DE102009009562A1 - Kombinierter Bewegungssensor zum Einsatz in Feedback-Regelsystemen zur Schwingungsisolation - Google Patents

Kombinierter Bewegungssensor zum Einsatz in Feedback-Regelsystemen zur Schwingungsisolation Download PDF

Info

Publication number
DE102009009562A1
DE102009009562A1 DE102009009562A DE102009009562A DE102009009562A1 DE 102009009562 A1 DE102009009562 A1 DE 102009009562A1 DE 102009009562 A DE102009009562 A DE 102009009562A DE 102009009562 A DE102009009562 A DE 102009009562A DE 102009009562 A1 DE102009009562 A1 DE 102009009562A1
Authority
DE
Germany
Prior art keywords
acceleration sensor
vibration isolation
signals
vibration
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102009009562A
Other languages
English (en)
Inventor
Peter Heiland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Integrated Dynamics Engineering GmbH
Original Assignee
Integrated Dynamics Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Integrated Dynamics Engineering GmbH filed Critical Integrated Dynamics Engineering GmbH
Priority to DE102009009562A priority Critical patent/DE102009009562A1/de
Priority to EP10001252.5A priority patent/EP2221667B1/de
Priority to US12/707,860 priority patent/US8352086B2/en
Priority to JP2010034215A priority patent/JP5524649B2/ja
Publication of DE102009009562A1 publication Critical patent/DE102009009562A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/002Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Regelung eines Schwingungsisolationssystems und ein aktives Schwingungsisolationssystem zur schwingungsisolierten Lagerung von Lithographie-Einrichtungen, Wafer-Handhabungssystemen und/oder Rastermikroskopen. Es ist dazu vorgesehen: eine Anzahl von Schwingungssignalgebern zur Lieferung von Schwingungen repräsentierenden Sensorsignalen; eine Anzahl von Aktoren zur Schwingungskompensation, welche durch Zuführen von Aktor-Stellsignalen ansteuerbar sind; eine Regelungseinrichtung, die zum Verarbeiten der gelieferten Sensorsignale in die Aktor-Stellsignale ausgebildet ist, wobein die Schwingungssignalgeber wenigstens einen Geophonsensor als einen ersten Beschleunigungssensor zur Erfassung von Schwingungen in einem ersten Frequenzbereich und wenigstens einen zweiten, gegenüber dem ersten unterschiedlichen Beschleunigungssensor zur Erfassung von Schwingungen in einem zweiten Frequenzbereich, welcher den ersten Frequenzbereich erweitert, aufweisen.

Description

  • Beschreibung der Erfindung
  • Die vorliegende Erfindung betrifft ein aktives Schwingungsisolationssystem zur schwingungsisolierten Lagerung von Lithographie-Einrichtungen, Wafer-Handhabungssystemen und/oder Mikroskopen, wie zum Beispiel Rastermikroskopen.
  • Hintergrund der Erfindung
  • Schwingungsisolationssysteme sind bekannt und werden in vielen Bereichen der Technik, wie zum Beispiel im Bereich der Halbleiterindustrie, benötigt. Beispielsweise zeigt die DE 69817750 T2 ein Schwingungsisolationssystem, welches insbesondere zur schwingungsisolierten Lagerung eines Lithographiegerätes vorgesehen ist. Dabei wird eine zu lagernde Last, welche typischerweise ein Tisch und darauf gelagerte Bauelemente, wie zum Beispiel Fertigungsanlagen, umfasst, auf Luftlagern gelagert.
  • Neben einer Lagerung mit möglichst mechanisch geringer Steifigkeit weisen aktive Schwingungsisolationssysteme Sensoren und Aktoren auf, mit denen gezielt von außen in das System eindringenden Schwingungen entgegengesteuert wird. Die Sensoren erfassen dabei Bewegungen der zu lagernden Last. Über eine Regeleinrichtung werden Kompensationssignale generiert, mit denen Aktoren angesteuert und so Kompensationsbewegungen generiert werden. Dabei gibt es die Möglichkeit, digitale oder analoge Regelungsstrecken zu verwenden oder aber auch beide zusammen, sogenannte hybride Regelungsstrecken.
  • Die Anforderungen an Schwingungsisolationssysteme nehmen mit zunehmender Miniaturisierung in der Halbleiterindustrie immer weiter zu. Typischerweise werden als Sensoren im Stand der Technik sogenannte Geophone eingesetzt, um die Massenbewegungen aufzunehmen.
  • Ein Geophon ist ein elektro-mechanischer Wandler, welcher die erfassten Schwingungen in analoge und/oder digitale Signale wandelt. Ein Geophon besteht im Allgemeinen im Wesentlichen aus einer Spule und einem Permanentmagneten, wobei die Spule über eine Feder mit dem Permanentmagneten gekoppelt ist. Bei einer durch eine Schwingung verursachten Relativbewegung zwischen Spule und Magnet wird in die Spule eine Spannung induziert, welche proportional zur Geschwindigkeit der Bewegung ist. Geophone sind günstig in der Anschaffung und können durch geeignete Maßnahmen einen Frequenzganz haben, der bis zu sehr tiefen Frequenzen reicht, insbesondere bis 0.1 Hz oder sogar tiefer. Dagegen reicht die Frequenzgangbandbreite eines Geophons zu hohen Frequenzen im Allgemeinen nur bis zu etwa 300 Hz, was in den meisten Fällen zur Schwingungsisolation ausreichend ist. Eine Erfassung von höheren Frequenzen ist mit dem Geophon selbst jedoch nicht möglich.
  • Allgemeine Beschreibung der Erfindung
  • Vor diesem Hintergrund hat sich die vorliegende Erfindung daher zur Aufgabe gestellt, eine Vorrichtung und ein Verfahren zur aktiven Schwingungsisolation bereitzustellen, welche die vorstehend beschriebenen Nachteile des Standes der Technik zumindest vermindern.
  • Dabei soll die Regelbandbreite der Schwingungsisolation zu großen Frequenzen hin erweitert werden.
  • Hierbei soll es insbesondere möglich sein, die Erfindung in bereits bestehende Regelungskonzepte integrieren zu können bzw. die bekannten Regelungskonzepte erweitern zu können.
  • Gelöst werden die genannten Aufgaben durch ein aktives Schwingungsisolationssystem und ein Verfahren zur Regelung eines Schwingungsisolationssystems gemäß der unabhängigen Ansprüche.
  • Vorteilhafte Ausführungsformen sind Gegenstand der jeweiligen Unteransprüche.
  • Allgemein basiert die Erfindung auf der Verwendung einer Kombination aus zwei unterschiedlichen Typen von Sensoren zur Erhöhung der Regelbandbreite von an sich bekannten Schwingungsisolationssystemen.
  • In einer ersten Ausführungsform beansprucht die vorliegende Anmeldung ein aktives Schwingungsisolationssystem umfassend
    • – eine Vielzahl von Schwingungssignalgebern zur Lieferung von Schwingungen repräsentierenden Sensorsignalen,
    • – eine Anzahl von Aktoren zur Schwingungskompensation, welche durch Zuführen von Aktor-Stellsignalen ansteuerbar sind,
    • – eine Regeleinrichtung, die zum Verarbeiten der gelieferten Sensorsignale in die Aktor-Stellsignale ausgebildet ist,
    • – wobei die Schwingungssignalgeber wenigstens einen ersten Beschleunigungssensor, der vorzugsweise als ein Geophonsensor ausgebildet ist, zur Erfassung von Schwingungen in einem ersten Frequenzbereich und wenigstens einen zweiten, gegenüber dem ersten unterschiedlichen Beschleunigungssensor zur Erfassung von Schwingungen in einem zweiten Frequenzbereich, welcher den ersten Frequenzbereich erweitert, aufweisen.
  • Weiterhin liegt im Rahmen der Erfindung auch ein Verfahren zur Regelung eines aktiven Schwingungsisolationssystems, das die folgenden Schritte umfasst:
    • – Erfassen von Schwingungen mittels einer Vielzahl von Schwingungssignalgebern,
    • – Bereitstellen von Sensorsignalen, welche die erfassten Schwingungen repräsentieren,
    • – Verarbeiten der bereitgestellten Sensorsignale zu Aktor-Stellsignalen zum Steuern von Aktoren,
    • – Zuführen der Aktor-Stellsignale zu den Aktoren zum Entgegenwirken der Schwingungen, wobei die Schwingungssignalgeber durch wenigstens einen ersten Beschleunigungssensor, der vorzugsweise als ein Geophonsensor ausgebildet ist, zur Erfassung von Schwingungen in einem ersten Frequenzbereich und wenigstens einen zweiten, gegenüber dem ersten unterschiedlichen Beschleunigungssensor zur Erfassung von Schwingungen in einem zweiten Frequenzbereich, welcher den ersten Frequenzbereich erweitert, bereitgestellt werden und die Sensorsignale des ersten Beschleunigungssensors und der Sensorsignale des zweiten Beschleunigungssensors zu gemeinsamen Aktor-Stellsignalen zum Ansteuern der Aktoren zusammengeführt werden.
  • Das erfindungsgemäße Verfahren ist insbesondere ausführbar mittels dem erfindungsgemäßen System. Das erfindungsgemäße System ist insbesondere ausgebildet zur Ausführung des erfindungsgemäßen Verfahrens.
  • Die Sensorsignale können analoge und/oder digitale Signale sein. Ein Sensorsignal kann ein Signal sein, welches nur die Schwingungen oder eine Störgröße in einem Freiheitsgrad erfasst. Das Sensorsignal kann aber auch ein Signal sein, das die Schwingungen oder eine Störgröße in einer Vielzahl von Freiheitsgraden erfasst. Die genannte Vielzahl von Schwingungssignalgebern entspricht einer Anzahl von mindestens zwei oder mehr Schwingungssignalgebern.
  • Da im Allgemeinen mehr als zwei Sensoren verwendet werden, werden bzw. sind in einer Ausführungsform jeweils ein erster Beschleunigungssensor und ein zweiter Beschleunigungssensor paarweise angeordnet. Damit ein solches Paar die Störgrößen von den gleichen Störquellen und/oder aus der gleichen Richtung erfassen kann, werden bzw. sind der erste und der zweite Beschleunigungssensor in räumlicher Nähe zueinander platziert. In einer bevorzugten Ausführungsform werden bzw. sind sie in einem Abstand von kleiner als etwa 30 cm, vorzugsweise von kleiner als etwa 10 cm, zueinander angeordnet.
  • Der erste Beschleunigungssensor ist vorzugsweise als ein Geophonsensor ausgebildet. Der erste Frequenzbereich beträgt bis zu etwa 300 Hz. Somit ist der erste Beschleunigungssensor in einem Frequenzbereich von bis zu etwa 300 Hz wirksam.
  • Um die entsprechende Erweiterung des Frequenzbereichs zu großen Frequenzen hin zu erzielen, ist der zweite Beschleunigungssensor in einem Frequenzbereich, hier dem vorstehend genannten zweiten Frequenzbereich, von bis zu etwa 1,5 kHz, vorzugsweise von bis zu etwa 5 kHz, wirksam. Der zweite Beschleunigungssensor ist in einer Ausführungsform der Erfindung ein piezo-elektrischer Beschleunigungssensor.
  • In einer Weiterbildung der vorliegenden Erfindung weist das Schwingungsisolationssystem eine Schaltung zum Zusammenführen der Sensorsignale des ersten Beschleunigungssensors und der Sensorsignale des zweiten Beschleunigungssensors zu einem gemeinsamen Aktor-Stellsignal oder zu gemeinsamen Aktor-Stellsignalen zum Ansteuern der Aktoren auf. Sofern sich die erfassten Frequenzen des ersten Beschleunigungssensors und des zweiten Beschleunigungssensors überlappen, so ist in den überlappenden Signalanteilen auf eine korrekte Addition oder Zusammenführung zu achten, ohne die Amplitude in den überlappenden Teilen anzuheben. Dafür ist bzw. sind zum Beispiel zumindest ein Hochpass und/oder zumindest ein Tiefpass zur angepassten Addition der überlappenden Signalanteile und/oder zur Frequenzteilung vorgesehen.
  • Die Aktor-Stellsignale können analoge und/oder digitale Signale sein. Ein Aktor-Stellssignal stellt eine Art Kompensationssignal dar. Eine Schwingung einer zu lagernden Last wird aktiv kompensiert. Die genannte Anzahl von Aktoren entspricht im Allgemeinen einer Mehrzahl von Aktoren. Die Aktoren können in einem Freiheitsgrad oder in einer Mehrzahl von Freiheitsgraden der Bewegung wirksam sein. Ein Aktor-Stellsignal kann daher ein Signal sein, das Informationen für nur einen Freiheitsgrad beinhaltet. Es kann aber auch ein Signal sein, das Informationen für eine Vielzahl von Freiheitsgraden beinhaltet.
  • Die Schaltung zum Zusammenführen der Sensorsignale kann als eine analoge und/oder eine digitale Schaltung ausgeführt sein. Ebenso kann die Regeleinrichtung eine digital und/oder eine analog arbeitende Regeleinrichtung sein. In einer ersten Variante der Erfindung sind bzw. werden der erste und der zweite Beschleunigungssensor der einen Regeleinrichtung zugeordnet. Hierbei ist bzw. wird die Regeleinrichtung eingangsseitig mit der Schaltung zum Zusammenführen, vorzugsweise unmittelbar, gekoppelt. Die Regeleinrichtung ist bzw. wird ausgangsseitig mit den Aktoren, vorzugsweise unmittelbar, gekoppelt. In einer zweiten Variante der Erfindung ist bzw. wird die Regeleinrichtung durch eine erste Regeleinrichtung, welcher der erste zweite Beschleunigungssensor zugeordnet ist, und durch eine zweite Regeleinrichtung, welcher der zweite Beschleunigungssensor zugeordnet ist, gebildet. Hierbei sind bzw. werden die erste und die zweite Regeleinrichtung ausgangsseitig mit der Schaltung zum Zusammenführen, vorzugsweise unmittelbar, gekoppelt. Dabei ist bzw. wird die Schaltung zum Zusammenführen ausgangsseitig mit den Akoren, vorzugsweise unmittelbar, gekoppelt.
  • Die Regeleinrichtung bzw. die erste und/oder die zweite Regeleinrichtung ist bzw. sind vorzugsweise eine sogenannte Rückkopplungsregelung. Beispielsweise sind in einer Ausführung der Regeleinrichtung bzw. der ersten und/oder der zweiten Regeleinrichtung Kompensationssignale, welche auch als Korrektursignale bezeichnet werden können, in drei oder zumindest drei, vorzugsweise in sechs, Freiheitsgraden berechenbar. Hierbei kann neben einer Berechnung der drei Freiheitsgrade der Translation noch durch eine ergänzende Berücksichtigung der drei Freiheitsgrade der Rotation eine verbesserte bzw. genauere Regelung bereitgestellt werden.
  • Im Bereich der Erfindung liegt auch die Verwendung von Schwingungssignalgebern, umfassend wenigstens einen ersten Beschleunigungssensor zur Erfassung von Schwingungen in einem ersten Frequenzbereich und wenigstens einen zweiten, gegenüber dem ersten Beschleunigungssensor verschiedenen Beschleunigungssensor zur Erfassung von Schwingungen in einem zweiten Frequenzbereich, welcher den ersten Frequenzbereich zu großen Frequenzen hin, insbesondere bis zu 5 kHz, erweitert zur Erfassung von Schwingungen in einem Schwingungsisolationssystem, insbesondere mit zumindest einem Polymer-Federelement. Der erste Beschleunigungssensor ist vorzugsweise als ein Geophonsensor ausgebildet. Der zweite Beschleunigungssensor ist vorzugsweise als ein piezo-elektrischer Sensor ausgebildet.
  • Die vorliegende Erfindung wird anhand der nachfolgenden Ausführungsbeispiele im Einzelnen erläutert. Hierzu wird auf die beiliegenden Zeichnungen Bezug genommen. Die gleichen Bezugszeichen in den einzelnen Zeichnungen beziehen sich auf die gleichen Teile.
  • 1 zeigt schematisch ein beispielhaftes bekanntes aktives Schwingungsisolationssystem.
  • 2 zeigt ein Blockschaltbild einer bekannten Anordnung eines Rückkopplungsregelsystems.
  • 3 zeigt ein Blockschaltbild einer beispielhaften ersten Ausführungsform der Erfindung.
  • 4 zeigt ein Blockschaltbild einer beispielhaften zweiten Ausführungsform der Erfindung.
  • Detaillierte Beschreibung der Erfindung
  • Ein bekanntes erfindungsgemäßes Schwingungsisolationssystem 1 umfasst eine schwingungsisoliert zu lagernde Last 3, beispielsweise in Form eines Tisches 3. Auf dem Tisch 3 können schwingungsisoliert zu lagernde Geräte, welche in der Zeichnung nicht dargestellt sind, platziert werden.
  • Als Beispiele für die genannten Geräte seien Lithographie-Einrichtungen und/oder Wafer-Handhabungssysteme und/oder Mikroskope, insbesondere Rastermikroskope, genannt.
  • Die Last 3 ist auf Lagern 2, beispielsweise auf Luftlagern 2, gelagert. Ein Luftlager 2 stellt ein passives System bzw. ein System zur passiven Schwingungsisolation dar. Ein weiteres Beispiel für ein passives Federsystem ist ein Polymer-Federelement, welches jedoch in den Figuren nicht dargestellt ist.
  • Zur aktiven Schwingungskompensation verfügt das bekannte Schwingungsisolationssystem 1 über Sensoren 4, insbesondere Geophonsensoren 4, als Schwingungssignalgeber 4. Diese sind in dem dargestellten Ausführungsbeispiel nur für zwei Freiheitsgrade der Translation dargestellt. Über die Geophonsensoren 4 können Schwingungen der zu isolierenden Last 3 erfasst, in Signale umgewandelt und an eine Regeleinrichtung 10 weitergegeben werden. Die Schwingungssignalgeber 4 liefern somit die Schwingungen repräsentierenden Sensorsignale.
  • Jede Regelung ist darauf angewiesen, Sensorsignale zu bekommen, die proportional sind zur Bewegung, insbesondere der Beschleunigung, der zu isolierenden Masse. Daraus wird die Rückkopplungsregelstrecke 10 dann Kompensationssignale, die vorstehend genannten Aktor-Stellsignale, erzeugen, die zur Ansteuerung von Kraftaktoren verwendet werden, um eine Masse vom sich bewegenden Boden zu isolieren oder allgemein Massenbewegungen zu reduzieren. Die Regeleinrichtung 10 errechnet aus den Sensorsignalen der Geophonsensoren 4 Kompensationssignale zur Ansteuerung von Aktoren 5. Beispiele für die Aktoren 5 umfassen Lorentzmotoren, wie zum Beispiel Tauchspulen, und/oder piezo-elektrische Aktoren. Die Regeleinrichtung 10 ist ausgebildet zum Verarbeiten der gelieferten Sensorsignale in die Aktor-Stellsignale.
  • 2 zeigt hierzu ein Blockschaltbild einer bekannten Regeleinrichtung bzw. einer bekannten Anordnung eines Regelungskopplungssystems für ein Geophon 4 als ein erster Beschleunigungssensor. Mit den Aktoren 5 kann eine aktive Schwingungskompensation vorgenommen werden. Gegenüber einer passiven Schwingungsisolation, die durch eine Art Dämpfung der Schwingung oder eine Art „isolierte” Lagerung der Last gekennzeichnet ist, ist eine aktive Schwingungsisolation insbesondere dadurch gekennzeichnet, dass die Schwingung aktiv kompensiert wird. Eine Bewegung, die durch eine Schwingung induziert wird, wird durch eine entsprechende Gegenbewegung kompensiert. Zum Beispiel wird einer durch eine Schwingung induzierten Beschleunigung der Masse eine dem Betrag nach gleich große Beschleunigung jedoch mit entgegengesetzten Vorzeichen entgegengesetzt. Somit ist die resultierende Gesamtbeschleunigung des Last 3 gleich Null. Die Last 3 verharrt in Ruhe bzw. der gewünschten Lage.
  • Die Frequenzgangbandbreite eines Geophons 4 reicht im Allgemeinen nur bis zu etwa 300 Hz. Dies reicht damit zur Schwingungsisolation in den meisten Fällen aus. Der Grund dafür ist insbesondere, dass die Basis eines solchen Systems ein Feder-Masse-Dämpfer-System bildet. Die Resonanzfrequenz liegt typischerweise unter 5 Hz, meist um 1 Hz, selten unter 0.5 Hz. Die damit passiv erreichte Isolationswirkung ist dann typischerweise bei 300 Hz schon so groß, dass ein Ausdehnen einer Regelbandbreite nicht bis über 150 Hz erforderlich ist. Im Allgemeinen ergibt sich hierbei eine Reduzierung in der Größenordnung von ungefähr –40 dB pro Frequenzdekade.
  • Für bestimmte Anwendungen der Schwingungsisolation ist es notwendig, die Regelbandbreite so groß wie möglich zu machen, vorzugsweise in einem Bereich von bis zu etwa 1.5 kHz oder sogar bis zu etwa 5 kHz. Das kann daran liegen, dass das passive Masse-Feder-System, beispielsweise wegen des Einsatzes von sogenannten Polymer-Federelementen, eine hohe Resonanzfrequenz hat, und/oder aber auch daran, dass die Struktur der Masse und/oder der Last 3 selbst und/oder des Unterbaus 2 eines Isolationssystems 1 zusätzliche Resonanzen ausbilden, die mit in die aktive Regelung und damit in die Kontrolle und Unterdrückung derselben hinzugezogen werden sollen. Insbesondere Strukturresonanzen können dabei leicht Frequenzen im Kilohertz-Bereich haben, welche somit mittels der üblichen Geophonsensoren 4 nicht erschlossen werden können.
  • Die bekannten Regelungskonzepte sollen beibehalten werden. Die Regelung kann hierbei analog und/oder digital erfolgen. Die Samplingraten für die digitale Regelung liegen in einer Größenordnung von etwa 60 kHz bis 100 kHz. Erfindungsgemäß werden die Sensorsignale so aufbereitet, dass alle oder im Wesentlichen alle Signale aufgenommen werden können und insbesondere in einer solchen Phasenlage zur Verfügung stehen, dass sie sich für eine Rückkopplungsregelung eignen.
  • Wegen des mechanischen Aufbaus eines Geophons 4 ist es nicht möglich, dessen Frequenzganz auf Frequenzen oberhalb von 300 Hz zu erweitern. Die Erfindung basiert allgemein auf einer Kombination aus einem Geophon als einem ersten Beschleunigungssensor 4a und einem Beschleunigungsaufnehmer als einem zweiten Beschleunigungssensor 4b. Der Beschleunigungsaufnehmer 4b ist vorzugsweise ein piezo-elektrischer Beschleunigungssensor. Es wird ein Signal generiert, welches der Massenbewegung proportional ist und vorzugsweise eine Frequenzbandbreite von bis zu 5 kHz aufweist, vorzugsweise bei gleichzeitiger Phasenlage, die es ermöglicht, das Signal zur Rückkopplungsregelung zu verwenden. Dazu werden die beiden Sensoren, nämlich Geophon 4a und Beschleunigungsaufnehmer 4b, räumlich nahe beieinander platziert. Unter räumlicher Nähe wird ein Abstand der beiden Sensoren 4a und 4b von kleiner als etwa 10 cm verstanden. Werden zum Beispiel eine Vielzahl von ersten und zweiten Beschleunigungssensoren 4a bzw. 4b verwendet, so werden ein erster Beschleunigungssensor 4a und ein zweiter Beschleunigungssensor 4b jeweils sozusagen paarweise angeordnet. Die Sensoren können jeweils mittels einer Klemm- oder einer Schweissverbindung, zum Beispiel an dem Lager 2 und/oder der Last 3, befestigt sein.
  • In 3 ist ein Blockschaltbild eines Paares von Sensoren 4a und 4b in einer ersten Ausführungsform der Erfindung gezeigt. Hier werden die jeweiligen Sensorsignale des ersten 4a und des zweiten 4b Beschleunigungssensors zusammengeführt oder addiert, bevor sie in der Rückkopplungsregelung 10 verwendet werden. Dies erfolgt in einem Mittel 6 zum Zusammenführen oder zum Addieren. Die Zusammenführung der beiden Signale kann dabei entweder komplett analog, komplett digital oder in einer Mischform erfolgen. Dabei wird entweder durch Hochpässe und/oder Tiefpässe dafür gesorgt, dass die überlappenden Signalanteile sich korrekt addieren ohne die Amplitude anzuheben, oder aber es wird die „Frequenz-Charakteristik” der Sensoren ausgenutzt. Dabei wird die „natürliche” Hoch- und/oder Tiefpasscharakteristik ausgenutzt, um die Frequenzteilung vorzunehmen.
  • Die 4 zeigt dagegen ein Blockschaltbild eines Paares von Sensoren 4a und 4b in einer zweiten Ausführungsform der Erfindung. Diese sieht vor, jeweils ein eigenes Rückkopplungsregelungssystem 10a und 10b für die Geophone 4a und die Beschleunigungsaufnehmer 4b zu verwenden und die Zusammenführung 6 erst im Aktuatorsignal vorzunehmen. Dem Geophon als ersten Beschleunigungssensor 4a, ist eine erste Regeleinrichtung 10a und dem Beschleunigungsaufnehmer als zweitem Beschleunigungssensor 4b ist eine zweite Regeleinrichtung 10b zugeordnet. Dabei wird ein Regelsystem 10 des Standes der Technik quasi gedoppelt und das ergänzte zweite dazu verwendet, mittels der Beschleunigungsaufnehmer 4b eine hochfrequente Regelung zu realisieren. Lediglich im Aktuatorzweig ist eine Zusammenführung der Stellsignale erforderlich. Hierbei ist darauf zu achten, dass die jeweiligen Signalkomponenten sich nicht so addieren, dass eine Amplitudenüberhöhung stattfindet.
  • Zusammenfassend sieht die Erfindung den Einsatz einer Kombination von Geophonen 4a und Beschleunigngsaufnehmern 4b zum Zwecke der Schwingungsisolation durch eine Rückkopplungsregelung mit sehr hoher Bandbreite in zwei Ausführungsformen vor. In einer ersten Ausführungsform erfolgt eine Addition beider Sensorsignale zu einem virtuellen Sensorsignal mit hoher Frequenzbandbreite. Die Addition kann in analoger, in digitaler oder in hybrider Weise erfolgen. In einer zweiten Ausführungsform erfolgt die Regelung in den beiden Frequenzbereichen durch getrennte Regelungssysteme mit den jeweiligen Sensoren 4a und 4b als Eingängen, wobei die Addition 6 erst zum Zeitpunkt der Bereitstellung des Aktorsignals erfolgt.
  • Es ist dem Fachmann ersichtlich, dass die beschriebenen Ausführungsformen beispielhaft zu verstehen sind. Die Erfindung ist nicht auf diese beschränkt sondern kann in vielfältiger Weise variiert werden kann, ohne den Geist der Erfindung zu verlassen. Merkmale einzelner Ausführungsformen und die im allgemeinen Teil der Beschreibung genannten Merkmale können jeweils untereinander als auch miteinander kombiniert werden.
  • 1
    Schwingungsisolationssystem
    2
    Lager
    3
    Last
    4
    Sensor oder Schwingungssignalgeber
    4a
    Geophonsensor oder erster Beschleunigungssensor
    4b
    Beschleunigungsaufnehmer oder zweiter Beschleunigungssensor
    5
    Aktor
    5
    Mittel zum Addieren der Signale
    10
    Regeleinrichtung
    10a
    Erste Regeleinrichtung oder erstes Regelungssystem
    10b
    Zweite Regeleinrichtung oder zweites Regelungssystem
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - DE 69817750 T2 [0002]

Claims (14)

  1. Aktives Schwingungsisolationssystem (1) umfassend – eine Vielzahl von Schwingungssignalgebern (4a, 4b) zur Lieferung von Schwingungen repräsentierenden Sensorsignalen, – eine Anzahl von Aktoren (5) zur Schwingungskompensation, welche durch Zuführen von Aktor-Stellsignalen ansteuerbar sind, – eine Regeleinrichtung (10, 10a, 10b), die zum Verarbeiten der gelieferten Sensorsignale in die Aktor-Stellssignale ausgebildet ist, – wobei die Schwingungssignalgeber (4a, 4b) wenigstens einen ersten Beschleunigungssensor (4a) zur Erfassung von Schwingungen in einem ersten Frequenzbereich und wenigstens einen zweiten, gegenüber dem ersten unterschiedlichen Beschleunigungssensor (4b) zur Erfassung von Schwingungen in einem zweiten Frequenzbereich, welcher den ersten Frequenzbereich erweitert, aufweisen.
  2. Schwingungsisolationssystem (1) nach vorstehendem Anspruch, dadurch gekennzeichnet, dass der erste Beschleunigungssensor (4a) in dem ersten Frequenzbereich in einem Bereich von bis zu 300 Hz wirksam ist.
  3. Schwingungsisolationssystem (1) nach einem der beiden vorstehenden Ansprüche, dadurch gekennzeichnet, dass der erste Beschleunigungssensor (4a) als ein Geophonsensor ausgebildet ist.
  4. Schwingungsisolationssystem (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Beschleunigungssensor (4b) in dem zweiten Frequenzbereich in einem Bereich von bis zu 1,5 kHz wirksam ist.
  5. Schwingungsisolationssystem (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Beschleunigungssensor (4b) ein piezo-elektrischer Beschleunigungssensor ist.
  6. Schwingungsisolationssystem (1) nach vorstehendem Anspruch, dadurch gekennzeichnet, dass der erste und der zweite Beschleunigungssensor (4a bzw. 4b) in einem Abstand von kleiner als 30 cm angeordnet sind.
  7. Schwingungsisolationssystem (1) nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine Schaltung (6) zum Zusammenführen der Sensorsignale des ersten Beschleunigungssensors (4a) und der Sensorsignale des zweiten Beschleunigungssensors (4b) zu gemeinsamen Aktor-Stellsignalen zum Ansteuern der Aktoren (5).
  8. Schwingungsisolationssystem (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der erste und der zweite Beschleunigungssensor (4a bzw. 4b) der Regeleinrichtung (10) zugeordnet sind.
  9. Schwingungsisolationssystem (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Regeleinrichtung (10) eingangsseitig mit der Schaltung (6) zum Zusammenführen gekoppelt ist.
  10. Schwingungsisolationssystem (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Regeleinrichtung (10) ausgangsseitig mit den Aktoren (5) gekoppelt ist.
  11. Schwingungsisolationssystem (1) nach einem der vorstehenden Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Regeleinrichtung (10) eine erste Regeleinrichtung (10a), welcher der erste Beschleunigungssensor (4a) zugeordnet ist, und eine zweite Regeleinrichtung (10b), welcher der zweite Beschleunigungssensor (4b) zugeordnet ist, umfasst.
  12. Schwingungsisolationssystem (1) nach vorstehendem Anspruch, dadurch gekennzeichnet, dass die erste und die zweite Regeleinrichtung (10a bzw. 10b) ausgangsseitig mit der Schaltung (6) zum Zusammenführen gekoppelt sind.
  13. Schwingungsisolationssystem (1) nach einem der beiden vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Schaltung (6) zum Zusammenführen ausgangsseitig mit den Aktoren (5) gekoppelt ist.
  14. Verfahren zum Regelung eines Schwingungsisolationssystems (1), – Erfassen von Schwingungen mittels einer Vielzahl von Schwingungssignalgebern (4, 4a, 4b), – Bereitstellen von Sensorsignalen, welche die erfassten Schwingungen repräsentieren, – Verarbeiten der bereitgestellten Sensorsignale zu Aktor-Stellsignalen zum Steuern von Aktoren (5), – Zuführen der Aktor-Stellsignale zu den Aktoren (5) zum Entgegenwirken der Schwingungen, wobei die Schwingungssignalgeber (4, 4a, 4b) durch wenigstens einen ersten Beschleunigungssensor (4a) zur Erfassung von Schwingungen in einem ersten Frequenzbereich und wenigstens einen zweiten, gegenüber dem ersten unterschiedlichen Beschleunigungssensor (4b) zur Erfassung von Schwingungen in einem zweiten Frequenzbereich, welcher den ersten Frequenzbereich erweitert, bereitgestellt werden und die Sensorsignale des ersten Beschleunigungssensors (4a) und die Sensorsignale des zweiten Beschleunigungssensors (4b) zu gemeinsamen Aktor-Stellsignalen zum Ansteuern der Aktoren (5) zusammengeführt werden.
DE102009009562A 2009-02-19 2009-02-19 Kombinierter Bewegungssensor zum Einsatz in Feedback-Regelsystemen zur Schwingungsisolation Withdrawn DE102009009562A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102009009562A DE102009009562A1 (de) 2009-02-19 2009-02-19 Kombinierter Bewegungssensor zum Einsatz in Feedback-Regelsystemen zur Schwingungsisolation
EP10001252.5A EP2221667B1 (de) 2009-02-19 2010-02-08 Kombinierter Bewegungssensor zum Einsatz in Feedback-Regelsystemen zur Schwingungsisolation
US12/707,860 US8352086B2 (en) 2009-02-19 2010-02-18 Combined motion sensor for use in feedback control systems for vibration isolation
JP2010034215A JP5524649B2 (ja) 2009-02-19 2010-02-19 振動分離のためのフィードバック制御システムで使用するためのコンビネーション形運動センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009009562A DE102009009562A1 (de) 2009-02-19 2009-02-19 Kombinierter Bewegungssensor zum Einsatz in Feedback-Regelsystemen zur Schwingungsisolation

Publications (1)

Publication Number Publication Date
DE102009009562A1 true DE102009009562A1 (de) 2010-09-09

Family

ID=42104630

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009009562A Withdrawn DE102009009562A1 (de) 2009-02-19 2009-02-19 Kombinierter Bewegungssensor zum Einsatz in Feedback-Regelsystemen zur Schwingungsisolation

Country Status (4)

Country Link
US (1) US8352086B2 (de)
EP (1) EP2221667B1 (de)
JP (1) JP5524649B2 (de)
DE (1) DE102009009562A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2544214A3 (de) * 2011-07-04 2016-06-01 Integrated Dynamics Engineering GmbH Integrierbare Magnetfeldkompensation für den Einsatz an Raster- und Transmissionselektronenmikroskopen

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857878B1 (de) * 2006-05-20 2010-01-20 Integrated Dynamics Engineering GmbH Aktives Schwingungsisolationssystem mit einem kombinierten Positionsaktor
US9291727B2 (en) * 2011-07-19 2016-03-22 Conocophillips Company Multiple frequency geophone strings
DE102012004808A1 (de) * 2012-03-09 2013-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Beeinflussung der Schwingungsübertragung zwischen zwei Einheiten
CN104220940B (zh) * 2012-03-29 2017-02-22 尼瓦洛克斯-法尔股份有限公司 无擒纵叉杆的柔性擒纵机构
FR2992518B1 (fr) * 2012-06-22 2014-08-08 Commissariat Energie Atomique Agencement pour composant electronique a refroidir, enceinte comportant l'agencement, systeme a froid sous vide comportant l'enceinte, procede d'utilisation du systeme a froid sous vide
EP2759735B1 (de) * 2013-01-29 2016-06-15 Integrated Dynamics Engineering GmbH Stationäres Schwingungsisolationssystem sowie Verfahren zur Regelung eines Schwingungsisolationssystems
US9946172B2 (en) 2013-12-20 2018-04-17 Asml Netherlands B.V. System for positioning an object in lithography
US10095248B1 (en) * 2015-11-10 2018-10-09 The United States Of America As Represented By The Secretary Of The Navy Method for spatially confining vibrational energy
JP6704255B2 (ja) * 2016-01-19 2020-06-03 ソニー・オリンパスメディカルソリューションズ株式会社 医療用観察装置、医療用観察システム及び画揺れ補正方法
EP3625609A4 (de) * 2017-11-30 2021-03-03 Leica Biosystems Imaging, Inc. Impulsneuabtastungssystem

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3433189A1 (de) * 1983-09-16 1985-04-04 Ferranti plc, Gatley, Cheadle, Cheshire Beschleunigungsmesser
US5409078A (en) * 1992-09-21 1995-04-25 Tokai Rubber Industries, Ltd. Adaptively controlled vibration damping support apparatus for vehicle power unit including engine
US5465924A (en) * 1992-11-14 1995-11-14 Deutsche Aerospace Ag Inertial stabilizing system
US6036162A (en) * 1996-09-10 2000-03-14 Nikon Corporation Vibration isolator and method of isolating vibration
DE69817750T2 (de) 1997-07-22 2004-07-01 Asml Netherlands B.V. Stützvorrichtung mit gaslager
DE60021402T2 (de) * 1999-09-03 2006-04-06 Bae Systems Plc Verbesserungen bei der regelung von elektromagneten

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112437A (ja) * 1984-06-27 1986-01-20 Mitsubishi Electric Corp 車輌の振動制御装置
JP3098045B2 (ja) * 1990-12-13 2000-10-10 シュルンベルジェ オーバーシーズ エス.エイ. 動電型加速度計
DE69630509T2 (de) 1995-08-11 2004-08-12 Ebara Corp. Magnetschwebe-Dämpfungsgerät
JP3599135B2 (ja) * 1995-08-16 2004-12-08 株式会社フジタ 制振装置
JPH09250591A (ja) * 1996-03-14 1997-09-22 Canon Inc 能動除振装置
JPH1163091A (ja) * 1997-08-25 1999-03-05 Fujita Corp 免震性能を有する除振台
JP4165844B2 (ja) * 1998-11-18 2008-10-15 キヤノン株式会社 除振装置
JP4229347B2 (ja) * 1999-05-31 2009-02-25 キヤノン株式会社 能動制振装置、露光装置及びデバイス製造方法
US6375147B1 (en) * 1999-09-13 2002-04-23 General Electric Company Vibration isolation apparatus for MR imaging system
JP2001140972A (ja) * 1999-11-18 2001-05-22 Canon Inc 除振装置
JP2001271868A (ja) * 2000-03-24 2001-10-05 Canon Inc 除振装置
JP2001271870A (ja) * 2000-03-27 2001-10-05 Canon Inc 能動除振装置
JP2002089619A (ja) * 2000-09-14 2002-03-27 Canon Inc アクティブ除振装置、モード行列の算出方法およびこれらを用いた露光装置
US20020117109A1 (en) * 2001-02-27 2002-08-29 Hazelton Andrew J. Multiple stage, stage assembly having independent reaction force transfer
US6874748B2 (en) * 2001-10-03 2005-04-05 The Penn State Research Foundation Active floor vibration control system
US6679504B2 (en) * 2001-10-23 2004-01-20 Liquidspring Technologies, Inc. Seamless control of spring stiffness in a liquid spring system
CN100401193C (zh) * 2002-07-11 2008-07-09 Asml荷兰有限公司 光刻装置及制造集成电路的方法
JP4433371B2 (ja) * 2003-06-17 2010-03-17 株式会社ニコン 画像計測装置
JP2005092297A (ja) * 2003-09-12 2005-04-07 Yaskawa Electric Corp 振動抑制フィルタの自動設定方法
DE10356561A1 (de) * 2003-12-04 2005-06-30 Carl Zeiss Smt Ag Vorrichtung zur Positionierung einer Stelleinrichtung
WO2005085671A1 (ja) * 2004-03-08 2005-09-15 Nikon Corporation 防振装置、露光装置、及び防振方法
WO2007072357A2 (en) * 2005-12-20 2007-06-28 Koninklijke Philips Electronics, N.V. Blended sensor system and method
EP1840681B1 (de) * 2006-03-29 2009-11-25 Integrated Dynamics Engineering GmbH Verfahren und Vorrichtung zur Regelung von Schwingungsisolationssystemen
EP1857878B1 (de) * 2006-05-20 2010-01-20 Integrated Dynamics Engineering GmbH Aktives Schwingungsisolationssystem mit einem kombinierten Positionsaktor
EP1865220B1 (de) * 2006-06-10 2014-03-19 Integrated Dynamics Engineering GmbH Aktives Schwingungsisolationssystem mit verbesserter Wirkung gegen seismische Schwingungen
US7689385B2 (en) * 2007-10-29 2010-03-30 Pratt & Whitney Rocketdyne, Inc. Method of animating structural vibration under operational conditions
EP2295829B1 (de) * 2009-09-11 2016-07-13 Integrated Dynamics Engineering Verbessertes aktives Schwingungsisolationssystem

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3433189A1 (de) * 1983-09-16 1985-04-04 Ferranti plc, Gatley, Cheadle, Cheshire Beschleunigungsmesser
US5409078A (en) * 1992-09-21 1995-04-25 Tokai Rubber Industries, Ltd. Adaptively controlled vibration damping support apparatus for vehicle power unit including engine
US5465924A (en) * 1992-11-14 1995-11-14 Deutsche Aerospace Ag Inertial stabilizing system
US6036162A (en) * 1996-09-10 2000-03-14 Nikon Corporation Vibration isolator and method of isolating vibration
DE69817750T2 (de) 1997-07-22 2004-07-01 Asml Netherlands B.V. Stützvorrichtung mit gaslager
DE60021402T2 (de) * 1999-09-03 2006-04-06 Bae Systems Plc Verbesserungen bei der regelung von elektromagneten

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2544214A3 (de) * 2011-07-04 2016-06-01 Integrated Dynamics Engineering GmbH Integrierbare Magnetfeldkompensation für den Einsatz an Raster- und Transmissionselektronenmikroskopen

Also Published As

Publication number Publication date
US8352086B2 (en) 2013-01-08
US20100211225A1 (en) 2010-08-19
JP2010190424A (ja) 2010-09-02
EP2221667A1 (de) 2010-08-25
EP2221667B1 (de) 2017-04-05
JP5524649B2 (ja) 2014-06-18

Similar Documents

Publication Publication Date Title
EP2221667B1 (de) Kombinierter Bewegungssensor zum Einsatz in Feedback-Regelsystemen zur Schwingungsisolation
DE10361481B4 (de) Modulare Schnittstelle zum Dämpfen mechanischer Schwingungen
DE69631362T2 (de) Vorrichtung zur Schwingungsdämpfung
EP2295829B1 (de) Verbessertes aktives Schwingungsisolationssystem
DE202013012709U1 (de) Aktives Schwingungsisolationssystem
DE69014750T2 (de) Verfahren zur Positions- und Vibrationssteuerung und eine aktive Vibrationssteuervorrichtung.
DE112006001416T5 (de) Systeme und Verfahren zur aktiven Schwingungsdämpfung
DE102014005547B4 (de) Vorrichtung und Verfahren zum Halten, Positionieren und/oder Bewegen eines Objekts
DE102015202560A1 (de) Vibration- und geräuschminderndes System für ein Fahrzeug
DE112018004189T5 (de) Präzisions-Schwingungsisolationssystem mit Boden-Feed-Forward-Unterstützung
EP2417053B1 (de) Mikromechanisches system mit seismischer masse
EP3181944A1 (de) Schwingungsisolator mit einer vertikal wirksamen pneumatischen feder
EP3433123A1 (de) Bedieneinheit für ein gerät, insbesondere für eine fahrzeugkomponente
DE102012219660B4 (de) Mechanisches Bauteil
DE2814093C2 (de) Antischallgeber
DE102008039569A1 (de) Aufhängevorrichtung, Wascheinrichtung und Verfahren zur Steuerung einer Wascheinrichtung
DE3902603C2 (de) Elastische Lagerung, insbesondere Kraftfahrzeug-Motorlager
DE112017001339T5 (de) Benutzer-abgestimmtes, aktives Schwingungsisolationssystem
DE102014110861A1 (de) System und Verfahren zum Bewältigen eines Störgeräuschs und einer Vibration in einem Fahrzeug unter Nutzung einer elektrodynamischen regenerativen Kraft und Fahrzeug, welches dasselbe aufweist
EP1253346A1 (de) Vorrichtung und Verfahren zur schwingungsisolierenden Aufnahme von Lasten
EP2706034B1 (de) Aktiver Tilger für tieffrequent schwingende Strukturen
DE102005013690A1 (de) Schwingungsisolierende Vorrichtung
DE102006046593B4 (de) Vorrichtung zur Reduktion von Schwingungen einer Struktur
WO2019034651A1 (de) Aufzugsanlage und verfahren zum betreiben einer aufzugsanlage
DE102008007712A1 (de) Aktives Schwingungsisolationssystem

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee