstreckt. Es sollte angemerkt werden, dass die genaue Position des Übergangs in Bezug auf die Platzhalter-Gate-Zone variieren kann. Zum Beispiel kann der obere Bereich des Übergangs auf gleicher Höhe wie der optionale Abstandhalter 135 liegen (d.h. mit diesem in Ausrichtung gebracht sein) oder befindet sich anderenfalls nicht direkt unter der Platzhalter-Gate-Zone 115. Wichtig ist, dass während des Schritts 60 (der nachstehend beschrieben wird) ein Abschnitt des Übergangs geätzt wird, wenn das Substrat geätzt wird, um eine Aussparung zu bilden. Die Position eines Übergangs 129 relativ zu einer Seitenwand 137 der Platzhalter-Gate-Zone 115 wird durch Faktoren wie die Breite der Platzhalter-Gate-Zone 115, das Vorhandensein und die Breite von Abstandhaltern 135, die Tiefe und die am Ende des letzten Absatzes beschriebenen Trajektoriefaktoren und bei Anwendungen mit erhöhten Source/Drain-Zonen 120 die Form der erhöhten Source/Drain-Zonen bestimmt. - Die Abruptheit eines Übergangs ist durch Dotierstoffgradienten definiert. Allgemein ausgedrückt ist ein Dotierstoffgradient die Veränderung der Dotierungskonzentration über eine gegebene Strecke (d.h. die Steigung einer Kurve der Dotierungskonzentration gegen die Strecke). Bezug nehmend auf
2I , ist dort die Veränderung der Dotierungskonzentration über eine gegebene Strecke ,c-d' der2H veranschaulicht. Die Strecke ,c-d' beginnt in der SOI-Schicht 112 beim Punkt c, durchläuft den Übergang 129 und endet in der Source/Drain-Erweiterung 125 beim Punkt d.2I ist eine Auftragung der Dotierstoffkonzentration (Dotierstoffe/cm3) auf der y-Achse gegen die Strecke ,c-d' auf der x-Achse. Die Auftragung weist drei unterschiedliche Zonen auf. In einer ersten Zone (I), beginnend am Punkt ,c', ist die Dotierstoffkonzentration relativ konstant. Weiter in Richtung des Übergangs 129 wird eine zweite Zone (II) erreicht, wo die Konzentration zu steigen beginnt, so dass in der Auftragung eine Steigung erzeugt wird. Weiter in Richtung des Punktes d wird eine dritte Zone (III) erreicht, wo innerhalb der Source/Drain-Erweiterungen 125 ein nominelles Dotierungsniveau erreicht ist. Die Steigung der Konzentration gegen die Strecke in der Zone II definiert die Abruptheit des Übergangs. Die Breite der Steigung definiert die Übergangsbreite. Eine steile Steigung und geringe Breite zeigen einen scharfen und abrupten Übergang an. Eine weniger steile Steigung (flache Steigung) und größere Breite zeigen einen nicht abrupten (diffusen) Übergang an. Typische Steigungen für einen abrupten Übergang liegen in dem Bereich von 0,5 nm je Dekade (Dotierstoffkonzentration) bis 3 nm je Dekade (Dotierstoffkonzentration) oder einem beliebigen anderen Bereich dazwischen, egal, ob pFET oder nFET. Typische scharfe Übergangsbreiten sind 5 nm bis 10 nm oder jeder andere Bereich dazwischen. Steigungen für einen diffusen Übergang liegen in dem Bereich von 3 nm je Dekade (Dotierstoffkonzentration) bis 10 nm je Dekade (Dotierstoffkonzentration) oder einem beliebigen anderen Bereich dazwischen, egal, ob pFET oder nFET. Typische Übergangsbreiten für diffuse Übergänge sind 3 nm bis 20 nm oder jeder andere Bereich dazwischen.2I veranschaulicht eine flache Steigung mit breitem Übergang, daher wird ein diffuser Übergang gebildet. Übergangsmerkmale sind in der folgenden Tabelle zusammengefasst. Tabelle 1 - Beispielhafte ÜbergangsmerkmaleDiffuser Übergang Scharfer Übergang Dotierungsgradient (Steigung) 3 bis 10 nm je Dekade (Dotierstoffkonzentration) 0,5 bis 3 nm je Dekade (Dotierstoffkonzentration) Übergangsbreite 10 bis 20 nm 5 bis 10 nm - Somit gibt es am Ende des dritten Verfahrensschritts 30, verkörpert in
2C , eine Platzhalter-Gate-Zone 115 über einem ETSOI-Substrat 100 mit erhöhten Source/Drain-Zonen 120 und Source/Drain-Erweiterungen 125, welche einen nicht abrupten (diffusen) Übergang mit der SOI-Schicht 112 bilden. Ein Platzhalter-Gate-Dielektrikum 117 kann sich zwischen der Platzhalter-Gate-Zone 115 und dem ETSOI-Substrat 100 befinden. Es sollte angemerkt werden, dass die vorstehend beschriebene Ausführungsform einen MOSFET betrifft, der durch das Verfahren einer erhöhten Source-Zone hergestellt ist. Wenn eine Ausführungsform angewendet wird, bei welcher keine erhöhten Source/Drain-Zonen verwendet werden, dann nehmen Source/Drain-Zonen die Stelle der Source/Drain-Erweiterungen 125 ein. - Bilden einer Isolatorschicht
- Der Schritt 40 des Herstellens eines MOSFET mit scharfen Übergängen umfasst das Bilden einer isolierenden Schicht 140. Zuerst wird die Isolatorschicht 140 abgeschieden, um die Platzhalter-Gate-Zone 115 zu bedecken. Der Isolator 140 wird dann durch Stoppen auf der Platzhalter-Gate-Zone 115 planarisiert (vgl.
2J ). Geeignete Isolatoren umfassen, ohne darauf beschränkt zu sein, Siliciumdioxid (SiO2), Siliciumoxide (SiOH), dotiertes Siliciumglas, Siliciumkohlenstoffoxid (SiCO), SiCOH und Siliciumcarbid (SiC). - Entfernen der Platzhalter-Gate-Zone
- Bezug nehmend auf
2K , umfasst der Schritt 50 des Herstellens eines MOSFET mit scharfen Übergängen das Entfernen der Platzhalter-Gate-Zone 115, um einen frei liegenden Abschnitt 142 des Substrats aufzudecken. Der frei liegende Abschnitt 142 kann zumindest einen Abschnitt von einem aus Folgendem umfassen: (1) SOI-Schicht 112, (2) Übergang 129 und (3) Source- und Drain-Erweiterungen 125. In2K ist eine Ausführungsform dargestellt, bei welcher der frei liegende Abschnitt 142 (1) die SOI-Schicht 112, (2) den Übergang 129 und (3) einen Abschnitt der Source/Drain-Erweiterung 125 umfasst. - Typischerweise wird die Platzhalter-Gate-Zone unter Anwendung eines selektiven Ätzens entfernt. In einer bevorzugten Ausführungsform handelt es sich bei der Platzhalter-Gate-Zone 115 um Siliciumnitrid (SixNyHz), während es sich bei dem Isolator 140 und/oder dem optionalen Abstandhalter 135 um Siliciumoxid (SixOyHz) handelt; durch das Ätzen wird dann selektiv das Nitrid entfernt, während das Oxid nur minimal entfernt wird.
- Nach der Platzhalter-Gate-Entfernung kann ein optionaler innerer Abstandhalter 145 abgeschieden werden (vgl.
2L ). Der innere Abstandhalter kann aus Siliciumnitrid (SixNyHz) hergestellt sein. Typischerweise werden die inneren Abstandhalter so gebildet, dass sie breit genug sind, um die Source/Drain-Erweiterung 125 zu bedecken, die während der Platzhalter-Gate-Entfernung frei gelegt worden sein kann. Idealerweise ist der innere Abstandhalter mit dem Übergang 129 in Ausrichtung gebracht, wie in2L dargestellt. Als ein Ergebnis umfasst, wenn ein innerer Abstandhalter verwendet wird, der frei liegende Abschnitt 142 des Substrats die frei liegende SOI-Schicht 112. Die folgende Tabelle fasst zusammen, aus welchen Elementen ein frei liegender Abschnitt 142 in Abhängigkeit davon aufgebaut ist, ob ein innerer Abstandhalter 145 verwendet wird oder nicht. Tabelle 2 - Inhalt des frei liegenden Abschnitts 142 und Verwendung von inneren Abstandhaltern 145Frei liegender Abschnitt 142 umfasst... Wenn.... SOI-Schicht 112 Übergang 129 Source/Drain-Erweiterung 125 Innerer Abstandhalter 145 verwendet wird Ja Innerer Abstandhalter grob mit Übergang 129 in Ausrichtung gebracht Nein Kein innerer Abstandhalter 145 verwendet wird Ja Ja Optional - Bilden einer Aussparung
- Bezug nehmend auf
2M , ist der Schritt 60 das Ätzen des frei liegenden Abschnitts 142, um eine Aussparung 150 zu bilden, während ein Rest 112' der SOI-Schicht zurückgelassen wird. Allgemein ausgedrückt gibt es zwei Wege zum Bilden der Aussparung, ein Ex-situ-Verfahren, bei welchem die Aussparung getrennt von einer folgenden Kanaldünnschicht-Abscheidung (Schritt 70) hergestellt wird , oder ein In-situ-Verfahren, bei welchem in einem Werkzeug die Aussparung gebildet und der Kanal abgeschieden wird. Das Ex-situ-Verfahren wird zuerst beschrieben. - In dem Ex-situ-Verfahren kann die Aussparung auf einem von zwei Wegen gebildet werden: einem isotropen Weg oder einem anisotropen Weg. In dem Fall eines isotropen Weges kann entweder ein Gasphasenätzen oder ein Nassätzen angewendet werden. HCl ist ein übliches Gasphasen-Ätzmittel, und ein wässriges Ätzmittel, welches Ammoniak enthält, ist ein übliches Nassätzmittel, es sind jedoch auch andere chemische Mittel akzeptabel. Ein Nassätzen oder Gasphasenätzen führt typischerweise zu einem isotropen Ätzen, was bedeutet, dass die Ätzgeschwindigkeit in alle Richtungen dieselbe ist. Somit wird bei einem isotropen Ätzen ein Abschnitt der SOI-Schicht 112 vertikal und auch seitlich geätzt, um einen Unterschnitt-Abschnitt 144 der Aussparung 150 zu erzeugen. Da bei der isotropen Aussparungsbildung ein Unterschnitt 144 möglich ist, werden bei isotropen Ätzbedingungen vorzugsweise innere Abstandhalter 145 verwendet.
2M zeigt eine Aussparung 150, die durch ein isotropes Ätzverfahren gebildet wurde, welches zu einem Unterschnittabschnitt 144 der Aussparung unter dem inneren Abstandhalter 145 führt. Man beachte, dass sich der Unterschnitt 144 auf beiden Seiten der Aussparung 150 befindet, jedoch zur Vereinfachung der Betrachtung nur auf einer Seite gekennzeichnet ist. - Das zweite Ex-situ-Aussparungsbildungsverfahren ist ein Trockenätzverfahren, vorzugsweise Reaktivionenätzen (Reactive Ion Etching, RIE). Allgemein ausgedrückt sind RIE-Verfahren der vorliegenden Erfindung anisotrop, was bedeutet, dass sie weitgehend in eine Richtung, vertikal, ätzen, bei minimalem seitlichen Ätzen. Somit wird die SOI-Schicht 112 bei einem anisotropen Ätzen vertikal geätzt, wodurch sie mit einer Öffnung 141 in Ausrichtung gebracht wird, die durch die Platzhalter-Gate-Entfernung zurückgelassen wird. Wenn ein anisotropes Ätzverfahren angewendet wird, wird bevorzugt, keine inneren Abstandhalter 145 zu verwenden.
2N zeigt eine Aussparung 150, welche durch ein anisotropes Ätzverfahren gebildet wurde, was dazu führt, dass die Seitenwände 153 der Aussparung 150 mit den äußeren Rändern 143 der Öffnung 141 in Ausrichtung gebracht sind. - Fortfahrend mit dem In-Situ-Verfahren der Aussparungsbildung, ist das Aussparungsverfahren mit dem folgenden Abscheidungsverfahren in einem einzigen Epitaxiewerkzeug integriert. Durch das Abscheidungsverfahren wird eine epitaxiale Schicht in der Aussparung 150 gebildet, was zu einem Kanal 155 führt. Das integrierte Verfahren beginnt in dem Epitaxiewerkzeug durch Zuströmen von HCl, um die SOI-Schicht 112 präzise zu ätzen, um eine Aussparung 150 zu bilden. Als Nächstes erfolgt gegebenenfalls ein Wasserstoff-Vorbrennen. Wenn das Vorbrennen angewendet wird, kann in Abhängigkeit von den Verfahrensbedingungen beim Vorbrennen ein Unterschnitt gebildet werden. Schließlich erfolgt die epitaxiale Abscheidung, um den Kanal 155 zu erzeugen. Allgemein ausgedrückt können, wenn ein In-situ-Aussparungsätz- und Kanalabscheidungsverfahren angewendet wird, die inneren Abstandhalter 145 weggelassen werden (vgl.
2O ), sofern es keinen Unterschnitt gibt. - Ein wichtiges Merkmal des Aussparungsverfahrens ist ungeachtet des angewendeten Aussparverfahrens (isotrop oder anisotrop, in situ oder ex situ), dass durch das Aussparen ein Abschnitt des Übergangs 129 entfernt wird. Der entfernte Abschnitt des Übergangs 129 kann sich seitlich derart erstrecken, dass er den gesamten Dotierstoffgradienten oder nur einen Abschnitt des Dotierstoffgradienten in dieser Aussparungstiefe umfasst. Außerdem kann während des Aussparungsverfahrens auch ein Abschnitt der Source/Drain-Erweiterung 125 nomineller Dotierung (nominelle Dotierung bedeutet dort, wo der Gradient endet und ein relativ konstantes Dotierungsniveau vorliegt) entfernt werden, dies ist aber nicht erforderlich. Bezug nehmend auf
2M ,2N und2O , ist durch das Aussparungsverfahren ein Abschnitt der SOI-Schicht 112 entfernt worden und ein verbleibender Abschnitt 112' der SOI-Schicht zurückgelassen worden. Durch das Aussparungsverfahren sind auch die Übergänge 129 vom oberen Bereich der SOI-Schicht entfernt worden, darunter wird jedoch der diffuse Übergang 129 zwischen der Source/Drain-Erweiterung 125 und der verbleibenden SOI-Schicht 112' zurückgelassen. Außerdem ist durch das Aussparungsverfahren eine obere Ecke jeder der Source/Drain-Erweiterungen 125 entfernt worden. - Die Menge des Rests 112' der SOI-Schicht kann variieren. Wie oben bei der Beschreibung der Substrate angegeben, beträgt in einer bevorzugten Ausführungsform die Ausgangsdicke der SOI-Schicht 2 nm bis 20 nm oder liegt in einem beliebigen anderen Bereich dazwischen. Nach dem Aussparen der SOI-Schicht 112 kann die verbleibende SOI-Schicht 112' bis zu 1 nm klein sein. Die genaue Dicke der verbleibenden SOI-Schicht 112' ist nicht entscheidend; entscheidend ist jedoch, dass es eine ausreichende verbleibende SOI-Schicht 112' gibt, damit darauf eine epitaxiale Schicht anwachsen kann, wie es im siebten Schritt 70 erforderlich ist.
- Bilden eines Kanals und eines abrupten Übergangs
- Der Schritt 70 ist das Bilden einer epitaxialen Schicht („Epi“), welche Silicium in der Aussparung 150 enthält, um einen Kanal 155 herzustellen. Wie oben angegeben, wächst die epitaxiale Schicht, welche den Kanal 155 umfasst, auf der verbleibenden SOI-Schicht 112' an. Die epitaxiale Schicht, welche den Kanal 155 umfasst, kann so anwachsen, dass sie die Aussparung vollständig füllt (Voll-Epi-Verfahren, dargestellt in
2O ), oder sie kann so anwachsen, dass der Epi-Kanal die Aussparung teilweise füllt (Teil-Epi-Verfahren, dargestellt in2P ). Beide Füllverfahren werden nachstehend erörtert. - Beim Voll-Epi-Rückwachsverfahren wächst die epitaxiale Schicht, welche den Kanal 155 umfasst, so an, dass die obere Fläche 156 der Kanaldünnschicht 155 ungefähr coplanar mit der oberen Fläche 102 des Substrats ist. Man beachte, dass in
2J die obere Fläche 102 des Substrats der Grenzfläche der erhöhten Source/Drain-Zone 120 und der Source/Drain-Erweiterungen 125 äquivalent ist. - In einer Ausführungsform eines Voll-Epi-Rückwachsverfahrens auf einem ETSOI-Substrat mit einer ursprünglichen Dicke der SOI-Schicht 112 von 2 nm bis 20 nm kann die Kanaldicke 1 nm bis 19 nm betragen oder in einem beliebigen anderen Bereich dazwischen liegen, und die Dicke der verbleibenden SOI-Schicht 112' kann auf bis zu 1 nm heruntergehen. In einer bevorzugten Ausführungsform eines Voll-Epi-Rückwachsverfahrens beträgt die ursprüngliche Dicke der SOI-Schicht 112 6 nm bis 8 nm, die Dicke der verbleibenden SOI-Schicht 112' beträgt nach dem Aussparungsätzen 1 nm bis 2 nm, und die epitaxiale Schicht, welche die Kanaldünnschicht 155 bildet, füllt die Aussparung (d.h., die Kanaldicke beträgt in Abhängigkeit von der ursprünglichen Dicke der SOI-Schicht und der verbleibenden SOI-Schicht 112' 4 nm bis 7 nm).
- Beim Teil-Epi-Rückwachsverfahren wächst die epitaxiale Schicht, welche die Kanaldünnschicht 155 umfasst, so an, dass sich die obere Fläche 156 der Kanaldünnschicht 155 unterhalb der oberen Fläche 102 des Substrats befindet, wodurch eine Stufe zwischen der oberen Fläche 156 des Kanals und der oberen Fläche 102 des Substrats erzeugt wird. Die Höhe der Stufe ist als 158 in
2P dargestellt. Man beachte, dass in2P die obere Fläche des Substrats 102 der Grenzfläche der erhöhten Source/Drain-Zone 120 und der Source/Drain-Erweiterungen 125 äquivalent ist. - In einer Ausführungsform des Teil-Epi-Rückwachsverfahrens auf einem ETSOI-Substrat mit einer ursprünglichen Dicke der SOI-Schicht 112 von 2 nm bis 20 nm oder in einem beliebigen Bereich dazwischen kann die Kanaldicke 1 nm bis 18 nm betragen oder in einem beliebigen anderen Bereich dazwischen liegen, und die Dicke der verbleibenden SOI-Schicht 112' kann auf bis zu 1 nm heruntergehen. In einer bevorzugten Ausführungsform eines Teil-Epi-Rückwachsverfahrens beträgt die ursprüngliche Dicke der SOI-Schicht 112 10 nm, die Dicke der verbleibenden SOI-Schicht 112' beträgt nach dem Aussparungsätzen 2 nm, und die epitaxiale Schicht, welche den Kanal 155 bildet, ist 4 nm dick, so dass die Stufenhöhe 158 4 nm beträgt.
- Hinsichtlich des Bildungsverfahrens der Kanaldünnschicht selbst sei daran erinnert, dass die Aussparung 150 durch zwei Verfahren gebildet werden kann: ex situ und in situ. Beim In-situ-Verfahren werden die Verfahren des Aussparungsätzens und der Kanalbildung in einem einzigen Werkzeug kombiniert. Daher wurde das Verfahren der Bildung der Kanaldünnschicht 155 für das In-Situ-Verfahren zuvor bereits erörtert und wird hier nicht wiederholt. Das Kanalbildungsverfahren, das mit dem Ex-situ-Verfahren angewendet wird, wurde jedoch zuvor nicht erörtert und wird nun beschrieben. Das Kanalbildungsverfahren nach einem Ex-situ-Aussparungsätzen beginnt mit einer Vorreinigung. Bei der Vorreinigung kann es sich um ein Sputter-Verfahren handeln, welches weitgehend anisotrop ist, daher gibt es keinen Unterschnitt. Oder es kann sich bei dem Vorreinigungsverfahren um nasschemisches Ätzen handeln, z.B. mit Ammoniak, welches isotrop ist und daher einen Unterschnitt 144 erzeugt. Anschließend wird das Substrat in einem Epitaxiewerkzeug angeordnet, wo es eine In-situ-Vorreinigung bei niedriger Temperatur erhält (um eine Zusammenballung zu verhindern), gefolgt vom Anwachsen der Kanaldünnschicht. Einzelheiten der In-situ-Vorreinigung bei niedriger Temperatur finden sich in der
US-Patentanmeldung 12/766 859 - Kanaldünnschichten 155 umfassen undotiertes Silicium (Si), Siliciumgermanium (SiGe), Siliciumgermaniumcarbid (SiGeC), Siliciumcarbid (SiC) oder III-V-Materialien. In einer bevorzugten Ausführungsform handelt es sich bei der Kanaldünnschicht 155 eines pFET um SiGe und bei der Kanaldünnschicht 155 eines nFET um Si oder SiC.
- Bezug nehmend auf
2Q und2R , sind dort die Veränderungen der Dotierungskonzentration über eine gegebene Strecke ,e-f' und eine gegebene Strecke ,g-h' veranschaulicht. Die Strecke ,e-f' beginnt in der Kanaldünnschicht 155 am Punkt e, durchläuft den Übergang 129s und endet in der Source/Drain-Erweiterung 125 am Punkt f. Die durchgezogene Linie in2R ist eine Auftragung der Dotierstoffkonzentration (Dotierstoffe/cm3) auf der y-Achse gegen die Strecke ,e-f' auf der x-Achse. Die Auftragung weist drei unterschiedliche Zonen auf. In einer ersten Zone (I), beginnend am Punkt ,e', ist die Dotierstoffkonzentration relativ konstant. Weiter in Richtung des Übergangs 129s wird eine zweite Zone (II) erreicht, wo die Konzentration scharf ansteigt. Weiter in Richtung des Punktes f wird eine dritte Zone (III) erreicht, wo innerhalb der Source/Drain-Erweiterungen 125 ein nominelles Dotierungsniveau erreicht ist. Die scharfe Steigung der Konzentration gegen die Strecke in der Zone II einer Linie ,e-f' veranschaulicht einen abrupten oder scharfen Übergang 129s. - Im Gegensatz dazu zeigt die Verfolgung einer Konzentrationsänderung entlang der Linien ,g-h' eine allmählichere Steigung. Die Strecke ,g-h' beginnt in der verbleibenden SOI-Schicht 112' am Punkt g, durchläuft den Übergang 129 und endet in der Source/Drain-Erweiterung 125 am Punkt h. Die unterbrochene Linie in
2R ist eine Auftragung der Dotierstoffkonzentration (Dotierstoffe/cm3) auf der y-Achse gegen die Strecke ,g-h' auf der x-Achse. Die Auftragung weist drei unterschiedliche Zonen auf. In einer ersten Zone (I), beginnend am Punkt ,g', ist die Dotierstoffkonzentration relativ konstant. Weiter in Richtung des Übergangs 129 wird eine zweite Zone (II) erreicht, wo die Konzentration allmählich ansteigt. Weiter in Richtung des Punktes h wird eine dritte Zone (III) erreicht, wo innerhalb der Source/Drain-Erweiterungen 125 ein nominelles Dotierungsniveau erreicht ist. Die allmähliche Steigung der Konzentration gegen die Strecke in der Zone II einer Linie ,g-h' veranschaulicht einen nicht abrupten oder diffusen Übergang 129. Typische Dotierstoffgradienten (Steigungen) und Übergangsbreiten für nFETs und pFETs für scharfe Übergänge 129s und diffuse Übergänge 129 sind vorstehend in Tabelle 1 aufgelistet. - Somit liegt am Ende des siebten Verfahrensschritts 70, verkörpert in
2O oder2P , ein ETSOI-Substrat 100 mit erhöhten Source/Drain-Zonen 120, einem Isolator 140, optionalen Abstandhaltern 135, Source/Drain-Erweiterungen 125, einer verbleibenden SOI-Schicht 112' und einer Kanaldünnschicht 155 vor. Das Substrat weist zwei Übergangszonen auf. Eine Zone eines ersten Übergangs 129s, wo die Kanaldünnschicht 155 und die Source/Drain-Erweiterungen 125 aufeinander treffen, ist abrupt. Eine Zone eines zweiten Übergangs 129, wo die verbleibende SOI-Schicht 112' und die Source/Drain-Erweiterungen 125 aufeinander treffen, ist diffus. Es sei angemerkt, dass die oben beschriebene Ausführungsform einen MOSFET betrifft, der durch das Verfahren mit erhöhter Source-Zone hergestellt wird. Wenn ein Ionenimplantationsverfahren ohne Source/Drain-Zonen angewendet wird, dann gibt es keine erhöhten Source/Drain-Zonen, und die Source/Drain-Erweiterungen werden durch Source- und Drain-Zonen ersetzt. - Abscheiden von High-k-Material und Gate-Stapel
- Bezug nehmend auf
2S , ist der Schritt 80 das Abscheiden eines Materials 100 mit hoher Dielektrizitätskonstante (hierin als „High-k-Material“ bezeichnet) und das Bilden eines Metall-Gate-Stapels 165. Beispiele für High-k-Materialien umfassen, ohne darauf beschränkt zu sein, Metalloxide wie Hafniumoxid, Hafniumsiliciumoxid, Hafniumsiliciumoxynitrid, Lanthanoxid, Lanthanaluminiumoxid, Zirconiumoxid, Zirconiumsiliciumoxid, Zirconiumsiliciumoxynitrid, Tantaloxid, Titanoxid, Bariumstrontiumtitanoxid, Bariumtitanoxid, Strontiumtitanoxid, Yttriumoxid, Aluminiumoxid, Bleiscandiumtantaloxid und Bleizinkniobat. Das High-k-Material kann ferner Dotierstoffe wie Lanthan, Aluminium umfassen. Das High-k-Material kann durch ein beliebiges geeignetes Verfahren abgeschieden werden, einschließlich, ohne darauf beschränkt zu sein, Atomschichtabscheidung (Atomic Layer Deposition, ALD), Molekularschichtabscheidung (Molecular Layer Deposition, MLD), chemische Abscheidung aus der Gasphase (Chemical Vapor Deposition, CVD), plasmaunterstützte chemische Abscheidung aus der Gasphase (Plasma Enhanced CVD, PECVD), chemische Abscheidung aus der Gasphase mit hochdichtem Plasma (High Density Plasma CVD, HDPCVD), schnelle thermische chemische Abscheidung aus der Gasphase (Rapid Thermal CVD, RTCVD), radikalunterstützte In-Situ-Abscheidung, chemische Abscheidung aus der Gasphase im Ultrahochvakuum (UHVCVD), metallorganische chemische Abscheidung aus der Gasphase (MOCVD), Molekularstrahlepitaxie (Molekular Beam Epitaxy, MBE), physikalische Abscheidung aus der Gasphase, Sputtern, Verdampfen, lonenstrahlabscheidung, Elektronenstrahlabscheidung, laserunterstützte Abscheidung, chemische Lösungsabscheidung oder eine beliebige Kombination dieser Verfahren. Die Dicke des High-k-Materials kann im Bereich von 0,5 nm bis 3 nm oder einem beliebigen anderen Bereich dazwischen liegen. Vor der Abscheidung des High-k-Materials kann auf dem Kanal eine (nicht dargestellte) Grenzschicht wie z.B. Siliciumoxid, Siliciumnitrid, Siliciumoxynitrid gebildet werden. - Geeignete Materialien des Gate-Stapels 165 können, ohne darauf beschränkt zu sein, dotiertes polykristallines oder amorphes Silicium, Germanium, Siliciumgermanium, ein Metall (z.B. Wolfram, Titan, Tantal, Ruthenium, Zirconium, Kobalt, Kupfer, Aluminium, Blei, Platin, Zinn, Silber, Gold), ein Material einer leitenden metallischen Verbindung (z.B. Tantalnitrid, Titannitrid, Wolframsilicid, Wolframnitrid, Rutheniumoxid, Kobaltsilicid, Nickelsilicid), Kohlenstoffnanoröhrchen, leitfähigen Kohlenstoff oder eine beliebige geeignete Kombination dieser Materialien umfassen. Das leitfähige Material kann ferner Dotierstoffe umfassen, die während des Abscheidens oder nach dem Abscheiden eingebaut werden. Geeignete Verfahren, die oben für die Abscheidung des High-k-Materials beschrieben sind, können zum Bilden des Gate-Stapels 165 angewendet werden. Die Dicke des Gate-Stapels 165 kann im Bereich von 10 nm bis 100 nm oder in einem beliebigen anderen Bereich dazwischen liegen.
- Eine Gate-Breite 170 wird von einem ersten äußeren Rand des High-k-Materials über den Gate-Stapel bis zu einem zweiten äußeren Rand des High-k-Materials gemessen. Vorzugsweise wird eine Gate-Breite im unteren Bereich der Gate-Zone gemessen, wo sie auf den Kanal 155 trifft, in
2S ist die Gate-Breite 170 jedoch zur Vereinfachung der Betrachtung im oberen Bereich dargestellt. Gate-Breiten können etwa 5 nm bis etwa 50 nm betragen oder in einem beliebigen anderen Bereich dazwischen liegen, vorzugsweise etwa 5 nm bis etwa 25 nm. - Hiermit ist die Beschreibung des Verfahrens zur Herstellung von MOSFETs mit einem ausgesparten Kanal und abrupten Übergängen abgeschlossen.
- MOSFET MIT AUSGESPARTEM KANAL UND SCHARFEN ÜBERGÄNGEN
- Als Nächstes werden Ausführungsformen der Substrate und MOSFETs veranschaulicht, die durch zuvor beschriebene Verfahren erzeugt werden.
- Mit Voll-Epi-Rückwachsverfahren hergestellter MOSFET
- In
3 ist ein MOSFET 190 mit abrupten Übergängen dargestellt, der durch das Voll-Epi-Rückwachsverfahren hergestellt wurde. Das SOI-Substrat 100 weist einen massiven Abschnitt 110, einen vergrabenen Oxidabschnitt (BOX) 105 und einen verbleibenden SOI-Abschnitt 112' auf. Bei der verbleibenden SOI-Schicht 112' kann es sich um Silicium, mit herkömmlichen ,n'- oder ,p'-Dotierstoffen (z.B. Elemente der Gruppe VA (Gruppe 15 nach dem IUPAC-System) bzw. der Gruppe IIIA (Gruppe 13 nach dem IUPAC-System) des Periodensystems) dotiertes Silicium, Siliciumgermanium (SiGe), Siliciumgermaniumkohlenstoff (SiGeC), Siliciumkohlenstoff (SiC), III-V-Halbleiterverbindungen (zum Beispiel InP, GaAs oder In1-xGaxAs) oder andere Variationen handeln. In einer bevorzugten Ausführungsform kann es sich bei der verbleibenden SOI-Schicht 112' um p-leitend (z.B. Bor, Indium) oder n-leitend (z.B. Phosphor, Arsen) dotiertes Silicium mit einer Dotierstoffkonzentration von nicht mehr als 1 × 1017 Dotierstoffen/cm3 handeln. Die Dicke der verbleibenden SOI-Schicht 112' kann etwa 1 nm bis etwa 10 nm betragen oder in einem beliebigen anderen Bereich dazwischen liegen. Die untere Grenze von 1 nm ist kein absoluter Wert, sondern stattdessen ist die untere Grenze die minimale Menge an Silicium, die benötigt wird, um darauf die Kanaldünnschicht 155 anwachsen zu lassen. Die Dicke der verbleibenden SOI-Schicht 112' wird durch den Doppelpfeil in 112' der3 angezeigt. - Bezug nehmend auf
3 , kann die Kanaldünnschicht 155 undotiertes Silicium (Si), Siliciumgermanium (SiGe), Siliciumgermaniumcarbid (SiGeC), Siliciumcarbid (SiC) oder vorstehend erwähnte III-V-Materialien umfassen. In einer bevorzugten Ausführungsform handelt es sich bei der Kanaldünnschicht 155 eines pFET um SiGe und bei der Kanaldünnschicht 155 eines nFET um Si oder SiC. Die Dicke der Kanaldünnschicht 155 kann etwa 1 nm bis etwa 20 nm betragen oder in einem beliebigen anderen Bereich dazwischen liegen. Der Kanal weist eine obere Fläche 156, eine untere Fläche und zwei Seitenflächen 157 auf. Die obere Fläche 156 des Kanals ist mit der oberen Fläche 126 der dotierten SOI-Source-Drain-Zone 125 ungefähr coplanar. Die Kanaldicke wird durch den Doppelpfeil in der Kanaldünnschicht 155 angezeigt. - Es sollten die relativen Dicken der Kanaldünnschicht 155 und der verbleibenden SOI-Schicht 112' beachtet werden. Für Substrate 100, bei welchen die ursprüngliche Dicke der SOI-Schicht 112 (vgl.
2A ) kleiner oder gleich 20 nm war, ist die Dicke der Kanaldünnschicht 155 gewöhnlich größer oder gleich der Dicke der verbleibenden SOI-Schicht 112' (vgl.3 ). In einer bevorzugten Ausführungsform ist das Verhältnis der Dicke der Kanaldünnschicht 155 zu der Dicke der verbleibenden SOI-Schicht 112' größer als 1,5. Für Substrate 100, bei welchen die ursprüngliche Dicke der SOI-Schicht 112 (vgl.2A ) größer als 20 nm war, ist die Dicke der Kanaldünnschicht 155 gewöhnlich kleiner oder gleich der Dicke der verbleibenden SOI-Schicht 112'. - Zurückkehrend zu dem MOSFET 190, der in
3 dargestellt ist, befindet sich über dem Kanal eine High-k-Dielektrikums-Dünnschicht 160. High-k-Dünnschichten und -Abscheidungsverfahren sind vorstehend bereits in Verbindung mit dem Verfahrensschritt 80 erörtert worden und werden hier nicht wiederholt. Das High-k-Dielektrikum 160 weist äußere Seitenflächen auf. In3 zeigen Linien, welche sich von den äußeren Flächen nach oben erstrecken, deren Position an. Der Abstand 170 zwischen den Linien (d.h. zwischen den äußeren Flächen) ist die Gate-Breite. Die Gate-Breite wird vorzugsweise im unteren Bereich der Grenzfläche des High-k-Materials 160 und der Kanaldünnschicht 155 gemessen, ist jedoch zur Vereinfachung der Betrachtung im oberen Bereich dargestellt. In einer bevorzugten Ausführungsform sind die äußeren Seitenflächen des High-k-Materials 160 mit Seitenflächen 157 des Kanals 155 in Ausrichtung gebracht. Somit sind in einer bevorzugten Ausführungsform die Gate-Breite und die Kanalbreite (Abstand zwischen den Seitenflächen 157 der Kanaldünnschicht 155) ungefähr gleich. In einer anderen Ausführungsform kann die Kanalbreite größer als die Gate-Breite 170 sein, so dass sich die äußeren Flächen des High-k-Dielektrikums innerhalb der Seitenflächen 157 des Kanals befinden. In einer Ausführungsform ist die Kanalbreite je Seite ungefähr 2 nm bis 5 nm breiter. Oder in anderen Worten, der Unterschnitt 144 beträgt je Seite 2 nm bis 5 nm. In einer weiteren Ausführungsform kann die Kanalbreite schmaler als die Gate-Breite 170 sein, so dass sich die Seitenflächen 157 des Kanals innerhalb der äußeren Flächen des High-k-Materials befinden. - Die Metall-Gate-Zone 165 befindet sich ebenfalls über der Kanaldünnschicht 155 und ist von der Kanaldünnschicht 155 durch das High-k-Material 160 getrennt. Die Materialien und Abscheidungsverfahren der Metall-Gate-Zone 165 wurden bereits zuvor in Verbindung mit dem Verfahrensschritt 80 erörtert und werden hier nicht wiederholt. Die Höhe des Metall-Gate-Stapels kann eine ähnliche wie die Höhen der Platzhalter-Gate-Zone sein, die im Verfahrensschritt 20 beschrieben werden.
- Auf jeder Seite des High-k-Materials 160 befindet sich ein Isolator 140. Geeignete Isolatoren 140 umfassen, ohne darauf beschränkt zu sein, Siliciumdioxid (SiO2), Siliciumoxide (SiOH), dotiertes Siliciumglas, Siliciumkohlenstoffoxid (SiCO), SiCOH und Siliciumcarbid (SiC).
- Gegebenenfalls ist zwischen dem Isolator 140 und dem High-k-Material 160 ein Abstandhalter 135 angeordnet. Die optionalen Abstandhalter 135 können aus Siliciumnitrid (SixNyHz) oder Siliciumoxiden (SixOyHz) oder anderen Materialien hergestellt sein.
3 zeigt eine Ausführungsform der Erfindung mit Abstandhaltern 135, und4 zeigt eine Ausführungsform der Erfindung ohne Abstandhalter 135. Man beachte, dass der Isolator eine Öffnung aufweist, welche durch den Abstand 170 (d.h. die Gate-Breite) definiert ist und sich nach unten bis zur oberen Fläche 156 der Kanaldünnschicht 155 erstreckt. Das High-k-Material 160 kleidet die Öffnung aus. - Unter dem Isolator 140 in der Ausführungsform, die in
3 abgebildet ist, befinden sich die erhöhten Source/Drain-Zonen 120. Die erhöhten Source/Drain-Zonen werden typischerweise durch ein epitaxiales Verfahren gebildet. Die epitaxiale Dünnschicht kann in situ dotiert oder ex situ dotiert werden. Die Höhe der erhöhten Source/Drain-Zonen kann im Bereich von etwa 10 nm bis etwa 50 nm oder in einem beliebigen anderen Bereich dazwischen liegen.4 zeigt eine Ausführungsform ohne erhöhte Source/Drain-Zonen. Andere Einzelheiten der Materialien und Abmessungen der erhöhten Source/Drain-Zonen sind in Verbindung mit dem Verfahrensschritt 30 beschrieben. - Unter den erhöhten Source/Drain-Zonen 120 und sowohl an die Kanaldünnschicht 155 als auch an die verbleibende SOI-Schicht 112' stoßend befinden sich dotierte SOI-Source-Drain-Zonen 125. Wo die dotierten SOI-Source-Drain-Zonen 125 an den Kanal 155 und das verbleibende SOI 112' stoßen, werden Übergänge gebildet. Der Übergang der dotierten SOI-Source-Drain-Zonen 125 und der Kanaldünnschicht 155 ist als Übergang 129s gekennzeichnet. Der Übergang 129s ist ein abrupter Übergang. Der Übergang der dotierten SOI-Source-Drain-Zonen 125 und der verbleibenden SOI-Schicht 112' ist als Übergang 129 gekennzeichnet. Der Übergang 129 ist ein diffuser Übergang. Einzelheiten der zwei Übergänge wurden vorstehend bereits in Verbindung mit
2Q und2R beschrieben. - Mit Teil-Epi-Rückwachsverfahren und erhöhten Source/Drain-Zonen hergestellter MOSFET
- In
5 ist ein MOSFET mit abrupten Übergängen dargestellt, der durch das Teil-Epi-Rückwachsverfahren hergestellt wurde. Die Eigenschaften des MOSFET, der durch das Voll-Epi-Rückwachsverfahren hergestellt wurde, und des MOSFET, der durch das Teil-Epi-Rückwachsverfahren hergestellt wurde, unterscheiden sich in der Position der oberen Fläche 156 des Kanals. Beim Teil-Epi-Rückwachsverfahren befindet sich die obere Fläche 156 des Kanals unterhalb der oberen Fläche 126 der Source/Drain-Erweiterung, statt mit der oberen Fläche 126 der Source/Drain-Erweiterung coplanar zu sein, so dass eine Stufenhöhe 158 vorhanden ist. Die Stufenhöhe kann im Bereich von 1 nm bis 10 nm oder in einem beliebigen anderen Bereich dazwischen liegen. In einer bevorzugten Ausführungsform beträgt die Stufenhöhe 4 nm, die Dicke des Kanals 155 beträgt 4 nm, und die Dicke der verbleibenden SOI-Schicht 112' beträgt 2 nm. Außer der Position der oberen Fläche 156 des Kanals und der resultierenden Stufe 158 sind alle anderen Eigenschaften, die in Verbindung mit einem MOSFET beschrieben sind, der durch das Voll-Epi-Rückwachsverfahren gebildet wurde, auch auf einen MOSFET anwendbar, der durch das Teil-Epi-Rückwachsverfahren gebildet wurde.
Claims (20)
- Verfahren zur Herstellung eines MOSFET, aufweisend: Bereitstellen einer SOI-Schicht (112); Bilden einer Platzhalter-Gate-Zone (115) auf der SOI-Schicht (112); Bilden einer Vielzahl von ersten Übergängen durch Dotieren der SOI-Schicht (112), um eine dotierte SOI-Source/Drain-Zone (125) zu bilden; Bilden einer isolierenden Schicht (140) über der SOI-Schicht (112); Entfernen der Platzhalter-Gate-Zone (115), wodurch ein frei liegender Abschnitt (142) der SOI-Schicht (112) gebildet wird; Ätzen des freiliegenden Abschnitts (142) der SOI-Schicht (112), wobei durch das Ätzen: (i) eine Aussparung (150) in der SOI-Schicht (112) gebildet wird; (ii) ein verbleibender Abschnitt (112') der SOI-Schicht (112) unter der Aussparung (150) zurückgelassen wird; und (iii) zumindest ein Abschnitt der ersten Übergänge entfernt wird; Füllen der Aussparung (150) zumindest teilweise mit einer Dünnschicht, um eine Kanaldünnschicht (155) und eine Vielzahl von zweiten Übergängen zwischen der Kanaldünnschicht (155) und der dotierten SOI-Source-Drain-Zone (125) zu bilden; Abscheiden eines Materials (160) hoher Dielektrizitätskonstante über der Kanaldünnschicht (155); und Bilden eines Metall-Gate-Stapels (165) in Kontakt mit dem Material (160) hoher Dielektrizitätskonstante.
- Verfahren nach
Anspruch 1 , wobei die Vielzahl der ersten Übergänge dort angeordnet ist, wo die dotierte SOI-Source-Drain-Zone (125) auf die SOI-Schicht (112) trifft. - Verfahren nach
Anspruch 1 , wobei der MOSFET eine Multi-Gate-Einheit ist. - Verfahren nach
Anspruch 1 , wobei der MOSFET eine Gate-Breite aufweist, welche etwa 5 nm bis etwa 25 nm beträgt. - Verfahren nach
Anspruch 1 , ferner aufweisend: Bilden eines Abstandhalters (135) vor dem Bilden der ersten Übergänge. - Verfahren nach
Anspruch 1 , wobei durch das Entfernen der Platzhalter-Gate-Zone (115) zumindest ein Abschnitt der ersten Übergänge freigelegt wird. - Verfahren nach
Anspruch 1 , wobei das Ätzen isotrop ist, um einen Unterschnitt (144) zu erzeugen. - SOI-Substrat (100), aufweisend: eine obere Fläche (102) des Substrats (100); eine dotierte SOI-Source-Zone (125) gebildet in einer SOI-Schicht (112) des Substrats (100); eine dotierte SOI-Drain-Zone (125) gebildet in der SOI-Schicht (112) des Substrats (100); eine Kanaldünnschicht (155), die in einer Aussparung (150) in der SOI-Schicht (112) zwischen der dotierten SOI-Source-Zone (125) und der dotierten SOI-Drain-Zone (125) gebildet ist, wobei die Kanaldünnschicht (155) eine obere Kanalfläche aufweist, die ungefähr koplanar mit der oberen Fläche (102) des Substrats (100) ist; und eine verbleibende SOI-Schicht (112') unter der Kanaldünnschicht (155).
- Substrat (100) nach
Anspruch 8 , wobei eine Dicke der Kanaldünnschicht (155) größer als eine Dicke der verbleibenden SOI-Schicht (112) ist. - Substrat (100) nach
Anspruch 8 , wobei die obere Substratfläche höher als die obere Kanalfläche angeordnet ist, wodurch eine Stufenhöhe von der oberen Fläche der Kanaldünnschicht bis zu der oberen Substratfläche erzeugt wird. - Substrat (100) nach
Anspruch 10 , wobei die Stufenhöhe etwa 1 nm bis etwa 10 nm beträgt. - Substrat (100) nach
Anspruch 8 , wobei die Kanaldünnschicht (155) an die dotierte SOI-Source-Zone (125) und die dotierte SOI-Drain-Zone (125) stößt, um einen Kanal-Source-Übergang und einen Kanal-Drain-Übergang zu bilden, wobei der Kanal-Source-Übergang und der Kanal-Drain-Übergang scharfe Übergänge sind. - Substrat (100) nach
Anspruch 8 , wobei die verbleibende SOI-Schicht an die dotierte SOI-Source-Zone (125) stößt und an die dotierte SOI-Drain-Zone (125) stößt, um einen Verbleibend-Source-Übergang und einen Verbleibend-Drain-Übergang zu bilden, wobei der Verbleibend-Source-Übergang und der Verbleibend-Drain-Übergang diffuse Übergänge sind. - Substrat (100) nach
Anspruch 12 , wobei die scharfen Übergänge einen Dotierstoffgradienten von etwa 0,5 nm je Dekade bis etwa 3 nm je Dekade aufweisen. - Substrat (100) nach
Anspruch 12 , wobei die diffusen Übergänge einen Dotierstoffgradienten von etwa 3 nm je Dekade bis etwa 10 nm je Dekade aufweisen. - MOSFET, aufweisend: eine dotierte SOI-Source-Zone (125); eine dotierte SOI-Drain-Zone (125); eine Isolatorschicht (140) über der dotierten SOI-Source-Zone (125) und der dotierten SOI-Drain-Zone (125); eine Kanaldünnschicht (155) zwischen der dotierten SOI-Source-Zone (125) und der dotierten SOI-Drain-Zone (125), wobei die Kanaldünnschicht (155) eine obere Fläche (156) aufweist; und eine verbleibende SOI-Schicht (112') unter der Kanaldünnschicht (155); eine Öffnung in dem Isolator (140), wobei sich die Öffnung über zumindest einem Abschnitt der Kanaldünnschicht (155) befindet; ein Material (160) hoher Dielektrizitätskonstante in Kontakt mit zumindest einem Abschnitt der Kanaldünnschicht (155); und eine Metall-Gate-Zone (165) in Kontakt mit dem Material (160) hoher Dielektrizitätskonstante.
- MOSFET nach
Anspruch 16 , ferner aufweisend: eine Gate-Breite, welche etwa 5 nm bis etwa 25 nm beträgt. - MOSFET nach
Anspruch 16 , wobei: die Kanaldünnschicht (155) eine Vielzahl von Seitenwänden aufweist; das Material (160) hoher Dielektrizitätskonstante eine Vielzahl von äußeren Flächen aufweist; und mindestens eine der Seitenwände der Kanaldünnschicht (155) vertikal mit einer der äußeren Flächen des Materials (160) hoher Dielektrizitätskonstante in Ausrichtung gebracht ist. - MOSFET nach
Anspruch 16 , wobei: die Kanaldünnschicht (155) eine Kanaldünnschichtbreite aufweist; und die Kanaldünnschichtbreite etwa 5 nm bis etwa 50 nm beträgt. - MOSFET nach
Anspruch 16 , ferner aufweisend: eine erhöhte Source-Zone (120) über der dotierten SOI-Source-Zone (125); und eine erhöhte Drain-Zone (120) über der dotierten SOI-Drain-Zone (125).
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/086,459 US8691650B2 (en) | 2011-04-14 | 2011-04-14 | MOSFET with recessed channel film and abrupt junctions |
US13/086,459 | 2011-04-14 | ||
USUS-13/086,459 | 2011-04-14 | ||
PCT/US2012/027930 WO2012141825A1 (en) | 2011-04-14 | 2012-03-07 | Mosfet with recessed channel film and abrupt junctions |
Publications (2)
Publication Number | Publication Date |
---|---|
DE112012001158T5 DE112012001158T5 (de) | 2013-12-19 |
DE112012001158B4 true DE112012001158B4 (de) | 2023-04-06 |
Family
ID=47005810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE112012001158.9T Active DE112012001158B4 (de) | 2011-04-14 | 2012-03-07 | Mosfet mit ausgesparter Kanaldünnschicht und abrupten Übergängen |
Country Status (5)
Country | Link |
---|---|
US (5) | US8691650B2 (de) |
CN (1) | CN103582930B (de) |
DE (1) | DE112012001158B4 (de) |
GB (1) | GB2503378B (de) |
WO (1) | WO2012141825A1 (de) |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101865754B1 (ko) * | 2011-07-01 | 2018-06-12 | 삼성전자주식회사 | 반도체 장치 및 그 제조 방법 |
US8486790B2 (en) * | 2011-07-18 | 2013-07-16 | United Microelectronics Corp. | Manufacturing method for metal gate |
US9263566B2 (en) * | 2011-07-19 | 2016-02-16 | Semiconductor Manufacturing International (Beijing) Corporation | Semiconductor device and manufacturing method thereof |
US9087687B2 (en) | 2011-12-23 | 2015-07-21 | International Business Machines Corporation | Thin heterostructure channel device |
CN103383914B (zh) * | 2012-05-02 | 2016-03-02 | 中国科学院微电子研究所 | 半导体结构及其制造方法 |
US8647937B2 (en) * | 2012-06-26 | 2014-02-11 | Globalfoundries Singapore Pte. Ltd. | Deep depleted channel MOSFET with minimized dopant fluctuation and diffusion levels |
US20140073106A1 (en) | 2012-09-12 | 2014-03-13 | International Business Machines Corporation | Lateral bipolar transistor and cmos hybrid technology |
US9041126B2 (en) * | 2012-09-21 | 2015-05-26 | Mie Fujitsu Semiconductor Limited | Deeply depleted MOS transistors having a screening layer and methods thereof |
US8907427B2 (en) * | 2012-11-05 | 2014-12-09 | Stmicroelectronics, Inc. | Semiconductor device including low-K dielectric cap layer for gate electrodes and related methods |
CN103811349A (zh) * | 2012-11-06 | 2014-05-21 | 中国科学院微电子研究所 | 半导体结构及其制造方法 |
US9029208B2 (en) * | 2012-11-30 | 2015-05-12 | International Business Machines Corporation | Semiconductor device with replacement metal gate and method for selective deposition of material for replacement metal gate |
US9406517B2 (en) | 2013-03-12 | 2016-08-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | SiGe surface passivation by germanium cap |
KR102078187B1 (ko) | 2013-05-31 | 2020-02-17 | 삼성전자 주식회사 | 반도체 장치 및 그 제조 방법 |
US9041109B2 (en) | 2013-09-19 | 2015-05-26 | International Business Machines Corporation | Field effect transistor including a recessed and regrown channel |
US9502408B2 (en) * | 2013-11-14 | 2016-11-22 | Globalfoundries Inc. | FinFET device including fins having a smaller thickness in a channel region, and a method of manufacturing same |
US9455346B2 (en) * | 2013-12-09 | 2016-09-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Channel strain inducing architecture and doping technique at replacement poly gate (RPG) stage |
US9177791B2 (en) * | 2013-12-13 | 2015-11-03 | Intermolecular, Inc. | Systems and methods for forming semiconductor devices |
US9281196B2 (en) | 2013-12-31 | 2016-03-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method to reduce etch variation using ion implantation |
US9905648B2 (en) * | 2014-02-07 | 2018-02-27 | Stmicroelectronics, Inc. | Silicon on insulator device with partially recessed gate |
US9418870B2 (en) * | 2014-02-12 | 2016-08-16 | International Business Machines Corporation | Silicon germanium-on-insulator formation by thermal mixing |
US9202812B2 (en) | 2014-03-21 | 2015-12-01 | International Business Machines Corporation | Abrupt source/drain junction formation using a diffusion facilitation layer |
US9640656B2 (en) * | 2014-04-04 | 2017-05-02 | Micron Technology, Inc. | Transistors having strained channel under gate in a recess |
US9935013B2 (en) | 2014-04-09 | 2018-04-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Flexible device modulation by oxide isolation structure selective etching process |
US9324831B2 (en) * | 2014-08-18 | 2016-04-26 | Globalfoundries Inc. | Forming transistors without spacers and resulting devices |
US9496379B2 (en) | 2014-10-20 | 2016-11-15 | International Business Machines Corporation | Method and structure for III-V FinFET |
US9722046B2 (en) * | 2014-11-25 | 2017-08-01 | Atomera Incorporated | Semiconductor device including a superlattice and replacement metal gate structure and related methods |
US9299939B1 (en) | 2014-12-09 | 2016-03-29 | International Business Machines Corporation | Formation of CMOS device using carbon nanotubes |
US9431485B2 (en) | 2014-12-23 | 2016-08-30 | GlobalFoundries, Inc. | Formation of finFET junction |
US10269968B2 (en) * | 2015-06-03 | 2019-04-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device including fin structures and manufacturing method thereof |
US9972711B2 (en) | 2015-06-03 | 2018-05-15 | International Business Machines Corporation | Reduced resistance short-channel InGaAs planar MOSFET |
US9595595B2 (en) * | 2015-06-25 | 2017-03-14 | International Business Machines Corporation | Method of forming field effect transistors (FETs) with abrupt junctions and integrated circuit chips with the FETs |
US9564500B2 (en) * | 2015-06-30 | 2017-02-07 | International Business Machines Corporation | Fully-depleted SOI MOSFET with U-shaped channel |
US9917195B2 (en) | 2015-07-29 | 2018-03-13 | International Business Machines Corporation | High doped III-V source/drain junctions for field effect transistors |
US9768254B2 (en) * | 2015-07-30 | 2017-09-19 | International Business Machines Corporation | Leakage-free implantation-free ETSOI transistors |
US9793400B2 (en) * | 2015-10-12 | 2017-10-17 | International Business Machines Corporation | Semiconductor device including dual-layer source/drain region |
US10840381B2 (en) | 2016-08-10 | 2020-11-17 | International Business Machines Corporation | Nanosheet and nanowire MOSFET with sharp source/drain junction |
US10050119B2 (en) * | 2016-09-02 | 2018-08-14 | Globalfoundries Inc. | Method for late differential SOI thinning for improved FDSOI performance and HCI optimization |
US9929258B1 (en) * | 2016-09-20 | 2018-03-27 | International Business Machines Corporation | Method of junction control for lateral bipolar junction transistor |
US10326019B2 (en) | 2016-09-26 | 2019-06-18 | International Business Machines Corporation | Fully-depleted CMOS transistors with U-shaped channel |
US20180233580A1 (en) * | 2017-02-14 | 2018-08-16 | Globalfoundries Inc. | Semiconductor structure with gate height scaling |
US10236346B1 (en) | 2017-10-25 | 2019-03-19 | International Business Machines Corporation | Transistor having a high germanium percentage fin channel and a gradient source/drain junction doping profile |
WO2019139626A1 (en) * | 2018-01-12 | 2019-07-18 | Intel Corporation | Non-planar semiconductor device including a replacement channel structure |
US20190312109A1 (en) * | 2018-04-05 | 2019-10-10 | Globalfoundries Inc. | Field-effect transistors with a composite channel |
US11088262B2 (en) | 2018-09-28 | 2021-08-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Radical etching in gate formation |
KR20210011748A (ko) | 2019-07-23 | 2021-02-02 | 삼성전자주식회사 | 반도체 소자 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020037619A1 (en) | 2000-09-22 | 2002-03-28 | Kohei Sugihara | Semiconductor device and method of producing the same |
US6509234B1 (en) | 2002-02-21 | 2003-01-21 | Advanced Micro Devices, Inc. | Method of fabricating an ultra-thin fully depleted SOI device with T-shaped gate |
US20030168700A1 (en) | 2002-03-08 | 2003-09-11 | Fujitsu Limited | Semiconductor device and method for fabricating the same |
US6939751B2 (en) | 2003-10-22 | 2005-09-06 | International Business Machines Corporation | Method and manufacture of thin silicon on insulator (SOI) with recessed channel |
US7041538B2 (en) | 2002-04-05 | 2006-05-09 | International Business Machines Corporation | Method of manufacturing a disposable reversed spacer process for high performance recessed channel CMOS |
US20070298561A1 (en) | 2006-06-21 | 2007-12-27 | Texas Instruments Deutschland Gmbh | INTEGRATED SiGe NMOS AND PMOS TRANSISTORS |
US7429769B2 (en) | 2003-12-17 | 2008-09-30 | Taiwan Semiconductor Manufacturing Co., Ltd | Recessed channel field effect transistor (FET) device |
US7652332B2 (en) | 2007-08-10 | 2010-01-26 | International Business Machines Corporation | Extremely-thin silicon-on-insulator transistor with raised source/drain |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6756637B2 (en) | 2001-07-06 | 2004-06-29 | International Business Machines Corporation | Method of controlling floating body effects in an asymmetrical SOI device |
US7034361B1 (en) | 2003-09-03 | 2006-04-25 | Advanced Micro Devices, Inc. | Narrow body raised source/drain metal gate MOSFET |
US7060546B2 (en) * | 2003-11-26 | 2006-06-13 | International Business Machines Corporation | Ultra-thin SOI MOSFET method and structure |
US7075150B2 (en) | 2003-12-02 | 2006-07-11 | International Business Machines Corporation | Ultra-thin Si channel MOSFET using a self-aligned oxygen implant and damascene technique |
US7091069B2 (en) | 2004-06-30 | 2006-08-15 | International Business Machines Corporation | Ultra thin body fully-depleted SOI MOSFETs |
US20070069300A1 (en) | 2005-09-29 | 2007-03-29 | International Business Machines Corporation | Planar ultra-thin semiconductor-on-insulator channel mosfet with embedded source/drain |
US7812397B2 (en) | 2005-09-29 | 2010-10-12 | International Business Machines Corporation | Ultra thin channel (UTC) MOSFET structure formed on BOX regions having different depths and different thicknesses beneath the UTC and source/drain regions and method of manufacture thereof |
US7883944B2 (en) | 2009-03-19 | 2011-02-08 | International Business Machines Corporation | Ultra-thin semiconductor on insulator metal gate complementary field effect transistor with metal gate and method of forming thereof |
US8263468B2 (en) | 2010-04-24 | 2012-09-11 | International Busienss Machines Corporation | Thin body semiconductor devices |
-
2011
- 2011-04-14 US US13/086,459 patent/US8691650B2/en active Active
-
2012
- 2012-03-07 WO PCT/US2012/027930 patent/WO2012141825A1/en active Application Filing
- 2012-03-07 CN CN201280018022.XA patent/CN103582930B/zh not_active Expired - Fee Related
- 2012-03-07 DE DE112012001158.9T patent/DE112012001158B4/de active Active
- 2012-03-07 GB GB1316653.3A patent/GB2503378B/en not_active Expired - Fee Related
- 2012-09-07 US US13/606,816 patent/US8629502B2/en active Active
-
2013
- 2013-10-22 US US14/059,871 patent/US9059005B2/en not_active Expired - Fee Related
- 2013-10-22 US US14/059,978 patent/US9041108B2/en not_active Expired - Fee Related
- 2013-10-22 US US14/059,915 patent/US9053946B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020037619A1 (en) | 2000-09-22 | 2002-03-28 | Kohei Sugihara | Semiconductor device and method of producing the same |
US6509234B1 (en) | 2002-02-21 | 2003-01-21 | Advanced Micro Devices, Inc. | Method of fabricating an ultra-thin fully depleted SOI device with T-shaped gate |
US20030168700A1 (en) | 2002-03-08 | 2003-09-11 | Fujitsu Limited | Semiconductor device and method for fabricating the same |
US7041538B2 (en) | 2002-04-05 | 2006-05-09 | International Business Machines Corporation | Method of manufacturing a disposable reversed spacer process for high performance recessed channel CMOS |
US6939751B2 (en) | 2003-10-22 | 2005-09-06 | International Business Machines Corporation | Method and manufacture of thin silicon on insulator (SOI) with recessed channel |
US7429769B2 (en) | 2003-12-17 | 2008-09-30 | Taiwan Semiconductor Manufacturing Co., Ltd | Recessed channel field effect transistor (FET) device |
US20070298561A1 (en) | 2006-06-21 | 2007-12-27 | Texas Instruments Deutschland Gmbh | INTEGRATED SiGe NMOS AND PMOS TRANSISTORS |
US7652332B2 (en) | 2007-08-10 | 2010-01-26 | International Business Machines Corporation | Extremely-thin silicon-on-insulator transistor with raised source/drain |
Non-Patent Citations (1)
Title |
---|
Jack Kavalieros et al.: Tri-Gate Transistor Architecture with High-k Gate Dielectrics. In: Symposium on VLSI Technology Digest of Technical Papers, 2006, 1, 2. |
Also Published As
Publication number | Publication date |
---|---|
US20140042521A1 (en) | 2014-02-13 |
GB201316653D0 (en) | 2013-11-06 |
US20120261754A1 (en) | 2012-10-18 |
US8691650B2 (en) | 2014-04-08 |
CN103582930B (zh) | 2016-10-26 |
US8629502B2 (en) | 2014-01-14 |
GB2503378B (en) | 2015-03-25 |
US9041108B2 (en) | 2015-05-26 |
US20120326232A1 (en) | 2012-12-27 |
WO2012141825A1 (en) | 2012-10-18 |
US9053946B2 (en) | 2015-06-09 |
US20140042542A1 (en) | 2014-02-13 |
GB2503378A (en) | 2013-12-25 |
US20140042543A1 (en) | 2014-02-13 |
DE112012001158T5 (de) | 2013-12-19 |
US9059005B2 (en) | 2015-06-16 |
CN103582930A (zh) | 2014-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112012001158B4 (de) | Mosfet mit ausgesparter Kanaldünnschicht und abrupten Übergängen | |
DE112012004932B4 (de) | Verfahren zur Herstellung eines SOI-FinFET mit vertieften verschmolzenen Rippen und Schicht zur verbesserten Spannungskopplung | |
DE102018218518B4 (de) | Epitaktische Strukturen in komplementären Feldeffekttransistoren | |
DE102012206478B4 (de) | Extrem-dünner-Halbleiter-auf-Isolator(ETSOI)-FET mit einem Rück-Gate und verringerter Parasitärkapazität sowie Verfahren zu dessen Herstellung | |
DE102010038742B4 (de) | Verfahren und Halbleiterbauelement basierend auf einer Verformungstechnologie in dreidimensionalen Transistoren auf der Grundlage eines verformten Kanalhalbleitermaterials | |
DE102016115986B4 (de) | Halbleiter-bauelement und verfahren zu dessen herstellung | |
DE102014115586B4 (de) | Integrierte Schaltkreisstruktur mit Substratisolation und undotiertem Kanal | |
DE102013101113B4 (de) | Leistungs-MOS-Transistor und Verfahren zu dessen Herstellung | |
DE102007054028B4 (de) | Feldeffekt-Transistor mit einer Finnen-Struktur | |
DE102010037736B4 (de) | Tunnel-Feldeffekttransistoren | |
DE112011100159B4 (de) | Einheit mit extrem dünnem SOI mit dünnem BOX und Metallrückgate | |
DE102006029281B4 (de) | Halbleiterbauelement mit einer vergrabenen Gateelektrode und Verfahren zu seiner Herstellung | |
DE102009055392B4 (de) | Halbleiterbauelement und Verfahren zur Herstellung des Halbleiterbauelements | |
DE69111963T2 (de) | Dünnfilm-Transistor und Verfahren zur Herstellung. | |
DE112020002838T5 (de) | Selbstausgerichtete gate-isolation mit asymmetrischer einschnitt-anordnung | |
DE102009046246B4 (de) | Herstellverfahren und Halbleiterbauelement mit Verformungstechnologie in dreidimensionalen Transistoren auf der Grundlage global verformter Halbleiterbasisschichten | |
DE112011101433B4 (de) | Stressor mit eingebetteter Dotierstoff-Monoschicht für hochentwickelten CMOS-Halbleiter | |
DE102019215248B4 (de) | Finfet mit isolierenden schichten zwischen dem gate und source/drain-kontakten sowie verfahren zu seiner herstellung | |
DE102010016000A1 (de) | Halbleitervorrichtungen und Verfahren zum Herstellen einer Halbleitervorrichtung | |
DE102005045078B4 (de) | Feldeffekttransistor mit einer verspannten Kanalschicht an Seitenwänden einer Struktur an einem Halbleitersubstrat | |
DE102017110442A1 (de) | Finfet-Vorrichtung mit epitaktischen Strukturen, die die Rippen umschliessen, und ihr Herstellungsverfahren | |
DE102019206113A1 (de) | Feldeffekttransistoren mit multiplen Gatelängen | |
DE102018103075B4 (de) | Verfahren zum Herstellen einer Halbleitervorrichtung und eine Halbleitervorrichtung | |
DE112018005441B4 (de) | Struktur und Verfahren zur Verringerung eines lateralen Reihenwiderstands für Transistoren | |
DE102011080438B3 (de) | Herstellverfahren für einen N-Kanaltransistor mit einer Metallgateelektrodenstruktur mit großem ε und einem reduzierten Reihenwiderstand durch epitaktisch hergestelltes Halbleitermaterial in den Drain- und Sourcebereichen und N-Kanaltransistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R081 | Change of applicant/patentee |
Owner name: GLOBALFOUNDRIES U.S. INC., SANTA CLARA, US Free format text: FORMER OWNER: INTERNATIONAL BUSINESS MACHINES CORPORATION, ARMONK, NY, US Owner name: GLOBALFOUNDRIES U.S. INC., SANTA CLARA, US Free format text: FORMER OWNER: INTERNATIONAL BUSINESS MACHINES CORPORATION, ARMONK, N.Y., US Owner name: GLOBALFOUNDRIES INC., KY Free format text: FORMER OWNER: INTERNATIONAL BUSINESS MACHINES CORPORATION, ARMONK, N.Y., US |
|
R082 | Change of representative |
Representative=s name: RICHARDT PATENTANWAELTE PARTG MBB, DE |
|
R081 | Change of applicant/patentee |
Owner name: GLOBALFOUNDRIES U.S. INC., SANTA CLARA, US Free format text: FORMER OWNER: GLOBALFOUNDRIES US 2 LLC (N.D.GES.DES STAATES DELAWARE), HOPEWELL JUNCTION, N.Y., US Owner name: GLOBALFOUNDRIES INC., KY Free format text: FORMER OWNER: GLOBALFOUNDRIES US 2 LLC (N.D.GES.DES STAATES DELAWARE), HOPEWELL JUNCTION, N.Y., US |
|
R082 | Change of representative |
Representative=s name: RICHARDT PATENTANWAELTE PARTG MBB, DE |
|
R016 | Response to examination communication | ||
R016 | Response to examination communication | ||
R081 | Change of applicant/patentee |
Owner name: GLOBALFOUNDRIES U.S. INC., SANTA CLARA, US Free format text: FORMER OWNER: GLOBALFOUNDRIES INC., GRAND CAYMAN, KY |
|
R082 | Change of representative |
Representative=s name: RICHARDT PATENTANWAELTE PARTG MBB, DE |
|
R082 | Change of representative |
Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE |
|
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R020 | Patent grant now final |