DE102006043581B4 - Verfahren und Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung - Google Patents

Verfahren und Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung Download PDF

Info

Publication number
DE102006043581B4
DE102006043581B4 DE102006043581A DE102006043581A DE102006043581B4 DE 102006043581 B4 DE102006043581 B4 DE 102006043581B4 DE 102006043581 A DE102006043581 A DE 102006043581A DE 102006043581 A DE102006043581 A DE 102006043581A DE 102006043581 B4 DE102006043581 B4 DE 102006043581B4
Authority
DE
Germany
Prior art keywords
suspension
mixture
dispersing
grinding
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102006043581A
Other languages
English (en)
Other versions
DE102006043581A1 (de
Inventor
Patentinhaber gleich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DURUM VERSCHLEISSSCHUTZ GMBH, DE
Original Assignee
Artur Wiegand
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Artur Wiegand filed Critical Artur Wiegand
Priority to DE102006043581A priority Critical patent/DE102006043581B4/de
Priority to EP07017710A priority patent/EP1900421A1/de
Priority to DE202007012740U priority patent/DE202007012740U1/de
Publication of DE102006043581A1 publication Critical patent/DE102006043581A1/de
Application granted granted Critical
Publication of DE102006043581B4 publication Critical patent/DE102006043581B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2/00Crushing or disintegrating by gyratory or cone crushers
    • B02C2/10Crushing or disintegrating by gyratory or cone crushers concentrically moved; Bell crushers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/52Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle with a rotary stirrer in the recirculation tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/272Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/272Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces
    • B01F27/2723Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces the surfaces having a conical shape
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/051Stirrers characterised by their elements, materials or mechanical properties
    • B01F27/053Stirrers characterised by their elements, materials or mechanical properties characterised by their materials
    • B01F27/0531Stirrers characterised by their elements, materials or mechanical properties characterised by their materials with particular surface characteristics, e.g. coated or rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/042Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling using a particular milling fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/045Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide

Abstract

Verfahren zur Herstellung einer Hartmetall- oder Cermetmischung, dadurch gekennzeichnet, dass die pulverförmigen Mischungskomponenten in einer für die Mischung geeigneten Korngröße bereitgestellt werden, dass aus den Mischungsbestandteilen und einer Dispergierflüssigkeit eine Suspension herstellt wird, dass die Suspension ohne frei bewegliche Mahlkörper einer nach dem Rotor-Stator-Prinzip arbeitenden Dispergiervorrichtung zugeführt wird, die durch sich relativ gegenläufig zueinander bewegende Werkzeugteil-Oberflächen in ein zwischen diesen Flächen befindliches Arbeitsvolumen Scherkräfte einbringt, wobei die Suspension homogenisiert wird, und dass schließlich die Dispergierflüssigkeit aus der homogenisierten Suspension entfernt wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung einer Hartmetall- oder Cermetmischung, die für die pulvermetallurgische Weiterverarbeitung zu Hartmetall- und Cermetformstücken und für thermische Beschichtungen vorgesehen ist. Insbesondere betrifft die Erfindung den Teilschritt der Herstellung einer Suspension homogener Verteilung aus den Mischungskomponenten, sowie eine Vorrichtung für die Herstellung einer Pulvermischung über die Zwischenstufe einer Pulversuspension.
  • Hartmetalllegierungen, auch nur Hartmetalle genannt, bestehen aus metallischen Hartstoffen und einer Bindemetallphase. Legierungen auf der Basis von Karbonitriden werden als Cermets bezeichnet. Zu den Hartstoffen zählen im wesentlichen die Karbide, Nitride und Karbonitride der IVa-, Va- und VIa-Elemente des Periodensystems der Elemente. Mitunter werden auch einige Boride und Silizide dieser Elemente hinzugerechnet. Die oft gute Mischbarkeit von Karbiden, Nitriden und Boriden untereinander, mitunter auch mit Oxiden, ermöglichen zusammen mit anderen Elementen der Nebengruppen eine große Palette weiterer Hartstoffverbindungen wie das beispielsweise die folgende Aufzählung der Ti-Basis-Hartstoffverbindungen verdeutlicht, ohne vollständig zu sein: TiCN, TiBN, TiBON, TiBCN, TiAlN, TiAlCN, TiCON, TiZrN und TiZrCN.
  • Als verbindende Matrix zwischen den Hartstoffkristalliten dienen die Elemente der Eisengruppe des PSE, Eisen, Nickel und Kobalt oder Legierungen auf deren Basis; sie werden auch als Bindemetalle bezeichnet.
  • Im Sintergefüge liegen die Hartstoffteilchen neben dem Bindemetall vor und werden von diesem untereinander verbunden. Man spricht in diesem Zusammenhang auch von einem „Teilchenverbundwerkstoff”.
  • Hartmetalle werden heute in einer Vielzahl verschiedener Legierungen zum Einsatz gebracht. Die wesentlichsten Einflussfaktoren für den Legierungsaufbau sind Zusammensetzung und Struktur. So wird das WC strukturbestimmend in Korngrößen von 0,2 μm bis zu ca. 50 μm (FSSS [Fisher Sub Sieve Sizer]) eingesetzt, die Co-Gehalte bewegen sich zwischen 0,2% und 30%; kubische Karbide bilden eine zusätzliche Phase aus.
  • Die Legierungskomponenten der Hartmetalle zählen zu den hochschmelzenden Metallen und Verbindungen obwohl sie teilweise nicht absolut hochtemperaturbeständig sind, weshalb ihre Herstellung nur auf pulvermetallurgischem Wege erfolgen kann.
  • Dasselbe gilt für die Cermets (Metallkeramiken), einer besonderen Gruppe von Hartmetallen mit völlig entsprechender Verarbeitung.
  • Zur Herstellung der Hartmetalle werden die pulverförmigen Ausgangsmaterialien in Mahl- und Homogenisierungseinrichtungen ausnahmslos unter Verwendung von Mahlhilfsmitteln zum Oxidationsschutz homogenisiert, in Trocknungs- und Granulieranlagen zu rieselfähigen Pulvern weiterverarbeitet, mittels Press- und spanender Verfahren zu geometrischen Körpern geformt und nach Erreichen der höchstmöglichen Endkontur gesintert und damit in ihren Eigenschaften konsolidiert.
  • Von besonderer Bedeutung ist im Herstellungsablauf die Homogenisierung der pulverförmigen Einsatzmaterialien, denn nur wenn die Hartstoffteilchen ausreichend und gleichmäßig von der Bindemetallphase umgeben sind, kann beim Sintern der Zusammenhalt im Gefüge und die zweckbestimmende Eigenschaft des Hartmetalls erreicht werden.
  • Als Voraussetzung für eine gute Benetzbarkeit wird dabei die bei der Homogenisierungsmahlung erzielte reiblegierte und kaltverschweißte Verbindung von Co-Anteilen auf den Oberflächen der WC-Kristallite angesehen. Sie ist das Ergebnis hohen Energieeintrags während des Mahlens und dessen Umsetzung in Arbeit zur Überwindung von Haft- und Bindungskräften.
  • Die Hartstoff- und Bindemetallpulver liegen nicht als Einzelkörner oder Einzelkristallite vor. Durch Nachwirkung von Herstellung, Transport, Druck und statische Aufladung mittels Reibung sind Agglomerate entstanden, die mehr oder weniger beständig sind. Je kleiner die Pulverkorngröße, umso ausgeprägter ist die Agglomeratbildung. Bei der Mischungsherstellung müssen diese Agglomerate aufgebrochen und zerteilt werden, um ihre homogene Verteilung zu erhalten. Im Allgemeinen wird die Deagglomerierung mit einer Mahlung bewirkt.
  • Je nach Korngröße der Einsatzmaterialien gestaltet sich die Dauer der Mahlbehandlung: feine Pulver müssen lange und grobe kürzer gemahlen werden. Geeignete Mahlhilfsmittel sind Wasser, niedrig siedende Kohlenwasserstoffe (Ethanol, Aceton, Heptan) u. a.. Die Auswahl richtet sich nach dem Trocknungsverfahren und den verwendeten Presshilfsmitteln.
  • Bei der pulvermetallurgischen Herstellung von Sinterkörpern werden deren Eigenschaften in höchstem Maße von der Verteilung der Komponenten beeinflusst. Dies gilt insbesondere für heterogene Werkstoffe, wie z. B. Hartmetalle. Je gleichmäßiger die Verteilung, umso größer sind die Kontaktbereiche zwischen den Komponenten. Das Optimum wird durch solche Pulvermischungen verkörpert, deren Komponenten statistisch verteilt und frei von Agglomeraten sind. Das Aufbrechen und Verteilen der Agglomerate ist dabei in besonderer Weise für die Mischungsgüte ausschlaggebend und es sind dazu mitunter hohe Scherkräfte aufzuwenden.
  • Eine gute Verteilung sollte sich auch im Pressling der Pulvermischung wiederfinden und im nachfolgenden Sinterprozess konsolidiert werden.
  • Die Homogenität der Mischung bzw. des Presslings hat auch Auswirkungen auf die weiteren Prozessschritte und die Eigenschaften. So schwinden derartige Körper beim Sintern einheitlich, ohne sich zu verziehen und die Festigkeitseigenschaften sind keinen Schwankungen unterworfen.
  • Die Nassmahlung erfolgt in Attritoren und anderen Mahlkörpermühlen; dabei wird dem Attritor auf Grund seiner kürzeren Mahldauer und damit erhöhten Wirtschaftlichkeit oft der Vorzug gegeben. Die früher vielfach verwendeten Kugelmühlen wurden inzwischen durch Schwing- oder Vibrationsmühlen verdrängt. Als besonders wirksam hat sich jedoch die Attritormahlung erwiesen (Siehe hierzu auch „W. Schedler: Hartmetall für den Praktiker, VDI-Verlag 1988” und „H. Kolaska: Pulvermetallurgier der Hartmetalle, Fachverband Pulvermetallurgie, 1992”).
  • Aus der DE 10 2004 053 221 B3 ist eine Flüssigkeit für die Aufbereitung von Hartmetallen, insbesondere in Attritoren bekannt, die den Einsatz von Wasser als Suspensionsmedium ermöglicht.
  • Beim Mahlen in Attritoren, Schwing- oder rotierenden Kugelmühlen werden die Ausgangsstoffe zwangsläufig weiter zerkleinert, selbst wenn nur eine Auflösung der Pulveraggregate gewollt und notwendig wäre.
  • Darüber hinaus gelten aber auch Abhängigkeiten der Mahldauer bzw. -intensität vom Mahlverfahren und von der Mahlkörperform. Als vergleichbar werden die Mahlintensitäten von 1 Std. im Attritor mit ca. 4 Std. in der Schwingmühle und mit ca. 12 Std. in der Kugelmühle mit gleichen Mahlkörpern angesehen.
  • Andererseits ist der Mahl- und Homogenisierungsvorgang (Zerteilung der Pulveragglomerate) umso intensiver, wenn Mahlkörper kleinen Volumens eingesetzt werden; großvolumige Mahlkörper werden zur schonenden Mischungsherstellung verwendet.
  • Die Größe der Mahlgefäße beträgt im Allgemeinen 30 bis 1000 dm3. Die Intensität der Mahlung wird mit der Größe des Mahlaggregates im Allgemeinen höher und somit die Mahldauer umso kürzer.
  • Durch die Zerkleinerung der Pulver wird deren Oberfläche größer; je kleiner die Teilchen, umso größer ist die Oberfläche; Teilchenvolumen und –masse bleiben jedoch stets gleich.
  • Allen Mahlvorgängen ist gleich, dass einer Relativbewegung der Mahlkörper eine Bewegung des Mahlgutes überlagert wird. Mahlen ist also zugleich auch mechanische Zerkleinerung, wobei die im Mahlaggregat erzeugte Bewegungsenergie auf die zu zerkleinernden Feststoffpartikel übertragen wird. Es beginnt damit, dass die mechanische Bewegungsenergie in den Kristalliten des Mahlgutes mechanische Spannungen erzeugt. In Abhängigkeit von den Mahlguteigenschaften und der Spannungshöhe führt dies früher oder später zum Bruch. Im Ergebnis der Bewegung von Mahlkörper und Mahlgut wird gleichzeitig eine homogene Verteilung der Pulver erreicht und die spezifische Oberfläche in hohem Maße vergrößert. Die sich aus dieser Vergrößerung der Oberfläche ergebende große Oberflächenenergie stellt nach „W. Schatt: „Pulvermetallurgie, Sinter- und Verbundwerkstoffe, Verlag Grundstoffindustrie, Leipzig 1988” die Haupttriebkraft für den Sintervorgang dar, der zur stofflichen Konsolidierung des Stoffsystems unerlässlich ist. Dieser Beanspruchungsmechanismus hat sich bei der als Feinstzerkleinerung definierten Hartmetallmischungsherstellung seit Jahren bestätigt.
  • Beim Zerkleinern der Feststoffe müssen die inneren Kräfte durch das Einwirken äußerer Kräfte überwunden werden, z. B. durch Vergrößerung des Abstandes zwischen den Elementarteilchen durch Zug- oder Schubspannungen; Druckspannungen führen zur Annäherung der Elementarteilchen, aber nicht zu deren Trennung.
  • Eine weitgehende Zerkleinerung als Voraussetzung für die Herstellung der Hartmetallmischungen erfolgt in Kugelmühlen. Abgesehen von der Drehzahloptimierung weisen diese Mühlen eine geringe Leistungsdichte auf. Der aber für diesen Prozessschritt (Hartfeinstzerkleinerung und Homogenisierung) erforderliche hohe Energiebedarf führt bei der geringen Leistungsdichte dieser Maschinen zu sehr langen Mahldauern von vielen Stunden bis zu mehreren Tagen. Der hohe Energiebedarf resultiert auch aus dem Arbeitsprinzip, wonach die Bewegung von Mahlkörper und Mahlgut durch Rotation des Mahlbehälters erzeugt wird, Beschleunigung und Geschwindigkeit der Mahlkörper aber vergleichsweise klein bleiben. Auch gibt es unterschiedliche spezifische Beanspruchungen für die Mahlkörper.
  • Die Mahlintensität ist durch Kugel- bzw. Stiftmahlkörper unterschiedlicher Größe gut steuerbar.
  • Vorteilhaft wirkt sich die ständige Auflockerung durch die Bewegung des Gesamtsystems aus. Die ungeordnete Mahlkörperbewegung ergibt jedoch eine breite Korngrößenverteilung im Mahlgut.
    Der Füllgrad einer Kugelmühle liegt bei etwa 30...45%.
  • Bei der weiterentwickelten Vibrationsmühle konnte die Leistungsdichte vergrößert werden, wobei die Relativbewegung der Mahlkörper in ihrer Schüttung, die der Ausgangspunkt für die erreichbare Zerkleinerung des Mahlgutes ist, durch eine Schwingbewegung des umgebenden Mahlbehälters angeregt wird.
  • Für die Zerkleinerung sind die Beanspruchungsmechanismen Schlag und Stoß einerseits und Reibung anderseits von Bedeutung. Es überwiegen aber die ersteren beiden.
  • Die hohe kinetische Energie mit der zwangsläufig ansteigenden Zahl an Berührungspunkten zwischen den Kugeln machte den Prozess effektiver. Ursache ist auch die kreisschwingende Bewegung des Gesamtsystems mit gleichartigen Wurfbewegungen. Dadurch wird die Füllung locker gehalten, was aber wieder nur eine relativ breite Korngrößenverteilung zur Folge hat. Dennoch wird nur ein Teil der zugeführten Energie genutzt. Der größere Teil wird durch nichtelastische Deformationen der Teilchen, durch Reibung und durch Verschleiß in Wärme freigesetzt.
    Der Füllgrad beträgt etwa 50...65%.
  • Auch bei den Rührwerkskugelmühlen wird die Zerkleinerungsintensität zwischen den Berührungsflächen von bewegten Kugeln genutzt. Bei feststehendem Mahlbehälter werden Mahlkörper und Mahlgut durch einen in die Kugelfüllung hineinragenden Rührarm (Quirl) horizontal in Bewegung versetzt. Eine vertikale Bewegung der Suspension erfolgt mittels eines Pumpsystems. Die Kugeln sind noch kleiner und dadurch die Anzahl ihrer Berührungspunkte noch größer, so dass die Zerkleinerungsleistung signifikant ansteigt. Das Rührwerk erzeugt eine hohe Beschleunigung mit hoher Geschwindigkeit, die auf alle Kugeln gleichzeitig und gleichsinnig wirkt. Hierbei erfolgt die Zerkleinerung der Karbidteilchen weniger durch Bruch, sondern eher durch Abrieb bzw. Absplitterung feiner Randpartikel. Demzufolge ist die Zerkleinerungsarbeit noch intensiver und die Mahldauer sinkt. Mit abnehmender Partikelgröße steigt deren Festigkeit und damit die erforderliche Zerkleinerungsenergie. Gleichzeitig steigen die bei den geringen Partikelgrößen wirkenden Kohäsionskräfte, so dass insbesondere bei den Fein- und Feinstkornhartmetallen der Einsatz von Mühlen mit hohem Energieeintrag, wie sie von den Attritoren verkörpert werden, für dieses Nassmahlverfahren erforderlich sind.
  • Nach dem Zerkleinern besteht die Gefahr einer Rückagglomeration, eine Kornvergröberung, durch erneute Anlagerungen der Teilchen untereinander. Die Leistungsdichte dieser Attritoren steigt im Vergleich mit Kugel- und Vibrationsmühle in dieser Reihenfolge an und erreicht Höchstwerte.
    Der Füllgrad beträgt ca. 80...85%.
  • Charakteristisch für diese Zerkleinerungsprozesse mittels frei beweglicher Mahlkörper ist ihr hoher Energiebedarf. Deshalb besteht der permanente Ansporn nach rationelleren Verfahrensabläufen zu suchen. So hat es immer wieder Bestrebungen gegeben, eine Zerkleinerung und Homogenisierung der Hartmetallkomponenten durch neuartige Verknüpfungen der Mechanismen Prall, Schlag, Druck, Scherung und Reibung zu realisieren. Haupttriebkraft solcher Vorschläge waren in erster Linie der hohe Energieverbrauch und die lange Mahldauer, die in den Mahlkörper-Mahleinrichtungen erforderlich sind, sowie die hohen Anlagekosten.
  • In N. Stehr: „Nassfeinstmahlung mit Rührwerksmühlen in der Keramik – Grundlagen...”, Keramische Zeitschrift, 42. Jahrgang, 1990 Nr. 3, wurde eine Ringspaltmühle beschrieben, die speziell für die Feinstmahlung von Hartstoffen entwickelt wurde. Gemäß ihrem Wirkprinzip ist ein aus Rotor und Stator gebildeter Mahlraum mit Mahlkörpern gefüllt. Die Pulversuspension – man arbeitet mit Mahlflüssigkeit – tritt von unten ein und verlässt die Mühle am Überlauf. Die Zerkleinerung des Mahlgutes erfolgt auf Grund der Relativgeschwindigkeit der Mahlkörper. Die dabei pro Mahlpassage zuführbare Energie beträgt ca. 100 kWh/t oder bei 5-maliger Passage entsprechend ca. 500 kWh/t. Eine mehrfache Passage des Mahlgutes ist erforderlich, um eine vergleichbare Mischungsqualität zu erhalten.
  • In DE 199 01 305 wurde der Vorschlag gemacht, ohne Mahlkörper und flüssigen Mahlhilfsmitteln homogene Hartstoff- und Bindemetall-Mischungen zu erzeugen, wobei durch Behälterrotation eine stetige Durchmischung erfolgt und zusätzlich durch einen Intensivrührer hohe Scherkräfte zur Zerteilung der Agglomerate eingebracht werden. Dazu wird ein Scherspalt von 0,5...5 mm bei Umfangsgeschwindigkeiten von 8...25 m/s verwendet, so dass daraus eine Schergeschwindigkeit von 1.000...20.000 s–1 resultiert. Die Schergeschwindigkeit ist dabei definiert als der Quotient aus Umfangsgeschwindigkeit und Scherspaltbreite.
  • Die Mischdauer beträgt 30...90 min; das Mahlgut soll 5...10 mal durch den Intensivrührer hindurchgeleitet werden. Auf Grund der Anordnung von Mahlgut und Rührer sind die Pulverteilchen nicht gezwungen, den Mahlspalt zu durchlaufen.
  • Nachteilig ist die trockene Ausführung des Mischvorgangs. Zur gleichmäßigen Verteilung des Presshilfsmittels sind Temperaturen bis ca. 300°C erforderlich. Bei diesen Pulvertemperaturen besteht erhöhte Oxidationsgefahr, der demzufolge mit überhöhten C-Zugaben begegnet werden muss. Andererseits besteht daraus die Gefahr von lokalen C-Anreicherungen, die im Sinterprozess zu WC-Wachstum führt, einem Gefügefehler.
  • Ein weiterer Nachteil besteht darin, dass das Mahlgut nach Prozessende wieder abgekühlt werden muss. Dabei agglomerieren die wachsbelegten Pulverteilchen erneut. Die dabei entstehenden Agglomerate mit breitem Kornspektrum sind nicht in gleicher Weise rieselfähig, wie die durch Sprühgranulation erzeugten, so dass sie für die automatische Formgebung ungeeignet sind. Um rieselfähige Pulvermischungen herzustellen wäre stets eine nachträgliche Aufschlämmung zu einer Suspension erforderlich, aus der in gewohnter Weise durch Sprühtrocknung oder aber andere Granuliertrocknungen ein rieselfähiges Pulvergemisch resultieren würde. Eine Trockengranulation ergibt ungleiches, wenig pressfreundliches Granulat.
  • Die durch den Intensivrührer aufgebrachten Scherkräfte sind wegen des großen Scherspaltes nicht optimal. Die trockene Verfahrensausführung führt zu sehr hohen Verschleißraten an den Mahleinrichtungen, insbesondere der des Intensivrührwerks.
  • Die Oxidation des Mahlgutes soll durch die Anwendung von Schutzgas für die gesamte Anlage unterbunden werden. Dies erfordert eine aufwendige, weil gasdichte Anlagentechik.
  • Nach K. Höffl: „Zerkleinerungs- und Klassiermaschinen, Verlag Grundstoffindustre, Leipzig, 1985”, sind bei der Nassfeinstzerkleinerung vom Mahlgut die Prozessteilschritte Zerteilen, Benetzen, Verteilen und Stabilisieren zu durchlaufen. Dabei ist unter Zerteilen insbesondere die Auflösung von Agglomeraten in ihre Einzelbestandteile zu verstehen. Die Ausbreitung der Mahlflüssigkeit auf der Oberfläche der Partikel ist als Benetzung definiert, während beim Verteilen der Konzentrationsausgleich des zerteilten Feststoffs in der Mahlflüssigkeit zu verstehen ist. Stabilisierprozesse dienen dem Erhalt des vorher erreichten Verteilungszustandes.
  • Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zur Herstellung von Hartmetall- und Cermet-Pulvermischungen für die Pulvermetallurgie anzugeben, um die aufgezeigten Nachteile im Stande der Technik zu vermeiden und insbesondere für den Prozessschritt der Herstellung einer homogenen Suspension der Ausgangspulver in einer Mahl- und Dispergierflüssigkeit eine höhere Effizienz und Mischungsgüte zu erzielen.
  • Die Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1 und eine Vorrichtung mit den Merkmalen des Anspruchs 12. Vorteilhafte Ausgestaltungen des Verfahrens und der Vorrichtung sind in den zugehörigen Unteransprüchen genannt.
  • Es wurde gefunden, dass die für die jeweilige Hartmetall- oder Cermetlegierung erforderlichen pulverförmigen Ausgangsmaterialien, ggf. zusätzlich mit Hilfsstoffen, wie z. B. Presshilfsmitteln, unerwartet vorteilhaft in einer nach dem Rotor-Stator-Prinzip ohne freibewegliche Mahlkörper unter Zuhilfenahme von Dispergierflüssigkeit arbeitenden Dispergiervorrichtung, die in ein zwischen den Arbeitsoberflächen des Rotors und des Stators befindliches Arbeitsvolumen durch relativ zueinander gegenläufige Bewegung dieser Werkzeugoberflächen hohe Scherkräfte einbringt, wirksam und hoch effektiv behandelt und dabei homogenisiert werden können.
  • Art und Menge der Ausgangskomponenten werden durch Zusammensetzung und Struktur der herzustellenden Hartmetalllegierung vorbestimmt. Die Pulver der Hartstoff- und Bindemetall-Komponenten werden daher in einer für die spätere Mischung geeigneten Korngröße bereitgestellt, und es werden alle Mischungsbestandteile, ggf. einschließlich von Zusatzstoffen, wie Presshilfsmitteln, einschließlich einer Dispergierflüssigkeit ohne frei bewegliche Mahlkörper in der Dispergiervorrichtung, d. h. ohne dass beispielsweise Stahlkugeln zugesetzt würden, homogenisiert.
  • Vor dem Homogenisieren wird aus den Mischungsbestandteilen und der Dispergierflüssigkeit eine Suspension herstellt und der Dispergiervorrichtung zugeführt. Dabei können die zu vermischenden Pulver einzeln suspendiert und diese Suspensionen zusammengeführt werden, oder eine Mischung der Pulverbestandteile kann insgesamt aufgeschlämmt bzw. suspendiert werden.
  • Der Ausdruck „Dispergierflüssigkeit” ist hier synonym mit dem im Allgemeinen auf diesem Arbeitsgebiet verwendeten Begriff „Mahlhilfsmittel” zu sehen.
  • Danach wird die Dispergierflüssigkeit aus der nach dem Homogenisierungsschritt erhaltenen homogenen Suspension mittels an sich bekannter Verfahren, z. B. mit Hilfe von Sprühtrocknern, Taumeltrocknern oder Vakuumtrocknern, entfernt, um eine für die pulvermetallurgische Weiterverarbeitung geeignete pulverförmige Feststoffmischung zu ergeben, aus der die verschiedensten Hartmetallprodukte, wie Formstücke oder Sintergranulat, hergestellt werden können.
  • Der erfindungsgemäße Effekt einer effizienten Homogenisierung der Einsatzpulver in Suspension beruht auf der Wirkung der zwischen Rotor und Stator realisierbaren Scherarbeit zum Aufbrechen und Zerteilen der Hartstoff- und Bindemetallpulveragglomerate. Da gleicheitig plötzliche Druckwechsel, Reibung, Zwangsdurchgang, Prall und Schlag wirken, werden die Pulveragglomerate wirkungsvoll auseinandergerissen, und zwar im Wesentlichen ohne eine zusätzliche gar nicht erwünschte Zerkleinerung, wie sie bei der Anwesenheit von Mahlkörpern unvermeidlich ist. Die aufgebrochenen Pulveraggregate werden von der Dispergierflüssigkeit durchdrungen und benetzt, so dass keine Reagglomeration stattfinden kann. Eine zeiteffektive Suspensionsherstellung ist das Ergebnis.
  • Unter einer „relativ gegenläufig zueinander” stattfindenden Bewegung der Rotor- und Statorteile wird verstanden, dass jeweils ein Part der Werkzeugteil-Oberflächen sich bewegt, d. h. rotiert (Rotor) und ein Part steht (Stator). Die gegensläufige Bewegung würde auch erreicht, wenn sich beide Werkzeugteile gegeneinander bewegen, was jedoch als apparativ zu aufwendig angesehen werden muss. Neben der Scherung wirken noch plötzliche Wechsel von Druck und Entspannung, Reibung, Zwangsdurchgang, Prall und Schlag, um die wesentlichsten zu nennen. Dieses Prinzip ist in den Kolloidmühlen mit stark strukturierten Mahlwerkzeugen und in den mit weniger strukturierten Werkzeugen arbeitenden Konusmühlen verwirklicht. Andere Bezeichnungen solcher Dispergiermaschinen sind auch: Mahlpumpe, Homogenisierer, Korundmühle, Korundscheibenmühle, Inline-Homogenisierer, Inline-Dispergierer, Pulverdispergierer...
  • Da die erfindungsgemäße Dispergiervorrichtung ohne frei bewegliche Mahlkörper im engen Mahlspalt arbeitet, findet hier keine mechanische Zerkleinerung wie in den Mahlkörpermühlen statt. Im Unterschied zu dem Trockenprozess der DE 199 01 305 unterstützt die Mahl- bzw. Dispergierflüssigkeit mit ihrer Oberflächenbenetzung und Agglomeratdurchdringung die angestrebte homogene Verteilung; sie stabilisiert sie.
  • Damit ist dieser Prozess nicht als Mahl- oder Zerkleinerungsprozess zu bezeichnen, sondern als Dispergierprozess zur Herstellung einer homogenen Suspension aus vereinzelten Pulverteilchen.
  • Vorzugsweise durchläuft die zu homogenisierende Suspension die Dispergiervorrichtung mehrfach. In einer weiteren Ausführungsform der Erfindung erfolgt dies batchweise mit einer festgelegten Anzahl von Durchläufen. Dazu wird die Suspension kontinuierlich vom Auslass zum Einlass der Dispergiervorrichtung zurückgeführt. Alternativ kann das Verfahren kontinuierlich mit einem Rücklauf vom Auslass zum Einlass der Dispergiervorrichtung geführt werden. Die fertige Suspension kann dann nach einer Anlaufphase, d. h. nach Erreichen eines stationären Zustandes abgenommen werden.
  • Wegen der verhältnismäßig hohen Dichteunterschiede, insbesondere zwischen WC und Co einerseits und der Dispergierflüssigkeit andererseits, besteht in der Hartmetalltechnik stets die Gefahr der Separation der Pulver. Dies ist auch hier der Fall, so dass das Absetzen der Pulver bevorzugt durch Zusatzrührwerke verhindert wird. Zur Verringerung der Separationsneigung kann die Suspension auch mit einem die Dispersion stabilisierenden Zusatzstoff (Emulgator, Thixotropierungsmittel, Dispergator) versetzt werden.
  • Als Dispergierflüssigkeit wird vorzugsweise Wasser, Ethanol, Heptan, Hexan, Benzin, Benzol, Tetralin, Aceton oder chlorierter Kohlenwasserstoff, einzeln oder im Gemisch, verwendet.
  • In Weiterbildung der Erfindung wird der Suspension ein Presshilfsmittel zugegeben, vorzugsweise ein Paraffin, Wachs, Celluloseether. Auf diese Weise wird die mit dem erfindungsgemäßen Verfahren hergestellte Hartmetall- oder Cermetmischung unmittelbar für die Weiterverarbeitung vorbereitet. Es wird in einem Arbeitsschritt eine sprühfähige, presshilfsmittelhaltige Suspension erzeugt.
  • Die Temperatur der Suspension kann während der Behandlung durch Kühlung und Regelung des Volumenstromes auf vorzugsweise unter 50°C geregelt werden. Aufgrund der Scherkräfte wird das Presshilfsmittel hauptsächlich auf mechanischem Wege auf die Pulverpartikel aufgebracht und fein verteilt.
  • In Weiterbildung der Erfindung ist vorgesehen, dass die Dispergierflüssigkeit durch Trocknen entfernt wird, vorzugsweise durch Sprühtrocknung oder im Wirbelstrom. Alternativ können jedoch andere Separationstechniken zur Anwendung kommen, z. B. könnte die Dispergierflüssigkeit auch abzentrifugiert oder abgefiltert werden.
  • In einer besonders bevorzugten Ausführungsform ist das Arbeitsvolumen zwischen Rotor und Stator, in dem sich die Suspension während des Homogenisierungsschritts befindet, ein Spaltvolumen.
  • Die Umfangsgeschwindigkeit des Rotors kann beim Homogenisieren der Suspension z. B. von 15 bis 60 m/min. Die Güte der Suspension ist abhängig von der Umfangsgeschwindigkeit des Rotors, dem radialen Abstand zwischen Rotor und Stator (Mahlspalt) und der Größe ihrer mahlaktiven Oberfläche. Durch eine Wiederholung bzw. Vervielfachung von Materialpassagen durch das Arbeitsvolumen, bzw. den Spalt der Dispergiervorrichtung kann ein optimales Ergebnis der Agglomeratvereinzelung und -zerkleinerung erzielt werden.
  • Die Dauer der Homogenisierung sollte 5 bis 120 min, vorzugsweise 20 bis 40 min betragen. Der Zeitaufwand für die Homogenisierung ist damit nach dem erfindungsgemäßen Verfahren viel geringer als bei herkömmlichen Verfahren.
  • Weiterhin kann vorgesehen sein, dass den Mischungsbestandteilen ungesintertes Hartmetall-Rücklaufmaterial (Pressabfälle) zugeführt wird, vorzugsweise in aufbereiteter Form, insbesondere vorzerkleinert auf etwa Mahlspalteinlaufbreite.
  • Im Ergebnis einer solchen Suspendierung werden im Vergleich zur Rührwerkskugelmühle erhebliche Verbesserungen erreicht. Bei vergleichbaren Suspensions- und demzufolge Mischungsgüten werden signifikante Zeit- und Energieeinsparungen realisiert. So steigt die Raum-Zeit-Ausbeute, der Quotient aus Durchsatzmenge und Mahlraumvolumen mal Zeit ganz enorm an. Die Energieeinsparung resultiert aus den Tatsachen, dass keine Mahlkörper bewegt und keine Zerkleinerung über Spannungseintrag und Bruch erzeugt werden. Darüber hinaus vermindert die niedrige Arbeitstemperatur und die geschlossene Bauweise der Dispergiereinrichtung auch die Verdampfung von umweltbelastenden Dispergierflüssigkeiten.
  • Auch nachfolgende Prozessschritte werden vorteilhaft beeinflusst. So wird durch die hohe Beschleunigung der Pulverteilchen der adsorbierte Luftsauerstoff entfernt, so dass der Suspension weniger Kohlenstoff zum Bilanzausgleich zugesetzt werden muss; WC-Wachstum wird somit enorm unterdrückt. Die hohen Scherkräfte bewirken eine gleichmäßige mechanische Verteilung der Presshilfsmittel auf den Pulvern weit unter den sonst üblichen Prozesstemperaturen.
  • In Weiterbildung der Erfindung ist vorgesehen, dass die Mischung nach Entfernen der Dispergierflüssigkeit unmittelbar weiterverarbeitet wird. Dies geschieht in an sich bekannter Weise durch Nachplastifizieren, Formgeber, Sintern und/oder Hippen. Als Endprodukte werden durch Pressen der Mischung zu Formstücken und deren Sinterung Werkzeuge, Werkzeugeinsätze und Bauteile erhalten. Aus der erfindungsgemäß hergestellten Mischung werden auch Sintergranulate für die thermische Pulverbeschichtung hergestellt.
  • Die Aufgabe der Erfindung wird weiterhin gelöst durch eine Vorrichtung für die Herstellung einer Hartmetall- oder Cermetmischung nach dem erfindungsgemäßen Verfahren, wobei die Vorrichtung oder Anlage folgende Bestandteile umfasst:
    • – eine Dispergiervorrichtung, die durch sich relativ gegenläufig zueinander bewegende Werkzeugteil-Oberflächen eines Rotors und eines Stators in ein zwischen diesen Flächen befindliches Arbeitsvolumen Scherkräfte einbringt,
    • – wenigstens einen Vorlaufbehälter für Mischungsbestandteile und Dispergierflüssigkeit und/oder für eine Suspension aus Dispergierflüssigkeit und Mischungsbestandteilen,
    • – wenigstens eine Zuführleitung für die Zuführung der Suspension oder der Suspensionsbestandteile in die Dispergiervorrichtung,
    • – eine Rückführleitung für die Rezirkulation der homogenisierten Suspension in wenigstens einen der Vorlaufbehälter oder die Zuführleitung und
    • – eine der Dispergiervorrichtung nachgeschaltete Trockenvorrichtung für den Entzug der Dispergierflüssigkeit aus der homogenisierten Suspension.
  • Zusätzlich können Mittel für die Aufrechterhaltung (Stabilisierung) der Suspension im Vorlaufbehälter vorhanden sein, vorzugsweise wenigstens ein Rührwerk. Alternativ kann die Suspension beispielsweise verwirbelt werden.
  • Nachdem die Suspension in der Dispergiervorrichtung die erforderliche bzw. gewünschte Homogenität erreicht hat, wird sie sofort einer Vorrichtung zum Entzug der Dispergierflüssigkeit zugeführt, vorzugsweise einem Sprühtrockner. Hierfür ist der Dispergiervorrichtung die Trockenvorrichtung unmittelbar nachgeschaltet.
  • Die Dispergiervorrichtung arbeitet nach dem Rotor-Stator-Prinzip und besteht grundsätzlich aus der eigentlichen Rotor-Stator-Einheit, die i. a. in einem Gehäuse mit Zu- und Ablauf angeordnet ist. Es können mehrere Dispergiervorrichtungen in Reihe oder parallel geschaltet sein. Durch den Zulauf, bzw. die Zuführleitung werden dem Arbeitsvolumen der Rotor-Stator-Einheit Dispergierflüssigkeit und pulverförmige Bestandteile, vorzugsweise in vorvermischter bzw. vordispergierter Form, zugeführt. Durch den Ablauf oder auch Auslass wird, wie oben beschrieben batchweise oder kontinuierlich, fertig homogenisierte Pulversuspension abgenommen.
  • Das Suspendieren von Feststoffpulvern hoher Dichte, wie sie bei der Hartmetall-Herstellung erforderlich sind, erfolgt durch Zerkleinerung der Partikelagglomerate, insbesondere durch die gleichzeitige Verringerung der Grenzflächenspannung zwischen den Pulvern und der Mahlflüssigkeit. Die hierzu nötige Energie wird als kinetische Energie durch die Massenbeschleunigung im engen, von Rotor und Stator bestimmten Strömungsraum eingebracht. Zugleich mit der Teilchenbeschleunigung und als Folge ihrer örtlich unterschiedlichen Größe kommt es zur Scherung der Agglomerate sowie Friktion der Pulverteilchen untereinander wie auch mit den Werkzeugoberflächen. Bei Anwendung schwach strukturierter mahlaktiver Oberflächenbereiche wird der Zerkleinerungs- und Vereinzelungseffekt durch Friktion noch weiter erhöht, so dass damit sehr homogene Suspensionen herstellbar sind.
  • Eine batchweise Verfahrensführung wird durch eine geschlossene Anlage (Abbildung) realisiert, bei der die Suspension von den auch als Pumpe wirkenden Dispersionswerkzeugen in den Vorlaufbehälter zurückgepumpt wird.
  • Durch eine Kaskade mehrerer Rotor-Stator-Einheiten hintereinander besteht die Möglichkeit einer Inline-Produktion von Hartmetall- und Cermetmischungen. Auf diese Weise ist eine schnelle Reaktion auf die aktuelle Auftragssituation gegeben.
  • Vorzugsweise sind Rotor und Stator so geformt, dass zwischen ihnen als Arbeitsvolumen ein Spaltvolumen ausgebildet wird, vorzugsweise in der Form eines konischen Hohlzylinders, der ein Rotationsvolumen ausbildet, einen konischen Ringspalt (Scherspalt). Andere, beispielsweise geschwungene Konturen ergeben einen sichelförmigen Ringspalt. Ein zylindrischer Ringspalt in der Form eines konischen Kreisringes entsteht beim Zusammenwirken von zwei Scheiben oder Ring und Scheibe als Rotor und Stator. Rotor und Stator sind hier stets rotationssymmetrisch.
  • Gemäß einer besonders bevorzugten Ausführungsform der Erfindung entspricht die von der Suspension von Zulauf bis Ablauf durchflossene Höhe des Arbeitsvolumens 0,1- bis 12mal, vorzugsweise 1 bis 12mal, weiter vorzugsweise 3 bis 5mal dem mittleren Durchmessers des Rotorbauelements (Rotors).
  • Der geringste Abstand zwischen Rotor und Stator Stator befindet sich an der Auslaufseite des Systems und sollte kleiner 3 mm, vorzugsweise kleiner 0,1 mm sein.
  • Die Größe der von der Dispergiervorrichtung geleisteten Arbeit ist von der Drehzahl des Rotors bzw. seiner Umfangsgeschwindigkeit abhängig. Weiterhin beeinflusst auch der Scherspalt die Arbeitsleistung. Durch geeignete, vielfältige Oberflächengestaltungen der gegenüberliegenden, den Scherspalt bildenden Mantelflächen von Rotor und Stator kann die Scherkraft zusätzlich in weiten Grenzen variiert werden.
  • Der Mahlspalt selbst kann vorzugsweise konisch ausgebildet sein, so dass seine Weite durch Verschieben der Rotordrehebene stufenlos eingestellt werden kann. Auf diese Weise gelingt eine ausgezeichnete Anpassung an die Anforderungen des Hartmetall-Mischgutes, die in erster Linie von WC-Korngröße und Zusammensetzung vorbestimmt sind. Ein konischer oder zylindrischer Rotor bzw. Stator kann besonders gut nachgeschliffen werden, weswegen diese Form ebenfalls bevorzugt wird. Die Werkzeugoberflächen der Dispergiervorrichtung, d. h. die aktiven Oberflächen von Rotor und Stator, können in besonders bevorzugter Ausgestaltung mit Hartmetall beschichtet sein. Die Beschichtung wäre bevorzugt so stark auszuführen, dass ein mehrmaliges Nachschleifen der Oberfläche möglich ist. Rotor und/oder Stator können auch insgesamt aus Hartmetall oder Hartmetall-Stahl-Verbund bestehen.
  • Im Folgenden wird die Erfindung anhand eines in der Zeichnung dargestellten Vorrichtungs-Beipiels für eine kleintechnische Dispergieranlage näher erläutert. Das Beispiel dient allein der Illustration und ist nicht beschränkend zu verstehen. Dem auf dem Arbeitsgebiet tätigen Fachmann ist klar, dass die Erfindung auch mit anderen Vorrichtungsformen im Rahmen der Erfindung ausgeführt werden kann.
  • 1 Dispergiervorrichtung mit Vorlaufbehälter für Batchbetrieb.
  • Die Dispergiervorrichtung 1 umfasst eine Rotor-Stator-Einheit 10 mit einem in diesem Beispiel konischen Rotor 12, der in einem hohlkegelförmig ausgebildeten Stator 14 rotiert. Zwischen Rotor 12 und Stator 14 wird das Arbeitsvolumen 16 der Dispergiervorrichtung ausgebildet, das hier ein Spaltvolumen ist, und zwar mit einem in Durchflussrichtung schmaler werdenden Spalt. In den Vorlaufbehälter 2 werden Dispergierflüssigkeit (z. B. Ethanol), Kobaltpulver, Ruß, Zusatzkarbide (z. B. (Ta, Nb)C, (W, Ti)C, Cr3C2), Wolframkarbid, Presshilfsmittel (z. B. Paraffin) und/oder Wolfram als Einzelkomponenten oder aber als trocken vorgemischte Pulvermischung eingebracht und unter Rühren mittels Rührwerk 6 in Schwebe gehalten. Über eine Leitung 3 wird diese Suspension der Dispergiervorrichtung 1 zugeführt. in dieser werden Pulver und Dispergierflüssigkeit stark beschleunigt, so dass die Pulveragglomerate aufgebrochen, die weicheren Bindemittel teilweise auf die Hartmetall- oder Cermetpulver legiert und – je nach Energieeintrag und Art der Teilchen – die Teilchengröße verringert wird. Auf Grund der erworbenen kinetischen Beschleunigung wird gleichzeitig die gesamte Suspension durch den Ablauf 4 und die Steigleitung 5 in oder hinter den Vorlaufbehälter 2 zurückgepumpt oder aber bei veränderter Stellung des 3-Wege-Ventils durch Leitung 4 weiter abgeführt.
  • Sofern ein Presshilfsmittel vorhanden ist werden die Pulver in der Apparatur gleichzeitig mechanisch mit dem Presshilfsmittel beschichtet.
  • Nach der Behandlung in der Dispergiervorrichtung wird die Suspension direkt einem Trockner 7 (Sprühtrockner, Wirbelstromtrockner oder andere) zugeleitet, um eine pressfähige Mischung zu generieren, die nach Abführen durch Leitung 9 in an sich bekannter Weise weiterverarbeitet wird. Übliche Formgebungsverfahren und die Sinterung führen zu gebrauchsfähigen Formkörpern aus Hartmetall- oder Cermetlegierungen oder zu Sintergranulat. Die im Trockner 7 abgetrennte Dispergierflüssigkeit kann über Leitung 8 ab- oder rückgeführt werden.
  • Die folgenden Beispiele sollen die Möglichkeiten der Erfindung weiter verdeutlichen:
  • Beispiel 1:
  • Ca. 3.000 ml Ethanol wurden in den Vorlaufbehälter gefüllt und die Diespergiervorrichtung mit ca. 10100 U/min bzw. einer Umfangsgeschwindigkeit von ca. 29 m/min in Betrieb genommen. Es wurde ein Scherspalt von 0,1 mm eingestellt. Zusätzlich wurde im Vorlaufbehälter ein Rührwerk in Betrieb gesetzt. Danach erfolgte nacheinander die Zugabe von 0,9 kg Kobaltpulver mit der mittleren Korngröße von 0,9 μm, 0,05 kg Cr3C2-Pulver mit einer mittleren Korngröße von 0,87 μm, 0,001 kg Ruß mit der Teilchengröße von 0,05 μm, 9,05 kg WC-Pulver mit einer mittleren Korngröße von 1,09 μm sowie 0,2 kg flockiges Paraffin mit Agglomeratteilchengrößen von < 15 mm.
  • Mittels Wasserkühlung wurde eine Systemtemperatur von ca. 40°C konstant gehalten.
  • Nach Mischzeiten von 5, 10, 20 und 30 Minuten wurden Proben entnommen und daraus entsprechende Probekörper hergestellt und gesintert.
  • In nachfolgender Tabelle sind die Ergebnisse dargestellt:
    Mischung Mischzeit Min. Sintertemp. °C Dichte g/cm3 Koerz. kA/m Sättigung μTm3/kg Hirte HV30 Porosität
    Beispiel 1 5 1430 14,47 14,9 16,1 1530 < A02
    10 1430 14,47 14,9 16,0 1520 < A02
    20 1430 14,49 14,7 16,1 1520 < A02
    30 1430 14,47 14,7 16,0 1540 < A02
  • Bereits nach 20 Minuten waren die sortenspezifischen Parameter erreicht. Eine in Rührwerkskugelmühlen hergestellte Mischung vergleichbarer Qualität benötigt eine Mahldauer von 8 Std. plus ca. 1 Std. zum Homogenisieren des Presshilfsmittels in der Suspension.
  • Beispiel 2:
  • In 3.000 ml umlaufenden und gerührten Ethanol wurden nacheinander 0,6 kg Kobaltpulver mit der mittleren Korngröße von 0,9 μm und 9,40 kg WC-Pulver mit der mittleren Korngröße von 1,3 μm sowie 0,20 kg flockiges Paraffin mit Agglomeratteilchengrößen von < 15 mm zugegeben.
  • Als Prozessparameter wurden eingestellt:
    Drehzahl – ca. 7.900 min–1
    Umfangsgeschwindigkeit – 23,5 m/s
    Scherspaltweite – 0,1 mm.
  • Die Temperatur wurde wiederum auf ca. 40°C eingestellt.
  • Nach Mischzeiten von 4, 8, 15 und 30 Minuten wurden Proben entnommen aus denen wie unter Beispiel 1 gesinterte Probekörper hergestellt wurden. Folgende Ergebnisse wurden erzielt:
    Mischung Mischzeit Min Sintertemp °C Dichte g/cm3 Koerz kA/m Sätt μTm3/kg Hirte HV30 Porosität
    Beispiel 2 4 1380 14,8 14,8 11,0 1570 < A02
    8 1380 14,79 15,0 11,0 1590 < A02
    15 1380 14,84 14,9 11,0 1590 < A02
    30 1380 14,84 14,8 11,0 1590 < A02
  • Bereits nach 15 Minuten waren die sortenspezifische Parameter erreicht, die sich bei Attritormahlung erst nach 6 Std. plus 1 Std. zum Homogenisieren des Presshilfsmittels in der Suspension einstellen.
  • Beispiel 3:
  • In ca. 3.000 ml umlaufenden und gerührten Ethanol wurden 10 kg auf < 5 mm vorgebrochenen Preß- und Bearbeitungsrücklauf, bestehend aus 6% Co und 94% WC, zugegeben und unter den Parametern
    Drehzahl – ca. 7.900 min–1
    Umfangsgeschwindigkeit – 23,5 m/s
    Scherspaltweite – 0,1 mm
    in der Konusmühle behandelt. Nach 5 und 10 Minuten wurden Proben entnommen und daraus wie oben gesinterte Probekörper hergestellt.
  • Es resultieren folgende Ergebnisse:
    Mischung Mischzeit Min Sintertemp °C Dichte g/cm3 Koerz kA/m Sätt μTm3/kg Hirte HV30 Porosität
    Beispiel 3 5 1380 14,78 17,7 11,6 1590 < A02
    10 1380 14,78 17,9 11,5 1590 < A02
  • Bereits nach 5 Minuten stellten sich die sortenspezifischen Parameter ein. Im Attritor ist dafür eine Mahldauer von 2 Std. erforderlich.
  • Beispiel 4:
  • Entsprechend Beispiel 1 wurde mit 1,0 kg Kobaltpulver mit der mittleren Korngröße von 0,9 μm, 0,002 kg Ruß, 9,0 kg WC mit der mittleren Korngröße von 0,6 μm sowie mit 0,20 kg flockiges Paraffin mit Agglomeratteilchengrößen von < 15 mm unter den Bedingungen
    Drehzahl – ca. 7.900 min–1
    Umfangsgeschwindigkeit – 23,5 m/s
    Scherspaltweite – 0,1 mm
    im Rotor-Stator-Mahlaggregat behandelt. Die Temperatur wurde auf ca. 40°C eingeregelt.
  • Nach 5, 10, 20 und 30 Minuten wurde wie gewohnt Probe genommen und daraus gesinterte Probekörper hergestellt. Die Trocknung erfolgte im Sprühturm. Die Ergebnisse:
    Mischung Mischzeit Min Sintertemp °C Dichte g/cm3 Koerz kA/m Sätt μTm3/kg Härte HV30 Porosität
    Beispiel 4 5 1380 14,16 21,0 17,7 1590 < A02
    10 1380 14,29 21,0 17,6 1620 < A02
    20 1380 14,3 21,0 17,6 1630 < A02
    30 1380 14,35 21,2 17,7 1620 < A02
  • Nach 20 Minuten waren die sortenspezifischen Parameter erreicht. Für eine Herstellung im Attritor sind dafür 6 Std. plus 1 Std. für die Homogenisierung des Paraffins in der Suspension erforderlich.

Claims (14)

  1. Verfahren zur Herstellung einer Hartmetall- oder Cermetmischung, dadurch gekennzeichnet, dass die pulverförmigen Mischungskomponenten in einer für die Mischung geeigneten Korngröße bereitgestellt werden, dass aus den Mischungsbestandteilen und einer Dispergierflüssigkeit eine Suspension herstellt wird, dass die Suspension ohne frei bewegliche Mahlkörper einer nach dem Rotor-Stator-Prinzip arbeitenden Dispergiervorrichtung zugeführt wird, die durch sich relativ gegenläufig zueinander bewegende Werkzeugteil-Oberflächen in ein zwischen diesen Flächen befindliches Arbeitsvolumen Scherkräfte einbringt, wobei die Suspension homogenisiert wird, und dass schließlich die Dispergierflüssigkeit aus der homogenisierten Suspension entfernt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Suspension die Dispergiervorrichtung mehrfach durchläuft, vorzugsweise batchweise mit einer festgelegten Anzahl von Durchlaufen.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Suspension durch dispergierende Zusatzstoffe an einer Separation gehindert wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Dispergierflüssigkeit Wasser, Ethanol, Heptan, Hexan, Benzin, Benzol, Tetralin, Aceton oder chlorierter Kohlenwasserstoff, einzeln oder im Gemisch, verwendet wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass den Mischungsbestandteilen ein Presshilfsmittel zugegeben wird, vorzugsweise ein Paraffin, ein Wachs oder ein Celluloseether.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Dispergierflüssigkeit durch Trocknen entfernt wird, vorzugsweise durch Sprühtrocknung oder im Wirbelstrom.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sich die Suspension während des Homogenisierungsschritts in einem Spaltvolumen befindet, das das Arbeitsvolumen zwischen Rotor und Stator bildet.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das die Umfangsgeschwindigkeit des Rotors beim Homogenisieren der Suspension von 15 bis 40 m/min beträgt.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Dauer der Homogenisierung 5 bis 120 min, vorzugsweise 20 bis 40 min beträgt.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass den Mischungsbestandteilen ungesintertes Hartmetall-Rücklaufmaterial zugeführt werden, vorzugsweise in aufbereiteter Form, insbesondere vorvermahlen.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Mischung nach Entfernen der Dispergierflüssigkeit unmittelbar der Weiterverarbeitung, wie Nachplastifizieren, Formgeben, Sintern und/oder Hippen, zugeführt wird.
  12. Vorrichtung für die Herstellung einer Hartmetall- oder Cermetmischung nach einem der Ansprüche 1 bis 11, – mit einer Dispergiervorrichtung (1), die durch sich relativ gegenläufig zu einander bewegende Werkzeugteil-Oberflächen eines Rotors (12) und eines Stators (14) in ein zwischen diesen Flächen befindliches Arbeitsvolumen (16) Scherkräfte einbringt, – mit wenigstens einem Vorlaufbehälter (2) für Mischungsbestandteile und Dispergierflüssigkeit und/oder für eine Suspension aus Dispergierflüssigkeit und Mischungsbestandteilen, – mit wenigstens einer Zuführleitung (3) für die Zuführung der Suspension oder der Suspensionsbestandteile in die Dispergiervorrichtung, – mit einer Rückführleitung (5) für die Rezirkulation der homogenisierten Suspension in wenigstens einen der Vorlaufbehälter (2) oder die Zuführleitung (3) und – mit einer der Dispergiervorrichtung (1) nachgeschalteten Trockenvorrichtung (7) für den Entzug der Dispergierflüssigkeit aus der homogenisierten Suspension.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass zusätzlich Mittel (6) für das Aufschlämmen der Suspension im Vorlaufbehälter (2) vorhanden sind, vorzugsweise wenigstens ein Rührwerk.
  14. Vorrichtung nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass Rotor (12) und Stator (14) so geformt sind, dass zwischen ihnen ein Spaltvolumen ausgebildet wird, vorzugsweise ein zylindrischer oder weiter vorzugsweise ein konischer Ringspalt (Scherspalt).
DE102006043581A 2006-09-12 2006-09-12 Verfahren und Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung Expired - Fee Related DE102006043581B4 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102006043581A DE102006043581B4 (de) 2006-09-12 2006-09-12 Verfahren und Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung
EP07017710A EP1900421A1 (de) 2006-09-12 2007-09-11 Verfahren und Vorrichtung zur Herstellung einer Hartmetall- oder Cermetpulvermischung
DE202007012740U DE202007012740U1 (de) 2006-09-12 2007-09-12 Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung sowie hierbei verwendbare Dispergiermaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006043581A DE102006043581B4 (de) 2006-09-12 2006-09-12 Verfahren und Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung

Publications (2)

Publication Number Publication Date
DE102006043581A1 DE102006043581A1 (de) 2008-03-27
DE102006043581B4 true DE102006043581B4 (de) 2011-11-03

Family

ID=38664762

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006043581A Expired - Fee Related DE102006043581B4 (de) 2006-09-12 2006-09-12 Verfahren und Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung

Country Status (2)

Country Link
EP (1) EP1900421A1 (de)
DE (1) DE102006043581B4 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2613643T3 (es) 2011-10-17 2017-05-25 Sandvik Intellectual Property Ab Método para producir un polvo de carburo cementado o de metal cerámico usando un mezclador acústico resonante
ES2599641T3 (es) 2011-10-17 2017-02-02 Sandvik Intellectual Property Ab Método para producir un polvo de carburo cementado o de metal cerámico usando un mezclador acústico resonante
WO2015192166A1 (en) 2014-06-16 2015-12-23 Commonwealth Scientific And Industrial Research Organisation Method of producing a powder product
CN110385171A (zh) * 2018-04-23 2019-10-29 昆山强迪粉碎设备有限公司 胶体磨搅拌罐出料装置
CN111014695A (zh) * 2019-11-21 2020-04-17 苏州新锐合金工具股份有限公司 硬质合金混合料的制备方法
CN112935241A (zh) * 2021-01-23 2021-06-11 晋城鸿刃科技有限公司 成型剂以及硬质合金的成型方法
CN114653426A (zh) * 2022-04-11 2022-06-24 安徽省恒金矿业有限公司 一种废弃矿石的综合利用装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19901305A1 (de) * 1999-01-15 2000-07-20 Starck H C Gmbh Co Kg Verfahren zur Herstellung von Hartmetallmischungen
DE102004053221B3 (de) * 2004-11-04 2006-02-02 Zschimmer & Schwarz Gmbh & Co. Kg Chemische Fabriken Flüssigkeit und deren Verwendung zur Aufbereitung von Hartmetallen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB753139A (en) * 1953-04-15 1956-07-18 Roswell Blaine Shurts Improved method and apparatus for dispersing fine particles
GB792227A (en) * 1954-11-02 1958-03-19 Philip Arthur Leicester Flint Improvements in and relating to mills
DE2314768A1 (de) * 1973-03-24 1974-10-03 Supraton Auer & Zucker Vorrichtung zur fein- und feinstvermahlung von gut in pulverfoermiger oder fluessiger phase
SE514437C2 (sv) * 1998-09-25 2001-02-26 Sandvik Ab Sätt att spraytorka pulver för hårdmetall och liknande
AT4928U1 (de) * 2001-03-29 2002-01-25 Plansee Tizit Ag Verfahren zur herstellung eines hartmetallansatzes
AT4929U1 (de) * 2001-03-29 2002-01-25 Plansee Tizit Ag Verfahren zur herstellung von hartmetallgranulat
GB0202065D0 (en) * 2002-01-30 2002-03-13 Watson Brown Hsm Ltd Mixing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19901305A1 (de) * 1999-01-15 2000-07-20 Starck H C Gmbh Co Kg Verfahren zur Herstellung von Hartmetallmischungen
DE102004053221B3 (de) * 2004-11-04 2006-02-02 Zschimmer & Schwarz Gmbh & Co. Kg Chemische Fabriken Flüssigkeit und deren Verwendung zur Aufbereitung von Hartmetallen

Also Published As

Publication number Publication date
EP1900421A1 (de) 2008-03-19
DE102006043581A1 (de) 2008-03-27

Similar Documents

Publication Publication Date Title
DE102006043581B4 (de) Verfahren und Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung
DE2365046C2 (de) Pulvermetallurgische Verarbeitung von Hochtemperaturwerkstoffen
DE10331785B4 (de) Verfahren zur Herstellung feiner Metall-, Legierungs-und Verbundpulver
WO2006072586A2 (de) Metallische pulvermischungen
DE112006002881T5 (de) Kubisches Bornitrid aufweisender Presskörper
WO2008006796A1 (de) Metallische pulvermischungen
EP3643429B1 (de) Herstellungsverfahren und verwendung für ein wolframlegierungsprodukt
DE102011102614A1 (de) Verfahren zum Betrieb einer Strahlmühle sowie Strahlmühle
EP3448603A1 (de) Hartmetall mit zähigkeitssteigerndem gefüge
EP2046522A1 (de) Metallische pulvermischungen
EP1153150B1 (de) Verfahren zur herstellung von hartmetallmischungen
EP1808231A1 (de) Trennen von Mineralien
JP2012525249A (ja) サーメットまたは超硬合金の粉末混合物をミル粉砕する方法
WO2008006800A1 (de) Metallische pulvermischungen
DE202007012740U1 (de) Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung sowie hierbei verwendbare Dispergiermaschine
EP0184688B1 (de) Feinteiliges Pulver und Verfahren und Vorrichtung zum Behandeln desselben
DE3509330A1 (de) Verfahren zur herstellung einer kohlesuspension
EP2758357B1 (de) Verfahren zur herstellung von kugelförmigem hartstoffpulver
DE102017116272A1 (de) Verfahren und anlage zur herstellung eines ausgangsmaterials für die herstellung von seltenerdmagneten
EP0835881A2 (de) Verfahren zur Herstellung von Methylcellulose-Pulvern mit spezieller Sieblinie
DE10224009B4 (de) Verfahren zur Zerkleinerung von Material, insbesondere von Erzen, und Wälzmühle zur Durchführung des Verfahrens
EP1789363B1 (de) Verfahren zum aufbereiten von kohle-trockenstoff für die herstellung von elektroden
DE102007058225A1 (de) Kornfeinungsmittel und Verfahren zum Herstellen des Kornfeinungsmittels
DE3339490A1 (de) Verfahren zur plasmachemischen gewinnung eines feindispersen beschickungsguts
AT9143U1 (de) Verfahren zur herstellung eines hartmetallproduktes

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20120204

R082 Change of representative

Representative=s name: BENDEL, CHRISTIAN, DIPL.-PHYS. DR.RER.NAT., DE

R081 Change of applicant/patentee

Owner name: DURUM VERSCHLEISSSCHUTZ GMBH, DE

Free format text: FORMER OWNER: WIEGAND, ARTUR, 36433 BAD SALZUNGEN, DE

Effective date: 20130320

R082 Change of representative

Representative=s name: BENDEL, CHRISTIAN, DIPL.-PHYS. DR.RER.NAT., DE

Effective date: 20130320

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee