DE102011078819A1 - Geteilter Wankstabilisator - Google Patents

Geteilter Wankstabilisator Download PDF

Info

Publication number
DE102011078819A1
DE102011078819A1 DE102011078819A DE102011078819A DE102011078819A1 DE 102011078819 A1 DE102011078819 A1 DE 102011078819A1 DE 102011078819 A DE102011078819 A DE 102011078819A DE 102011078819 A DE102011078819 A DE 102011078819A DE 102011078819 A1 DE102011078819 A1 DE 102011078819A1
Authority
DE
Germany
Prior art keywords
stabilizer
sensor
actuator
split roll
primary sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102011078819A
Other languages
English (en)
Inventor
Ralf Mayer
Manfred Kraus
Bernd Wittmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Priority to DE102011078819A priority Critical patent/DE102011078819A1/de
Priority to PCT/EP2011/062593 priority patent/WO2012041556A2/de
Priority to US13/877,062 priority patent/US8967643B2/en
Priority to CN201180047351.2A priority patent/CN103402794B/zh
Priority to EP11734140.4A priority patent/EP2621743B1/de
Priority to KR1020137010988A priority patent/KR101870465B1/ko
Publication of DE102011078819A1 publication Critical patent/DE102011078819A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/10Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces not permanently interconnected, e.g. operative only on acceleration, only on deceleration or only at off-straight position of steering
    • B60G21/106Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces not permanently interconnected, e.g. operative only on acceleration, only on deceleration or only at off-straight position of steering transversally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • B60G21/0555Mounting means therefor adjustable including an actuator inducing vehicle roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • B60G2400/98Stabiliser movement

Abstract

Geteilter Wankstabilisator eines Kraftfahrzeuges, zwischen dessen beiden Stabilisatorteilen (2a) ein Aktuator (1) für eine Torsion der Stabilisatorteile (2a) wirksam angeordnet werden kann, wobei ein Sensor (11) zur Ermittlung eines in den Stabilisatorteilen (2a) wirkenden Torsionsmomentes vorgesehen ist.

Description

  • Die vorliegende Erfindung betrifft einen geteilten Wankstabilisator. Wankstabilisatoren werden zum Vermeiden von Wankbewegungen des Fahrzeugaufbaus gegenüber der Fahrbahn eingesetzt.
  • Bei aktiven Wankstabilisatoren kann zwischen zwei Stabilisatorteilen des Wankstabilisators ein Aktuator wirksam angeordnet sein. Der Aktuator kann beide Stabilisatorteile mit einem Torsionsmoment beaufschlagen. Der Aktuator kann beispielsweise einen hydraulischen oder einen elektrischen Antrieb aufweisen. Unter Betätigung des Aktuators werden die beiden Stabilisatorteile zueinander verdreht und auf Torsion belastet, so dass ein Torsionsmoment in den Stabilisatorteilen anliegt. Die Stabilisatorteile können als Drehstabfedern ausgebildet sein.
  • Bei schnellen Fahrtrichtungswechseln neigt der Fahrzeugaufbau zu Wankbewegungen, die mithilfe eines aktiven Wankstabilisators kompensiert werden können.
  • Damit der Aktuator gezielt eingesetzt werden kann, werden Parameter wie eine Wankbewegung des Fahrzeugaufbaus oder eine Querbeschleunigung des Fahrzeugs erfasst. Mit diesen Parametern kann der Aktuator gezielt betätigt werden, um einem Wanken entgegen zu wirken. Für die gezielte Betätigung des Aktuators wird üblicherweise eine Regeleinrichtung eingesetzt, die mit den eingangsseitigen Parametern eine Betätigung des Aktuators für eine angestrebte Kompensation der Wankbewegung ermöglicht.
  • Aufgabe der vorliegenden Erfindung war es, einen alternativen geteilten Wankstabilisator anzugeben.
  • Erfindungsgemäß wurde diese Aufgabe durch den geteilten Wankstabilisator gemäß Anspruch 1 gelöst. Mit dem erfindungsgemäß vorgesehenen Sensor zur Ermittlung des anliegenden Torsionsmomentes in den Stabilisatorteilen kann das anliegende Torsionsmoment als Parameter bereit gestellt werden; eine gezielte Betätigung des anschließbaren Aktuators ist somit ermöglicht.
  • Der Aktuator kann wirksam zwischen den beiden Stabilisatorteilen angeordnet sein, um ein erzeugtes Torsionsmoment einerseits in das eine Stabilisatorteil und andererseits in das andere Stabilisatorteil einzuleiten.
  • Unter einer Ermittlung des wirkenden Torsionsmomentes wird das Messen des in den Stabilisatorteilen wirkenden Torsionsmomentes verstanden.
  • Der Sensor erfasst eine Veränderung an dem Stabilisatorteil, die Folge der Einwirkung des Torsionsmomentes ist. Diese Veränderung kann eine Verdrehung des Stabilisatorteiles sein.
  • Die Stabilisatorteile können bei erfindungsgemäßen Wankstabilisatoren als Drehstabfedern ausgebildet sein, die auf Torsion belastet werden und in sich verdrehen können. Die Drehmomentmessung kann beispielsweise in bekannter Weise mithilfe von Dehnmessstreifen als Sensor erfolgen, die auf das Stabilisatorteil aufgebracht werden und die eine Verdrehung des Stabilisatorteils erfassen. Diese Verdrehung kann auch indirekt gemessen werden, wobei unterschiedliche Sensortypen zum Einsatz kommen können, beispielsweise Hallsensoren.
  • Ein berührungsloses Messen des Drehmomentes vermeidet einen direkten Kontakt eines Sensors mit dem Stabilisatorteils.
  • Für ein berührungsloses Messen dieses Drehmomentes ist bei einer erfindungsgemäßen Weiterbildung ein an sich bekanntes magnetostriktives Messprinzip vorgesehen, wie es in der Druckschrift WO 2006/013093 A2 offenbart ist.
  • Bei diesem Messprinzip wird eine Veränderung der magnetischen Eigenschaft erfasst. In dem Internetauftritt der Firma NOTE werden hierzu Ausführungen gemacht, die nachstehend auszugsweise und teilweise geändert wiedergegeben sind:
    Wird ein ferromagnetischer Kristall magnetisiert, so tritt mit wachsender Feldstärke eine Formänderung des magnetisierten Kristalls auf, die als magnetostriktiver Effekt bezeichnet wird.
  • Der wichtigste Anteil der Magnetostriktion ist der Joule-Effekt. Er basiert darauf, dass sich die so genannten Weiss'schen Bezirke in die Magnetisierungsrichtung drehen und ihre Grenzen verschieben. Hierdurch erfolgt eine Formänderung des ferromagnetischen Körpers, wobei sein Volumen konstant bleibt. Mit der Bezeichnung magnetostriktiver Effekt wird dieser Effekt beschrieben, da die Volumenänderung der gängigen magnetostriktiven Werkstoffe in ihrer Wirkung vernachlässigt werden kann.
  • Eine dauerhafte Speicherung einer „in-sich-geschlossenen” Magnetfeldstruktur in ferromagnetischen Materialien ist ermöglicht. Mit Hilfe von magnetisch kodierten Messwellen können mechanische Kräfte in Echt-Zeit gemessen und bestimmt werden.
  • Das „Pulsed Current Magnetic Enkoding” bezeichnet ein magnetisches Kodierungsverfahren. Hierbei werden mehrere verschiedene Signalfrequenzen mit unterschiedlich gepulster Stromstärke über einen zuvor festgelegten Bereich einer Welle geleitet, und dabei „in-sich-geschlossene” Magnetfeldstrukturen in die Messwelle einprogrammiert. Dieser Vorgang muss nur einmal durchgeführt werden, da die hierbei gebildeten Strukturen in sich geschlossen sind und somit einen stabilen Zustand darstellen.
  • Im Unterschied zu anderen bekannten Verfahren zur Messung von Kräften können mit diesem magnetischen Kodierungsverfahren berührungslos Drehmomente, Biegekräfte, axiale Kräfte, radiale Kräfte und Scherkräfte gemessen werden. Es können an ein und derselben kodierten Messstelle mehrere physikalische Parameter gleichzeitig gemessen werden. Darüber hinaus ist der Betriebstemperaturbereich von –50°C bis über +250°C gewährleistet. Der Sensor ist unempfindlich gegen Schmutz, Öl, Wasser sowie mechanische Schockbelastungen und verfügt über eine sehr hohe Messgenauigkeit und eine Ausgangssignallinearität von bis zu 0.05% Die Signalbandbreite kann bis zu 30 kHz betragen und es ist keine regelmäßige Wartung oder Nachkalibrierung des Sensors erforderlich.
  • Der Primärsensor kann eine Region der Welle sein, die magnetisch kodiert wird. Es ist ausreichend, den Kodierungsprozess lediglich einmal durchzuführen, vorzugsweise bevor die Welle an ihrem vorgesehenen Einbauort eingebaut wird. Die mechanischen Eigenschaften der Welle werden durch den Kodierungsprozess nicht beeinflusst. Die Welle sollte aus ferromagnetischem Material bestehen. Im Allgemeinen ist industrieller Stahl, der zwischen 1.5% und 8% Ni enthält, eine gute Basis für einen Primärsensor.
  • Der Primärsensor wandelt die anliegenden Kräfte in ein magnetisches Signal um, das auf der Oberfläche der Welle erfasst werden kann. Die Welle kann als Voll- oder Hohlwelle ausgeführt sein.
  • Der Sekundärsensor ist eine Anordnung von Magnetfeld-Sensoren, die in unmittelbarer Nähe der magnetisch kodierten Region der Welle platziert werden.
  • Da die Sekundärsensoren die Welle nicht berühren, kann die Welle frei rotieren. Der Sekundärsensor setzt Änderungen des magnetischen Feldes – verursacht durch Kräfte im Primär-Sensor – in elektrische Information um.
  • Das sekundäre Sensormodul kann sowohl außen als auch innerhalb der Welle platziert werden, da das Sensorsignal auf der Außen- wie auch auf der Innenseite ermittelt werden kann.
  • Der Sekundärsensor kann durch sehr kleine Spulen gebildet sein, um die magnetischen Veränderungen des Primärsensors unter Drehmoment hoch auflösend zu messen. Die Spulen können paarweise angeordnet sein, um eine Gleichtaktunterdrückung durch Differentialmessungen zu ermöglichen, und somit die Effekte von externen Magnetfeldern zu kompensieren. Die Gleichtaktunterdrückung beruht hauptsächlich auf einer einwandfreien Anordnung und guten Abstimmung der Spulen zueinander.
  • Zum Messen von Drehmomenten kann der Sekundärsensor parallel zur Achse der Welle und symmetrisch zum Zentrum des magnetisch kodierten Bereich – also des Primärsensors – angeordnet werden. Die Spulen des Sekundärsensors werden in der Regel paarweise angeordnet; das so genannte Spulenpaar. Die Spulenpaare werden je nach Anzahl symmetrisch über den Umfang der Welle verteilt. Durch das Verwenden von mehr als einem Spulenpaar können radiale Toleranzen der Welle kompensiert werden.
  • Die vorliegende Erfindung hat erkannt, dass ein nach diesem magnetostriktiven Prinzip arbeitender Sensor – wie er beispielsweise vorstehend beschrieben ist – hervorragend für einen aktiven Wankstabilisator geeignet ist.
  • Bei dieser erfindungsgemäßen Weiterbildung umfasst der Sensor den magnetisch kodierten Primärsensor sowie den Sekundärsensor, der Veränderungen der magnetischen Eigenschaften des Primärsensors in ein elektrisches Signal umwandeln kann.
  • Der Primärsensor kann beispielsweise durch eine Welle oder durch eine Hülse gebildet sein, die magnetisch kodiert ist; diese Kodierung kann in der oben beschriebenen Weise erfolgen oder auch auf andere Art und Weise.
  • Der Sekundärsensor kann als passives Element ausgebildet sein und eine Spule umfassen, die magnetische Veränderungen des Primärsensors erfassen und in ein elektrisches Signal umsetzen kann. Dieses Signal kann beispielsweise einer Regeleinrichtung zugeführt werden, die für eine Betätigung des Aktuators vorgesehen ist. Der Sekundärsensor kann auch als aktives Element ausgeführt sein.
  • Die Erfindung ermöglicht, die Sensorik zur Regelung des Aktuators direkt in den Drehstab zu integrieren, um als autarkes System verbaut werden zu können. Dies kann parallel zum Drehstab oder direkt im Kraftfluss oder Lastpfad der Drehstabfeder geschehen. Im Fall der ersten Alternative überträgt der Primärsensor lediglich einen Teil des anliegenden Dreh- oder Torsionsmomentes; im Fall der zweiten Alternative überträgt der der Primärsensor das volle anliegende Dreh- oder Torsionsmoment.
  • Der Primärsensor kann durch magnetisch kodiertes Material gebildet sein. Ein magnetisch kodierter Primärsensor kann am oder im Drehstab angebracht oder mit diesem verbunden sein. Über den Primärsensor wird ein Sekundärsensor platziert, der die Richtung der Feldlinien misst. Werden die Drehstabfedern auf Torsion belastet, so ändert sich die Steigung der Feldlinien, wobei die Änderung durch den Sekundärsensor gemessen wird.
  • Die Messung der Steigungsänderung – in positiver und in negativer Lastrichtung – kann für eine Regelung des Aktuatormomentes zugrunde gelegt werden.
  • Ein Ausführungsbeispiel sieht die direkte Integration des Primärsensors in den Lastpfad vor. In diesem Fall überträgt der Primärsensor das volle Torsionsmoment des Wankstabilisators. Beispielsweise kann ein Teil des Stabilisatorteiles magnetisch kodiert werden und den Primärsensor bilden. Somit beschränkt sich die Anzahl der Bauteile zur Messung des Torsionmomentes auf ein Minimum.
  • Die Adaption des Primärsensors kann parallel zum Lastpfad am Stabilisatorteil erfolgen. In diesem Fall überträgt der Primärsensor lediglich einen kleinen Teil des Torsionsmomentes, das auch als Mess-Torsionsmoment oder als Mess-Drehmoment bezeichnet werden kann; das Stabilisatorteil an sich überträgt den größten Teil des Torsionsmomentes. Ebenso kann der Durchmesser der Hülse vergrößert werden, um eine Verbesserung der Messergebnisse zu erzielen. Je größer der Durchmesser, desto größer ist der in Umfangsrichtung gemessene Verdrehweg. Die Drehsteifigkeit des Stabilisatorteils und die Hülse sind in diesem Fall derart aufeinander abgestimmt, dass eine Torsion der Hülse einem bestimmten zugeordneten wirksamen Drehmoment in dem Stabilisatorteil entspricht.
  • Wenn der Primärsensor durch eine Hülse gebildet ist, die auf das Stabilisatorteil aufgesetzt ist, kann die Hülse mit ihren beiden axialen Enden jeweils an dem Stabilisatorteil drehfest angeordnet werden, wobei die Hülse unter Belastung des Wankstabilisators verdreht oder tordiert, so dass der Sekundärsensor das anliegende Torsionsmoment erfassen kann. Je größer der axiale Abstand der beiden Enden zueinander ist, desto größer ist der Verdrehwinkel, und desto genauer kann die Messung erfolgen.
  • Die Adaption des magnetisch kodierten Primärsensors kann parallel zum Lastpfad zwischen einem Flansch und einem Stabilisatorlager vorgesehen sein. Der Flansch kann an dem Ende des Stabilisatorteiles angebracht sein, das dem Aktuator zugewandt ist. Der Flansch kann an den Aktuator angeschlossen werden, um das Drehmoment zu übertragen. Das Stabilisatorlager lagert das Stabilisatorteil am Fahrzeugaufbau und ermöglicht Drehbewegungen des Stabilisatorteiles um die Torsionsachse.
  • Die Anbindung des magnetisch kodierten Primärsensors an das Stabilisatorteil kann reibschlüssig mittels Pressverband, stoffschlüssig oder formschlüssig erfolgen; der Primärsensor kann aufgespritzt, aufgebklebt oder angeschweißt werden.
  • Die Länge des magnetisch kodierten Primärsensors zwischen Flansch und Lagerstelle kann auf maximale Länge erstreckt werden, um einen möglichst großen Verdrehwinkel zu erhalten, so dass die Sensorauflösung verbessert ist.
  • Die Adaption des magnetisch kodierten Primärsensors kann parallel zum Lastpfad im Innenbereich der rohrförmigen Drehstabfeder erfolgen.
  • Nachstehend wird die Erfindung anhand von sechs Figuren näher erläutert. Es zeigen:
  • 1 einen erfindungsgemäßen geteilten Wankstabilisator,
  • 2 einen vergrößerten Ausschnitt aus 1,
  • 3 eine erfindungsgemäße Variante in einer Darstellung wie in 2,
  • 4 eine weitere erfindungsgemäße Variante in einer Darstellung wie in 2,
  • 5 eine weitere erfindungsgemäße Variante in einer Darstellung wie in 2, und
  • 6 eine weitere erfindungsgemäße Variante in einer Darstellung wie in 2.
  • 1 zeigt einen erfindungsgemäßen geteilten Wankstabilisator mit einem angeschlossenen Aktuator 1. Der Aktuator 1 ist wirksam zwischen zwei jeweils als Drehstabfeder 2 ausgebildeten Stabilisatorteilen 2a angeordnet. Beide Stabilisatorteile 2a sind jeweils über ein Stabilisatorlager 3 an einem hier nicht dargestellten Fahrzeugaufbau drehbar gelagert. Der Aktuator kann einen Motor mit einem angeschlossenen Getriebe aufweisen, wobei ein Aktuatorgehäuse an das eine Stabilisatorteil 2a und eine Ausgangswelle an das andere Stabilisatorteil angeschlossen werden kann. Unter Betätigung des Aktuators werden die angeschlossenen Stabilisatorteile 2a auf Torsion beansprucht.
  • 2 zeigt einen vergrößerten Ausschnitt aus 1. Ein Sensor 11 zur Bestimmung des Aktuatormomentes ist in die Drehstabfeder 2 integriert. Das Aktuatormoment ist das in den Stabilisatorteilen 2a wirkende Torsionsmoment. Eine berührungslose Torsionsmomentmessung kann direkt im Lastpfad der Drehstabfeder 2 erfolgen, wobei zumindest ein Teilstück der Drehstabfeder 2 aus magnetostriktivem, magnetisch kodiertem Stahl hergestellt ist. Dieses Teilstück bildet einen Primärsensor 5. Dieses Teilstück kann aus einem Rohrstück gebildet sein, das einerseits stoffschlüssig mit dem Stabilisatorteil 2a und andererseits fest mit einem Flansch 4 verbunden ist. Dieser Primärsensor 5 überträgt das volle Torsionsmoment des Wankstabilisators.
  • Der Flansch 4 kann auch als Anschlussteil oder als Verbindungsteil bezeichnet werden, das einerseits drehfest an das Stabilisatorteil 2a und das andererseits drehfest an den Aktuator 1 angeschlossen werden kann. Der Flansch 4 kann an den Aktuator 1 mit Schrauben angeschraubt werden; der Flansch 4 kann auch stoffschlüssig mit dem Aktuator 1 verbunden werden. Der Flansch 4 kann stoffschlüssig, reibschlüssig oder kraftschlüssig mit dem Stabilisatorteil verbunden sein. Das Anschlussteil kann eine an das Stabilisatorteil 2a und die Anschlussstelle des Aktuators 1 angepasste Form aufweisen. Der Flansch 4 kann an den in 1 abgebildeten Aktuator 1 angeschlossen sein, um Torsionsmomente zwischen dem Aktuator 1 und den angeschlossenen Stabilisatorteilen 2a zu übertragen.
  • Ein Sekundärsensor 6 ist außerhalb der Drehstabfeder in der Nähe des durch das Rohrstück gebildeten Primärsensors 5 angeordnet und misst die durch Torsion des Primärsensors 5 verursachte Änderung der Steigung der Feldlinien. Der Sekundärsensor 6 bildet einen Magnetfeldsensor 6a.
  • Die Adaption des magnetisch kodierten Primärsensors 5 an die Drehstabfeder kann wie in 3 bis 6 ersichtlich auch parallel zum Lastpfad erfolgen. Bei diesen erfindungsgemäßen Weiterbildungen überträgt der Primärsensor nicht das volle wirksame Torsionsmoment, sondern lediglich ein Mess-Torsionsmoment, das abhängig ist von dem in der Drehstabfeder wirkenden Torsionsmoment.
  • Der erfindungsgemäße geteilte Wankstabilisator gemäß 3 unterscheidet sich von dem aus der 2 durch einen modifizierten Primärsensor 5. Gemäß 3 ist der Primärsensor 5 durch eine Hülse 5a gebildet, die mittels eines durch eine Halteklammer 7 gebildeten Befestigungselementes oder durch stoffschlüssige Verbindung 8 direkt am Drehstabfederrücken 9 befestigt ist. Der Drehstabfederrücken 9 ist durch das Stabilisatorteil 2a gebildet. Der 3 ist zu entnehmen, dass die Halteklammer 7 an beiden axialen Enden der Hülse 5a angeordnet ist, so dass die axialen Enden drehfest an dem Drehstabfederrücken 9 angeordnet sind. 2 zeigt zwei Varianten, wie die Hülse 5a am Drehstabfederrücken drehfest angeordnet werden kann: oberhalb der Längsachse des rohrförmigen Stabilisatorteiles 2a ist eine stoffschlüssige Verbindung der axialen Enden der Hülse 5a mit dem Drehstabfederrücken 9 vorgesehen. Unterhalb der Längsachse des rohrförmigen Stabilisatorteiles 2a ist die beschriebene Klammerverbindung der axialen Enden der Hülse 5a mit dem Drehstabfederrücken 9 vorgesehen.
  • Der erfindungsgemäße geteilte Wankstabilisator gemäß 4 unterscheidet sich von dem aus der 3 lediglich dadurch, dass das von dem Stabilisatorlager 3 abgewandte axiale Ende der Hülse 5b mittels der Halteklammer 7 oder durch stoffschlüssige Verbindung 8 am zylindrischen Teil des Flansches 4 befestigt ist. Dies hat den Vorteil, auf geringem Bauraum eine maximal mögliche Messlänge zu generieren. Die Hülse 5b gemäß 4 ist gegenüber der Hülse 5a gemäß 3 länger, so dass ein größerer Verdrehwinkel in der Hülse 5b generiert wird.
  • Der erfindungsgemäße geteilte Wankstabilisator gemäß 5 unterscheidet sich von dem aus der 4 lediglich dadurch, dass das von dem Stabilisatorlager 3 abgewandte axiale Ende der Hülse 5b mittels der Halteklammer 7 oder durch stoffschlüssige Verbindung 8 am Außendurchmesser des Flansches 4 oder an dessen Planfläche oder Stirnfläche befestigt ist. Dies hat den Vorteil, die größtmögliche Messlänge zwischen dem Stabilisatorlager 3 und dem Flansch 4 zu generieren.
  • Gemäß 6 ist die Adaption dadurch gelöst, dass eine den Primärsensor 5 bildende Hülse 5c mittels stoffschlüssiger Verbindung 8 innen liegend in der Drehstabfeder 2 zwischen dem Flansch 4 und der Drehstabfeder 2 angebracht ist. Der Sekundärsensor 6 ist radial innerhalb der Hülse 5c angeordnet. Die innen liegende Anordnung schützt sowohl den Primärsensor 5 als auch den Sekundärsensor 6 vor unerwünschter Fremdeinwirkung.
  • Bei den hier beschriebenen Varianten sind die Hülsen 5a, 5b, 5c in anderen Worten ausgedrückt mit ihren axialen Enden drehfest angeordnet, so dass unter Torsion der Stabilisatorteile 2a die Enden der Hülsen verdreht werden.
  • Die Sensoren 11 können bei erfindungsgemäßen geteilten Wankstabilisatoren an lediglich einem der beiden Stabilisatorteile 2a angeordnet sein; es ist jedoch möglich, beide Stabilisatorteile mit je einem Sensor 11 zu versehen.
  • Bezugszeichenliste
  • 1
    Aktuator
    2
    Drehstabfeder
    2a
    Stabilisatorteil
    3
    Stabilisatorlager
    4
    Flansch
    5
    magnetisch kodierter Primärsensor
    5a
    Hülse
    5b
    Hülse
    5c
    Hülse
    6
    Sekundärsensor
    6a
    Magnetfeldsensor
    7
    Halteklammer
    8
    stoffschlüssige Verbindung
    9
    Drehstabfederrücken
    10
    11
    Sensor
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2006/013093 A2 [0012]

Claims (9)

  1. Geteilter Wankstabilisator eines Kraftfahrzeuges, zwischen dessen beiden Stabilisatorteilen (2a) ein Aktuator (1) für eine Torsion der Stabilisatorteile (2a) wirksam angeordnet werden kann, wobei ein Sensor (11) zur Ermittlung eines in den Stabilisatorteilen (2a) wirkenden Torsionsmomentes vorgesehen ist.
  2. Geteilter Wankstabilisator nach Anspruch 1, bei dem ein magnetisch kodierter Primärsensor (5) an dem Stabilisatorteil (2a) angeordnet ist, wobei ein Magnetfeldsensor (6a) als Sekundärsensor (6) vorgesehen ist, der Änderungen des magnetischen Feldes des Primärsensors (5) in ein elektrisches Signal umwandelt.
  3. Geteilter Wankstabilisator nach Anspruch 2, bei dem der Primärsensor (5) durch einen Abschnitt des Stabilisatorteiles (2a) gebildet ist, der aus ferromagnetischem Material gebildet und magnetisch kodiert ist, wobei das wirksame Torsionsmoment in diesen Abschnitt eingeleitet wird.
  4. Geteilter Wankstabilisator nach Anspruch 2, bei dem der Primärsensor (5) zur Aufnahme eines Mess-Drehmomentes parallel zu dem Stabilisatorteil (2a) geschaltet ist, wobei das Mess-Drehmoment abhängig von einer Verdrehung des Stabilisatorteiles (2a) ist.
  5. Geteilter Wankstabilisator nach Anspruch 4, bei dem der Primärsensor (5) durch eine an dem Stabilisatorteil (2a) angeordnete Hülse (5a, 5b, 5c) gebildet ist.
  6. Geteilter Wankstabilisator nach Anspruch 1, zwischen dessen beiden Stabilisatorteilen (2a) der Aktuator (1) für eine Torsion der Stabilisatorteile (2a) wirksam angeordnet ist.
  7. Geteilter Wankstabilisator nach Anspruch 6, bei dem das Stabilisatorteil (2a) über ein Stabilisatorlager (3) drehbar gelagert ist, wobei der Primärsensor (5) zwischen einem dem Aktuator (1) zugewandten Ende und dem Stabilisatorlager (3) angeordnet ist.
  8. Geteilter Wankstabilisator nach Anspruch 6, bei dem die Stabilisatorteile (2a) jeweils über ein Stabilisatorlager (3) drehbar gelagert sind, wobei die Primärsensoren (5) jeweils zwischen einem dem Aktuator (1) zugewandten Ende und dem Stabilisatorlager (3) angeordnet sind.
  9. Geteilter Wankstabilisator nach den Ansprüchen 5 und 7, bei dem das dem Aktuator (1) zugewandte Ende des Stabilisatorteils (2a) drehfest mit einem an den Aktuator (1) angeschlossenen Flansch (4) verbunden ist, wobei die Hülse (5a, 5b, 5c) mit einem Ende drehfest mit dem Flansch (4) und mit dem anderen Ende drehfest mit dem Stabilisatorteil (2a) verbunden ist.
DE102011078819A 2010-09-30 2011-07-07 Geteilter Wankstabilisator Withdrawn DE102011078819A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102011078819A DE102011078819A1 (de) 2010-09-30 2011-07-07 Geteilter Wankstabilisator
PCT/EP2011/062593 WO2012041556A2 (de) 2010-09-30 2011-07-22 Geteilter wankstabilisator
US13/877,062 US8967643B2 (en) 2010-09-30 2011-07-22 Split roll stabilizer
CN201180047351.2A CN103402794B (zh) 2010-09-30 2011-07-22 分开的摆动稳定器
EP11734140.4A EP2621743B1 (de) 2010-09-30 2011-07-22 Geteilter wankstabilisator
KR1020137010988A KR101870465B1 (ko) 2010-09-30 2011-07-22 분할형 롤 안정화기

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010046995.5 2010-09-30
DE102010046995 2010-09-30
DE102011078819A DE102011078819A1 (de) 2010-09-30 2011-07-07 Geteilter Wankstabilisator

Publications (1)

Publication Number Publication Date
DE102011078819A1 true DE102011078819A1 (de) 2012-04-05

Family

ID=44628814

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011078819A Withdrawn DE102011078819A1 (de) 2010-09-30 2011-07-07 Geteilter Wankstabilisator

Country Status (6)

Country Link
US (1) US8967643B2 (de)
EP (1) EP2621743B1 (de)
KR (1) KR101870465B1 (de)
CN (1) CN103402794B (de)
DE (1) DE102011078819A1 (de)
WO (1) WO2012041556A2 (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013219761B3 (de) * 2013-09-30 2015-01-15 Schaeffler Technologies Gmbh & Co. Kg Anordnung und Verfahren zum Messen eines Drehmomentes an einem Maschinenelement sowie Wankstabilisator
DE102015206664B3 (de) * 2015-04-14 2016-07-28 Schaeffler Technologies AG & Co. KG Hohles Maschinenelement und Anordnung zum Messen einer Kraft oder eines Momentes
DE102016213591B3 (de) * 2016-07-25 2017-05-18 Schaeffler Technologies AG & Co. KG Lageranordnung mit Messanordnung zum Messen einer Kraft und/oder eines Momentes
DE102016213589B3 (de) * 2016-07-25 2017-12-21 Schaeffler Technologies AG & Co. KG Maschinenelementanordnung und Lageranordnung mit Messanordnung zum Messen einer Kraft oder eines Momentes
DE102017106877A1 (de) 2017-03-30 2018-10-04 Schaeffler Technologies AG & Co. KG Geteilter Wankstabilisator und Flansch hierfür
DE102017118789A1 (de) 2017-08-17 2019-02-21 Schaeffler Technologies AG & Co. KG Wankstabilisator für ein Kraftfahrzeug
WO2019034197A1 (de) 2017-08-17 2019-02-21 Schaeffler Technologies AG & Co. KG Wankstabilisator für ein kraftfahrzeug
WO2019210908A1 (de) 2018-05-03 2019-11-07 Schaeffler Technologies AG & Co. KG Drehmomentsensoranordnung und wankstabilisator mit drehmomentsensoranordnung
WO2020020406A1 (de) 2018-07-27 2020-01-30 Schaeffler Technologies AG & Co. KG Verfahren zum messen eines torsionsmomentes an einem sich in einer achse erstreckenden maschinenelement
WO2020038613A1 (de) 2018-08-24 2020-02-27 Zf Friedrichshafen Ag Wankstabilisator und sensoreinrichtung für einen wankstabilisator
DE102021200750A1 (de) 2021-01-28 2022-07-28 Zf Friedrichshafen Ag Hohlwelle für ein Wankstabilisierungssystem für ein Fahrzeug, Wankstabilisierungssystem und Verfahren zum Herstellen einer Hohlwelle
DE102021200751A1 (de) 2021-01-28 2022-07-28 Zf Friedrichshafen Ag Nebenschlusselement zum Aufnehmen einer Sensoreinheit für eine Hohlwelle für ein Fahrzeug, Hohlwelle, Wankstabilisator und Verfahren zum Herstellen einer Hohlwelle
DE102022209473B3 (de) 2022-09-12 2024-02-22 Zf Friedrichshafen Ag Verfahren zum Kalibrieren einer Sensoreinrichtung
DE102022209475B3 (de) 2022-09-12 2024-02-22 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022209474B3 (de) 2022-09-12 2024-02-22 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022209472B3 (de) 2022-09-12 2024-02-22 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022209478B3 (de) 2022-09-12 2024-03-07 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022209480A1 (de) 2022-09-12 2024-03-14 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022211416A1 (de) 2022-10-27 2024-05-02 Zf Friedrichshafen Ag Aktives Fahrwerksystem

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013205903B4 (de) * 2013-04-04 2021-07-22 Schaeffler Technologies AG & Co. KG Fahrwerksaktuatorvorrichtung für ein Fahrzeug
DE102013223424B4 (de) * 2013-07-17 2021-03-04 Schaeffler Technologies AG & Co. KG Verfahren für den Betrieb eines Kraftfahrzeugs zur Erkennung einer Überbeanspruchung eines Wankstabilisators
DE102013223073A1 (de) 2013-11-13 2015-05-13 Schaeffler Technologies Gmbh & Co. Kg Wankstabilisator
CN103625238B (zh) * 2013-12-02 2015-08-26 江苏大学 电控刚度可调式主动横向稳定装置
KR102343224B1 (ko) * 2015-09-10 2021-12-27 주식회사 만도 Tas센서를 이용한 전동식 능동 롤 스태빌라이저 장치
KR102445023B1 (ko) * 2015-11-20 2022-09-21 주식회사 만도 액티브 롤 스테빌라이저
KR102536588B1 (ko) * 2016-10-07 2023-05-25 에이치엘만도 주식회사 액티브 롤 스태빌라이저
KR102312802B1 (ko) * 2017-03-27 2021-10-14 주식회사 만도 액티브 롤 스태빌라이저
DE102017208045A1 (de) * 2017-05-12 2018-11-15 Zf Friedrichshafen Ag Wankstabilisator mit Sensoren zur Zustandsermittlung
KR101971532B1 (ko) 2017-09-04 2019-04-23 주식회사 만도 전자식 능동형 롤 스테빌라이저
KR101971528B1 (ko) 2017-09-11 2019-04-23 주식회사 만도 전자식 능동형 롤 스테빌라이저

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013093A2 (en) 2004-08-02 2006-02-09 Nctengineering Gmbh Sensor electronic

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060024A (ja) 1983-09-09 1985-04-06 Nissan Motor Co Ltd 車両におけるロ−ル剛性制御装置
JP2965628B2 (ja) * 1989-06-30 1999-10-18 株式会社東芝 磁性体を構成要素とするセンサの製造方法
EP1030790B1 (de) * 1998-06-25 2004-06-02 Robert Bosch Gmbh System und verfahren zur wankstabilisierung von fahrzeugen
JP2002228526A (ja) * 2001-01-31 2002-08-14 Hitachi Metals Ltd トルクセンサー
DE10126928B4 (de) 2001-06-01 2006-06-29 ZF Lemförder Metallwaren AG Stabilisator für ein Kraftfahrzeug
CN100469608C (zh) * 2004-02-12 2009-03-18 爱信精机株式会社 稳定器控制装置
JP4534642B2 (ja) * 2004-07-20 2010-09-01 アイシン精機株式会社 スタビライザ制御装置
US20070247224A1 (en) 2004-08-02 2007-10-25 Lutz May Sensor Electronic
JP2006151262A (ja) * 2004-11-30 2006-06-15 Toyota Motor Corp 車両用サスペンションシステム
JP4240010B2 (ja) * 2005-06-16 2009-03-18 トヨタ自動車株式会社 車両用スタビライザシステム
DE102005031037A1 (de) * 2005-07-02 2007-01-25 Bayerische Motoren Werke Ag Aktiver, geteilter Kraftfahrzeugstabilisator mit eingebautem elektrischem Schwenkmotor
JP2007045197A (ja) * 2005-08-08 2007-02-22 Nissan Motor Co Ltd 車両のロール剛性配分制御装置
DE102005053608A1 (de) * 2005-11-10 2007-05-16 Schaeffler Kg Wankstabilisator
JP4244999B2 (ja) * 2006-02-09 2009-03-25 トヨタ自動車株式会社 車両用スタビライザシステム
JP4127298B2 (ja) * 2006-06-14 2008-07-30 トヨタ自動車株式会社 車輪車体間距離調整装置および車輪車体間距離調整システム
DE102006040109A1 (de) 2006-08-26 2008-02-28 Bayerische Motoren Werke Ag Aktiver, geteilter Kraftfahrzeugstabilisator mit eingebauten Schwenkmotor
JP4258538B2 (ja) * 2006-08-29 2009-04-30 トヨタ自動車株式会社 車両用サスペンションシステム
US7832739B2 (en) 2006-11-06 2010-11-16 American Axle & Manufacturing, Inc. Apparatus and method for coupling a disconnectable stabilizer bar
JP4958066B2 (ja) 2006-11-09 2012-06-20 アイシン精機株式会社 スタビライザ制御装置
DE102008001006A1 (de) * 2008-04-04 2009-11-12 Zf Friedrichshafen Ag Radaufhängung für ein Fahrzeug
DE102009028386A1 (de) 2009-08-10 2011-02-17 Zf Friedrichshafen Ag Vorrichtung zum Variieren eines Wankwinkels einer Fahrzeugkarosserie im Bereich wenigstens einer Fahrzeugachse
DE102009047222A1 (de) 2009-11-27 2011-06-01 Robert Bosch Gmbh Sensoranordnung zum Ermitteln eines Drehmoments und zur Indexerkennung
DE102010037555B4 (de) 2010-09-15 2019-01-17 Ovalo Gmbh Aktiver Fahrwerksstabilisator, Aktuator, Fahrzeug und Verfahren zur Steuerung und/oder Regelungeines Fahrwerkstabilisators
DE102011078821A1 (de) * 2011-07-07 2013-01-10 Schaeffler Technologies AG & Co. KG Geteilter Wankstabilisator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013093A2 (en) 2004-08-02 2006-02-09 Nctengineering Gmbh Sensor electronic

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013219761B3 (de) * 2013-09-30 2015-01-15 Schaeffler Technologies Gmbh & Co. Kg Anordnung und Verfahren zum Messen eines Drehmomentes an einem Maschinenelement sowie Wankstabilisator
US10151651B2 (en) 2015-04-14 2018-12-11 Schaeffler Technologies AG & Co. KG Hollow machine element and assembly for measuring a force or a torque
DE102015206664B3 (de) * 2015-04-14 2016-07-28 Schaeffler Technologies AG & Co. KG Hohles Maschinenelement und Anordnung zum Messen einer Kraft oder eines Momentes
WO2016165703A1 (de) 2015-04-14 2016-10-20 Schaeffler Technologies AG & Co. KG Hohles maschinenelement und anordnung zum messen einer kraft oder eines momentes
DE102016213591B3 (de) * 2016-07-25 2017-05-18 Schaeffler Technologies AG & Co. KG Lageranordnung mit Messanordnung zum Messen einer Kraft und/oder eines Momentes
DE102016213589B3 (de) * 2016-07-25 2017-12-21 Schaeffler Technologies AG & Co. KG Maschinenelementanordnung und Lageranordnung mit Messanordnung zum Messen einer Kraft oder eines Momentes
WO2018019322A1 (de) 2016-07-25 2018-02-01 Schaeffler Technologies AG & Co. KG Lageranordnung mit messanordnung zum messen einer kraft und/oder eines momentes
DE102017106877A1 (de) 2017-03-30 2018-10-04 Schaeffler Technologies AG & Co. KG Geteilter Wankstabilisator und Flansch hierfür
DE102017118789A1 (de) 2017-08-17 2019-02-21 Schaeffler Technologies AG & Co. KG Wankstabilisator für ein Kraftfahrzeug
WO2019034197A1 (de) 2017-08-17 2019-02-21 Schaeffler Technologies AG & Co. KG Wankstabilisator für ein kraftfahrzeug
DE102017118790A1 (de) 2017-08-17 2019-02-21 Schaeffler Technologies AG & Co. KG Wankstabilisator für ein Kraftfahrzeug
DE102017118789B4 (de) 2017-08-17 2019-03-07 Schaeffler Technologies AG & Co. KG Wankstabilisator für ein Kraftfahrzeug
DE102017118790B4 (de) 2017-08-17 2019-03-07 Schaeffler Technologies AG & Co. KG Wankstabilisator für ein Kraftfahrzeug
US11130383B2 (en) 2017-08-17 2021-09-28 Schaeffler Technologies AG & Co. KG Roll stabilizer for a motor vehicle
WO2019210908A1 (de) 2018-05-03 2019-11-07 Schaeffler Technologies AG & Co. KG Drehmomentsensoranordnung und wankstabilisator mit drehmomentsensoranordnung
WO2020020406A1 (de) 2018-07-27 2020-01-30 Schaeffler Technologies AG & Co. KG Verfahren zum messen eines torsionsmomentes an einem sich in einer achse erstreckenden maschinenelement
WO2020038614A1 (de) 2018-08-24 2020-02-27 Zf Friedrichshafen Ag Wankstabilisator und sensoreinrichtung für einen wankstabilisator
WO2020038613A1 (de) 2018-08-24 2020-02-27 Zf Friedrichshafen Ag Wankstabilisator und sensoreinrichtung für einen wankstabilisator
DE102021200750A1 (de) 2021-01-28 2022-07-28 Zf Friedrichshafen Ag Hohlwelle für ein Wankstabilisierungssystem für ein Fahrzeug, Wankstabilisierungssystem und Verfahren zum Herstellen einer Hohlwelle
DE102021200751A1 (de) 2021-01-28 2022-07-28 Zf Friedrichshafen Ag Nebenschlusselement zum Aufnehmen einer Sensoreinheit für eine Hohlwelle für ein Fahrzeug, Hohlwelle, Wankstabilisator und Verfahren zum Herstellen einer Hohlwelle
DE102021200751B4 (de) 2021-01-28 2023-10-26 Zf Friedrichshafen Ag Nebenschlusselement zum Aufnehmen einer Sensoreinheit für eine Hohlwelle für ein Fahrzeug, Hohlwelle, Wankstabilisator und Verfahren zum Herstellen einer Hohlwelle
DE102022209473B3 (de) 2022-09-12 2024-02-22 Zf Friedrichshafen Ag Verfahren zum Kalibrieren einer Sensoreinrichtung
DE102022209475B3 (de) 2022-09-12 2024-02-22 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022209474B3 (de) 2022-09-12 2024-02-22 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022209472B3 (de) 2022-09-12 2024-02-22 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022209478B3 (de) 2022-09-12 2024-03-07 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022209480A1 (de) 2022-09-12 2024-03-14 Zf Friedrichshafen Ag Aktuator für eine Fahrwerkseinrichtung
DE102022211416A1 (de) 2022-10-27 2024-05-02 Zf Friedrichshafen Ag Aktives Fahrwerksystem

Also Published As

Publication number Publication date
WO2012041556A2 (de) 2012-04-05
EP2621743A2 (de) 2013-08-07
KR20130120472A (ko) 2013-11-04
CN103402794A (zh) 2013-11-20
CN103402794B (zh) 2016-03-09
US20130270786A1 (en) 2013-10-17
US8967643B2 (en) 2015-03-03
WO2012041556A3 (de) 2013-09-19
EP2621743B1 (de) 2017-03-01
KR101870465B1 (ko) 2018-06-22

Similar Documents

Publication Publication Date Title
EP2621743B1 (de) Geteilter wankstabilisator
EP2543528B1 (de) Geteilter Wankstabilisator
DE102010037555B4 (de) Aktiver Fahrwerksstabilisator, Aktuator, Fahrzeug und Verfahren zur Steuerung und/oder Regelungeines Fahrwerkstabilisators
EP3840968B1 (de) Wankstabilisator
EP2769192B1 (de) Magnetoelastischer torsions- oder drehmomentsensor und verfahren zum ermitteln einer torsion oder eines drehmomentes mit hilfe eines derartigen sensors.
WO2015131862A1 (de) Bauteil mit einem wenigstens einen sensor aufweisenden messelement
DE102006040109A1 (de) Aktiver, geteilter Kraftfahrzeugstabilisator mit eingebauten Schwenkmotor
DE102011075890A1 (de) Wankstabilisator eines Kraftfahrzeuges
EP3370051A2 (de) Drucksensor sowie druckmessverfahren
DE102011053278A1 (de) Entkoppelbarer Aktuator, insbesondere mit elektromechanischem Antrieb
EP2878938B1 (de) Magnetostriktiver Sensor für Aktuatoren in Flugzeugen
DE102006054179A1 (de) Vorrichtung zur Messung des Drehmomentes an einer Welle
DE102011053277A1 (de) Stabilisator mit einem integrierten Aktuator
DE102013001829B4 (de) Drehwinkel- und Torsionswinkelsensor
DE102014208334A1 (de) Wankstabilisator
DE102017106877A1 (de) Geteilter Wankstabilisator und Flansch hierfür
WO2020211891A1 (de) Handkraftaktuator mit einem sensorsystem zur drehmomentdetektion
DE102006031456A1 (de) Lagerungsanordnung mit integrierter Drehmomentmessung und Vorrichtung zur Regelung einer Momentenverteilung
DE19854687A1 (de) Drehmoments- oder Kraftsensor für in Wälzlagern gelagerte Wellen
DE102014221129A1 (de) Wankstabilisator für ein Kraftfahrzeug
DE102007000596A1 (de) Verfahren und Vorrichtung zum Messen eines von einer Welle übertragenen Drehmomentes
DE102014208335A1 (de) Wankstabilisator
DE102018118175A1 (de) Verfahren zum Messen eines Torsionsmomentes an einem sich in einer Achse erstreckenden Maschinenelement
DE10210148A1 (de) Drehmomentmeßvorrichtung und Hilfskraftlenkung für ein Kraftfahrzeug
DE102022102604A1 (de) Relativverdrehung-Erfassungsvorrichtung und Tretkurbelanordnung

Legal Events

Date Code Title Description
R081 Change of applicant/patentee

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20120827

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20120827

R081 Change of applicant/patentee

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140212

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140212

R081 Change of applicant/patentee

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20150126

R005 Application deemed withdrawn due to failure to request examination