-
HINTERGRUND
-
Die vorliegende Erfindung bezieht sich im Allgemeinen auf Restspannung und Verzug, welche in Aluminiumlegierungen, einschließlich Aluminiumlegierungsgussteilen, während eines Abschreck-/Abkühlungsvorgangs hervorgerufen werden. Genauer bezieht sich die Erfindung auf Systeme, Verfahren und Erzeugnisse zum Vorhersagen von Restspannungen und Verzug in nach einer Lösungsbehandlung abgeschreckten Aluminiumgussteilen.
-
Restspannungen sind im Allgemeinen definiert als Spannungen, welche in einem Produkt/einer Komponente/einem Objekt nach dem Herstellungsvorgang verbleiben. Die Restspannungen können in technisch erzeugten Gussteilen, dünnen Filmen, Oberflächenbeschichtungen, Verbundwerkstoffen und Mehrphasenmaterialien vorhanden sein. Restspannungen können aus einer Vielzahl von Quellen hervorgehen. Zum Beispiel können makroskopische Restspannungen durch Wärmebehandeln, Bearbeiten, sekundärem thermischem und mechanischem Bearbeiten und Montagevorgängen entstehen, wohingegen mikrostrukturelle Restspannungen oft aus thermischem Expansions-/Kontraktionsversatz zwischen Phasen und Konstituenten entstehen, oder aus Phasentransformationen. Erzeugniskomponenten, wie Aluminiumgussteile, weisen im Allgemeinen einen in etwa bestimmbaren Grad an Restspannungen auf.
-
Aluminiumgussteile werden oft einer T6/T7-Wärmebehandlung ausgesetzt, um ihre mechanischen Eigenschaften zu verbessern. T6/T7-Wärmebehandlung umfasst im Allgemeinen ein Lösungsbehandeln bei einer relativ hohen Temperatur gefolgt von einer schnellen Abschreckung in einem kalten oder kühlen Abschreckmedium, wie etwa Wasser oder Gebläseluft, dann Ausscheidungshärten bei einer Zwischentemperatur. Bedeutende Restspannungen und Verzug können in Aluminiumgussteilen, insbesondere solche mit komplexen geometrischen Strukturen, entstehen durch das, was typischerweise eine hohe Ungleichmäßigkeit der Temperaturverteilung in den Aluminiumgussteilen während Abschreckvorgängen und insbesondere während einer schnellen Abschreckung, beispielsweise in Wasser, ist. Die Gegenwart von Restspannungen und/oder Verzug in einer Strukturkomponente, wie einem Aluminiumgussteil, kann beträchtlich und negativ die Maßtoleranz und Leistungscharakteristik der Komponente beeinflussen. Mit steigenden Anforderungen, das Gewicht zu reduzieren und die Kraftstoffeffizienz von Automobilen zu verbessern, werden Aluminiumgussteile verbreiteter für kritische Automobilkomponenten, wie etwa Motorblöcke, Zylinderköpfe und Aufhängungsteile verwendet. Solche Aluminiumgussteile werden oft zyklischen Belastungen ausgesetzt. Das Ermüdungsverhalten von Aluminiumgussteilen kann beträchtlich und negativ durch die Gegenwart von Restspannungen beeinflusst werden, insbesondere durch Zugrestspannungen in Oberflächenschichten um das Ausrundungsgebiet der Aluminiumgussteile herum.
-
Es gibt viele Möglichkeiten, die Restspannungen in Erzeugniskomponenten, einschließlich denjenigen, welche aus Aluminiumlegierungen konfiguriert sind, zu messen. Mechanische Verfahren wie etwa Lochbohren, Krümmungsmessungen und Rissnachgiebigkeitsverfahren messen Restspannungen in Komponenten basierend auf einem entsprechenden Komponentenverzug. Beugungstechniken, wie etwa Elektronen-, Röntgen- und Neutronenbeugung, messen in den Komponenten durch Restspannungen verursachte elastische Dehnungen. Andere Verfahren, einschließlich Magnet-, Ultraschall-, Piezospektroskopie-, Fotoelastizitäts- und Thermoelastizitätsverfahren sind auch entwickelt worden. Mechanische Verfahren zerstören jedoch im Allgemeinen die Komponente, wohingegen die Genauigkeit der Beugung und anderer nicht destruktiver Verfahren zur Messung von Restspannungen im Allgemeinen von dem Ausmaß der Mikrostrukturvariation und der geometrischen Komplexität der Komponentenstruktur abhängt. Zusätzlich ist es im Allgemeinen nicht praktikabel, an jeder Stelle einer Komponente die Restspannungen zu messen, nicht nur wegen geometrischer Einschränkungen, sondern auch wegen der dafür benötigten Zeit und der Kosten. Daher besteht, basierend auf dem Vorhergehenden, ein Bedarf für Systeme, Verfahren und Erzeugnisse, um Restspannungen und/oder Verzug von abgeschreckten Aluminiumgussteilen vorherzusagen.
-
In A. Fent: „Einfluss der Wärmebehandlung auf den Eigenspannungszustand von Aluminiumgussteilen”, utg Forschungsberichte, Band 15, München, Hieronymus GmbH, 2002, S. 84–127 (ISBN 3-89791-253-8) werden die Einflüsse von Wärmebehandlungen bei wärmeaushärtbaren Aluminiumlegierungen auf die mechanischen Eigenschaften und den Eigenspannungszustand eines einfachen Spannungsgitters und eines Dieselzylinderkopfes untersucht. Es wird die Berechnung der Eigenspannungsänderung durch Wärmebehandlung einer Aluminiumlegierung unter Verwendung der mechanischen Kennwerte Elastizitätsmodul, Streckgrenze und Zugfestigkeit beschrieben. Der Spannungsabbau durch Relaxationsvorgänge beim Warmauslagern bzw. das Kriechen wird dabei berücksichtigt.
-
In der Dissertationsschrift von A. E. Ragab: „Sensitivity Analysis of Casting Distortion and Residual Stress Prediction through Simulation Modeling and Experimental Verification”, The Ohio State University, 2003, wird ein Verfahren zum Simulieren eines Druckgussvorgangs beschrieben, mit dem Deformationen und Spannungen in dem hergestellten Gussteil vorhergesagt werden können. Bei der Simulation wird ein Finite-Elemente-Modell eingesetzt, mit dem der Effekt der thermischen und mechanischen Wechselwirkung zwischen dem Stempel und dem Gussteil modelliert wird. Dabei werden auch Quench-Vorgänge simuliert.
-
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein System zum möglichst genauen Vorhersagen von Restspannung und/oder Verzug in einem abgeschreckten Aluminiumgussteil bereitzustellen. Der vorliegenden Erfindung liegt außerdem die Aufgabe zugrunde, ein entsprechendes Verfahren bzw. ein entsprechendes Erzeugnis zum möglichst genauen Vorhersagen von Restspannung und/oder Verzug in einem abgeschreckten Aluminiumgussteil bereitzustellen.
-
ZUSAMMENFASSUNG
-
Die Aufgabe wird durch ein System mit den Merkmalen des Anspruchs 1 bzw. durch ein Verfahren mit den Merkmalen des Anspruchs 9 bzw. durch ein Erzeugnis mit den Merkmalen des Anspruchs 10 gelöst. Bevorzugte Ausführungsformen und Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
-
Vor dem vorstehenden Hintergrund beziehen sich Ausführungsformen der vorliegenden Erfindung im Allgemeinen auf Systeme, Verfahren und Erzeugnisse, um Restspannungen und/oder Verzug von abgeschreckten Aluminiumgussteilen vorherzusagen. Wie hierin verwendet, bezieht sich der Begriff ”Aluminiumgussteil” im Allgemeinen auf jede gegossene Komponente, jedes Teil oder jedes andere Erzeugnis, welches im Wesentlichen aus Aluminium und/oder einer oder mehrerer Aluminiumlegierungen ausgebildet ist. Wie ferner hierin verwendet, bezieht sich der Begriff ”abgeschreckt” im Allgemeinen auf eine Aluminiumlegierung, die nach einem konventionellen oder noch zu entwickelnden Abschreckprozess abgekühlt oder abgeschreckt wurde, wohingegen, wie hierin verwendet, der Begriff ”Wasserabschreckung” sich im Allgemeinen auf jeden konventionellen oder noch zu entwickelnden Abschreckprozess bezieht, bei dem Wasser als Abschreckmedium verwendet wird.
-
Genauer, gemäß den Ausführungsformen, sagen Rechensysteme, Verfahren und Erzeugnisse Restspannungen und Verzug in nach einer Lösungsbehandlung abgeschreckten Aluminiumgussteilen voraus. Restspannungen und Verzug werden durch Einbezug von thermischen Dehnungen, die in einem Abschreckvorgang hervorgerufen werden, in das nichtlineare konstitutive Verhalten von abgeschreckten Mikrostrukturen eines abgeschreckten Aluminiumgussteils vorhergesagt, wobei die thermischen Dehnungen im Allgemeinen aus einer ungleichmäßigen Übergangstemperaturverteilung des Gussteils während der Abschreckung resultieren. Die Übergangstemperaturverteilung des Aluminiumgussteils während der Abschreckung wird basierend auf Wärmeübergangskoeffizienten berechnet, die charakteristisch für einen oder mehrere Knoten, Elemente und/oder Zonen auf den Oberflächen des Aluminiumgussteils sind. Das nichtlineare konstitutive Verhalten des abgeschreckten Aluminiumgussteils wird als Funktionen der Temperaturen, der Dehnungsraten und der mikrostrukturellen Variationen modelliert. Ein materialkonstitutives Modell trägt nicht nur einer Kaltverfestigung und einer Fließdehnung Rechnung, sondern auch einer Präzipitatsverfestigung. Mit den Ausführungsformen können Restspannungen und Verzug in einem abgeschreckten Aluminiumgussteil mit einer hohen Genauigkeit vorhergesagt werden.
-
Gemäß einer Ausführungsform umfasst ein System zur Vorhersage von Restspannung und/oder von Verzug eines Aluminiumgussteils eine Informationseingabe, eine Informationsausgabe, eine Verarbeitungseinheit und ein computerlesbares Medium. Die Informationseingabe ist ausgebildet, Informationen zu erhalten, die sich auf zumindest eines von Materialmikrostrukturcharakteristika und zumindest eines von materialthermophysikalischen und mechanischen Eigenschaften und zumindest eines von einer Vielzahl von Knoten, Elementen und/oder Zonen des Aluminiumgussteils während dessen Abschreckung beziehen, wohingegen die Informationsausgabe ausgebildet ist, Informationen zu liefern, die sich auf zumindest eines von in den Aluminiumgussteilen vorhandenen Restspannungen und Verzug beziehen, die durch das System vorhergesagt wurden. Das computerlesbare Medium umfasst einen darin enthaltenen computerlesbaren Programmcode. Das computerlesbare Medium ist kooperativ mit der Verarbeitungseinheit, der Informationseingabe und der Informationsausgabe, sodass die erhaltenen Informationen durch die Verarbeitungseinheit und computerlesbarem Programmcode bearbeitet werden, um der Informationsausgabe als eine Vorhersage von zumindest einem von Restspannung und Verzug des Aluminiumgussteils präsentiert zu werden. Der computerlesbare Programmcode umfasst ein Simulationsmodul, ein Wärmeübergangsmodul, ein Dehnungs- und Spannungsanalysemodul und ein Benutzermaterialsubroutinemodul, welches ein materialkonstitutives Modell definiert. Das Simulationsmodul simuliert einen Abschreckprozess eines virtuellen Aluminiumgussteils, die einem Aluminiumgussteil und dessen Abschreckung nachgebildet sind, das virtuelle Aluminiumgussteil umfasst eine Vielzahl von virtuellen Oberflächenknoten, Elementen und/oder Zonen, welche mit den Oberflächen des Aluminiumgussteils und einer Vielzahl von virtuellen Knoten, dimensionalen Elementen und Zonen, die die Körperstruktur des Aluminiumgussteils bilden, korreliert sind. Das Wärmeübergangsmodul berechnet eine Vielzahl von Wärmeübergangskoeffizienten, die charakteristisch sind für die entsprechenden virtuellen Oberflächenknoten, Elemente und/oder Zonen und berechnet eine Vielzahl von virtuellen knotenspezifischen, elementspezifischen und/oder zonenspezifischen Temperaturen unter Verwendung der Wärmeübergangskoeffizienten, der virtuellen knotenspezifischen, elementspezifischen und/oder zonenspezifischen Temperaturen, die entsprechend charakteristisch sind für eine Zeit der simulierten Abschreckung. Das Dehnungs- und Spannungsanalysemodul berechnet eine Gesamtdehnung von zumindest einem Knoten, einem Element und/oder einer Zone in dem Aluminiumgussteil unter Verwendung der virtuellen knotenspezifischen, elementspezifischen und/oder zonenspezifischen Temperaturen und eines thermischen Expansions-/Kontraktionskoeffizienten. Das Dehnungs- und Spannungsanalysemodul berechnet auch eine Vielzahl von thermischen Spannungen und Dehnungen bei Integrationspunkten, die die dimensionalen Elemente des entsprechenden virtuellen Aluminiumgussteils definieren, und berechnet eine Dehnungsrate und eine Änderung der Dehnung bei den entsprechenden Integrationspunkten. Das materialkonstitutive Modell, das in dem Benutzermaterialunterroutinemodul definiert ist und mit dem Dehnungs- und Spannungsanalysemodul in Kommunikation steht, berechnet zumindest eines von einer Restspannung und Verzug bei den entsprechenden Integrationspunkten, um zumindest eine Restspannung und Verzug des Aluminiumgussteils vorherzusagen.
-
Optional kann das computerlesbare Medium ein Finite Elemente Analyse Modul aufweisen, das das Simulationsmodul und/oder das Wärmeübergangsmodul und/oder das Dehnungs- und Spannungsanalysemodul und zumindest eines der Benutzermaterialunterroutinemodule aufweist, das ein materialkonstitutives Modell definiert und das kooperativ gekoppelt ist mit jedem von dem Simulationsmodul, dem Wärmeübergangsmodul, dem Dehnungs- und Spannungsanalysemodul und zumindest einem der Benutzermaterialunterroutinemodule, welches ein materialkonstitutives Modell definiert, das nicht in dem Finite Elemente Analyse Modul enthalten ist. Die erhaltenen Informationen, die von der Informationseingabe erhalten wurden, können Informationen aufweisen, welche sich auf zumindest eines von den Übergangstemperaturverteilungen von zumindest einem von den Knoten, Elementen und/oder Zonen des Aluminiumgussteils während es abgeschreckt wird und auf zumindest eines von einer Vielzahl von Materialeigenschaften von zumindest einem von den Knoten, Elementen und/oder Zonen des Aluminiumgussteils während der Abschreckung beziehen. Die Materialeigenschaften des Aluminiumgussteils können mikrostrukturelle Charakteristika und thermophysikalische und mechanische Eigenschaften aufweisen, welche zumindest einen sekundären Dendritenarmabstand (SDAS von secondary dendrite arm spacing) des Aluminiumgussteils umfassen.
-
Optional können die virtuellen Oberflächenzonen des virtuellen Aluminiumgussteils ferner zumindest eine obere Oberfläche des virtuellen Aluminiumgussteils und zumindest eine untere Oberfläche des virtuellen Aluminiumgussteils bezüglich der Orientierung des Gussteils beim Abschrecken aufweisen. Die virtuellen Oberflächenzonen können entsprechend eine Vielzahl von Knoten und dimensionalen Elemente auf den Oberflächen aufweisen, die entsprechend durch eine Länge (x), eine Breite (y) und eine Tiefe (z) definiert sind. Die Wärmeübergangskoeffizienten können unter Verwendung der folgenden Gleichung berechnet werden:
htc(x,y,z) = f(v, Tqm, t, ...) wobei h
tc(x,y,z) einer der Wärmeübergangskoeffizienten ist, der für einen der dimensionalen Knoten und Elemente charakteristisch ist, die durch die Länge (x), Breite (y) und Tiefe (z) definiert sind, v eine Geschwindigkeit eines Abschreckmediums ist, welches während der simulierten Abschreckung verwendet wird, T
qm eine Temperatur des Abschreckmediums zu einer Zeit während der simulierten Abschreckung ist und t eine Zeit während der simulierten Abschreckung ist, bei welcher der Wärmeübergangskoeffizient berechnet wird. Die dimensionalen Elemente können entsprechend ein Tetraederelement zweiter Ordnung aufweisen. Das Wärmeübergangsmodul kann die virtuellen oberflächenknotenspezifischen, elementspezifischen und/oder zonenspezifischen Wärmeübergangskoeffizienten optimieren durch Minimierung der Differenzen zwischen virtuellen Temperaturen, welche während der simulierten Abschreckung bei zumindest einer entsprechenden Thermoelementposition berechnet wurden, und experimentellen Temperaturen, die während der Abschreckung durch zumindest ein Thermoelement gemessen wurden. Die Differenzen zwischen den virtuellen Temperaturen und den experimentellen Temperaturen können minimiert werden durch Anpassung von oberflächenknotenspezifischen, elementspezifischen und/oder zonenspezifischen Wärmeübergangskoeffizienten und einer Länge des Zeitintervalls während der simulierten Abschreckung. Die Differenzen zwischen den virtuellen Temperaturen und den experimentellen Temperaturen können unter Verwendung der folgenden Gleichung bestimmt werden:
wobei
T calc / i,j eine Temperatur des virtuellen Aluminiumgussteils ist, welche bei einem Zeitschritt j während der simulierten Abschreckung an dem Thermoelement i berechnet wurde,
T expt / i,j eine Temperatur des Aluminiumgussteils ist, welche bei einem Zeitschritt j während der Abschreckung an dem Thermoelement i gemessen wurde, M eine Gesamtanzahl der Vergleiche ist, die für ein bestimmtes Thermoelement gemacht wurden, und N eine Gesamtanzahl von Thermoelementen ist. Zusätzlich können die virtuellen knotenspezifischen, elementspezifischen und/oder zonenspezifischen Temperaturen in dem Aluminiumgussteil wie folgt ausgedrückt werden:
T(x,y,z) = f(htc, K, t) wobei T
(x,y,z) sich auf die Temperaturen bei einem spezifischen virtuellen Knoten, Element und/oder einer Zone bezieht, h
tc sich auf den virtuellen oberflächenspezifischen, elementspezifischen und/oder zonenspezifischen Wärmeübergangskoeffizient bezieht, K sich auf die thermische Leitfähigkeit bezieht und t sich auf die Zeit während des Abschreckung bezieht, bei welcher der Wärmeübergangskoeffizient berechnet wurde.
-
Optional kann die Gesamtdehnung ferner aus der Eigenstärke
σ ^e, der Kaltverfestigung
σ ^p und der Präzipitatsverfestigung
σ ^ppt berechnet und wie folgt ausgedrückt werden:
wobei
Ce(ε ., T), Cp(ε ., T) und Cppt(ε ., T) geschwindigkeitsmodifizierte Temperaturen für die Eigenstärke, Kaltverfestigung bzw. Präzipitatsverfestigung sind; T die Temperatur gemessen in Kelvin ist und
ε . die Dehnungsrate ist; μ
0 (= 28,815 GPa) ein Referenzschermodulwert bei 0 K und
ε . = 107 s–1 für ein Aluminiumgussteil ist; und μ(T) ein temperaturabhängiges Schermodul ist. Nach der Gleitbewegung kann Fließspannung durch die Evolution von
σ ^p und σ ^ppt modelliert werden, wobei Kaltverfestigung wie folgt ausgedrückt wird:
wobei θ
0 die Steigung der Spannungs-Dehnungskurve bei der Gleitbewegung im Referenzzustand
(0 K, ε . = 107 s–1) repräsentiert und
σ ^os ein Parameter von einer der Materialeigenschaften ist. Ferner, nach der Gleitbewegung, kann die Präzipitatsverfestigung ausgedrückt werden als:
wobei M der Taylor-Faktor ist; b der Burgers-Vektor ist, r
eq und l der präzipitatsäquivalente Kreisradius (r
eq = 0,5 d
eq) bzw. der Abstand zur Versetzungslinie ist; f(r
eq) eine Präzipitatsgrößenverteilung ist; f(l) eine Teilchenabstandsverteilung ist; und F(r
eq) eine Hindernisstärke eines Präzipitats mit Radius r
eq ist. Die Dehnungsänderung bei den entsprechenden Integrationspunkten kann von Unterschieden in den zeitspezifischen, virtuellen knotenspezifischen, elementspezifischen und/oder zonenspezifischen Temperaturen und einer geometrischen Struktur der entsprechenden virtuellen Knoten, Elemente und/oder Zonen unter Annahme von null plastischen Dehnungen berechnet werden, wobei die Änderung der Dehnung wie folgt ausgedrückt werden kann:
-
Die Dehnungsrate kann basierend auf der Änderung der Dehnung bei dem entsprechenden Integrationspunkt berechnet und ausgedrückt werden als:
wobei d
εij (i = 1, 2, 3; j = 1, 2, 3) eine von sechs Komponenten der Änderungen in der Dehnung bei den entsprechenden Integrationspunkten ist und dt ein Zeitinkrement ist, welches aufeinanderfolgende zeitspezifische, virtuelle knotenspezifische, elementspezifische und/oder zonenspezifische Temperaturen voneinander trennt.
-
Ferner optional kann das Dehnungs- und Spannungsanalysemodul eine Vielzahl von thermischen Spannungen und Dehnungen bei den entsprechenden Integrationspunkten durch Berechnung von Testelastizität, Fließspannung und plastischem Fließen berechnen, indem äquivalente plastische Spannungen und Härteraten und eine Jacobi-Matrix für Plastizität erhalten werden und die Plastizität berechnet wird. Das Dehnungs- und Spannungsanalysemodul kann die elastische Testspannung unter Verwendung der vollen elastischen Spannungen berechnen, die von dem System bereitgestellt werden, wobei die elastische Testspannung ausgedrückt wird als:
δij = λδijεel kk + 2μεel kk wobei
εel kk die Steuervariable ist, welche aus einer Änderung der Temperatur und einer geometrischen Struktur des virtuellen Aluminiumgussteils berechnet wird. Das Dehnungs- und Spannungsanalysemodul kann die Von Mises Spannung basierend auf reinem elastischen Verhalten berechnen, wobei diese ausgedrückt wird durch:
wobei
Sij = Sij – 1 / 3δijσkk.
-
Das Benutzermaterialunterroutinemodul, welches das materialkonstitutive Modell definiert, kann ermitteln, ob eine vorhergesagte elastische Spannung größer ist als die Fließspannung, sodass plastischer Fluss auftritt, wobei die vorhergesagte elastische Spannung ausgedrückt werden kann als:
-
Das Benutzermaterialunterroutinemodul kann eine Rückwärts-Euler-Methode verwenden, um Gleichungen für eine Berechnung der aktuellen plastischen Dehnung zu integrieren: σ pr – 3μΔε pl = σy(ε pl).
-
Das Benutzermaterialunterroutinemodul kann auch aktualisierte thermische Spannungen und Dehnungen berechnen, wobei:
σij = ηijσy + 1 / 3δijσ pr / kk Δε pl / ij = 3 / 2ηijΔε pl
-
Ferner kann das Benutzermaterialunterroutinemodul eine Jacobi-Matrix bei den entsprechenden Integrationspunkten berechnen, um die entsprechende Plastizität zu erhalten, wobei: Δσ .ij = λ*δijΔε .kk + 2μ*Δε .ij + ( h / 1 + h/3μ – 3μ*)ηijηklΔε .kl wobei μ* = μσy/σ pr, λ* = k – 2 / 3μ*, und h = dσy/dε pl.
-
Ferner kann optional die Restspannung, welche durch das materialkonstitutive Modell berechnet wurde, ausgedrückt werden als: σr = f(Δε, T, ε ., SDAS).
-
Gemäß einer anderen Ausführungsform umfasst ein Verfahren zum Vorhersagen von zumindest einem von Restspannungen und von Verzug eines Aluminiumgussteils: Bereitstellen eines virtuellen Aluminiumgussteils, wobei das virtuelle Aluminiumgussteil zumindest eines von einer Vielzahl von Knoten, Elementen und/oder Zonen aufweist und durch einen Abschreckprozess abgeschreckt worden ist; Simulieren einer Abschreckung eines virtuellen Aluminiumgussteils, wobei das Aluminiumgussteil und dessen Abschreckung repliziert werden, wobei das virtuelle Aluminiumgussteil eine Vielzahl von virtuellen Oberflächenknoten, Elementen und/oder Zonen und eine Vielzahl von dimensionalen Knoten, Elementen und/oder Zonen umfasst, welche die Körpergeometriestruktur des virtuellen Aluminiumgussteils bilden; Berechnen einer Vielzahl von Wärmeübergangskoeffizienten, welche charakteristisch sind für die entsprechenden virtuellen Oberflächenknoten, Elemente und/oder Zonen; Berechnen einer Vielzahl von virtuellen knotenspezifischen, elementspezifischen und/oder zonenspezifischen Temperaturen unter Verwendung der oberflächenknotenspezifischen, elementspezifischen und/oder zonenspezifischen Wärmeübergangskoeffizienten, der virtuellen knotenspezifischen, elementspezifischen und/oder zonenspezifischen Temperaturen, die jeweils charakteristisch für eine Zeit der simulierten Abschreckung sind; Berechnen einer Gesamtdehnung der entsprechenden virtuellen Knoten, Elemente und/oder Zonen unter Verwendung der virtuellen knotenspezifischen, elementspezifischen und/oder zonenspezifischen Temperaturen und eines Koeffizienten der thermischen Expansion/Kontraktion; Berechnen einer Vielzahl von thermischen Spannungen und Dehnungen bei Integrationspunkten, welche die dimensionalen Elemente und/oder Zonen des entsprechenden virtuellen Aluminiumgussteils definieren; Berechnung einer Dehnungsrate und einer Dehnungsänderung bei den entsprechenden Integrationspunkten; Berechnen von zumindest einem von einer Restspannung und Verzug bei den entsprechenden Integrationspunkten; und Vorhersagen von zumindest einer Restspannung und von Verzug des Aluminiumgussteils.
-
Gemäß noch einer anderen Ausführungsform umfasst ein Erzeugnis zur Vorhersage von zumindest einem von einer Restspannung und Verzug eines Aluminiumgussteils eine Informationseingabe, eine Informationsausgabe und zumindest ein computerverwendbares Medium. Die Informationseingabe ist ausgebildet, um Informationen zu erhalten, die sich auf zumindest eines von einer Vielzahl von zumindest einem von Knoten, Elementen und Zonen des Aluminiumgussteils während der Abschreckung beziehen, wohingegen die Informationsausgabe ausgebildet ist, um Informationen zu liefern, die sich auf die Restspannung und/oder den Verzug des Aluminiumgussteils, die durch das Erzeugnis vorhergesagt werden, beziehen. Das computerverwendbare Medium umfasst darin enthaltene computerlesbare Programmcodemittel zum Simulieren einer Abschreckung eines virtuellen Aluminiumgussteils, welche das Aluminiumgussteil und dessen Abschreckung abbilden, das virtuelle Aluminiumgussteil umfasst zumindest eines von einer Vielzahl von virtuellen Oberflächenknoten, Elementen und Zonen, die zumindest mit einem von den Knoten, Elementen und Zonen des Aluminiumgussteils korreliert sind, und die virtuellen Oberflächenzonen umfassen entsprechend eine Vielzahl von dimensionalen Elementen und virtuellen dimensionalen Elementen, die entsprechend eine Vielzahl von Knoten umfassen. Zusätzlich umfasst das computerverwendbare Medium darin enthaltene computerlesbare Programmcodemittel zum Berechnen einer Vielzahl von Wärmeübergangskoeffizienten, die charakteristisch für die entsprechenden virtuellen Oberflächenknoten, Elemente und Zonen sind. Das computerverwendbare Medium umfasst auch darin enthaltene computerlesbare Programmcodemittel zum Berechnen einer Vielzahl von zumindest einem von virtuellen knotenspezifischen, elementspezifischen und zonenspezifischen Temperaturen unter Verwendung der Wärmeübergangskoeffizienten, wobei die virtuellen knotenspezifischen, elementspezifischen und zonenspezifischen Temperaturen entsprechend charakteristisch sind für eine Zeit der simulierten Abschreckung. Das computerverwendbare Medium umfasst ferner darin enthaltene computerlesbare Programmcodemittel zum Berechnen einer Gesamtdehnung der entsprechenden virtuellen Knoten, Elemente und/oder Zonen, um zumindest eine von einer virtuellen knotenspezifischen, elementspezifischen und/oder zonenspezifischen Spannungs-Kurve unter Verwendung der virtuellen knotenspezifischen, elementspezifischen und/oder zonenspezifischen Temperaturen und eines Koeffizienten der thermischen Expansion/Kontraktion zu definieren. Zusätzlich umfasst das computerverwendbare Medium darin enthaltene computerlesbare Programmcodemittel zum Berechnen einer Vielzahl von thermischen Spannungen und Dehnungen bei Integrationspunkten, welche die dimensionalen Elemente der entsprechenden virtuellen Zonen definieren. Das computerverwendbare Medium umfasst darin enthaltene computerlesbare Programmcodemittel zum Berechnen einer Dehnungsrate und einer Änderung der Dehnung bei den entsprechenden Integrationspunkten. Das computerverwendbare Medium umfasst ferner darin enthaltene computerlesbare Programmcodemittel zum Berechnen von zumindest einem von einer Restspannung und Verzug bei den entsprechenden Integrationspunkten, um zumindest eine Restspannung und den Verzug des Aluminiumgussteils vorherzusagen. Das computerverwendbare Medium arbeitet auch mit der Informationseingabe und der Informationsausgabe zusammen, sodass die erhaltenen Informationen durch die computerlesbaren Programmcodemittel verarbeitet werden, um der Informationsausgabe als eine Vorhersage von zumindest einem von der Restspannung und des Verzugs des Aluminiumgussteils präsentiert zu werden.
-
KURZE BESCHREIBUNG DER ZEICHNUNGEN
-
Die nachfolgende detaillierte Beschreibung von besonderen Ausführungsformen kann am besten verstanden werden, wenn sie in Verbindung mit den folgenden Zeichnungen gelesen wird, wobei gleiche Struktur mit gleichen Referenzzeichen bezeichnet wird und in denen:
-
1A ein System zur Vorhersage einer Restspannung eines Aluminiumgussteils gemäß einer Ausführungsform der vorliegenden Erfindung darstellt;
-
1B ein Flussdiagramm zur Vorhersage einer Restspannung eines Aluminiumgussteils gemäß einer anderen Ausführungsform der vorliegenden Erfindung darstellt;
-
2A eine Querschnittsansicht eines Aluminiumgussteils mit einer Vielzahl von Thermoelementen darstellt, für das eine Restspannung gemäß einer anderen Ausführungsform der vorliegenden Erfindung vorhergesagt wird;
-
2B einen Wasserabschreckversuchsaufbau zur Abschreckung des Aluminiumgussteils von 2A mit Wasser gemäß einer anderen Ausführungsform der vorliegenden Erfindung graphisch darstellt;
-
3 temperaturabhängige Wärmeübergangskoeffizientenwerte bei verschiedenen Oberflächenzonen eines Zylinderkopfaluminiumgussteils während einer Abschreckung in Wasser gemäß einer anderen Ausführungsform der vorliegenden Erfindung graphisch darstellt;
-
4 Zeit-Temperaturkurven der Thermoelemente des Aluminiumgussteils graphisch darstellt, das in 2A gezeigt ist;
-
5 ein Flussdiagramm zur Optimierung von Wärmeübergangskoeffizienten gemäß einer anderen Ausführungsform der vorliegenden Erfindung graphisch darstellt;
-
6 einen Vergleich zwischen experimentellen Spannungs-Dehnungskurven mit Spannungs-Dehnungskurven graphisch dar, welche durch ein materialkonstitutives Modell gemäß einer anderen Ausführungsform der vorliegenden Erfindung bestimmt wurden;
-
7 ein Flussdiagramm der Berechnungen darstellt, die von einem Benutzermaterialunterroutinemodul gemäß einer anderen Ausführungsform der vorliegenden Erfindung durchgeführt wurden;
-
8 einen Vergleich der experimentell gewonnenen Restspannungen des Aluminiumgussteils, welches in 2A dargestellt ist, mit Restspannungen eines virtuellen Aluminiumgussteils graphisch darstellt, die durch eine andere Ausführungsform der vorliegenden Erfindung vorhergesagt wurden;
-
9 einen Vergleich der experimentell gewonnenen Restspannungen eines Zylinderkopfaluminiumgussteils, welches in 3 gezeigt ist, mit Restspannungen eines virtuellen Zylinderkopfaluminiumgussteils graphisch darstellt, die gemäß einer anderen Ausführungsform der vorliegenden Erfindung vorhergesagt wurden;
-
10 einen Vergleich von experimentell gewonnenen Restspannungen eines Aluminiumgussteils mit Restspannungen eines 319-Aluminiumgussteils und eines A356-Aluminiumgussteils graphisch darstellt, die beide gemäß einer anderen Ausführungsform der vorliegenden Erfindung vorhergesagt wurden.
-
Die in den Zeichnungen angegebenen Ausführungsformen sind ihrer Natur nach illustrativ und nicht dazu gedacht, für die Ausführungsformen limitierend zu sein, die durch die Ansprüche definiert werden. Außerdem werden individuelle Aspekte der Zeichnungen und der Ausführungsformen im Zusammenhang mit der folgenden detaillierten Beschreibung besser ersichtlich und verstanden werden.
-
DETAILLIERTE BESCHREIBUNG
-
Wie oben angemerkt wurde, beziehen sich Ausführungsformen der vorliegenden Erfindung im Allgemeinen auf Systeme, Verfahren und Erzeugnisse zur Vorhersage von Restspannungen und/oder Verzug in abgeschreckten Aluminiumgussteilen. Bei der Abschreckung werden die in Gussteilen eingebrachten Restspannungen und der Verzug im Allgemeinen durch Unterschiede in den Abkühlungsraten und daher durch von Position zu Position verschiedene Temperatur- und thermische Zusammenziehraten der Aluminiumgussteilgeometriestruktur verursacht. Gemäß Ausführungsformen sagt ein Dehnungs- und Spannungsanalysemodul zumindest eines von Restspannungen und Verzug in den abgeschreckten Aluminiumgussteilen vorher. Durch Verwendung einer Dehnungs- und Spannungsanalyse können die Restspannungen und der Verzug durch Einbeziehen von bei der Abschreckung verursachten thermischen Dehnungen in ein nichtlineares konstitutives Verhalten von wie-abgeschreckten Mikrostrukturen der Aluminiumgussteile vorhergesagt werden, wobei die thermischen Dehnungen im Allgemeinen in den bis zu den gesamten Sektionen eines Aluminiumgussteils ungleichmäßigen Übergangstemperaturverteilungen während der Abschreckung auftreten. Die Übergangstemperaturverteilung eines Aluminiumgussteils während der Abschreckung kann basierend auf einem oberflächenknotenspezifischen, elementspezifischen und/oder zonenspezifischen Wärmeübergangskoeffizienten (htc) berechnet werden. Für ein Aluminiumgussteil mit einer komplexen geometrischen Struktur, wie etwa ein Zylinderkopf, kann die Wärmeübergangsgrenze, beispielsweise die äußere Oberfläche, des gesamten Gussteils in eine Vielzahl von Knoten, Elemente und/oder Zonen unterteilt werden basierend auf der Natur und Ähnlichkeit der Abschreckbedingungen. Die temperaturabhängigen, oberflächenknotenspezifischen, elementspezifischen und/oder zonenspezifischen Wärmeübergangskoeffizienten können dann invers aus den aktuellen Messungen der Temperaturverteilungen berechnet werden. Das nichtlineare konstitutive Verhalten der abgeschreckten Aluminiumgussteile kann modelliert werden durch materialkonstitutive Modelle als Funktionen der Temperaturen, Dehnungsraten und Mikrostrukturvariationen. Mit den Ausführungsformen können Restspannungen und/oder Verzug in den abgeschreckten Aluminiumgussteilen mit hoher Genauigkeit vorhergesagt werden.
-
Mit den Ausführungsformen werden Daten, die ein Aluminiumgussteil repräsentieren, für ein thermisches Analysemodul bereitgestellt. Genauer werden thermische Analysen durchgeführt, um Temperatur-Zeitprofile unter Verwendung von Wärmeübergangskoeffizienten vorherzusagen, die durch die Abschreckexperimente von Aluminiumgussteilen erhalten wurden. Materialkonstitutive Modelle, welche von nichtlinearem viskoplastischem Verhalten der Materialien abgeleitet und durch experimentelle Messungen validiert wurden, sind mit dem Dehnungs- und Spannungsanalysemodul in Kommunikation, um Restspannungen und/oder Verzug von Aluminiumgussteilen vorherzusagen. Durch Verwendung des materialkonstitutiven Modells zur Dehnungs- und Spannungsanalyse können genaue Restspannungen und/oder Verzug vorhergesagt werden und Material- und Abschreckparameter für Aluminiumgussteile können dadurch optimiert werden, um Restspannungen und/oder Verzug zu vermeiden.
-
Daten, die das Aluminiumgussteil repräsentieren, werden bereitgestellt, um Vorhersagen von Restspannungen und/oder von Verzug eines Aluminiumgussteils zu ermöglichen, welche durch Simulation und Berechnung durch die Ausführungsformen bestimmt wurden. Als solches wird ein Aluminiumgussteil mit einer definierten geometrischen Struktur, definierter Zusammensetzung und definierten Materialeigenschaften bereitgestellt. Die äußere Oberfläche der geometrischen Struktur des Aluminiumgussteils kann in eine Vielzahl von Knoten, Elementen und/oder Zonen unterteilt werden, die unterschiedlich durch einen Abschreckvorgang beeinflusst werden können. Zum Beispiel können die Zonen eine obere Oberfläche, eine untere Oberfläche und eine seitliche Oberfläche des Aluminiumgussteils aufweisen. Die Materialeigenschaften können Mikrostrukturcharakteristika und/oder physikalische, thermophysikalische und mechanische Eigenschaften umfassen, wie etwa, aber nicht begrenzt auf einen sekundären Dendritenarmabstand (SDAS) des Aluminiumgussteils.
-
Aluminiumgussteile können in kaltem Wasser mit einer hohen Kühlrate abgeschreckt werden, um die Materialeigenschaften des Gussteils durch das Abschrecken zu verbessern. Zum Beispiel benötigt eine beträchtliche Präzipitatsverfestigung im Allgemeinen eine hohe Kühlrate im Nachgang zu einer Lösungswärmebehandlung. Andererseits kann es wünschenswert sein, eine geringe Kühlrate des Gussteils zu haben, um Verzug und die Bildung von Restspannungen zu reduzieren. Wärmeübergangskoeffizienten zwischen den Gussteilen und dem Abschreckmedium können die Abschreckergebnisse beeinflussen, wie etwa den Verzug, die Restspannung und die Verfestigungsverteilung. Deswegen kann die Bestimmung der Wärmeübergangskoeffizienten für Gussteiloberflächen während der Abschreckung zur Vorhersage von Restspannungen und/oder von Verzug helfen.
-
Restspannungen und Verzug, die in Gussteilen durch das Abschrecken entstehen, können eine Funktion einer Übergangstemperaturverteilung, eines Koeffizienten der thermischen Expansion/Kontraktion (CTE von thermal expansion/contraction) und von Materialeigenschaften der abgeschreckten Mikrostruktur, wie in der Gleichung unten definiert ist, wie auch von verschiedenen Variablen einschließlich Gussteilgeometrie, Gussteiloberflächenqualität, Abschreckmedium und Abschreckorientierung, und so weiter sein. σRest = f(CTE, Temp, Materialeigenschaften)
-
Für bestimmte Materialeigenschaften können Restspannungen und Verzug direkt proportional zu den Temperaturdifferenzen zwischen Zonen, dimensionalen Elementen und/oder Knoten eines Gussteils sein. Tatsächlich ist es das Temperaturdifferential bei jedem vorgesehenen Zeitpunkt während des Abschreckvorgangs, das im Allgemeinen Restspannungen und Verzug verursacht. Die Temperaturverteilung eines Aluminiumgussteils während der Abschreckung ist im Allgemeinen abhängig von den Grenzflächenwärmeübergangskoeffizienten zwischen dem Gussteil und dem Abschreckmedium. Während die Grenzflächenwärmeübergangskoeffizienten und die Temperaturverteilungen des virtuellen Aluminiumgussteils unter Verwendung von rechnergestützter Fluiddynamik (CFD von computational fluid dynamics) ermittelt werden können, ist es schwierig, die Physik genau zu erfassen und richtige knotenbasierte Grenzflächenwärmeübergangskoeffizienten und daraus die Temperaturverteilungen durch CFD zu berechnen, insbesondere für schnelles Abkühlen in Wasser.
-
Um experimentell und rechnergestützt die Grenzflächenwärmeübergangskoeffizienten zu bestimmen, sollte daher ein Aluminiumgussteil in einem Abschreckmedium unter bekannten Bedingungen abgeschreckt werden, einschließlich einer Temperatur des Abschreckmediums, einer Flussrate des Abschreckmediums, einer Rate des Einbringens des Teils in das Abschreckmedium, einer Orientierung des Gussteils während der Immersion und der Abschreckung, und so weiter. Um zu studieren, wie sich Aluminiumgussteile während der Abschreckung verhalten, wird ein Gussteil abgeschreckt und überwacht, um Änderungen der Temperatur und/oder der Materialeigenschaften zu beobachten. Auch der Einfluss der Orientierung der Gussteiloberflächen bezüglich des Abschreckmediums kann studiert werden, sodass in der eigentlichen Produktion unterschiedliche Wärmeübergangskoeffizientenwerte für unterschiedliche Gussteiloberflächen in Betracht gezogen werden können. Thermoelemente können in das Gussteil eingegossen werden, sodass enge und feste Verbindungen für genaue Temperaturmessungen sichergestellt werden können. Diese Thermoelemente werden an verschiedenen Stellen des Gussteils platziert, wie in 2A gezeigt ist, um Temperaturen bezüglich unterschiedlicher Oberflächen zu messen.
-
Für eine Abschreckung in einer Flüssigkeit, wie etwa eine Abschreckung in Wasser, kann ein zumindest teilweise mit einem Abschreckmedium (wie etwa Wasser) gefülltes Wasserbett zum Abschrecken des Gussteils verwendet werden, wie in 2B gezeigt ist. Im Allgemeinen wird das Gussteil in einem Ofen erwärmt und für eine gewisse Zeit im Ofen gelassen, um eine gleichmäßige bestimmte Temperatur zu erreichen. Beim Abschrecken wird das heiße Gussteil schnell aus dem Ofen genommen und innerhalb von 15 Sekunden an einem Hubsystem befestigt. Das Hubsystem kann durch elektrische Motoren, mechanische Mechanismen oder pneumatische Systeme angetrieben werden. Das Hubsystem senkt dann das Gussteil zur Eintauchung in das Abschreckmedium ab, gewöhnlich mit einer konstanten Geschwindigkeit. Die Eintauchgeschwindigkeit kann durch das Hubsystem eingestellt werden, wie etwa das in 2B gezeigte Pneumatiksystem. Für Experimente zur Ermittlung der Bewegungseffekte des Abschreckmediums kann das Abschreckmedium gepumpt und zirkuliert werden. Zum Beispiel kann bei dem in 2B gezeigten Wasserabschreckbett das Wasser durch eine elektrische Pumpe zirkuliert werden. Die Wasserflussrate und Geschwindigkeit kann eingestellt werden durch Veränderung der elektrischen Spannung, die an den elektrischen Motor angelegt wird, oder durch einen Flussratenregler. Die Fließgeschwindigkeit des Abschreckmediums an einer Stelle in dem Abschreckbett, wo ein Gussmedium abgeschreckt wird, kann 0,08 Meter pro Sekunde sein und das Medium wird auf eine hohe Temperatur erwärmt, um Produktionsbedingungen zu simulieren. Andererseits kann das Abschreckmedium relativ ruhig sein, indem die elektrische Pumpe außer während des Eintauchens des Gussteils in das Medium ausgeschaltet wird. Um die gleichmäßige Fließgeschwindigkeit des Wassers in dem Abschreckbett sicherzustellen, kann eine Düse mit einer Vielzahl von kleinen Löchern, die geometrisch unter Verwendung von CFD und/oder experimentellen Versuchen optimiert wurden, mit der Wasserpumpenleitung verbunden und am Boden des Abschreckbetts platziert werden. Auf einer mittleren Höhe des Abschreckbetts kann eine oder können mehrere Schichten von Drahtsieben platziert werden, um ein gleichmäßiges Fließen des Wassers weiter zu verbessern. Nachdem das Gussteil auf eine gewünschte Temperatur, wie etwa diejenige des Abschreckmediums, abgekühlt ist, wird das Gussteil durch das Hubsystem aus dem Abschreckbett entfernt. Während dieses Vorgangs können die Temperaturen des Gussteils bei verschiedenen Positionen und/oder Zonen gemessen und gespeichert werden. Temperatur-Zeitkurven bei verschiedenen Positionen und/oder Zonen können dargestellt werden, nachdem das Gussteil aus dem Abschreckbett entfernt wurde. Zum Beispiel sind in 4 Temperatur-Zeitkurven für das Bildrahmengussteil dargestellt, welches in den 2A und 2B dargestellt ist.
-
Es ist ersichtlich, dass die Temperatur-Zeitkurven von den dicken Wänden des Bildrahmengussteils verschieden sind von denjenigen der dünnen Wände des Gussteils. Danach können knotenspezifische, elementspezifische und/oder zonenspezifische Wärmeübergangskoeffizienten iterativ anhand der entsprechenden Temperatur-Zeitkurven ermittelt werden.
-
Informationen betreffend die geometrische Struktur, die Zusammensetzung und die Materialeigenschaften des Aluminiumgussteils, einschließlich Mikrostrukturcharakteristika und thermophysikalische und mechanische Eigenschaften, werden durch die Ausführungsformen bereitgestellt. Zusätzlich werden durch die Ausführungsformen auch Informationen bezüglich definierter Oberflächenknoten, Elemente und/oder Zonen des Gussteils und dessen Abschreckung, wie etwa Übergangstemperaturverteilungen der Knoten, Elemente und/oder Zonen bereitgestellt. Diese Informationen werden den Ausführungsformen zum Vergleichen und zu Berechnungszwecken bereitgestellt, wie näher hierin beschrieben wird.
-
Gemäß einer Ausführungsform, die in 1A gezeigt ist, kann ein System 20, welches zum Beispiel das in 1B gezeigte Flussdiagramm einsetzt, eine Restspannung und einen Verzug eines Aluminiumgussteils vorhersagen. Das System 20 umfasst eine Informationseingabe 22, eine Informationsausgabe 24, eine Verarbeitungseinheit 26 und ein computerlesbares Medium 28. Die Informationseingabe ist ausgebildet, um Informationen bezüglich des Aluminiumgussteils zu erhalten, während die Informationsausgabe ausgebildet ist, um Informationen bezüglich der Restspannung und des Verzugs des Aluminiumgussteils, die durch das System vorhergesagt wurden, zu liefern. Das computerlesbare Medium 28 umfasst einen darin enthaltenen computerlesbaren Programmcode, der computerlesbare Programmcode umfasst ein Simulationsmodul 30, ein Wärmeübergangsmodul 32, ein Dehnungs- und Spannungsanalysemodul 34 und ein Benutzermaterialunterroutinemodul 36, welches ein materialkonstitutives Modell 38 definiert. Das computerlesbare Medium kann ferner ein Finite Elemente Analyse Modul umfassen. Das Finite Elemente Analyse Modul kann zumindest eines von dem Simulationsmodul, dem Wärmeübergangsmodul, dem Dehnungs- und Spannungsanalysemodul und dem materialkonstitutiven Modell, welches in dem Benutzermaterialunterroutinemodul definiert ist, aufweisen und kann kooperativ mit jedem von dem Simulationsmodul, dem Wärmeübergangsmodul, dem Dehnungs- und Spannungsanalysemodul und dem materialkonstitutiven Modell, welches in dem Benutzermaterialunterroutinemodul definiert ist, gekoppelt sein. Die Verarbeitungseinheit 26 ist in Verbindung mit und verarbeitet die Berechnungen und andere Daten von dem computerlesbaren Medium 28, um die Restspannungen und den Verzug des Aluminiumgussteils vorherzusagen.
-
Es ist angedacht, dass das System, davon etwa das Simulationsmodul 30, rechnergestützte Entwurfsmöglichkeiten (CAD-Möglichkeiten von computer aided design capabilities) aufweist, welche ausreichen, um ein virtuelles Aluminiumgussteil, wie etwa ein Gussgeometriemodell 40, zu schaffen. Zusätzlich hierzu oder als Alternative dazu kann das Simulationsmodul oder eine andere Komponente des Systems ausgebildet sein, um ein geschaffenes virtuelles Aluminiumgussteil zu Simulationszwecken, wie hierin beschrieben, zu erhalten. Das virtuelle Gussteil wurde von der geometrischen Struktur, Zusammensetzung und den Materialeigenschaften eines bestimmten Aluminiumgussteils repliziert. Als solches weist das virtuelle Gussteil eine Vielzahl von virtuellen Oberflächenknoten, Elementen und/oder Zonen auf, die mit unterschiedlichen Knoten, Elementen und/oder Zonen des Aluminiumgussteils korreliert sind. Die virtuellen Oberflächenknoten, Elemente und/oder Zonen können beispielsweise eine obere Oberfläche des virtuellen Aluminiumgussteils und eine untere Oberfläche des virtuellen Aluminiumgussteils umfassen, wobei die obere bzw. untere Oberfläche mit Knoten, Elementen und/oder Zonen in dem virtuellen Gussteil korreliert, welches obere und untere Oberflächen des Aluminiumgussteils aufweist, und die obere und untere Oberfläche beziehen sich auf die Orientierung während der Abschreckung.
-
Ferner wird, im Allgemeinen im Simulationsmodul, das virtuelle Aluminiumgussteil in ein Netzschema unter Verwendung eines numerischen analytischen Modells 42 oder eines anderen netzartigen Gussteilmodells konvertiert. Die virtuellen Zonen umfassen dadurch entsprechend eine Vielzahl von dimensionalen Elementen. Die dimensionalen Elemente sind entsprechend durch eine Länge (x), eine Breite (y) und eine Tiefe (z) definiert. Zum Beispiel sind in dem Netzschema die dimensionalen Elementgrößen in Restspannungsmessgebieten etwa 0,5 mm groß, sodass die Restspannungsverteilung bezüglich der Tiefenrichtung zur Auswertung durch Messungen ausgegeben werden kann. Die verbleibenden dimensionalen Elemente können zum Beispiel etwa 2,0 mm groß sein. Ferner kann zum Beispiel bei einem Netzschema ein virtuelles Gussteil etwa 432.714 Tetraederelemente zweiter Ordnung und etwa 611.088 Knoten aufweisen. Um die Genauigkeit und die Recheneffizienz der Ausführungsformen zu erhöhen, können die dimensionalen Elemente entsprechend ein Tetraederelement zweiter Ordnung aufweisen.
-
Das Simulationsmodul simuliert einen Abschreckvorgang des virtuellen Aluminiumgussteils, welches das Aluminiumgussteil bei Konditionen abbildet, die diejenigen, welche beim Abschrecken des Aluminiumgussteils verwendet werden, replizieren. Während der simulierten Abschreckung werden die virtuellen Temperaturen durch zumindest ein virtuelles Thermoelement überwacht. Die virtuellen Temperaturen sind im Allgemeinen charakteristisch für die virtuellen dimensionalen Knoten, Elemente und/oder Zonen des virtuellen Gussteils.
-
Das Wärmeübergangsmodul verwendet die virtuellen knotenspezifischen, elementspezifischen und/oder zonenspezifischen Temperaturen, um eine Vielzahl von Wärmeübergangskoeffizienten zu berechnen, die für die entsprechenden virtuellen Oberflächenknoten, Elemente und/oder Zonen charakteristisch sind. Die Wärmeübergangskoeffizienten können durch Verwendung einer Gleichung berechnet werden, die wie folgt ausgedrückt werden kann: htc(x,y,z) = f(v, Tqm, t, ...)
-
Hier ist htc(x,y,z) einer der Wärmeübergangskoeffizienten, welcher charakteristisch ist für eines der dimensionalen Elemente, das durch die Länge (x), Breite (y) und Tiefe (z) definiert ist, v ist eine Geschwindigkeit des Abschreckmediums, die während der simulierten Abschreckung in Wasser verwendet wird, Tqm ist eine Temperatur des Abschreckmediums bei einer Zeit während der simulierten Abschreckung und t ist eine Zeit der simulierten Abschreckung, bei welcher der Wärmeübergangskoeffizient berechnet wird.
-
Das Wärmeübergangsmodul kann die virtuellen oberflächenknotenspezifischen, elementspezifischen und/oder zonenspezifischen Wärmeübergangskoeffizienten optimieren durch Minimierung von Differenzen zwischen den virtuellen Temperaturen, die während der simulierten Abschreckung berechnet wurden, und den experimentellen Temperaturen, die während der Abschreckung des Aluminiumgussteils gemessen wurden. Die Differenzen zwischen den virtuellen Temperaturen und den experimentellen Temperaturen können auch durch Anpassung einer Zeitspanne zwischen der Messung der virtuellen Temperaturen während der simulierten Abschreckung (beispielsweise Zeitintervall) minimiert werden, was in dem Flussdiagramm gemäß
5 angedeutet ist. Ferner können die Differenzen zwischen den virtuellen Temperaturen und den experimentellen Temperaturen bestimmt werden durch Verwenden einer Gleichung, die ausgedrückt werden kann als:
wobei
T calc / i,j eine Temperatur des virtuellen Aluminiumgussteils ist, die bei einem Zeitschritt j der simulierten Abschreckung bei dem Thermoelement i gemessen wurde,
T expt / i,j eine Temperatur des Aluminiumgussteils ist, die bei einem Zeitschritt j während der Abschreckung bei dem Thermoelement i gemessen wurde, M eine Gesamtanzahl von Vergleichen ist, die für ein bestimmtes Thermoelement gemacht wurden, und N eine Gesamtanzahl der Thermoelemente ist.
-
Die berechneten virtuellen oberflächenknotenspezifischen, elementspezifischen und/oder zonenspezifischen Wärmeübergangskoeffizienten können daher unter Verwendung von inversen Berechnungen optimiert werden. Mit den temperaturabhängigen Wärmeübergangskoeffizienten, die für verschiedene virtuelle Oberflächenknoten, Elemente und/oder Zonen angenommen werden, kann die Temperaturhistorie des virtuellen Gussteils unter Verwendung eines Wärmeübergangsmoduls berechnet werden. Beispiele von geeigneten konventionellen Wärmeübergangsmodulen umfassen, sind aber nicht begrenzt auf ABAQUS und MagmaSoft. Im Verlauf der Wärmeübergangskoeffizientenoptimierung werden die Temperatur und virtuelle oberflächenknotenabhängige, elementabhängige und/oder zonenabhängige Wärmeübergangskoeffizienten im Allgemeinen angepasst und unter Verwendung einer Gradientenmethode bestimmt, die im Allgemeinen eine bestimmte Zeitspanne des Abschreckvorgangs überspannt.
-
Das Wärmeübergangsmodul verwendet die virtuellen oberflächenknotenspezifischen, elementspezifischen und/oder zonenspezifischen Wärmeübergangskoeffizienten, um virtuelle knotenspezifische, elementspezifische und/oder zonenspezifische Temperaturen zu berechnen. Diese Temperaturen können ausgedrückt werden als: T(x,y,z) = f(htc, K, t) wobei T(x,y,z) sich auf die Temperatur bei einem spezifischen virtuellen Knoten bezieht, htc sich auf den Wärmeübergangskoeffizienten bei den virtuellen Oberflächenknoten, Elementen und/oder Zonen bezieht, K sich auf die Wärmeleitfähigkeit bezieht und t sich auf die Zeit während des Abschreckvorgangs bezieht, bei welcher der Wärmeübergangskoeffizient berechnet wurde. Die virtuellen knotenspezifischen Temperaturen sind daher entsprechend charakteristisch für eine bestimmte Zeit innerhalb der Zeitspanne des Abschreckvorgangs.
-
Die Temperaturen für jeden virtuellen Knoten können korreliert sein, um eine thermische Historie des entsprechenden virtuellen Knotens bereitzustellen, die entsprechende Änderungen in der Temperatur während des Abschreckvorgangs angibt. Die thermische Historie des entsprechenden virtuellen Knotens während des Abschreckvorgangs kann dann mit den experimentell gemessenen Temperaturen der korrelierten Knoten des Gussteils verglichen werden. Wie in 5 gezeigt ist, kann der Optimierungsvorgang der Wärmeübergangskoeffizienten iteriert werden, bis die Differenz zwischen der berechneten thermischen Historie und den experimentellen Messungen minimiert ist. 3 stellt graphisch Beispiele der temperaturabhängigen Wärmeübergangskoeffizienten dar, die für verschiedene Oberflächenzonen eines Aluminiumzylinderkopfes, welcher in Wasser vertikal abgeschreckt wurde, optimiert wurden. Ferner zeigt 3 an, dass verschiedene Oberflächenzonen verschiedene Wärmeübergangskoeffizienten haben und besonders erhöhte Wärmeübergangskoeffizienten zwischen etwa 100°C und etwa 200°C für alle Oberflächenzonen beobachtet wurden.
-
Zusätzlich zur thermischen Historie haben Materialeigenschaften beim Abschreckzustand des Gussteils ebenfalls die Tendenz, die Bildung von Restspannungen zu verursachen. Zum Beispiel tendieren relativ weiche Materialien dazu, geringere Restspannungen mit einem höheren Potential für Verzug zu haben. Es gibt mehrere herkömmliche Ansätze, das materialkonstitutive Verhalten von Gussteilen zu modellieren. Zum Beispiel ist ein Ansatz, empirische Gleichungen von den experimentellen Spannungs-Dehnungskurven für verschiedene Temperaturen, Dehnungsraten und Mikrostrukturen zu entwickeln. Dieser Ansatz benötigt jedoch eine große Anzahl von experimentellen Tests, um eine Vielfalt von Mikrostrukturen und Testbedingungen abzudecken. Ein anderer beispielhafter herkömmlicher Ansatz ist, vereinheitlichte viskoelastische konstitutive Modelle einzusetzen. Vereinheitlichte viskoelastische Modelle können wie folgt ausgedrückt werden:
Kinematische Verfestigung:
α .mij = Cmε . in / ij – rD(α, p ., hm)p .αmij – rs(α, p ., hm)αmij, (5) Isotropische Verfestigung:
R . = f(R, hα)p . – frd(R, hα)R – frd(R, hα), und (6) die Zugspanungsentwicklung
K . = φ(K, hα)p . – φrd(K, hα)K – φrs(K, hα). (7)
-
Die Entwicklungsgleichungen für die kinematische Spannung, die isotropische Spannung und die Zugspannung umfassen im Allgemeinen drei Teile: den Verfestigungsausdruck, den dynamischen Erholungsausdruck und den statischen Erholungsausdruck. Die herkömmlichen vereinheitlichten viskoelastischen Modelle haben ähnliche Grundstrukturen, obwohl verschiedene Entwicklungsgleichungen verwendet werden. Im Allgemeinen können viskoelastische Modelle das Kriechen und die zeitabhängige zyklische inelastische Deformation beschreiben, einschließlich der Dehnungsratenempfindlichkeit und des Verweilzeiteffektes. Die herkömmlichen Modelle können jedoch nicht das zyklische thermomechanische inelastische Deformationsverhalten darstellen, den Einfluss einer ungewöhnlichen Menge von Wechselentfestigung, die thermische Beanspruchung (einschließlich Phasentransformationen) und mikrostrukturelle Variationen.
-
Das materialkonstitutive Modell der Ausführungsformen der vorliegenden Erfindung bestimmt eine Gesamtdehnung der entsprechenden virtuellen Knoten, Elemente und/oder Zonen, um eine virtuelle knotenspezifische, elementspezifische und/oder zonenspezifische Spannungs-Dehnungsbeziehung unter Verwendung der virtuellen knotenspezifischen, elementspezifischen und/oder zonenspezifischen Temperaturen und eines Koeffizienten der thermischen Expansion/Kontraktion zu definieren. Wenn sich die Temperatur eines Materials ändert, ändert sich die Energie, welche in zwischenmolekularen Bindungen zwischen Atomen gespeichert ist. Wenn die gespeicherte Energie steigt, wegen der angestiegenen Temperatur, dann tut dies ebenfalls die Länge der molekularen Verbindungen. Im Ergebnis dehnen sich Festkörper typischerweise als Antwort auf eine Erwärmung aus und ziehen sich als Antwort auf eine Abkühlung zusammen. Diese dimensionale Antwort auf Temperaturänderungen kann durch ihren Koeffizienten der thermischen Expansion oder thermischen Kontraktion ausgedrückt werden. Der thermische Expansionskoeffizient ist eine thermodynamische Eigenschaft eines Materials. Er bringt die Temperaturänderung in Relation zu der Änderung einer linearen Dimension des Materials. Er ist auch die relative Änderung der Länge pro Grad an Temperaturänderung und kann ausgedrückt werden als L = L0(1 + αΔT), wobei L0 die ursprüngliche Länge ist, L die neue Länge ist, ΔT die Temperaturänderung ist und α der Koeffizient der thermischen Expansion ist. Die virtuelle knotenspezifische, elementspezifische und/oder zonenspezifische Gesamtdehnung wird unterteilt in elastische, plastische, kriechende und andere aus thermischer Aussetzung resultierenden Dehnungen, wie etwa Phasentransformationen einschließlich Präzipitatsverfestigung in wärmebehandelbaren Aluminiumgussteilen. Die plastische Dehnung wird beschrieben durch ein zeitunabhängiges plastisches Modell, während die Kriechdehnung charakterisiert ist durch ein Kriechgesetz. Die andere auf Phasentransformation beruhende Dehnung wird durch ein Präzipitatsverfestigungsmodell beschrieben.
-
Das materialkonstitutive Modell und demnach die Gesamtdehnung kann ausgedrückt werden als:
wobei
Ce(ε ., T), Cp(ε ., T) und Cppt(ε ., T) als geschwindigkeitsmodifizierte Temperaturen für intrinsische Stärke (beispielsweise elastische Dehnung), Dehnungsverfestigung (beispielsweise plastische Dehnung) bzw. Präzipitatsverfestigung (beispielsweise Phasentransformation) bezeichnet werden; T die Temperatur gemessen in Kelvin ist und
ε . die Dehnungsrate ist; μ
0 (= 28,815 GPa) ein Referenzschermodulwert bei 0 K und
ε . = 107 s–1 für das Aluminiumgussteil ist; und μ(T) ein temperaturabhängiges Schermodul ist.
-
μ(T) kann gegeben sein als:
-
Vor dem Fließen wird im Allgemeinen die Spannungs-Dehnungskurve in dem materialkonstitutiven Modell als völlig elastisch behandelt, die im Allgemeinen nur von dem Young-Modul E und der Fließspannung σy abhängt. E kann von den Spannungs-Dehnungskurven aus Zugversuchen bei verschiedenen Temperaturen und Dehnungsraten bestimmt werden unter Verwendung eines Polynoms zweiter Ordnung: E = 67.599 + 72,353 T – 0,14767 T2 (10) wobei E in MPa ist und T in Kelvin ist.
-
Im Allgemeinen hängt beim Fließen
σ ^p = 0 und die Fließspannung σ
y nur von der intrinsischen Stärke
σ ^e ab, die skaliert ist durch
Ce(ε ., T). Demgegenüber wird die Fließspannung nach dem Fließen durch die Entwicklung von
σ ^p und σ ^ppt modelliert. Nach Voce kann eine Einsatzform (von Liner Form) in dem materialkonstitutiven Modell für Dehnungsverfestigung verwendet werden, wobei Dehnungsverfestigung ausgedrückt werden kann als:
wobei θ
0 die Steigung der Spannungs-Dehnungskurve beim Fließen in dem Referenzzustand
(0 K, ε . = 107 s–1 ) repräsentiert und
σ ^os ein Parameter einer der Materialeigenschaften des Aluminiumgussteils ist. Ferner kann die Präzipitatsverfestigung ausgedrückt werden als:
wobei M der Taylor-Faktor ist; b der Burgers-Vektor ist, r
eq und l ein präzipitatsäquivalenter Kreisradius (r
eq = 0,5 d
eq) bzw. der Abstand von der Versetzungslinie ist; f(r
eq) eine Präzipitatsgrößenverteilung ist; f(l) eine Teilchenabstandsverteilung ist; und F(r
eq) eine Hindernisstärke eines Präzipitats mit Radius r
eq ist.
-
Basierend auf Berechnungen des vorstehenden materialkonstitutiven Modells zeigt 6 graphisch einen Vergleich der vorhergesagten Zugspannungs-Dehnungskurven und der experimentell bestimmten Daten eines Aluminiumgussteils. 6 zeigt, dass die Vorhersagen, welche aus dem materialkonstitutiven Modell abgeleitet sind, in sehr guter Übereinstimmung mit dem tatsächlichen Materialverhalten des Aluminiumgussteils sind.
-
Das Benutzermaterialunterroutinemodell verwendet das materialkonstitutive Modell, um eine Vielzahl von thermischen Spannungen und Dehnungen bei Integrationspunkten zu berechnen, die die dimensionalen Elemente des entsprechenden virtuellen Aluminiumgussteils definieren. Im Besonderen berechnet das Benutzermaterialunterroutinemodul eine Vielzahl von thermischen Spannungen und Dehnungen bei den entsprechenden Integrationspunkten durch Berechnen von probeweise angenommener elastischer Spannung, Fließspannung und plastischem Fluss, durch Erhalten von äquivalenten plastischen Dehnungs- und Verfestigungsraten und einer Jacobi-Matrix für Plastizität und durch Berechnen von Plastizität. 7 zeigt ein Flussdiagramm, welches einen Ablauf der oben beschriebenen Berechnungen darstellt, die von dem Benutzermaterialunterroutinemodul durchgeführt werden können.
-
Zum Beispiel können in einer Ausführungsform die Berechnungen des Benutzermaterialunterroutinemoduls wie folgt durchgeführt werden. Probeelastische Spannung kann berechnet werden unter Verwendung dessen, was typischerweise vollelastische Dehnungen sind, die von dem System dem Benutzermaterialunterroutinemodul bereitgestellt werden. Probeelastische Spannung kann ausgedrückt werden als:
δij = λδijεel kk + 2μεel kk wobei
εel kk die Steuervariable ist, welche von einer Temperaturänderung und einer geometrischen Struktur des virtuellen Aluminiumgussteils berechnet und dem Benutzermaterialunterroutinemodul bereitgestellt wurde. Eine Von Mises-Spannung, welche zumindest beträchtlich auf elastischem Verhalten basiert, kann dann durch das Benutzermaterialunterroutinemodul berechnet und ausgedrückt werden als:
wobei
Sij = Sij – 1 / 3δijσkk.
-
Das Benutzermaterialunterroutinemodul kann dann bestimmen, ob eine vorhergesagte elastische Spannung größer ist als eine experimentell bestimmte Fließspannung, sodass plastisches Fließen auftreten kann. Die plastische Spannung kann ausgedrückt werden als:
-
Das Benutzermaterialunterroutinemodul kann auch ein Rückwärts-Euler-Verfahren verwenden, um die Gleichungen für eine Berechnung der plastischen Dehnung zu integrieren: σ pr – 3μΔε pl = σy(ε pl).
-
Nachdem die vorstehende Gleichung gelöst wurde, wird die aktuelle plastische Dehnung bestimmt. Die thermischen Spannungen und Dehnungen können dann aktualisiert werden, wobei:
-
Danach kann das Benutzermaterialunterroutinemodul eine Jacobi-Matrix bei den entsprechenden Integrationspunkten berechnen, um die entsprechende Plastizität zu lösen, wobei: Δσ .ij = λ*δijΔε .kk + 2μ*Δε .ij + ( h / 1 + h/3μ – 3μ*)ηijηklΔε .kl wobei μ* = μσy/σ pr, λ* = k – 2 / 3μ*, und h = dσy/dε pl.
-
Das Benutzermaterialunterroutinemodul berechnet auch eine Dehnungsrate und eine Änderung der Dehnung bei den entsprechenden Integrationspunkten. Die Änderung der Dehnung bei den Integrationspunkten der dimensionalen Elemente des entsprechenden virtuellen Aluminiumgussteils wird berechnet aus Differenzen zwischen den zeitspezifischen, virtuellen knotenspezifischen Temperaturen und einer geometrischen Struktur des entsprechenden virtuellen Aluminiumgussteils unter einer Annahme von null plastischer Dehnung. Die Änderung der Dehnung kann ausgedrückt werden als:
wobei d
εij eine von den sechs Komponenten des Dehnungsinkrements für jeden Integrationspunkt ist und dt ein Zeitinkrement ist. Danach kann die Dehnungsrate basierend auf einer Änderung der Dehnung bei den entsprechenden Integrationspunkten berechnet werden. Die Dehnungsrate kann ausgedrückt werden als:
-
Das computerlesbare Medium kann unter Verwendung der berechneten Änderungen der Dehnung und Dehnungsraten zumindest eines von einer Restspannung und Verzug bei den entsprechenden Integrationspunkten der dimensionalen Elemente der entsprechenden virtuellen Zonen des virtuellen Aluminiumgussteils berechnen, um zumindest eine Restspannung und einen Verzug des abgeschreckten Aluminiumgussteils vorherzusagen. Die Restspannung kann ausgedrückt werden als: σr = f(Δε, T, ε ., SDAS).
-
Beim Berechnen von Restspannung und/oder Verzug können im Allgemeinen alle benötigten temperaturabhängigen physikalischen Eigenschaften des Aluminiumgussteils durch computergestützte Thermodynamik berechnet werden. Tabelle 1 listet verschiedene physikalische Eigenschaften der Aluminiumlegierungsgussteile 319 und A356 auf, welche zur Modellierung verwendet werden. Um die Genauigkeit und Recheneffizienz zu verbessern, können tetraederförmige dimensionale Elemente zweiter Ordnung verwendet werden. DC3D
10, ein 10-knotiger quadratischer Wärmeübergangstetraeder kann zur Wärmeübergangsthermalanalyse verwendet werden, und C3D
10, ein 10-knotiger modifizierter quadratischer Tetraeder für die Spannungsanalyse. Tabelle 1 – Materialeigenschaften von 319 und A356 Aluminiumlegierungsgussteilen.
-
8 zeigt Vorhersagen von Restspannungen in einem wasserabgeschreckten, rahmenförmigen, gemischtwandigen (beispielsweise dicke Wand und dünne Wand) Aluminiumgussteil und den Vergleich mit experimentellen Restspannungsmessungen. Es kann gesehen werden, dass für die getesteten Gussteile die vorhergesagten Restspannungen in guter Übereinstimmung mit den experimentellen Messungen sind. Es ist auch ersichtlich, dass Restspannungen in dem abgeschreckten Aluminiumgussteil mit dem Wärmeübergangskoeffizientenwerten variieren – beispielsweise je höher die Wärmeübergangskoeffizientenwerte, umso größer die Restspannungen.
-
Ferner zeigt 9 Vorhersagen von Restspannungen in einem in Wasser abgeschreckten Zylinderkopfaluminiumgussteil und den Vergleich mit experimentellen Restspannungsmessungen. Wieder sind die vorhergesagten Restspannungen in guter Übereinstimmung mit den experimentellen Messungen. Daher zeigen die 8 und 9, dass die Ausführungsformen der vorliegenden Erfindung Restspannungen in abgeschreckten Aluminiumgussteilen mit hoher Genauigkeit vorhersagen können.
-
Die Ausführungsformen zur Vorhersage der Restspannung sind auch auf die Produktion von Zylinderkopfaluminiumgussteilen angewandt worden, um den Restspannungseffekt auf die Zylinderkopfermüdung zu studieren. In einer Studie riss ein LNF-Zylinderkopfaluminiumgussteil an einem Übergang von einem Einlasskanal und einem Verbrennungsdom auf der Rückseite des Zylinderkopfs bei 4200 Zyklen während eines GETC-Zündertests (GETC für globaler motorthermischer Zyklus (von Global Engine Thermal Cycle); Zündertest von dyno test). Der Riss entstand bei einer Ausrundung zwischen dem Einlasskanal und einer Stütze bei einer Wassermanteloberfläche. Die Restspannung wurde bei verschiedenen Zonen des Zylinderkopfes gemessen und die Testdaten wurden verwendet, um die Vorhersagen des Restspannungsmodells zu validieren. Wie in
11 gezeigt ist, wurde eine vernünftige Korrelation zwischen den Restspannungsvorhersagen und den Testdaten für verschiedene Gusszonen A bis G gemacht. Dann wurde die vorhergesagte Restspannung in Zylinderkopfermüdungsanalysen eingesetzt. Wie in Tabelle 2 unten gezeigt ist, war der bei der Rissstelle unter Verwendung von mittleren –3 Sigma Materialstärkeeigenschaften basierend auf den Einsatzspannungen, welche aus dem motorthermischen Zyklus (ohne in Betrachtziehung von Restspannung) resultieren, berechnete Sicherheitsfaktor 1,32, was das Designziel von 1,2 übersteigt. Durch Einbeziehung der gemittelten Restspannung von 60 MPa um die Rissstelle herum wurde der Sicherheitsfaktor auf 0,98 abgesenkt, was die hohe Fehlermöglichkeit anzeigt und was besser mit den Testdaten korreliert. Die Einbeziehung von Restspannung in Zylinderkopfermüdungsanalysen vereinfacht und verbessert daher die Auswertung der strukturellen Haltbarkeit von Aluminiumgussteilen, die während den Gießausführungsprozessen lösungsbehandelt und abgeschreckt wurden. Tabelle 2
| LE5 | LNF |
Zündtestergebnis | bestanden | gerissen bei 4200 GETC Zyklen |
Aluminiumtyp | 319 spm | 356 spm (Wasserabschreckung) |
UTS (–3 Sigma) (MPa) | 170 | 218 |
HCF (–3 Sigma) (MPa) | 50 | 60 |
LCF (–3 Sigma) (MPa) | 125 | 160 |
Restspannung (MPa) | Nein | 0 | 20 | 40 | 60 |
SF (Ziel 1.2) | 1,13 | 1,32 | 1,2 | 1,08 | 0,98 |
mittlere Spannung (MPa) | 99 | 104 | 124 | 144 | 163 |
Alternierende Spannung (MPa) [Alternierend von „Alt”] | 37 | 42 | 42 | 42 | 42 |
-
Es wird angemerkt, dass der Großteil der Beschreibung, die hierin bereitgestellt wird, charakteristisch ist für eine Ausführungsform der vorliegenden Erfindung, welche sich auf ein System bezieht, um zumindest eines von einer Restspannung und Verzug eines abgeschreckten Aluminiumgussteils vorherzusagen, die gleiche Beschreibung gleichermaßen zutreffend auf andere Ausführungsformen der vorliegenden Erfindung angewendet werden kann, die sich auf Verfahren und Erzeugnisse zur Vorhersage von zumindest einem von einer Restspannung und einem Verzug von abgeschreckten Aluminiumgussteilen beziehen.
-
Ferner wird angemerkt, dass hierin gemachte Anmerkungen von einer Komponente einer Ausführungsform, welche in einer bestimmten Art und Weise ”ausgebildet” ist oder eine bestimmte Eigenschaft beinhaltet oder in einer bestimmten Art und Weise funktioniert, strukturelle Anmerkungen sind im Gegensatz zu Anmerkungen zu einer beabsichtigten Verwendung. Die hierin gemachten Anmerkungen betreffend die Sache, nach welcher eine Komponente ”ausgebildet” ist, bezeichnet im Speziellen eine existierende physikalische Bedingung der Komponente und sollte als eine bestimmte Anmerkung der strukturellen Faktoren der Komponente verstanden werden.
-
Es wird angemerkt, dass Begriffe wie ”im Allgemeinen”, ”herkömmlich” und ”typischerweise”, wenn sie hierin verwendet werden, nicht verwendet werden, um den Gegenstand der beanspruchten Ausführungsformen zu begrenzen oder zu implizieren, dass bestimmte Merkmale kritisch, wesentlich oder sogar wichtig für die Struktur oder Funktion der beanspruchten Ausführungsformen sind. Diese Begriffe waren eher dazu gedacht, um besondere Aspekte einer Ausführungsform zu identifizieren und alternative oder zusätzliche Merkmale zu betonen, welche in einer bestimmten Ausführungsform verwendet oder nicht verwendet werden können.
-
Zum Zwecke der Beschreibung und zur Definition von Ausführungsformen wird angemerkt, dass die Begriffe ”im Wesentlichen”, ”beträchtlich” und ”näherungsweise” hierin verwendet werden, um den inhärenten Grad an Unsicherheit zu repräsentieren, der jedem quantitativen Vergleich, Wert, Messung oder anderer Repräsentation zugeschrieben werden kann. Die Begriffe ”im Wesentlichen”, ”beträchtlich” und ”näherungsweise” werden auch hierin verwendet, um den Grad zu repräsentieren, um den eine quantitative Repräsentation von einer vorgegebenen Referenz abweichen kann, ohne eine Änderung in der wesentlichen Funktion des zur Debatte stehenden Gegenstandes zu bewirken.