DE102015214228A1 - Verfahren zur Herstellung eines Bauelements und ein Bauelement - Google Patents

Verfahren zur Herstellung eines Bauelements und ein Bauelement Download PDF

Info

Publication number
DE102015214228A1
DE102015214228A1 DE102015214228.0A DE102015214228A DE102015214228A1 DE 102015214228 A1 DE102015214228 A1 DE 102015214228A1 DE 102015214228 A DE102015214228 A DE 102015214228A DE 102015214228 A1 DE102015214228 A1 DE 102015214228A1
Authority
DE
Germany
Prior art keywords
layer
connection
layers
semiconductor
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102015214228.0A
Other languages
English (en)
Inventor
Jürgen Moosburger
Lutz Höppel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102015214228.0A priority Critical patent/DE102015214228A1/de
Priority to US15/747,165 priority patent/US10629781B2/en
Priority to PCT/EP2016/067245 priority patent/WO2017016945A1/de
Publication of DE102015214228A1 publication Critical patent/DE102015214228A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05022Disposition the internal layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05026Disposition the internal layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

Es wird ein Verfahren zur Herstellung eines Bauelements angegeben, bei dem ein Verbund aufweisend einen Halbleiterschichtenstapel und Anschlussschichten bereitgestellt wird, wobei ein Formkörpermaterial auf den Verbund zur Ausbildung eines Formkörpers aufgebracht wird, sodass der Formkörper die Anschlussschichten bedeckt. Es werden Ausnehmungen zur Freilegung der Anschlussschichten durch den Formkörper hindurch gebildet, woraufhin die Ausnehmungen mit einem elektrisch leitfähigen Material zur Bildung von Durchkontakten aufgefüllt werden. Des Weiteren wird ein Bauelement angegeben, das insbesondere durch ein solches Verfahren hergestellt wird, wobei der Formkörper einstückig ist und aus einem verpressten und/oder mit Fasern oder Füllstoffen verstärkten Formkörpermaterial ausgebildet ist.

Description

  • Zur Herstellung eines Gehäuses für einen Halbleiterchip kann der Halbleiterchip mit einer Vergussmasse umhüllt werden, wodurch ein Bauelement mit dem Halbleiterchip und der gehärteten Vergussmasse als Gehäuse gebildet wird. Alternativ kann das Gehäuse auch separat hergestellt und der Halbleiterchip darin platziert werden.
  • Eine Aufgabe ist es, ein vereinfachtes und kostengünstiges Verfahren zur Herstellung eines mechanisch stabilen Bauelements anzugeben. Des Weiteren wird ein Bauelement mit einer hohen mechanischen Stabilität angegeben.
  • Gemäß zumindest einer Ausführungsform des Verfahrens zur Herstellung eines Bauelements wird ein Verbund aus einem Halbleiterschichtenstapel, einer ersten Anschlussschicht und einer zweiten Anschlussschicht bereitgestellt. Der Verbund ist vorzugsweise ein Waferverbund. Der Waferverbund kann ein Aufwachssubstrat aufweisen, auf das der Halbleiterschichtenstapel etwa durch ein Beschichtungsverfahren, bevorzugt durch ein Epitaxie-Verfahren, aufgebracht ist. Die erste Anschlussschicht und die zweite Anschlussschicht sind insbesondere zur elektrischen Kontaktierung des Halbleiterschichtenstapels eingerichtet und beispielsweise verschiedenen elektrischen Polaritäten des herzustellenden Bauelements zugehörig. Der Verbund kann auch eine Mehrzahl von ersten Anschlussschichten und eine Mehrzahl von zweiten Anschlussschichten aufweisen. Die Anschlussschichten können mittels eines Beschichtungsverfahrens, etwa mittels eines galvanischen oder stromlosen Beschichtungsverfahrens, auf den Halbleiterschichtenstapel aufgebracht werden.
  • Gemäß zumindest einer Ausführungsform des Verfahrens wird der Verbund mit einer ersten Metallschicht bereitgestellt. Die erste Metallschicht ist in vertikaler Richtung etwa zwischen den Anschlussschichten und dem Halbleiterschichtenstapel angeordnet. Insbesondere ist die erste Metallschicht mit einer aus der Gruppe aus der ersten und der zweiten Anschlussschicht elektrisch verbunden und von der anderen Anschlussschicht aus dieser Gruppe elektrisch isoliert.
  • Unter einer vertikalen Richtung wird eine Richtung verstanden, die insbesondere senkrecht zu einer Haupterstreckungsfläche des Halbleiterschichtenstapels gerichtet ist. Unter einer lateralen Richtung wird eine Richtung verstanden, die insbesondere parallel zu der Haupterstreckungsfläche des Halbleiterschichtenstapels verläuft. Insbesondere sind die vertikale Richtung und die laterale Richtung quer, insbesondere senkrecht zueinander gerichtet.
  • Gemäß zumindest einer Ausgestaltung weist die erste Metallschicht eine größere mittlere vertikale Dicke auf als eine mittlere vertikale Dicke der ersten Anschlussschicht oder eine mittlere vertikale Dicke der zweiten Anschlussschicht. In Draufsicht kann die erste Metallschicht einen zwischen den Anschlussschichten angeordneten Zwischenbereich lateral überbrücken, bevorzugt einen Großteil etwa mindestens 60%, mindestens 70% oder mindestens 90% des Zwischenbereichs überdecken und dadurch das herzustellende Bauelement an Stellen des Zwischenbereichs mechanisch verstärken. Die erste Anschlussschicht und die zweite Anschlussschicht sind durch diesen Zwischenbereich voneinander elektrisch getrennt. Der Verbund kann eine Mehrzahl von solchen ersten Metallschichten aufweisen, wobei jede Metallschicht einem Paar aus einer ersten Anschlussschicht und einer zweiten Anschlussschicht zugeordnet ist. Die erste Metallschicht beziehungsweise die ersten Metallschichten können somit als eine mechanische Verstärkung für den Halbleiterschichtenstapels sowie für die herzustellenden Bauelemente dienen.
  • Gemäß zumindest einer Ausführungsform des Verfahrens wird der Verbund mit einem oder einer Mehrzahl von Trenngräben bereitgestellt. Ein solcher Trenngraben kann sich in der vertikalen Richtung in den Halbleiterschichtenstapel hinein erstrecken. Insbesondere wird der Halbleiterschichtenstapel durch den Trenngraben oder durch die Mehrzahl von Trenngräben beispielsweise nach einem Vereinzelungsschritt entlang der Trenngräben in eine Mehrzahl von Halbleiterkörpern der herzustellenden Bauelemente unterteilt. Das heißt, der Verbund mit dem Halbleiterschichtenstapel kann auf Waferebene bereitgestellt werden, wobei der Halbleiterschichtenstapel in eine Mehrzahl von Halbleiterkörpern vereinzelt werden kann.
  • Der Halbleiterschichtenstapel kann eine erste Halbleiterschicht eines ersten Ladungsträgertyps und eine zweite Halbleiterschicht eines zweiten Ladungsträgertyps aufweisen. Des Weiteren weist der Halbleiterschichtenstapel eine aktive Schicht auf, die insbesondere zwischen der ersten und der zweiten Halbleiterschicht angeordnet ist. Zum Beispiel ist die aktive Schicht eine p-n-Übergangszone. Die aktive Schicht kann dabei als eine Schicht oder als eine Schichtenfolge mehrerer Schichten ausgebildet sein. Die aktive Schicht ist insbesondere dazu eingerichtet, eine elektromagnetische Strahlung etwa im sichtbaren, ultravioletten oder im infraroten Spektralbereich zu emittieren oder eine elektromagnetische Strahlung zu absorbieren und diese in elektrische Signale oder elektrische Energie umzuwandeln. Der Halbleiterschichtenstapel kann mittels eines Epitaxie-Verfahrens schichtenweise auf ein Aufwachssubstrat aufgebracht sein. Der Verbund kann daher auch ein Aufwachssubstrat aufweisen, auf dem der Halbleiterschichtenstapel angeordnet ist. Das Aufwachssubstrat kann jedoch in einem nachfolgenden Verfahrensschritt von dem Halbleiterschichtenstapel entfernt werden, sodass das herzustellende Bauelement insbesondere frei von einem Aufwachssubstrat ist.
  • Der Halbleiterschichtenstapel weist eine erste Hauptfläche auf, die beispielsweise als eine Strahlungsdurchtrittsfläche ausgebildet ist. Des Weiteren weist der Halbleiterschichtenstapel eine der ersten Hauptfläche abgewandte zweite Hauptfläche auf, die beispielsweise durch eine Oberfläche einer Halbleiterschicht, zum Beispiel der zweiten Halbleiterschicht, gebildet ist. Insbesondere begrenzen die erste Hauptfläche und die zweite Hauptfläche den Halbleiterschichtenstapel in der vertikalen Richtung. Insbesondere grenzt die erste Hauptfläche an das Aufwachssubstrat an. Die erste Metallschicht sowie die Anschlussschichten sind insbesondere auf der Seite der zweiten Hauptfläche auf dem Halbleiterschichtenstapel angeordnet.
  • Gemäß zumindest einer Ausführungsform des Verfahrens wird ein Formkörpermaterial auf den Verbund zur Ausbildung eines Formkörpers des herzustellenden Bauelements aufgebracht. Das Formkörpermaterial wird insbesondere auf der Seite der zweiten Hauptfläche des Halbleiterschichtenstapels so ausgebildet, dass in Draufsicht auf den Halbleiterschichtenstapel der Formkörper die erste Anschlussschicht und die zweite Anschlussschicht bedeckt, insbesondere vollständig bedeckt.
  • Das Formkörpermaterial kann dabei ein mit Fasern, etwa Gewebefasern oder Glasfasern, verstärktes Matrixmaterial aufweisen. Beispielsweise ist das Matrixmaterial ein Harzmaterial wie etwa ein Epoxidharz. Zusätzlich oder alternativ kann das Matrixmaterial mit Weißpartikeln etwa mit reflektierenden beziehungsweise streuenden Partikeln aus Titanoxid oder Siliziumoxid gefüllt sein. Bevorzugt ist das Formkörpermaterial vor dem Aufbringen auf den Verbund lediglich teilweise und nicht vollständig vernetzt, wodurch das Formkörpermaterial sich einfach verarbeiten lässt und die Form des Formkörpers leicht modelliert beziehungsweise verändert werden kann. Insbesondere ist das Formkörpermaterial in Form von einer Zweiphasenfolie (englisch: bistage moldsheet) ausgebildet, die ein Matrixmaterial, Faser wie etwa Glasfaser und/oder Füllstoffe wie etwa Weißpartikel aufweist, wobei das Matrixmaterial mit den Fasern und/oder Füllstoffen nicht vollständig vernetzt ist und erst nach dem Aufbringen oder während des Aufbringens auf den Verbund etwa durch eine thermische Behandlung vollständig vernetzt wird.
  • Das Formkörpermaterial kann ein Leiterplattenmaterial sein. Unter einem Leiterplattenmaterial wird ein Material verstanden, das in der Leiterplattenindustrie für die Herstellung von Leiterplatten verwendet wird, und beispielsweise ein mit Fasern verstärktes Matrixmaterial aufweist, wobei die Fasern in dem Matrixmaterial eingebettet sind. Zum Beispiel weist das Formkörpermaterial ein mit Fasern verstärktes Reaktionsharz auf. Insbesondere ist der Formkörper aus einer FR4-Prepreg-Lage oder aus einer Mehrzahl von Prepreg-Lagen (Laminat) gebildet. Das FR4-Material ist üblicherweise mit Glasfasern gefüllt und weist daher eine besonders hohe mechanische Stabilität auf, etwa eine deutliche höhere Stabilität als ein mit Silizium-haltigen Partikeln gefüllten Vergussmaterial. Der heißverpresste Formkörper sowie das herzustellende Bauelement sind somit besonders bruchstabil ausgebildet.
  • Gemäß zumindest einer Ausführungsform des Verfahrens wird das Formkörpermaterial zur Bildung des Formkörpers mittels Heißverpressens auf den Verbund aufgebracht, wodurch das Formkörpermaterial etwa nach einer Abkühlung auf einer natürlichen Art und Weise an dem Verbund befestigt wird. Das Formkörpermaterial, welches zuvor insbesondere mit den Fasern und/oder mit anderen Füllstoffen wie Weißpartikeln lediglich teilweise vernetzt vorliegt, kann durch das Heißverpressen vollständig vernetzt werden. Insbesondere kann das Formkörpermaterial vor dem Aufbringen auf den Verbund lediglich teilausgehärtet, das heißt lediglich angetrocknet und nicht vollständig ausgehärtet, vorliegen, wobei das Formkörpermaterial etwa nach dem Heißverpressen vollständig ausgehärtet wird, wodurch ein fester und mechanisch stabiler Formkörper auf dem Verbund ausgebildet wird. Insbesondere wird bei der Aushärtung des Formkörpermaterials eine Temperatur oberhalb einer Glasübergangstemperatur des Formkörpermaterials verwendet, sodass der Formkörper nach der Abkühlung eine dauerhafte Form erhält und mechanisch stabil an dem Verbund befestigt wird.
  • Gemäß zumindest einer Ausführungsform des Verfahrens wird zumindest eine Ausnehmung in dem Formkörper zur Freilegung zumindest einer Anschlussschicht ausgebildet. Beispielsweise werden eine erste Ausnehmung durch den Formkörper hindurch zur teilweisen Freilegung der ersten Anschlussschicht und eine zweite Ausnehmung durch den Formkörper hindurch zur teilweisen Freilegung der zweiten Anschlussschicht ausgebildet. Die erste und die zweite Ausnehmung sind etwa durch den Zwischenbereich in der lateralen Richtung voneinander räumlich beabstandet, wobei der Zwischenbereich vollständig von dem Formkörpermaterial gefüllt ist. Die Ausbildung der Ausnehmungen kann mechanisch erfolgt werden. Auch können die Ausnehmungen mittels Laserbohrens erzeugt werden, wobei die erste und die zweite Anschlussschicht etwa als Stoppschichten dienen können. Laserbohren ist ein besonders geeignetes Verfahren zur Erzeugung solcher Ausnehmungen, da die Ausnehmungen durch dieses Verfahren hinsichtlich deren Positionen und Größen ganz gezielt und präzise in kürzester Zeit erzeugt werden können. Es hat sich außerdem herausgestellt, dass Kupferschichten beim Laserbohren als besonders geeignete Stoppschichten dienen können. Die Anschlussschichten sind daher bevorzugt aus Kupfer ausgebildet oder bestehen aus diesem.
  • Die Anschlussschichten können jeweils als eine Metallschicht ausgebildet sein, wobei die Metallschicht eine vertikale Dicke aufweist, die insbesondere höchstens 15 µm beträgt. Beispielsweise beträgt die vertikale Dicke der Anschlussschichten mindestens 4 µm. Bevorzugt beträgt eine mittlere vertikale Dicke der ersten und/oder zweiten Anschlussschicht zwischen einschließlich 4 und 15 µm, zwischen einschließlich 4 und 10 µm oder zwischen einschließlich 4 und 8 µm, zum Beispiel circa 6 µm. Bei einer solchen vertikalen Dicke können die erste Anschlussschicht und/oder die zweite Anschlussschicht insbesondere mittels eines galvanischen Prozesses oder stromlosen Abscheidungsprozesses auf den Halbleiterschichtenstapel vereinfacht aufgebracht werden, da diese geringe Dicke der Anschlussschichten eine Verwendung von deutlich einfacher zu handhabenden Lacken als zum Beispiel einem Trockenresist erlaubt. Das heißt, die erste und/oder die zweite Anschlussschicht mit solcher geringer Dicke können ohne großen Aufwand beispielsweise mittels strukturierten Aufbringens von Metallschichten durch ein galvanisches oder stromloses Beschichtungsverfahren auf den Halbleiterschichtenstapel aufgebracht werden, bei dem auf das Aufbringen und Verarbeiten einer vergleichsweise dicken Trockenresistschicht verzichtet werden kann. Die vergleichsweise dünnen Anschlussschichten können dabei als Basis für nachfolgende Prozessschritte etwa zur Bildung von sich durch den Formkörper hindurch erstreckenden Durchkontakten etwa in Form von Anschlusssäulen dienen, wobei die Durchkontakte eine vertikale Dicke aufweisen, die deutlich größer, etwa mindestens zweimal, fünfmal oder mindestens zehnmal oder etwa mindestens zwanzigmal so groß wie die Dicke der Anschlussschichten sein kann.
  • Gemäß zumindest einer Ausführungsform des Verfahrens werden die Ausnehmungen mit einem elektrisch leitfähigen Material, zum Beispiel mit einem Metall wie zum Beispiel Kupfer, zur Bildung von Durchkontakten, gefüllt. Die Durchkontakte sind mit den Anschlussschichten elektrisch leitend verbunden und erstrecken sich in vertikaler Richtung durch den Formkörper hindurch. Die Durchkontakte und Anschlussschichten bilden insbesondere eine zweite Metallschicht des herzustellenden Bauelements. Die zweite Metallschicht kann somit insbesondere in zumindest zwei voneinander lateral beabstandete Teilbereiche unterteilt sein, wobei ein erster Teilbereich einen ersten Durchkontakt und eine erste Anschlussschicht umfasst und ein zweiter Teilbereich einen zweiten Durchkontakt und eine zweite Anschlussschicht umfasst.
  • Die zweite Metallschicht kann zwar in einem einzigen Verfahrensschritt, etwa mittels eines galvanischen oder stromlosen Beschichtungsverfahrens, ausgebildet werden. Hierzu wird jedoch eine Trockenresistschicht benötigt, die mindestens genauso dick wie eine vertikale Dicke der zweiten Metallschicht ist. Diese vergleichsweise dicke Trockenresistschicht muss vor dem Aufbringen der zweiten Metallschicht strukturiert und nach dem Aufbringen der zweiten Metallschicht entfernt werden. Aufgrund der vergleichsweise großen Dicke der zweiten Metallschicht, die etwa 100 µm oder einige hunderte Mikrometer betragen kann, sind Prozesse hinsichtlich der Strukturierung und anschließender Entfernung der Trockenresistschicht mit großem Aufwand verbunden. Durch die schrittweise Ausbildung der zweiten Metallschicht, nämlich durch das Ausbilden von den relativ dünnen Anschlussschichten und das Auffüllen der Ausnehmungen mit einem elektrisch leitfähigen Material, kann die Ausbildung der zweiten Metallschicht vereinfacht, zuverlässig und besonders effizient ausgestaltet werden. Des Weiteren wird die zweite Metallschicht unmittelbar nach deren Fertigstellung bereits von dem Formkörper umgeben, sodass eine Umhüllung etwa durch ein Vergießen der Metallschicht mit einem Vergussmaterial nicht mehr erforderlich ist. Außerdem steht für das elektrisch leitfähige Material, das zum Auffüllen der Ausnehmungen verwendet wird, eine große Auswahl an verschiedenen Materialien zur Verfügung. Auch können verschiedene Formen der Ausnehmungen, und damit verschiedene Formen der zweiten Metallschicht einfach erzeugt werden.
  • Gemäß zumindest einer Ausführungsform des Verfahrens wird der Verbund vor dem Aufbringen des Formkörpermaterials frei von einem Träger, der verschieden von einem Aufwachssubstrat ist, bereitgestellt. Das Verfahren ist insbesondere so ausgelegt, dass das herzustellende Bauelement nach dessen Fertigstellung von der zweiten Metallschicht und von dem Formkörper mechanisch getragen wird. Insbesondere bilden die zweite Metallschicht und der Formkörper einen Träger oder ein Gehäuse des herzustellenden Bauelements. Das Bauelement wird außerdem bevorzugt von der ersten Metallschicht mechanisch verstärkt, wobei die erste Metallschicht auch als Teil des Trägers oder des Gehäuses ausgebildet werden kann.
  • Gemäß zumindest einer Ausführungsform des Verfahrens wird der Verbund mit einer Mehrzahl von ersten Metallschichten und eine Mehrzahl von zweiten Metallschichten mit jeweils einer ersten Anschlussschicht sowie einer zweiten Anschlussschicht bereitgestellt. Der Verbund weist insbesondere einen oder eine Mehrzahl von Trenngräben zwischen den herzustellenden Bauelementen auf, sodass der Verbund nach der Bildung des Formkörpers entlang der Trenngräben in eine Mehrzahl von Bauelementen vereinzelt werden kann. Die vereinzelten Bauelemente können jeweils einen Träger und einen auf dem Träger angeordneten Halbleiterkörper aufweisen, wobei der Halbleiterkörper aus dem Halbleiterschichtenstapel hervorgeht und der Träger insbesondere aus den vereinzelten Formkörper, einer von den ersten Metallschichten und einer von den zweiten Metallschichten mit einer ersten Anschlussschicht, einem ersten Durchkontakt, einer zweiten Anschlussschicht und einem zweiten Durchkontakt gebildet ist. Das vereinzelte Bauelement kann auch eine Mehrzahl von ersten und/oder zweiten Anschlussschichten sowie eine Mehrzahl von ersten und/oder zweiten Durchkontakten aufweisen. Der Träger des vereinzelten Bauelements wird somit direkt am Halbleiterschichtenstapel beziehungsweise am Halbleiterkörper, das heißt auf Waferebene und nicht in einem separaten Verfahrensschritt, ausgebildet, sodass das fertiggestellte Bauelement in diesem Sinne insbesondere frei von einer Verbindungsschicht etwa in Form einer Lötschicht oder einer Klebstoffschicht zwischen dem Halbleiterkörper und dem Träger ist.
  • In einem Verfahren zur Herstellung eines oder einer Mehrzahl von Bauelementen wird ein Verbund aufweisend eine erste Anschlussschicht, eine zweite Anschlussschicht und einen Halbleiterschichtenstapel bereitgestellt, wobei die erste und die zweite Anschlussschicht zur elektrischen Kontaktierung des Halbleiterschichtenstapels eingerichtet und verschiedenen elektrischen Polaritäten des herzustellenden Bauelements zugeordnet sind. In einem nachfolgenden Verfahrensschritt wird ein Formkörpermaterial auf den Verbund, insbesondere auf eine dem Halbleiterschichtenstapel abgewandte Oberfläche des Verbunds, zur Ausbildung eines Formkörpers aufgebracht, sodass in Draufsicht auf den Halbleiterschichtenstapel der Formkörper die erste Anschlussschicht und die zweite Anschlussschicht bedeckt. Nach dem Aufbringen des Formkörpermaterials werden eine erste Ausnehmung und eine zweite Ausnehmung durch den vom Körper hindurch zur Freilegung der Anschlussschichten ausgebildet. Die Ausnehmungen werden anschließend mit einem elektrisch leitfähigen Material zur Bildung von Durchkontakten aufgefüllt, die mit den Anschlussschichten elektrisch verbunden sind und sich in der vertikalen Richtung durch den Formkörper hindurch erstrecken.
  • Durch das stufenweise Ausbilden der Anschlussschicht und des zugehörigen Durchkontakts kann auf eine Verarbeitung eines vergleichsweise dicken Trockenresistschicht verzichtet werden. Durch das Öffnen und Auffüllen der Ausnehmungen wird auch kein Rückschleifen des Formkörpers beziehungsweise der Durchkontakte benötigt, wodurch die Gefahr einer Ablagerung von Metallreste, etwa Kupferreste oder Kupferatome, auf der Strahlungsdurchtrittsfläche vermieden werden können. Eine Gefahr etwa bezüglich einer Kupferkontamination kann somit minimiert werden. Eine weitere Gefahr, wonach eine vertikale Grenzfläche zwischen einem Durchkontakt und dem Formkörper etwa bei einem Rückschleifprozess möglicherweise nicht freigelegt wird, wird durch das Öffnen und Auffüllen der Ausnehmungen ebenfalls vermieden. Zudem ist das hier beschriebene Verfahren aufgrund einer großen Auswahl von Formkörpermaterialien besonders kostengünstig und ist auch für einen Verbund mit besonders großer Fläche anwendbar, die zum Beispiel eine Fläche eines Verbunds von mehreren ursprünglichen Wafern und somit viel größer als typische Wafergröße sein kann. Auch eine gleichmäßige vertikale Bauhöhe des Bauelements kann bereits nach dem Ausbilden des Formkörpers festgelegt werden.
  • In einer Ausführungsform eines Bauelements weist dieses einen Träger und einen auf dem Träger angeordneten Halbleiterkörper auf. Der Träger ist zumindest aus einem Formkörper, einem ersten Durchkontakt und einem zweiten Durchkontakt ausgebildet. Die Durchkontakte sind in lateraler Richtung voneinander räumlich beabstandet und können sich in vertikaler Richtung jeweils durch den Formkörper hindurch erstrecken. Dabei kann der Formkörper die Durchkontakte lateral vollumfänglich umschließen. Das Bauelement weist eine erste Anschlussschicht und eine von der ersten Anschlussschicht lateral beabstandete zweite Anschlussschicht auf, wobei die Anschlussschichten zur elektrischen Kontaktierung des Halbleiterkörpers eingerichtet sind. Die erste und zweite Anschlussschicht sind verschiedenen elektrischen Polaritäten des Bauelements zugeordnet. Die Anschlussschichten können als Teile des Trägers ausgebildet sein. Dabei sind die Anschlussschichten etwa zwischen dem Halbleiterkörper und den Durchkontakten angeordnet und mit den Durchkontakten elektrisch verbunden. Der Formkörper ist insbesondere einstückig ausgebildet. Das heißt, der Formkörper ist zusammenhängend und kann etwa in einem einzigen Verfahrensschritt hergestellt werden. Insbesondere ist der Formkörper aus einem verpressten und mit Fasern oder Füllstoffen verstärkten Formkörpermaterial ausgebildet.
  • Gemäß zumindest einer Ausführungsform des Bauelements weist der Formkörper eine erste Ausnehmung und eine zweite Ausnehmung auf. Die erste Ausnehmung und/oder die zweite Ausnehmung können dabei eine Innenwand mit Trennspuren aufweisen. Insbesondere können alle Innenwände der ersten und/oder des zweiten Ausnehmung Trennspuren aufweisen. Zur Ausbildung der Durchkontakte sind die Ausnehmungen etwa mit einem elektrisch leitfähigen Material aufgefüllt. Unter Trennspuren werden Spuren auf der Innenwand der Ausnehmung verstanden, die etwa bei der Ausbildung der Ausnehmung entstanden sind. Solche Spuren können charakteristische Spuren eines mechanischen Bearbeitungsprozesses, etwa eines Bohr- oder Fräsprozesses, oder eines chemischen Bearbeitungsprozesses, etwa eines Ätzprozesses, oder charakteristische Spuren eines Laserbearbeitungsprozesses sein. Die Trennspuren können außerdem etwa in Form von mit elektrisch leitfähigen Material gefüllten Rillen oder durchtrennten Glasfaserbündeln auf der Innenwand der Ausnehmung vorliegen.
  • Gemäß zumindest einer Ausführungsform des Bauelements weist dieses eine erste Metallschicht auf. Die erste Metallschicht ist in vertikaler Richtung etwa zwischen dem Halbleiterkörper und den Anschlussschichten angeordnet ist. Insbesondere ist die erste Metallschicht mit einer der Anschlussschichten elektrisch leitend verbunden und von einer anderen Anschlussschicht elektrisch isoliert. In Draufsicht ist ein zwischen den Anschlussschichten sowie zwischen den Durchkontakten angeordneter Zwischenbereich von der ersten Metallschicht entlang einer lateralen Längsrichtung überbrückt beziehungsweise überdeckt, wodurch das Bauelement an Stellen des Zwischenbereichs mechanisch verstärkt ist. In Draufsicht weist die erste Metallschicht somit Überlappungen sowohl mit der ersten als auch mit der zweiten Anschlussschicht. Insbesondere ist die erste Metallschicht im Bereich des Zwischenbereichs frei von einer Unterbrechung.
  • Die erste Metallschicht kann in dem Zwischenbereich außerdem eine laterale Breite entlang einer lateralen und zu der Längsrichtung quer oder senkrecht verlaufenden Querrichtung aufweisen, wobei sich die laterale Breite der ersten Metallschicht höchstens um 30 % oder höchstens um 20 % oder bevorzugt höchstens um 10 % von einer lateralen Breite der Anschlussschichten und/oder der Durchkontakte entlang der lateralen Querrichtung unterscheidet. Die laterale Breite der ersten Metallschicht kann dabei kleiner als die laterale Breite der Anschlussschichten und/oder der Durchkontakte sein. Die erste Metallschicht kann als Teil des Trägers ausgebildet sein. Der Träger kann eine zweite Metallschicht aufweisen, wobei die zweite Metallschicht die Anschlussschichten und die Durchkontakte umfasst. Somit ist das Bauelement über die zweite Metallschicht extern elektrisch kontaktierbar.
  • Gemäß zumindest einer Ausführungsform des Bauelements weist dieses eine zusammenhängende Isolierungsstruktur auf, welche eine einzige oder eine Mehrzahl von Isolierungsschichten aufweisen kann, die sich insbesondere aneinander angrenzen und somit eine zusammenhängende Isolierungsstruktur bilden. Das heißt die zusammenhängende Isolierungsstruktur kann durch mehrere separate Verfahrensschritte hergestellt sein. Insbesondere ist die zusammenhängende Isolierungsstruktur des Bauelements so eingerichtet, dass sich die Isolierungsstruktur bereichsweise in den Halbleiterkörper hinein erstreckt und bereichsweise an den Träger angrenzt oder sich gar in den Träger hinein erstreckt. Die erste Metallschicht kann durch die Isolierungsstruktur von der ersten oder von der zweiten Anschlussschicht elektrisch isoliert sein. Insbesondere weist die Isolierungsstruktur eine Öffnung auf, durch die sich die erste Metallschicht oder die zweite Metallschicht, etwa eine Anschlussschicht, zur elektrischen Kontaktierung des Halbleiterkörpers hindurch erstreckt. Die Isolierungsstruktur kann mehrere solche Öffnungen aufweisen.
  • Gemäß zumindest einer Ausführungsform des Bauelements weist dieses eine Verdrahtungsstruktur zur elektrischen Kontaktierung des Halbleiterkörpers mit der ersten Metallschicht und/oder mit der zweiten Metallschicht auf. Beispielsweise bildet die Verdrahtungsstruktur eine Verdrahtungsebene, die im Wesentlichen zwischen dem Träger und dem Halbleiterkörper angeordnet ist. Insbesondere kann sich die Verdrahtungsstruktur bereichsweise in den Halbleiterkörper und/oder in den Träger hinein erstrecken oder zumindest bereichsweise an den Halbleiterkörper und/oder Träger angrenzen. Mittels der Verdrahtungsstruktur können die erste Anschlussschicht und die zweite Anschlussschicht etwa mit einer ersten Halbleiterschicht eines ersten Ladungsträgertyps beziehungsweise mit einer zweiten Halbleiterschicht eines zweiten Ladungsträgertyps des Halbleiterkörpers elektrisch leitend verbunden werden.
  • Der Halbleiterkörper kann außerdem eine aktive Schicht aufweisen, die in der vertikalen Richtung zwischen der ersten Halbleiterschicht und der zweiten Halbleiterschicht angeordnet ist und im Betrieb des Bauelements zur Emission oder zur Detektion von elektromagnetischen Strahlungen eingerichtet ist. Bevorzugt weist die Verdrahtungsstruktur eine Durchkontaktierung auf, die sich zur elektrischen Kontaktierung der ersten Halbleiterschicht durch die zweite Halbleiterschicht und die aktive Schicht hindurch in die erste Halbleiterschicht erstreckt. Durch die Durchkontaktierung kann das Bauelement so ausgeführt werden, dass dieses über eine Rückseite des Bauelements extern elektrisch kontaktierbar ausgebildet ist. Ein externes elektrisches Kontaktieren des Bauelement kann dabei insbesondere ein Wiederaufschmelzlöten (engl.: reflow soldering) umfassen.
  • Das hier beschriebene Verfahren ist für die Herstellung eines hier beschriebenen Bauelements besonders geeignet. Die in Zusammenhang mit dem Bauelement beschriebenen Merkmale können daher auch für das Verfahren herangezogen werden und umgekehrt.
  • Weitere Vorteile, bevorzugte Ausführungsformen und Weiterbildungen des Verfahrens sowie des Bauelements ergeben sich aus den im Folgenden in Verbindung mit den 1A bis 8 erläuterten Ausführungsbeispielen.
  • Es zeigen:
  • 1A bis 6 verschiedene Verfahrensstadien eines Ausführungsbeispiels für ein Verfahren zur Herstellung eines oder einer Mehrzahl von Bauelementen in schematischen Schnittansichten, und
  • 7 und 8 verschiedene Ausführungsbeispiele für ein Bauelement in schematischen Schnittansichten.
  • Gleiche, gleichartige oder gleich wirkende Elemente sind in den Figuren mit gleichen Bezugszeichen versehen. Die Figuren sind jeweils schematische Darstellungen und daher nicht unbedingt maßstabsgetreu. Vielmehr können vergleichsweise kleine Elemente und insbesondere Schichtdicken zur Verdeutlichung übertrieben groß dargestellt werden.
  • In 1A ist ein Verbund 200 dargestellt. Der Verbund weist einen Halbleiterschichtenstapel 20 auf. Der Halbleiterschichtenstapel 20 ist auf einem Substrat 1 angeordnet. Das Substrat 1 ist insbesondere ein Aufwachssubstrat, etwa ein Saphirsubstrat, wobei der Halbleiterschichtenstapel 20 etwa mittels eines Epitaxie-Verfahrens schichtenweise auf das Aufwachssubstrat abgeschieden ist. Der Halbleiterschichtenstapel 20 weist eine dem Substrat 1 zugewandte erste Hauptfläche 201 und eine dem Substrat 1 abgewandte zweite Hauptfläche 202 auf. Insbesondere ist die erste Hauptfläche 201 durch eine Oberfläche einer ersten Halbleiterschicht 21 und die zweite Hauptfläche 202 durch eine zweite Halbleiterschicht 22 des Halbleiterschichtenstapels 20 gebildet. Der Halbleiterschichtenstapel 20 weist außerdem eine aktive Schicht 23 auf, die zwischen der ersten Halbleiterschicht 21 und der zweiten Halbleiterschicht 22 angeordnet ist.
  • Der Verbund 200 weist auf der Seite der zweiten Hauptfläche 202 des Halbleiterschichtenstapels 20 eine Verdrahtungsstruktur 8 auf. Die Verdrahtungsstruktur 8 erstreckt sich in einer Verdrahtungsebene und ist zur elektrischen Kontaktierung des Halbleiterschichtenstapels 20 eingerichtet, wobei die Verdrahtungsstruktur 8 direkt mit verschiedenen Halbleiterschichten des Halbleiterschichtenstapels 20 elektrisch leitend verbunden sein kann. Der Verbund 200 weist eine erste Metallschicht 3 auf. Die erste Metallschicht 3 kann bevorzugt strukturiert etwa mittels eines Beschichtungsverfahrens auf die Verdrahtungsstruktur 8 und/oder auf den Halbleiterschichtenstapel 20 aufgebracht werden. Insbesondere enthält die erste Metallschicht ein Metall, zum Beispiel Ni oder Cu.
  • Des Weiteren weist der Verbund 200 eine erste Anschlussschicht 41 und eine von der ersten Anschlussschicht 41 lateral beabstandete zweite Anschlussschicht 42 auf. Insbesondere können der Halbleiterschichtenstapel 20 über die erste Anschlussschicht 41 und die zweite Anschlussschicht 42 elektrisch kontaktiert werden. Die Anschlussschichten 41 und 42 sind dabei insbesondere verschiedenen elektrischen Polaritäten des herzustellenden Bauelements 100 zugeordnet und über die Verdrahtungsstruktur 8 mit den jeweiligen Halbleiterschichten des Halbleiterschichtenstapels 20 elektrisch leitend verbunden sind. Die Anschlussschichten 41 und 42 können Kupfer enthalten oder aus Kupfer bestehen.
  • In der 1A ist die erste Metallschicht 3 in der vertikalen Richtung zwischen dem Halbleiterschichtenstapel 20 und den Anschlussschichten 41 und 42 angeordnet. Der Verbund 200 weist eine Isolierungsstruktur 9 auf, wobei die erste Metallschicht 3 mittels der Isolierungsstruktur 9 von einer der Anschlussschichten, in der 1A von der zweiten Anschlussschicht 42, elektrisch getrennt ist. Die Isolierungsstruktur 9 weist eine Öffnung auf, durch die sich die erste Anschlussschicht 41 hindurch zur Bildung eines elektrischen Kontakts mit der ersten Metallschicht 3 erstreckt. In der 1A weisen die erste Metallschicht 3 und die Isolierungsstruktur 9 eine gemeinsame Öffnung auf, durch die sich die zweite Anschlussschicht 42 hindurch zur Bildung eines elektrischen Kontakts mit der Verdrahtungsstruktur 8 erstreckt. Die erste Metallschicht 3 kann dabei zusammenhängend und einstückig ausgebildet sein.
  • Des Weiteren weist die Isolierungsstruktur 9 eine weitere Öffnung auf, durch die sich die erste Metallschicht 3 hindurch zu der Verdrahtungsstruktur 8 erstreckt. In der 1A sind die Verdrahtungsstruktur 8 und die Isolierungsschicht 9 schematisch vereinfacht dargestellt. Abweichend von der 1A können die Verdrahtungsstruktur 8 und/oder die Isolierungsstruktur 9 sich bereichsweise in den Halbleiterschichtenstapel 20 hinein erstrecken. Die Verdrahtungsstruktur 8 kann Teilbereiche aufweisen, die etwa durch die Isolierungsstruktur 9 voneinander elektrisch getrennt und somit verschiedenen elektrischen Polaritäten des herzustellenden Bauelements zugeordnet sind. Die Isolierungsstruktur 9 eines jeweiligen herzustellenden Bauelements 100 ist insbesondere als eine zusammenhängende Isolierungsstruktur ausgebildet. Dabei kann die zusammenhängende Isolierungsstruktur 9 elektrisch isolierende Teilschichten aufweisen, die etwa in separaten Verfahrensschritten ausgebildet sind und sich unmittelbar aneinander angrenzen und so eine zusammenhängende Struktur bilden. Beispielsweise weist die Isolierungsstruktur 9 ein elektrisch isolierendes Material wie Siliziumoxid, etwa Siliziumdioxid, und/oder Siliziumnitrid auf oder besteht aus zumindest einem dieser Materialien.
  • Die erste Metallschicht 3 und/oder die Anschlussschichten 41, 42 können jeweils mittels eines galvanischen oder stromlosen Beschichtungsverfahrens auf den Halbleiterschichtenstapel 20 abgeschieden werden. Insbesondere werden die erste Metallschicht 3 und/oder die Anschlussschichten 41 sowie 42 mit Hilfe einer insbesondere strukturierten Lackschicht auf den Halbleiterschichtenstapel 20 aufgebracht. Die erste Metallschicht 3 weist eine vertikale Dicke D3 auf, die insbesondere zwischen einschließlich 3 und 30 µm, bevorzugt zwischen einschließlich 6 und 15 µm, etwa circa 10 µm ist.
  • Die erste Anschlussschicht 41 und die zweite Anschlussschicht 42 weisen eine erste vertikale Dicke D41 beziehungsweise eine zweite vertikale Dicke D42 auf, wobei die Dicken der Anschlussschichten jeweils insbesondere zwischen einschließlich 4 und 15 µm, bevorzugt zwischen 4 und 10 µm, oder zwischen 4 und 8 µm, etwa circa 6 µm dick sind. Insbesondere weist die erste Metallschicht 3 eine mittlere Dicke auf, die größer ist als eine mittlere Dicke der Anschlussschicht 41 und/oder Anschlussschicht 42. Beispielsweise beträgt ein Verhältnis zwischen der mittleren Dicke der ersten Metallschicht 3 und der mittleren Dicke der Anschlussschichten zwischen einschließlich 1 zu 2 oder zwischen einschließlich 1 zu 3 oder zwischen einschließlich 1 zu 5. Insbesondere ist die erste Metallschicht 3 so dick ausgebildet, dass die erste Metallschicht 3 mechanisch stabil, insbesondere freitragend ausgebildet ist und so zur mechanischen Stabilisierung des Halbleiterschichtenstapels 20 beziehungsweise des herzustellenden Bauelements 100 beiträgt.
  • Die erste Metallschicht 3 und die erste und zweite Anschlussschichten 41, 42 sind jeweils insbesondere aus einem Metall wie etwa Kupfer oder Nickel, oder aus einer Metalllegierung ausgebildet. Insbesondere sind die Anschlussschichten 41 und 42 sowie die erste Metallschicht 3 so eingerichtet, dass die erste Metallschicht 3 in Draufsicht einen zwischen den Anschlussschichten 41 und 42 angeordneten Zwischenbereich 40 lateral überbrückt und somit insbesondere ein Großteil, etwa mindestens 60 %, etwa mindestens 70 oder mindestens 90 % des Zwischenbereichs 40 bedeckt. Insbesondere kann die erste Metallschicht 3 den Zwischenbereich 40 vollständig bedecken. Durch die Überbrückung beziehungsweise Überdeckung des Zwischenbereichs 40 durch die erste Metallschicht 3 wird das herzustellende Bauelement 100 an Stellen des Zwischenbereichs 40 durch die erste Metallschicht 3 mechanisch verstärkt, wodurch die mechanische Stabilität des Bauelements erhöht ist.
  • Beispielsweise ist die erste Metallschicht 3 und die Anschlussschichten 41 sowie 42 hinsichtlich ihrer Materialien so ausgebildet, dass die erste Metallschicht ein höheres Elastizitätsmodul aufweist als die Anschlussschichten 41 und 42 und/oder die Anschlussschichten eine höhere Wärmeleitfähigkeit aufweisen als die erste Metallschicht 3. Zum Beispiel weist die erste Metallschicht 3 Nickel und die erste und/oder zweite Anschlussschicht 41, 42 Kupfer auf. Eine derartige Ausgestaltung verringert die Bauhöhe des herzustellenden Bauelements bei Beibehaltung ausreichender mechanischer Stabilität des Bauelements sowie einer hohen Effizienz bezüglich der Wärmeabführung durch die erste Metallschicht und durch die Anschlussschichten.
  • Das in der 1B dargestellte Ausführungsbeispiel entspricht im Wesentlichen dem in der 1A dargestellten Ausführungsbeispiel. Im Unterschied hierzu weist der Verbund eine Mehrzahl von ersten Metallschichten 3, eine Mehrzahl von ersten Anschlussschichten 41 sowie eine Mehrzahl von zweiten Anschlussschichten 42 auf. Die ersten Metallschichten 3 sind etwa durch einen Trenngraben 50 lateral beabstandet. Der Trenngraben 50 kann sich in der vertikalen Richtung von der Seite der Anschlussschichten in den Halbleiterschichtenstapel 20 hinein erstrecken. Abweichend von der 1B kann der Verbund 200 eine Mehrzahl von Trenngräben 50 aufweisen. Entlang der Trenngräben 50 kann der Verbund 200 in eine Mehrzahl von Bauelementen vereinzelt werden, sodass die vereinzelten Bauelemente einen Halbleiterkörper, eine von den ersten Metallschichten 3, eine von den ersten Anschlussschichten 41 und eine von den zweiten Anschlussschichten 42 aufweisen, wobei der Halbleiterkörper 2 aus dem Halbleiterschichtenstapel 20 hervorgeht. Die Isolierungsstruktur 9 kann so ausgebildet sein, dass sich diese bereichsweise in den Trenngraben 50 hinein erstreckt. Insbesondere kann die Isolierungsstruktur 9 eine Bodenfläche des Trenngrabens 50 bedecken, wobei der Verbund 200 bei der Vereinzelung durch die Isolierungsstruktur 9 in dem Trenngraben 50 durchgetrennt wird. Abweichend von der 1B kann sich die erste Metallschicht 3 ebenfalls zumindest teilweise in den Trenngraben 50 hinein erstrecken.
  • In 2 wird ein Formkörpermaterial, etwa ein elektrisch isolierender Kunststoff, auf den Verbund 200 zur Ausbildung eines Formkörpers 10 aufgebracht. In Draufsicht auf den Halbleiterschichtenstapel 20 bedeckt der Formkörper 10 die erste Anschlussschicht 41, die zweite Anschlussschicht 42 sowie den zwischen den Anschlussschichten ausgebildeten Zwischenbereich 40 insbesondere vollständig. Das Formkörpermaterial kann eine Vergussmasse sein, die mittels eines Gießverfahrens bevorzugt unter Druckeinwirkung, etwa mittels Spritzgießens (injection molding), Spritzpressens (transfer molding) oder Formpressens (compression molding), auf den Verbund 200 aufgebracht wird.
  • Alternativ kann das Formkörpermaterial ein Matrixmaterial sein, dass insbesondere ein Harzmaterial aufweist und beispielsweise mit Fasern, etwa mit Glasfasern oder Gewebefasern, und/oder mit Weißpartikeln, insbesondere streuenden oder reflektierenden Partikeln etwa aus einem Silizium- oder Titanoxid gefüllt ist. Insbesondere ist das Formkörpermaterial ein Leiterplattenmaterial. Anstelle des Vergießens beziehungsweise des Einmoldens erweist es sich als besonders günstig und effizient, solches Formkörpermaterial mittels Verpressens insbesondere mittels Heißverpressens auf den Verbund aufzubringen und dadurch an dem Verbund zu befestigen. Das Formkörpermaterial kann vor dem Aufbringen auf den Verbund lediglich teilweise und nicht vollständig vernetzt sein. Eine vollständige Vernetzung des Matrixmaterials des Formkörpermaterials kann durch eine thermische Behandlung während des Aufbringens oder nach dem Aufbringen des Formkörpermaterials auf den Verbund erfolgen. Auch kann das Formkörpermaterial vor dem Aufbringen auf den Verbund teilausgehärtet, das heißt etwa angetrocknet, vorliegen und erst nach dem Aufbringen auf den Verbund vollständig ausgehärtet werden.
  • Beispielsweise ist das Formkörpermaterial ein mit Glasfasern verstärktes Epoxidharz. Auch kann der Formkörper 10 aus einer FR4-Prepreg-Lage oder aus einer Mehrzahl von solchen Prepreg-Lagen (Laminat) ausgebildet sein. Der Formkörper 10 kann Strahlung streuende und/oder reflektierendene Füllstoffe aufweisen. Das Formkörpermaterial kann dabei mit Weißpartikeln etwa mit ein mit streuenden oder reflektierenden Partikeln wie Titanoxid- oder Siliziumoxid-Partikeln gefüllt, insbesondere hochgefüllt sein. Unter einem mit Weißpartikeln hochgefüllten Material wird ein Material verstanden, das ein Matrixmaterial und in das Matrixmaterial eingebettete Weißpartikel aufweist, wobei die Weißpartikel etwa mindestens 30 oder 40 oder 60, etwa mindestens 70 oder mindestens 80 Gewichts- oder Volumen-% des hochgefüllten Materials ausmachen. Bei einem mit Glasfasern verstärkten Epoxidharz mit hochgefüllten Weißpartikeln kann der Anteil an Weißpartikeln auch unter 60 % liegen.
  • In der 3 werden Ausnehmungen in den Formkörper 10 ausgebildet. In vertikaler Richtung erstrecken sich die Ausnehmungen zur teilweisen Freilegung der Anschlussschichten 41 und 42 durch den Formkörper 10 hindurch. Durch eine erste Ausnehmung 411 wird die erste Anschlussschicht 41 teilweise freigelegt. Das heißt, eine Oberfläche der ersten Anschlussschicht liegt in der ersten Ausnehmung 411 zumindest teilweise frei. Durch eine zweite Ausnehmung 421 wird die zweite Anschlussschicht 42 teilweise freigelegt. Die Ausnehmungen 411 und 421 sind in lateraler Richtung durch einen Teilbereich des Formkörpers 10 räumlich beabstandet, wobei der Teilbereich des Formkörpers 10 den Zwischenbereich 40 beispielsweise vollständig bedecken. Die Ausnehmungen 411 und 421 können in den lateralen Richtungen von dem Formkörper 10 vollumfänglich umschlossen sein.
  • Die Ausnehmungen 411 und 421 können durch einen mechanischen Prozess oder durch Laserbohren ausgebildet sein, wobei die Anschlussschichten 41 und 42 jeweils als Stoppschichten dienen. Insbesondere werden die Ausnehmungen 411 und 421 nach dem vollständigen Aushärten und/oder nach dem vollständigen Vernetzen des Matrixmaterials beziehungsweise des Formkörpermaterials des Formkörpers 10 ausgebildet.
  • In einem nachfolgenden Verfahrensschritt, wie in der 4 dargestellt, werden die Ausnehmungen 411 und 421 mit einem elektrisch leitfähigen Material aufgefüllt, wodurch in den Ausnehmungen jeweils ein Durchkontakt 441 oder 442 etwa in Form einer Anschlusssäule ausgebildet wird, der mit der jeweiligen Anschlussschicht 41 oder 42 elektrisch leitend verbunden ist und insbesondere im direkten physischen und somit auch im direkten elektrischen Kontakt mit der entsprechenden Anschlussschicht steht.
  • Zur Ausbildung der Durchkontakte 441 und 442 wird insbesondere Kupfer aufgrund seiner ausgezeichneten elektrischen und thermischen Leitfähigkeit verwendet. Im Vergleich zu weiteren hochleistungsfähigen Materialien wie Silber und Gold ist Kupfer besonders kostengünstig. Kupfer ist außerdem ein besonders geeignetes Material zur Auffüllung von Ausnehmungen mittels eines galvanischen Verfahrens, da Kupfer aufgrund seines anisotropen Materialverhaltens ganz gezielt auf Bodenflächen der Ausnehmungen galvanisch aufgebracht werden kann, wobei die Bodenflächen bevorzugt Kupfer aufweisen. Die Anschlussschichten 41 und 42 können jeweils ebenfalls aus Kupfer ausgebildet oder zumindest mit Kupfer beschichtet sein, wodurch optimale mechanische, elektrische und thermische Verbindungen zwischen den Anschlussschichten und den Durchkontakten ausgebildet werden. Zudem ist Kupfer im Vergleich zu anderen Metallen wie etwa Nickel oder Eisen relativ weich, sodass die aus Kupfer gebildeten Anschlussschichten oder Durchkontakte äußere mechanische Einwirkungen gut auffangen können. Auch weisen Kupfer und viele handelsübliche Formkörpermaterialien einen vergleichbaren thermischen Ausdehnungskoeffizienten auf, sodass ein etwa aus Kupfer und einem handelsüblichen Formkörpermaterial gebildeter Träger besonders stabil gegenüber Temperaturänderungen ist. Es ist jedoch auch möglich, dass die Durchkontakte und die Anschlussschichten unterschiedliche elektrisch leitfähige Materialien, etwa unterschiedliche Metalle aufweisen.
  • Die Ausnehmungen 411 und/oder 421 sowie die Durchkontakte 441 und/oder 442 können verschiedene Formen aufweisen etwa quaderförmig, zylinderartig, stumpfkegelartig, stumpfpyramidenartig oder andere Formen aufweisen. Insbesondere sind die Durchkontakte als Anschlusssäulen 441 und 442 ausgebildet. Unter einer Säule wird allgemein eine geometrische Struktur mit einer vertikalen Höhe, einer lateralen Breite und einem lateralen Querschnitt verstanden, wobei der laterale Querschnitt entlang der vertikalen Richtung, also entlang der Höhe, eine im Wesentlichen unveränderte Form aufweist und wobei sich ein Betrag hinsichtlich einer Fläche des Querschnitts entlang der vertikalen Richtung insbesondere nicht sprunghaft ändert. Der Durchkontakt in diesem Sinne ist insbesondere einstückig ausgebildet und ist etwa in einem einzigen Verfahrensschritt herstellbar. Zum Beispiel weist der laterale Querschnitt der Säule beziehungsweise des Durchkontakts die Form eines Kreises, eines Vielecks, einer Ellipse oder andere Formen auf. Ein Aspektverhältnis hinsichtlich der Höhe zur Breite kann zwischen einschließlich 0,1 und 10, etwa zwischen einschließlich 0,3 und 3, oder mehr sein. Eine geometrische Struktur mit sprunghaft verändernden Flächen des Querschnitts entlang der vertikalen Richtung, etwa mit einer Stufe auf Seitenflächen der geometrischen Struktur, ist oft auf einen Verbund aus zwei oder mehreren in separaten Verfahrensschritten hergestellten Teilschichten zurückzuführen, und ist im Zweifel nicht als den hier beschriebenen Durchkontakt in Form einer Säule zu verstehen.
  • Die Durchkontakte 441 und 442 können jeweils eine mittlere vertikale Höhe und eine mittlere laterale Breite aufweisen, wobei ein Verhältnis zwischen der Breite und der Höhe beispielsweise zwischen einschließlich 0,2 zu 5, etwa zwischen 2 zu 5 oder zwischen 1 zu 3 beträgt. Insbesondere ist die mittlere Breite des Durchkontakts größer als eine mittlere Höhe des Durchkontakts, wodurch das herzustellende Bauelement besonders gut thermisch leitend ausgebildet ist. Die Durchkontakte 441 und 442 sind insbesondere so ausgebildet, dass diese bei einer vertikalen Höhe mit dem Formkörper 10 bündig abschließen.
  • Die Anschlussschichten und die Durchkontakte bilden in der 4 eine zweite Metallschicht 4, wobei die zweite Metallschicht 4 einen ersten Teilbereich und einen von dem ersten Teilbereich lateral beabstandeten zweiten Teilbereich aufweist. Der erste Teilbereich der zweiten Metallschicht 4 enthält eine erste Anschlussschicht 41 und einen ersten Durchkontakt 441. Der zweite Teilbereich der zweiten Metallschicht 4 enthält eine zweite Anschlussschicht 42 und einen zweiten Durchkontakt 442. Insbesondere ist die zweite Metallschicht 4 in lateraler Richtung von dem Formkörper 10 vollumfänglich umschlossen. Der Formkörper 10 kann dabei zusammenhängend, insbesondere einstückig ausgebildet sein. Auch die Trenngräben 50 können mit dem Formkörpermaterial gefüllt sein. In der 4 bildet der erste Durchkontakt 441 mit der ersten Anschlussschicht 41 eine erste Stufe in dem Formkörper 10. Der zweite Durchkontakt 442 bildet mit der zweiten Anschlussschicht 42 eine zweite Stufe in dem Formkörper 10. Insbesondere umläuft die erste und/oder zweite Stufe den zugehörigen Durchkontakt und ist von dem Formkörper 10 lateral vollständig bedeckt.
  • In 5 wird das Substrat, insbesondere das Aufwachssubstrat beispielsweise mittels eines mechanischen oder chemischen Trennverfahrens oder mittels eines Laserabhebeverfahrens von dem Halbleiterschichtenstapel 20 getrennt. Eine durch die Entfernung des Substrats 1 freigelegte Oberfläche des Verbunds 200, die insbesondere durch eine Oberfläche des Halbleiterschichtenstapels 20 gebildet ist, kann zur Erhöhung der Lichteinkoppelbeziehungsweise Lichtauskoppeleffizienz strukturiert werden.
  • Vor der Vereinzelung des Verbunds 200 können Kontaktschichten 410 und 420 auf die Durchkontakte 441 und 442 aufgebracht werden. Beispielsweise bedecken eine erste Kontaktschicht 410 und eine zweite Kontaktschicht 420 den ersten Durchkontakt 441 beziehungsweise den zweiten Durchkontakt 442 in Draufsicht vollständig, wodurch die Durchkontakte 441 und 442 sowie Anschlussschichten 41 und 42, das heißt insbesondere die gesamte zweite Metallschicht 4, durch den Formkörper 10, die Kontaktschichten 410 und 420 und die Verdrahtungsstruktur 8 vollständig umschlossen sind, wodurch die zweite Metallschicht 4 vor Umwelteinflüssen und vor der Gefahr einer möglichen Oxidation geschützt wird. Durch die vollständige Verkapselung der zweiten Metallschicht 4 kann verhindert werden, dass Metallreste der zweiten Metallschicht 4, die beispielsweise Kupfer aufweist, etwa bei der Vereinzelung des Verbunds 200 auf eine Vorderseite des herzustellenden Bauelements 100 gelangen können und dadurch eventuell dem Halbleiterschichtenstapel 20 schädigen. Durch die vollständige Verkapselung der zweiten Metallschicht 4 wird außerdem eine Migration etwa von Kupferatomen oder Kupferionen beispielsweise über Außenflächen des Bauelements insbesondere im Betrieb des Bauelements zur Vorderseite des Bauelements verhindert. Es ist auch möglich, dass die Verdrahtungsstruktur 8 eine Diffusionsbarriereschicht 80 aufweist, die eine Migration etwa von Kupferatomen oder Kupferionen in den Halbleiterschichtenstapel 20 verhindert.
  • Der Verbund 200 kann entlang der Trenngräben 50 in eine Mehrzahl von Bauelementen 100 so vereinzelt werden, dass die vereinzelten Bauelemente 100, wie zum Beispiel in der 6 dargestellt, jeweils einen Träger 7 und eine auf dem Träger 7 angeordneten Halbleiterkörper 2 aufweisen. Der Halbleiterkörper 2 geht bei der Vereinzelung des Verbunds 200 aus dem Halbleiterschichtenstapel 20 hervor. Der Träger 7 ist insbesondere aus dem vereinzelten Formkörper 10, einer ersten Metallschicht 3 und einer zweiten Metallschicht 4 mit einer ersten Anschlussschicht 41 und einer zweiten Anschlussschicht 42 gebildet. Das Bauelement 100 weist dabei eine strukturierte Strahlungsdurchtrittsfläche 101 auf, die durch die erste Hauptfläche 201 des Halbleiterkörpers 2 gebildet werden kann. Das Bauelement 100 ist insbesondere auf einer der Strahlungsdurchtrittsfläche 101 abgewandte Rückseite 202 etwa mittels der ersten Kontaktschicht 410 und der zweiten Kontaktschicht 420 extern elektrisch kontaktierbar. Das heißt, das Bauelement 100 ist als ein oberflächenmontierbares Bauelement ausgebildet.
  • In 7 ist ein Ausführungsbeispiel für ein Bauelement 100 schematisch dargestellt. Dieses Ausführungsbeispiel entspricht im Wesentlichen dem in der 6 dargestellten Ausführungsbeispiel für ein Bauelement. Im Unterschied hierzu sind die Verdrahtungsstruktur 8 und die Isolierungsstruktur 9 detaillierter dargestellt.
  • In der 7 weist die Verdrahtungsstruktur 8 eine Stromaufweitungsschicht 80, eine elektrisch leitfähige Schicht 81 und eine Durchkontaktierung 82 auf. Die Verdrahtungsstruktur 8 erstreckt sich dabei bereichsweise in den Halbleiterkörper 2 hinein und bereichsweise in den Träger 7 hinein oder grenzt zumindest bereichsweise an den Träger 7 an. Der erste Teilbereich der zweiten Metallschicht 4 mit dem ersten Durchkontakt 441 und der ersten Anschlussschicht 41 ist über die erste Metallschicht 3, die elektrisch leitfähige Schicht 81 und die Durchkontaktierung 82 mit der ersten Halbleiterschicht 21 des Halbleiterkörpers 2 elektrisch leitend verbunden. Der zweite Teilbereich der zweiten Metallschicht 4 mit dem zweiten Durchkontakt 442 und der zweiten Anschlussschicht 42 ist über die Stromaufweitungsschicht 80 mit der zweiten Halbleiterschicht 22 des Halbleiterkörpers 2 elektrisch leitend verbunden. Die Durchkontaktierung 82 ist mit der ersten Metallschicht 3 elektrisch leitend verbunden und so ausgebildet, dass sich diese zur elektrischen Kontaktierung der ersten Halbleiterschicht 21 zumindest von der zweiten Hauptfläche 202 durch die zweite Halbleiterschicht 22 und die aktive Schicht 23 hindurch erstreckt.
  • Die Stromaufweitungsschicht 80 ist insbesondere gleichzeitig als eine Diffusionsbarriereschicht ausgebildet und bedeckt etwa eine Öffnung der Isolierungsschicht 9 vollständig, durch welche Öffnung sich die erste Metallschicht 3 oder eine Anschlussschicht 42 hindurch erstreckt. Die Stromaufweitungsschicht 80 und die Isolierungsstruktur 9 weist eine gemeinsame Öffnung auf, durch die sich die Durchkontaktierung 82 etwa von der elektrisch leitfähigen Schicht 81 hindurch zu dem Halbleiterkörper 2 erstreckt.
  • Die elektrisch leitfähige Schicht 81 ist insbesondere als eine Spiegelschicht ausgebildet und kann dabei ein Metall, etwa Aluminium, Rhodium, Palladium, Silber oder Gold aufweisen. Die elektrisch leitfähige Schicht bedeckt dabei die aktive Schicht 23 in Draufsicht zumindest bereichsweise. Entlang der vertikalen Richtung kann sich die elektrisch leitfähige Schicht 81 seitlich des Halbleiterkörpers so weit erstrecken, dass sie die zweite Halbleiterschicht 22 oder die aktive Schicht 23 lateral umgibt. Elektromagnetische Strahlungen, die seitlich oder rückwärts aus dem Halbleiterkörper 2 austreten, können somit wieder in Richtung der aktiven Schicht 23 beziehungsweise in Richtung der Strahlungsdurchtrittsfläche 101 des Bauelements zurückreflektiert werden, wodurch die Effizienz des Bauelements erhöht ist. In der 7 ist die elektrisch leitfähige Schicht 81 zusammenhängend ausgebildet.
  • In der 7 ist die Isolierungsstruktur 9 als eine zusammenhängende Isolierungsstruktur dargestellt, die sich bereichsweise in den Halbleiterkörper 2 hinein und bereichsweise in den Träger 7 hinein erstreckt oder zumindest bereichsweise an den Träger 7 angrenzt. Die Durchkontaktierung 82 ist im Bereich des Halbleiterkörpers 2 in der lateralen Richtung mittels der Isolierungsstruktur 9 von der zweiten Halbleiterschicht 22 und von der aktiven Schicht 23 elektrisch getrennt. Durch die Isolierungsstruktur 9 ist die erste Metallschicht 3 von dem zweiten Teilbereich der zweiten Metallschicht 4 mit dem zweiten Durchkontakt 442 und der zweiten Anschlussschicht 42 elektrisch getrennt.
  • In 8 ist ein weiteres Ausführungsbeispiel für ein Bauelement schematisch dargestellt. Dieses Ausführungsbeispiel entspricht im Wesentlichen dem in der 7 dargestellten Ausführungsbeispiel für ein Bauelement.
  • Im Unterschied hierzu erstreckt sich die Durchkontaktierung 82 durch die erste Metallschicht 3 hindurch. Dabei weisen die erste Metallschicht 3 und die Isolierungsstruktur 9 eine gemeinsame Öffnung auf. Anders als in der 7, in der die erste Metallschicht 3 in der vertikalen Richtung zwischen der elektrisch leitfähigen Schicht 81 und der Metallschicht 4 angeordnet ist, ist die elektrisch leitfähige Schicht 81 in der 8 zwischen der ersten Metallschicht 3 und der zweiten Metallschicht 4 angeordnet.
  • Des Weiteren ist die elektrisch leitfähige Schicht 81 in eine erste Teilschicht 811 und eine zweite Teilschicht 812 unterteilt, wobei die Teilschichten 811 und 812 im Bereich des Zwischenbereichs 40 voneinander lateral beabstandet und somit voneinander elektrisch getrennt sind. Die Teilschichten 811 und 812 sind mit der ersten Anschlussschicht 41 beziehungsweise der zweiten Anschlussschicht 42 elektrisch leitend verbunden und somit verschiedenen elektrischen Polaritäten des Bauelements 100 zugehörig.
  • Sowohl in der 7 als auch in der 8 ist die erste Metallschicht 3 zusammenhängend, insbesondere einstückig ausgebildet. In der 7 weist die erste Metallschicht 3 eine Öffnung auf, durch die sich die zweite Anschlussschicht 42 hindurch erstreckt. In der 8 weist die erste Metallschicht 3 eine Öffnung auf, durch die sich die Durchkontaktierung 82 der Verdrahtungsstruktur 8 zur elektrischen Kontaktierung der ersten Halbleiterschicht 21 hindurch erstreckt. In der 7 ist die erste Metallschicht 3 für die elektrische Kontaktierung der ersten Halbleiterschicht 21 eingerichtet. In der 8 ist die erste Metallschicht 3 für die elektrische Kontaktierung der zweiten Halbleiterschicht 22 eingerichtet. Die erste Metallschicht 3 in der 8 ist außerdem in lateraler Richtung von der Isolierungsstruktur 9 vollständig umschlossen. Gemäß 7 und 8 kann der Halbleiterkörper 2 zumindest bei der Höhe der zweiten Halbleiterschicht 22 in lateralen Richtungen von der Isolierungsstruktur 9 vollumfänglich umschlossen werden. Auch der Träger 7 mit dem Formkörper 10 kann den Halbleiterkörper 2 bei der Höhe der zweiten Halbleiterschicht 22 in lateralen Richtung vollumfänglich umschließen, sodass der Träger 7 gleichzeitig als ein Gehäuse für den Halbleiterkörper 2 ausgebildet ist.
  • Die Erfindung ist nicht durch die Beschreibung der Erfindung anhand der Ausführungsbeispiele auf diese beschränkt. Die Erfindung umfasst vielmehr jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.

Claims (18)

  1. Verfahren zur Herstellung eines Bauelements (100) mit folgenden Verfahrensschritten: a) Bereitstellen eines Verbunds (200) aufweisend einen Halbleiterschichtenstapel (20), eine erste Anschlussschicht (41) und eine zweite Anschlussschicht (42), wobei die erste und zweite Anschlussschicht auf dem Halbleiterschichtenstapel angeordnet, verschiedenen elektrischen Polaritäten zugeordnet und zur elektrischen Kontaktierung des herzustellenden Bauelements eingerichtet sind, b) Aufbringen eines Formkörpermaterials auf den Verbund (200) zur Ausbildung eines Formkörpers (10), sodass – in Draufsicht auf den Halbleiterschichtenstapel (20) – der Formkörper (10) die erste Anschlussschicht (41) und die zweite Anschlussschicht (42) bedeckt, c) Ausbilden einer ersten Ausnehmung (411) und einer zweiten Ausnehmung (421) durch den Formkörper (10) hindurch zur stellenweisen Freilegung der Anschlussschichten (41, 42), und d) Auffüllen der ersten und zweiten Ausnehmung mit einem elektrisch leitfähigen Material zur Bildung von Durchkontakten (441, 442), die mit den Anschlussschichten (41, 42) elektrisch leitend verbunden sind und sich in der vertikalen Richtung durch den Formkörper (10) hindurch erstrecken.
  2. Verfahren nach dem vorhergehenden Anspruch, bei dem das Formkörpermaterial zur Bildung des Formkörpers (10) durch Heißverpressen auf den Verbund (200) aufgebracht und dadurch an dem Verbund befestigt wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Formkörpermaterial ein mit Fasern und/oder mit Weißpartikeln gefülltes Matrixmaterial ist, wobei das Formkörpermaterial vor dem Aufbringen auf den Verbund (200) lediglich teilweise und nicht vollständig vernetzt ist.
  4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Formkörper (10) aus einer FR4-Prepreg-Lage oder aus einer Mehrzahl von Prepreg-Lagen gebildet wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Formkörpermaterial ein mit Glasfasern verstärktes Epoxidharz ist, das vor dem Aufbringen auf den Verbund (200) teilausgehärtet vorliegt und nach dem Aufbringen vollständig ausgehärtet wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die erste Anschlussschicht (41) mittels eines Beschichtungsverfahrens auf den Halbleiterschichtenstapel (20) aufgebracht wird, wobei die erste Anschlussschicht (41) eine vertikale Dicke (D41) von höchstens 10 µm aufweist.
  7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Ausnehmungen (411, 421) mittels Laserbohrens ausgebildet werden, wobei die Anschlussschichten (41, 42) beim Laserbohren als Stoppschichten dienen.
  8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die erste Anschlussschicht (41) und/oder die zweite Anschlussschicht (42) Kupfer enthalten und/oder die Ausnehmungen (411, 421) mit Kupfer befüllt werden.
  9. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Verbund (200) ein Waferverbund ist.
  10. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Verbund (200) mit einer ersten Metallschicht (3) bereitgestellt wird, wobei – die erste Metallschicht (3) in vertikaler Richtung zwischen den Anschlussschichten (41, 42) und dem Halbleiterschichtenstapel (20) angeordnet, mit einer der Anschlussschichten (41, 42) elektrisch leitend verbunden und von der anderen Anschlussschicht elektrisch isoliert ist, – die erste Metallschicht (3) eine mittlere vertikale Dicke (D3) aufweist, die größer ist als eine mittlere vertikale Dicke der ersten Anschlussschicht (D41) und/oder der zweiten Anschlussschicht (D42), und wobei zwischen den Anschlussschichten (41, 42) und/oder zwischen den Durchkontakten (441, 442) ein Zwischenbereich (40) gebildet ist, der in Draufsicht von der ersten Metallschicht lateral überbrückt wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche zur Herstellung einer Mehrzahl von Bauelementen (100), bei dem – der Verbund (200) eine Mehrzahl von lateral beabstandeten ersten Anschlussschichten (41) und eine Mehrzahl von lateral beabstandeten zweiten Anschlussschichten (42) aufweist, – das Formkörpermaterial auf den Verbund (200) zur Ausbildung des Formkörpers (10) derart aufgebracht wird, dass der Formkörper (10) die Mehrzahl von ersten Anschlussschichten (41) und die Mehrzahl von zweiten Anschlussschichten (42) bedeckt, – eine Mehrzahl von ersten und zweiten Durchkontakten (441, 442) durch Ausbilden und Auffüllen einer Mehrzahl von ersten und zweiten Ausnehmungen (411, 421) ausgebildet wird, – der Verbund (200) einen oder mehrere Trenngräben (50) aufweist, und – der Verbund (200) nach der Bildung des Formkörpers (10) entlang des Trenngrabens oder der Trenngräben (50) derart in eine Mehrzahl von Bauelementen (100) vereinzelt wird, dass die Bauelemente (100) jeweils einen Träger (7) und einen auf dem Träger (7) angeordneten Halbleiterkörper (2) aufweisen, wobei der Halbleiterkörper (2) einen Teil des Halbleiterschichtenstapels (20) enthält, und der Träger (7) einen Teil des Formkörpers (10), eine der ersten Anschlussschichten (41), eine der zweiten Anschlussschichten (42), einen der ersten Durchkontakte (441) und einen der zweiten Durchkontakte (442) enthält.
  12. Bauelement (100) mit einem Träger (7) und einem auf dem Träger angeordneten Halbleiterkörper (2), bei dem – der Träger zumindest einen Formkörper (10), einen ersten Durchkontakt (441) und einen zweiten Durchkontakt (442) aufweist, wobei die Durchkontakte in lateraler Richtung voneinander räumlich beabstandet sind und sich in vertikaler Richtung jeweils durch den Formkörper hindurch erstrecken, und der Formkörper die Durchkontakte lateral vollumfänglich umschließt, – das Bauelement eine erste Anschlussschicht (41) und eine von der ersten Anschlussschicht lateral beabstandete zweite Anschlussschicht (42) aufweist, wobei die Anschlussschichten zur elektrischen Kontaktierung des Halbleiterkörpers eingerichtet, verschiedenen elektrischen Polaritäten des Bauelements zugehörig, zwischen dem Halbleiterkörper und den Durchkontakten angeordnet und mit den Durchkontakten elektrisch leitend verbunden sind, – der Formkörper einstückig und aus einem verpressten und/oder mit Fasern oder Füllstoffen verstärkten Formkörpermaterial ausgebildet ist.
  13. Bauelement nach dem vorhergehenden Anspruch, bei dem der Formkörper (10) eine erste Ausnehmung (411) und eine zweite Ausnehmung (421) aufweist, wobei die Ausnehmungen (411, 421) jeweils eine Innenwand mit Trennspuren aufweisen und zur Ausbildung der Durchkontakte (441, 442) mit einem elektrisch leitfähigen Material aufgefüllt sind.
  14. Bauelement nach einem der Ansprüche 12 bis 13, das eine erste Metallschicht (3) aufweist, die in vertikaler Richtung zwischen dem Halbleiterkörper (2) und den Anschlussschichten (41, 42) angeordnet ist und dabei mit einer der Anschlussschichten elektrisch leitend verbunden und von der anderen Anschlussschicht elektrisch isoliert ist, wobei die erste Metallschicht (3) in Draufsicht einen zwischen den Anschlussschichten und/oder zwischen den Durchkontakten (441, 442) angeordneten Zwischenbereich (40) entlang einer lateral Längsrichtung überbrückt.
  15. Bauelement nach dem vorhergehenden Anspruch, bei dem die erste Metallschicht (3) in dem Zwischenbereich (40) frei von einer Unterbrechung ist und eine laterale Breite entlang einer zu der Längsrichtung quer oder senkrecht verlaufenden lateralen Querrichtung aufweist, wobei sich die laterale Breite der ersten Metallschicht höchstens um 30 % von einer lateralen Breite der Anschlussschichten (41, 42) entlang der lateralen Querrichtung unterscheidet.
  16. Bauelement nach einem der Ansprüche 14 bis 15, das eine zusammenhängende Isolierungsstruktur (9) aufweist, die sich bereichsweise in den Halbleiterkörper (2) hinein erstreckt und zumindest bereichsweise an den Träger (7) angrenzt, wobei – die erste Metallschicht (3) durch die Isolierungsstruktur (9) von einer der Anschlussschichten (41, 42) elektrisch isoliert ist, und – die Isolierungsstruktur (9) zumindest eine Öffnung aufweist, durch die sich die erste Metallschicht (3) oder eine der Anschlussschichten (41, 42) zur elektrischen Kontaktierung des Halbleiterkörpers (2) hindurch erstreckt.
  17. Bauelement nach einem der Ansprüche 12 bis 16, das eine Verdrahtungsstruktur (8) aufweist, wobei – sich die Verdrahtungsstruktur (8) bereichsweise in den Halbleiterkörper (2) hinein erstreckt und zumindest bereichsweise an den Träger (7) angrenzt, und – die erste Anschlussschicht (41) und die zweite Anschlussschicht (42) mittels der Verdrahtungsstruktur (8) mit einer ersten Halbleiterschicht (21) eines ersten Ladungsträgertyps beziehungsweise mit einer zweiten Halbleiterschicht (22) eines zweiten Ladungsträgertyps des Halbleiterkörpers (2) elektrisch verbunden sind.
  18. Bauelement nach dem vorhergehenden Anspruch, bei dem der Halbleiterkörper (2) eine zwischen der ersten Halbleiterschicht (21) und der zweiten Halbleiterschicht (22) angeordnete aktive Schicht (23) aufweist, die im Betrieb des Bauelements zur Emission oder Detektion von elektromagnetischen Strahlungen eingerichtet ist, wobei die Verdrahtungsstruktur (8) eine Durchkontaktierung (82) aufweist, die sich zur elektrischen Kontaktierung der ersten Halbleiterschicht (21) durch die zweite Halbleiterschicht (22) und die aktive Schicht (23) hindurch in die erste Halbleiterschicht (21) erstreckt.
DE102015214228.0A 2015-07-28 2015-07-28 Verfahren zur Herstellung eines Bauelements und ein Bauelement Pending DE102015214228A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102015214228.0A DE102015214228A1 (de) 2015-07-28 2015-07-28 Verfahren zur Herstellung eines Bauelements und ein Bauelement
US15/747,165 US10629781B2 (en) 2015-07-28 2016-07-20 Semiconductor element and method for production thereof
PCT/EP2016/067245 WO2017016945A1 (de) 2015-07-28 2016-07-20 Halbleiterbauelement und dessen herstellungsverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015214228.0A DE102015214228A1 (de) 2015-07-28 2015-07-28 Verfahren zur Herstellung eines Bauelements und ein Bauelement

Publications (1)

Publication Number Publication Date
DE102015214228A1 true DE102015214228A1 (de) 2017-02-02

Family

ID=56551376

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015214228.0A Pending DE102015214228A1 (de) 2015-07-28 2015-07-28 Verfahren zur Herstellung eines Bauelements und ein Bauelement

Country Status (3)

Country Link
US (1) US10629781B2 (de)
DE (1) DE102015214228A1 (de)
WO (1) WO2017016945A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10879426B2 (en) 2015-09-17 2020-12-29 Osram Oled Gmbh Carrier for a component, component and method for producing a carrier or a component
DE102021118706A1 (de) 2021-07-20 2023-01-26 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer halbleiterchip und herstellungsverfahren

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017123242A1 (de) * 2017-10-06 2019-04-11 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines oder einer Mehrzahl von Halbleiterchips und Halbleiterchip
JP7174231B2 (ja) * 2018-09-25 2022-11-17 日亜化学工業株式会社 発光装置の製造方法および発光装置
CN114038974A (zh) * 2021-10-26 2022-02-11 天津三安光电有限公司 高压发光二极管和发光装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050161823A1 (en) * 2004-01-27 2005-07-28 Casio Computer Co., Ltd. Semiconductor device
US8581291B2 (en) * 2008-12-08 2013-11-12 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777084A (en) * 1987-10-08 1988-10-11 Minnesota Mining And Manufacturing Company Phenolic-modified epoxy adhesive including the reaction product of bisphenol A and the monoglycidyl ether of bisphenol A
US6331450B1 (en) * 1998-12-22 2001-12-18 Toyoda Gosei Co., Ltd. Method of manufacturing semiconductor device using group III nitride compound
US20070126016A1 (en) * 2005-05-12 2007-06-07 Epistar Corporation Light emitting device and manufacture method thereof
JP4922891B2 (ja) * 2006-11-08 2012-04-25 株式会社テラミクロス 半導体装置およびその製造方法
KR100941766B1 (ko) * 2007-08-08 2010-02-11 한국광기술원 패드 재배열을 이용한 반도체 발광 다이오드 및 그의제조방법
DE102008054235A1 (de) * 2008-10-31 2010-05-12 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil
JP5719560B2 (ja) * 2009-10-21 2015-05-20 株式会社半導体エネルギー研究所 端子構造の作製方法
US9219206B2 (en) * 2010-01-19 2015-12-22 Lg Innotek Co., Ltd. Package and manufacturing method of the same
CN102738351B (zh) * 2011-04-02 2015-07-15 赛恩倍吉科技顾问(深圳)有限公司 发光二极管封装结构及其制造方法
DE102013106609A1 (de) * 2013-06-25 2015-01-08 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
KR102114340B1 (ko) * 2013-07-25 2020-05-22 삼성전자주식회사 Tsv 구조 및 디커플링 커패시터를 구비한 집적회로 소자 및 그 제조 방법
KR101534941B1 (ko) * 2013-11-15 2015-07-07 현대자동차주식회사 도전성 전극패턴의 형성방법 및 이를 포함하는 태양전지의 제조방법
EP3163996A4 (de) * 2014-06-30 2018-01-10 Toray Industries, Inc. Laminat und integral geformter artikel
US20160211221A1 (en) * 2015-01-16 2016-07-21 Amkor Technology, Inc. Semiconductor device and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050161823A1 (en) * 2004-01-27 2005-07-28 Casio Computer Co., Ltd. Semiconductor device
US8581291B2 (en) * 2008-12-08 2013-11-12 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10879426B2 (en) 2015-09-17 2020-12-29 Osram Oled Gmbh Carrier for a component, component and method for producing a carrier or a component
DE102021118706A1 (de) 2021-07-20 2023-01-26 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer halbleiterchip und herstellungsverfahren

Also Published As

Publication number Publication date
WO2017016945A1 (de) 2017-02-02
US20180219134A1 (en) 2018-08-02
US10629781B2 (en) 2020-04-21

Similar Documents

Publication Publication Date Title
DE102005004160B4 (de) CSP-Halbleiterbaustein, Halbleiterschaltungsanordnung und Verfahren zum Herstellen des CSP-Halbleiterbausteins
DE102014115653B4 (de) Verfahren zum herstellen elektronischer komponenten mit elektrisch leitfähigem rahmen auf einem substrat zum aufnehmen von elektronischen chips
DE102011079708B4 (de) Trägervorrichtung, elektrische vorrichtung mit einer trägervorrichtung und verfahren zur herstellung dieser
WO2017016945A1 (de) Halbleiterbauelement und dessen herstellungsverfahren
WO2007025521A2 (de) Verfahren zur herstellung eines halbleiterbauelements mit einer planaren kontaktierung und halbleiterbauelement
DE102013103015A1 (de) Gitter-Gehäuse auf Wafer-Ebene vom Fan-Out-Typ und Verfahren zum Herstellen eines Gitter-Gehäuses auf Wafer-Ebene vom Fan-Out-Typ
DE102012104270A1 (de) Halbleiterkomponente und Verfahren zum Herstellen einer Halbleiterkomponente
DE102014116935A1 (de) Bauelement und Verfahren zur Herstellung eines Bauelements
DE102015111492B4 (de) Bauelemente und Verfahren zur Herstellung von Bauelementen
WO2017016953A1 (de) Verfahren zur herstellung eines bauelements und ein bauelement
WO2017060355A1 (de) Bauelement und verfahren zur herstellung eines bauelements
DE102013103140A1 (de) Integrierte 3-D-Schaltungen und Verfahren zu deren Bildung
WO2012034752A1 (de) Trägersubstrat für ein optoelektronisches bauelement, verfahren zu dessen herstellung und optoelektronisches bauelement
WO2016173841A1 (de) Optoelektronische bauelementanordnung und verfahren zur herstellung einer vielzahl von optoelektronischen bauelementanordnungen
DE102015109953A1 (de) Herstellung elektronischer Bauelemente
DE102013221788B4 (de) Verfahren zum Herstellen eines Kontaktelements und eines optoelektronischen Bauelements
DE102016107031B4 (de) Laminatpackung von Chip auf Träger und in Kavität, Anordnung diese umfassend und Verfahren zur Herstellung
DE102017129924B4 (de) Verkapseltes, anschlussleiterloses package mit zumindest teilweise freiliegender innenseitenwand eines chipträgers, elektronische vorrichtung, verfahren zum herstellen eines anschlussleiterlosen packages und verfahren zum herstellen einer elektronischen vorrichtung
WO2016202794A1 (de) Bauelement und verfahren zur herstellung eines bauelements
DE102016101526A1 (de) Herstellung eines Multichip-Bauelements
DE102013112636B4 (de) Integrierte Schaltung, Halbleiternacktchipanordnung und Verfahren zum Herstellen einer integrierten Schaltung
DE102010000518B4 (de) Verfahren zur Herstellung einer Halbleiteranordnung
WO2017045996A1 (de) Träger für ein bauelement, bauelement und verfahren zur herstellung eines trägers oder eines bauelements
WO2017016892A1 (de) Bauelement mit einem metallischen träger und verfahren zur herstellung von bauelementen
DE102015107591B4 (de) Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils

Legal Events

Date Code Title Description
R082 Change of representative
R163 Identified publications notified
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHA, DE

R016 Response to examination communication