EP1153150B1 - Verfahren zur herstellung von hartmetallmischungen - Google Patents

Verfahren zur herstellung von hartmetallmischungen Download PDF

Info

Publication number
EP1153150B1
EP1153150B1 EP00904876A EP00904876A EP1153150B1 EP 1153150 B1 EP1153150 B1 EP 1153150B1 EP 00904876 A EP00904876 A EP 00904876A EP 00904876 A EP00904876 A EP 00904876A EP 1153150 B1 EP1153150 B1 EP 1153150B1
Authority
EP
European Patent Office
Prior art keywords
mix
mixing
process according
powder
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00904876A
Other languages
English (en)
French (fr)
Other versions
EP1153150A1 (de
Inventor
Benno Gries
Jörg Bredthauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Publication of EP1153150A1 publication Critical patent/EP1153150A1/de
Application granted granted Critical
Publication of EP1153150B1 publication Critical patent/EP1153150B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/60Mixers with rotating receptacles rotating about a horizontal or inclined axis, e.g. drum mixers
    • B01F29/64Mixers with rotating receptacles rotating about a horizontal or inclined axis, e.g. drum mixers with stirring devices moving in relation to the receptacle, e.g. rotating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/86Mixing heads comprising a driven stirrer
    • B01F33/862Mixing heads comprising a driven stirrer the stirrer being provided with a surrounding stator
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/40Parts or components, e.g. receptacles, feeding or discharging means
    • B01F29/403Disposition of the rotor axis
    • B01F29/4033Disposition of the rotor axis inclined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • Hard metals are materials made from hard materials and binder metals. They have meaning as wear-resistant materials and are of cutting and non-cutting shape accessible.
  • Hard materials are carbides or nitrides or carbonitrides of the refractory metals of the IV. V. and VI. Subgroup of the Periodic Table of the Elements, with titanium carbide (TiC), titanium carbonitride (Ti (C, N)) and especially tungsten carbide (WC) the largest Have gained importance.
  • TiC titanium carbide
  • Ti (C, N) titanium carbonitride
  • WC tungsten carbide
  • Cobalt is used in particular as binder metal. However, however also mixed metal powder or alloy powder made of cobalt, nickel and iron as well if necessary, further ingredients used in minor amounts.
  • Binder metal For the production of hard metals, hard materials and binder metal, each in Powder form, intimately mixed, pressed and then sintered, the Binder metal by forming a melt during sintering is a very extensive densification and the construction of a multi-phase structure with more favorable Bending strength and fracture toughness should enable.
  • the effect of Binder metal is optimal when complete wetting of the hard material phase is achieved, the solubility of the hard material depending on the sintering temperature causes a partial redissolution and rearrangement of the hard material in the binder, so that a microstructure structure is achieved which has a large crack propagation Opposed resistance.
  • the sintering result can be in the form of the residual porosity represent. In order to achieve sufficient fracture toughness, this is not the case a prerequisite for a certain residual porosity.
  • Hard materials are usually preferred with average particle sizes of 3 to 20 microns 3 to 10 ⁇ according to ASTM B 330 used. It should be very fine Hard material portions are avoided, as these are used during the liquid phase sintering Recrystallization (Ostwald ripening).
  • the crystallites grown in this way show multidimensional point defects, which for certain performance characteristics of the Carbide, especially in steel cutting, mining and striking tools are disadvantageous.
  • tungsten carbide can be made to a certain extent Plastic degrees deform when multi-dimensional point defects at high Temperatures above 1900 ° C can be cured. The carburizing temperature, at The tungsten carbide obtained is therefore essential for the performance properties of hard metal.
  • the one at sintering temperature typically between 1360 and 1450 ° C, redissolved portion of the tungsten carbide phase in the hard metal is in view qualitatively inferior to the unresolved portion on these performance characteristics.
  • a further embrittlement can occur in that grown up by redeployment WC shares may have incorporated binder metals in the lattice.
  • the binder metal is typically used with a smaller particle size, typically about 1 to 2 ⁇ according to ASTM B 330.
  • the binder metal is used in such an amount that it is about 3 to 25% by weight of the hard metal.
  • Hard metal mixtures i.e. the mixing of hard material and binder before sintering an outstanding role with regard to the later hard metal properties.
  • the wet grinding has taken place in the attritor or in a ball mill Using an organic grinding fluid and using grinding balls than the industrially used process for the production of hard metal mixtures enforced.
  • a grinding fluid By using a grinding fluid, the electrostatic Rejection forces additionally suppressed effectively. It succeeds through the wet mixed grinding in the attritor the grain crushing of the hard material in still keeping reasonable limits, however, the mixed grinding is a very complex Process that requires a large amount of space due to the required volume ratio from grinding media to grinding stock of about 6: 1 and on the other hand Meals take from 4 to 48 hours. There is also the requirement after the mixed grinding, the grinding balls of the hard metal mixture by sieving and the organic grinding liquid by evaporation.
  • a certain amount of grind and a certain size reduction is also with the to accept wet mixed grinding.
  • WC powders are particularly affected, that were carburized at at least 1900 ° C, narrow grain size distribution have no fines and therefore no redeployment in top quality Hard metals should be transferred.
  • the object of the present invention is to provide a method for producing hard metal mixtures specify which avoids the disadvantages of the prior art, is in particular technically less complex and moreover due to the Homogeneity of the mixture and the avoidance of grain crushing of the hard material after sintering hard metals with excellent performance properties by minimizing the redeemed portion of the WC phase.
  • the object is achieved by the method according to claim 1.
  • the object is achieved in that the mixing in Close range of the components of the mixture due to the generation of high shear impact speed the powder particles and in the far range by circulating the Mixed goods is carried out.
  • mixing in the close range is the mixing of a Part of the mix understood in itself, whereas long-range mixing the mixing of the bulk of the mix batch in itself, i.e. the Subsets among themselves, designated.
  • the method according to the invention therefore consists in the one hand in the short-range mixing with high input of mixed energy (based on that of the Mixing element detected amount of powder) to overcome the electrostatic repulsive forces the powder particles with each other and on the other hand with the mixing of mixing areas with low energy input to homogenize the powder mixture is mixed.
  • the majority of the mix is in the area of long-range mixing by circulating the mixture bed.
  • a Rotary tube for example, a Rotary tube, a ploughshare mixer, a paddle mixer or a cone screw mixer.
  • a subset of the mixture is in the area of short-range mixing, a mixing unit producing high mutual impact speeds.
  • Aggregates suitable for short-range mixing are in particular fast rotating mixing elements. Those with peripheral speeds are preferred according to the invention from 8 to 25 m / s, particularly preferably 12 to 18 m / s.
  • the mix is preferably at least in the area of short-range mixing fluidized in the gas atmosphere of the mixing container, the gas through the Mixing element is strongly swirled and the powder particles due to the in the vortex prevailing shear rates collide.
  • a suitable mixing element is, for example, a quick one with wall-mounted stirring blades running agitator, leaving a gap between the container wall and the agitator blade, the width of which is at least 50 times the particle diameter. The gap width is preferably 100 to 500 times the particle size.
  • aggregates that are also suitable for short-range mixing are made of US-A 3 348 779, US-A 4 747 550, EP-A 200 003, EP-A 474 102, the EP-A 645 179 and DE-U 29 515 434 under the name micro vortex mill known.
  • Such mills consist of a stator in the form of a cylindrical Housing in which a rotor is axially arranged, the one or more circular disks arranged one above the other on a common drivable axis has, the circular discs on their circumference a variety of im have grinding plates arranged essentially radially and parallel to the rotor axis, which protrude beyond the circular disks, with a gap between the stator and grinding plates remains, the "shear gap".
  • the rotor becomes too high speed of rotation driven, typically 1000 to 5000 U / Min., experienced in the micro vortex mill located gas-dispersed particles due to the imprinted on the gas Shear speed between rotor and stator high acceleration forces, see above that the particles collide while overcoming the electrostatic repulsive forces.
  • the particles impact there is a charge exchange or a dielectric recharge instead, so that the repulsive forces of the particles with each other stay lifted after the impact.
  • the shear gap between the rotor and the stator should preferably be a clear one Have width that is at least 50 times the average diameter of the Particle size with the larger mean diameter, i.e. the hard particles, equivalent. Preference is given to a shear gap with a clear width that is 100 to Corresponds to 500 times the average diameter of the hard material particles. typically, Accordingly, the shear gap can have a clear width of 0.5 to 5 mm, preferably 1 up to 3 mm.
  • the shear rate in the shear gap should be expressed as the ratio circumferential speed of the rotor and gap width at least 800 / s, are particularly preferably 1000 to 20,000 / s.
  • the dwell time in the short-range mixing is selected so that the Temperature of the powder mixture as it passes through the close-range mixture does not rise above 300 ° C.
  • Air that is mixed is preferably around a lower temperature Avoid oxidation of the powder particles safely.
  • the mixing in Protective gas atmosphere for example argon, takes place, where appropriate, temperatures permissible up to 500 °.
  • the dwell time is typically in the short-range mixing in seconds.
  • the total mixing time is preferably 30 to 90 minutes, particularly preferably more than 40 minutes, and more preferably less than 1 hour.
  • the powder mixture recirculated between short-range and long-range mixing i.e. subsets of the powder mixture are used as a continuous substream of the long-range mixing removed, added to the short-range mixing and back into the Long-range merging initiated.
  • the circulation speed of the powder mixture is preferably determined by the short-range mixing chosen so that on average during the total mixing time at least 5 passes, most preferably at least 10 passes each Powder particle is ensured by the short-range mixing.
  • the two powder components can or a raw mixture of the powder components continuously on one Be fed at the end of the circulation mixing unit and at the other end homogeneously mixed powder can be continuously discharged.
  • An alternative continuous implementation of the method is in one to produce a raw mixture of the powder components in the first circulation mixing unit, the raw mix continuously from the first circulation mixing unit remove, insert into the micro vortex mill, and then one to supply the second circulating mixing unit, it may be expedient afterwards to the second circulation mixing unit a further short-range mixing in a micro vortex mill and then another long range mixing in a circulating mixer.
  • the mix fluidized both in the short-range and in the long-range mixing includes, for example, a floor and wall accessible Rotor with shear gap to the container wall, the radial rotor blades against the Are vertical, so that the fluidized regrind in the container peripheral is promoted upwards and centrally promoted downwards.
  • the angle of attack is less than 25 °, particularly preferably 10 to 20 °.
  • the powder mixtures from the Additives used in the carbide industry such as organic adhesion promoters, oxidation inhibitors, Granule stabilizers and / or pressing aids, e.g. on paraffin or Polyethylene glycol base mixed together with the hard material and binder powder and distributed homogeneously.
  • the pressing aids melt due to the generated heat during the mixing process, so that a uniform surface coverage is effected. If the mixtures produced in this way are not yet sufficient A granulation step can have flowability or pressability downstream.
  • the hard metal mixtures according to the invention and their granules are for Production of hard metal moldings by axial pressing, isostatic pressing, Suitable for extrusion or injection molding and sintering.
  • Fig. 1 shows schematically a long-range mixer A in the two Powder P1 and P2 can be introduced continuously or discontinuously. From the Long-range mixing unit A is constantly a partial flow of the powder mixture in the Short-range mixing unit B transferred and returned to the family zone mixing unit A. The long-range mixing unit A finally becomes the finished one Powder mixture PM taken continuously or discontinuously.
  • Fig. 2 shows a particularly for the continuous execution of the invention Basic arrangement suitable for the method.
  • the powders P1 and P2 will be into a first long-range mixing unit, in particular, for example, a rotary tube introduced. You get out of the rotary tube into a first micro vortex mill B1 and are then transferred to a second long-range mixing unit A2. Possibly can a further short-range mixing B2 and a not shown Long range mixing A3 can be connected.
  • Fig. 3 shows an arrangement, in particular for batch batch mixing suitable is.
  • the micro vortex mill B is a short-range mixing element arranged within the zone mixing element A.
  • Fig. 4 shows the structure of a micro vortex mill 1.
  • This consists of a cylindrical housing 2, the inner wall of which forms the stator.
  • the inside wall of the cylindrical housing 2 can be covered with abrasion-resistant material.
  • an axis drivable for rotation is provided on the Axis 3 are one or more, in particular 2 to 5, drivable with the axis Circular disks 4.1, 4.2 and 4.3 are provided, each of which has a large number on its circumference have grinding plates 5.1, 5.2 and 5.3 arranged radially and parallel to axis 3.
  • the outer edges of the grinding plates 5.1, 5.2 and 5.3 form together with the Inner wall of the cylindrical housing 2 from the shear gap 6.
  • the micro-vortex mill also preferably has a conical cover 7, which is provided with openings 8 through which the free-flowing powder well into the cylindrical housing 2 trickles.
  • An additional circular disc with axis 3 9 can be provided as a distributor plate.
  • FIG Fig. 3 shows a device which can be used according to the invention, as shown schematically in FIG Fig. 3 is shown.
  • This consists of a mixing drum 10, which is connected via the axis 11 for rotation with low rotation speed, for example 1 to 2 revolutions per minute, can be driven.
  • the drum is due to the non-rotating Cover cap 12 closed.
  • the micro-vortex mill is located inside the drum 10 1, as shown in Fig. 4.
  • Within the drum 10 can also Baffles 13 may be arranged.
  • the filling level of the drum 10 is due to the dashed line 14 indicated.
  • the method according to the invention now consists in that the powder mixture continuously through the openings 8 in the micro vortex mill 1 occurs where the short-range mixing takes place, and through the below open cylinder is returned to the long-range mixing.
  • FIG. 6 shows a device that can be used according to the invention, in which the mixed material both for short-range mixing and for long-range mixing is fluidized.
  • the container 10 In the container 10 is located on a drivable axis 3 Floor and wall accessible rotor with 4 rotor blades 5a, 5b, 5c and 5d, which for Container wall form the shear gap 6.
  • Above the rotor 5 is a Opposed rotor 20 provided on the axis 3, its diameter corresponds to approximately half the container diameter.
  • the mix When the axis 3 rotates in the direction of the arrow 21, the mix is fluidized and in addition to rotation about axis 3 as circulated by arrow 22. A part of the fluidized mix enters the shear gap 6, where the high shear rate of the fluid cause a strong particle acceleration.
  • the samples are pressed and then sintered at 1380 ° C over 45 Minutes into carbide test specimens.
  • a corresponding powder mixture is used in a ball mill 20 Hours with hexane.
  • the comparison powder mixture becomes the same as a carbide test body made.
  • Example 11.9 kg of a cobalt metal powder with an average grain size of 1.5 ⁇ m and 122.4 kg of a slightly agglomerated tungsten carbide powder with a medium Grain size of 6 microns (FSSS, ASTM B 330) are mixed as in Example 1.
  • the Oxygen content before mixing is 0.058% by weight after 40 minutes Mixing time 0.109% by weight.
  • Example 2f a comparison mixture (Example 2f) in a ball mill as in Example 1 prepared.
  • FIG. 9 shows an SEM image of the starting tungsten carbide powder.
  • Fig. 10 shows the powder mixture after 30 minutes of mixing.
  • Example 11 shows the micrograph of a hard metal according to Example 2d).
  • the hard metal has a good structure and a good binder distribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

Hartmetalle sind Werkstoffe aus Hartstoffen und Bindermetallen. Sie haben Bedeutung als verschleißfeste Werkstoffe und sind der spanenden und spanlosen Formgebung zugänglich.
Hartstoffe sind Carbide oder Nitride oder Carbonitride der Refraktärmetalle der IV., V. und VI. Nebengruppe des Periodensystems der Elemente, wobei Titancarbid (TiC), Titancarbonitrid (Ti(C,N)) und insbesondere Wolframcarbid (WC) die größte Bedeutung erlangt haben.
Als Bindermetalle wird insbesondere Kobalt eingesetzt. Allerdings werden jedoch auch Mischmetallpulver bzw. Legierungspulver aus Kobalt, Nickel und Eisen sowie gegebenenfalls weiteren Bestandteilen in untergeordneten Mengen eingesetzt.
Zur Herstellung von Hartmetallen werden Hartstoffe und Bindermetall, jeweils in Pulverform, innig vermischt, verpreßt und anschließend versintert, wobei das Bindermetall durch Bildung einer Schmelze während des Sinterns eine sehr weitgehende Verdichtung und den Aufbau eines mehrphasigen Gefüges mit günstiger Biegefestigkeit und Bruchzähigkeit ermöglichen soll. Die Wirkung des Bindermetalls ist dann optimal, wenn vollständige Benetzung der Hartstoffphase erzielt wird, wobei die von der Sintertemperatur abhängige Löslichkeit des Hartstoffs im Binder eine teilweise Umlösung und Neuanordnung des Hartstoffs bewirkt, so daß eine Gefügestruktur erzielt wird, die der Rißausbreitung einen großen Widerstand entgegensetzt. Das Sinterergebnis läßt sich in Form der Restporosität darstellen. Zur Erzielung einer ausreichenden Bruchzähigkeit ist die Unterschreitung einer bestimmten Restporosität notwendige Voraussetzung.
Hartstoffe werden üblicherweise mit mittleren Teilchengrößen von 3 bis 20 µ, vorzugsweise 3 bis 10 µ nach ASTM B 330 eingesetzt. Dabei sollen sehr feinteilige Hartstoffanteile vermieden werden, da diese während des Flüssigphasensinterns zur Umkristallisation neigen (Ostwald-Reifung). Die so gewachsenen Kristallite weisen mehrdimensionale Punktdefekte auf, die für bestimmte Leistungseigenschaften des Hartmetalls, insbesondere bei der Stahlzerspanung, im Bergbau und bei Schlagwerkzeugen nachteilig sind. Beispielsweise läßt sich Wolframcarbid bis zu einem gewissen Grad plastisch deformieren, wenn mehrdimensionale Punktdefekte bei hohen Temperaturen oberhalb 1900°C ausgeheilt werden. Die Carburierungstemperatur, bei der das Wolframcarbid gewonnen wurde ist daher wesentlich für die Leistungseigenschaften des Hartmetalls. Der bei Sintertemperatur, typischerweise zwischen 1360 und 1450°C, umgelöste Anteil der Wolframcarbidphase im Hartmetall ist im Hinblick auf diese Leistungseigenschaften dem nicht-umgelösten Anteil qualitativ unterlegen. Eine weitere Versprödung kann dadurch eintreten, daß durch Umlösung aufgewachsene WC-Anteile Bindermetalle im Gitter inkorporiert haben können.
Das Bindermetall wird regelmäßig mit kleinerer Teilchengröße eingesetzt, typischerweise etwa 1 bis 2 µ nach ASTM B 330.
Das Bindermetall wird in einer solchen Menge eingesetzt, daß es ca. 3 bis 25 Gew.-% des Hartmetalls ausmacht.
Vorteilhaft können bis zu 50 % gemahlene, recyklierte sinterfähige Hartmetallpulver mitverwendet werden.
Neben der Auswahl des jeweils geeigneten Hartstoffes (Teilchengröße, Teilchengrößenverteilung, Kristallgefüge) und des Bindermetalls (Zusammensetzung, Menge, Anteil am Hartmetall) sowie der Sinterbedingungen spielt die Herstellung geeigneter Hartmetallmischungen, d.h. die Vermischung von Hartstoff und Binder vor der Versinterung eine überragende Rolle mit Bezug auf die späteren Hartmetalleigenschaften.
Wegen der elektrostatischen Abstoßungskräfte zwischen den feinen Pulverteilchen (dies bedingt immer niedrige Schüttdichten bei feineren Pulvern), der unterschiedlichen Teilchengröße und Dichte sowie der ungünstigen Mengenrelation beider Komponenten scheidet eine Trockenvermischung nach bisherigem Stand der Technik aus. Mit einer trockenen Vermahlung der beiden Komponenten würden zwar die elektrostatischen Abstoßungskräfte zwischen den Teilchen überwunden werden können, jedoch würde dies zu einer Teilchenverkleinerung insbesondere des Hartstoffs führen, bei der sehr viele Feinanteile erzeugt würden. Ferner ist der unvermeindliche Abrieb der Mahlwerkzeuge ein bisher ungelöstes Problem.
Demgemäß hat sich die Naßvermahlung im Attritor oder in einer Kugelmühle unter Verwendung einer organischen Mahlflüssigkeit und unter Einsatz von Mahlkugeln als das industriell angewandte Verfahren zur Herstellung von Hartmetallmischungen durchgesetzt. Durch den Einsatz einer Mahlflüssigkeit werden die elektrostatischen Abstoßungskräfte zusätzlich wirkungsvoll unterdrückt. Zwar gelingt es durch die nasse Mischmahlung im Attritor die Kornzerkleinerung des Hartstoffs in noch vertretbaren Grenzen zu halten, jedoch ist die Mischmahlung ein sehr aufwendiges Verfahren, das einerseits hohen Raumbedarf aufgrund des erforderlichen Volumenverhältnisses von Mahlkörpern zu Mahlgut von etwa 6:1 aufweist und andererseits Mahlzeiten von 4 bis 48 Stunden in Anspruch nimmt. Hinzu kommt das Erfordernis, im Anschluß an die Mischmahlung die Mahlkugeln von der Hartmetallmischung durch Sieben und die organische Mahlflüssigkeit durch Verdampfen abzutrennen. Ein gewisser Mahlabrieb und eine gewisse Kornzerkleinerung ist jedoch auch bei der nassen Mischmahlung in Kauf zu nehmen. Besonders betroffen sind solche WC-Pulver, die bei mindestens 1900°C carburiert wurden, enge Korngrößenverteilung ohne Feinanteil aufweisen und daher ohne Umlösevorgänge in höchstwertige Hartmetalle überführt werden sollen.
Nach einem sehr alten Vorschlag (GB-Patent 346 473) sollen die Probleme der Mischung von Hartstoffen und Bindermetall dadurch gelöst werden, daß die Hartstoffe mit dem Bindermetall elektrolytisch beschichtet werden. Dieses Verfahren hat sich jedoch nicht durchsetzen können. Nach neueren Vorschlägen (US-A 5 505 902 und US-A 5 529 804) wird das Bindermetall, insbesondere Kobalt chemisch auf die Hartstoffteilchen aufgebracht. Dabei werden organische Flüssigphasen eingesetzt, die nicht ohne Einfluß auf den Kohlenstoffhaushalt des Hartmetalls bleiben dürften.
In US-A-4 320 156 wird ein Mischgut zur Herstellung von Hartmetallkörpern durch ein wirbelndes trockenes Fluid fluidisiert und vermischt.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung von Hartmetallmischungen anzugeben, das die Nachteile des Standes der Technik vermeidet, insbesondere technisch weniger aufwendig ist und darüber hinaus aufgrund der Homogenität der Mischung und der Vermeidung von Kornzerkleinerungen des Hartstoffs nach dem Versintern Hartmetalle mit hervorragenden Leistungseigenschaften durch Minimierung des umgelösten Anteils der WC-Phase ergibt.
Die Aufgabe wird vom Verfahren nach Anspruch 1 gelöst.
Es wurde gefunden, daß die Aufgabe dadurch gelöst wird, daß die Vermischung im Nahbereich der Mischungsbestandteile durch Erzeugung hoher scherender Aufprallgeschwindigkeit der Pulverteilchen und im Fernbereich durch Umwälzung des Mischgutes durchgeführt wird.
Auf diese Weise gelingt die trockene Vermischung von Hartstoff- und Bindermetallpulvern ohne Einsatz von Mahlkörpem oder flüssigen Mahlhilfsmitteln oder flüssigen Suspendiermedien im wesentlichen ohne Kornzerkleinerung.
Unter "Vermischung im Nahbereich" wird erfindungsgemäß die Vermischung einer Teilmenge des Mischgutes in sich verstanden, wogegen die Fernbereichsvermischung die Vermischung der Hauptmenge des Mischungsbatches in sich, d.h. der Teilmengen untereinander, bezeichnet.
Das erfindungsgemäße Verfahren besteht also darin, daß einerseits bei der Nahbereichsvermischung unter hohem Eintrag von Mischenergie (bezogen auf die von dem Mischorgan erfaßte Pulvermenge) zur Überwindung der elektrostatischen Abstoßungskräfte der Pulverteilchen untereinander und andererseits bei der Fembereichsvermischung bei niedrigem Energieeintrag zur Homogenisierung der Pulvermischung vermischt wird.
Erfindungsgemäß bevorzugt werden für Nahbereichs- und Fernbereichsvermischung unterschiedliche Mischaggregate eingesetzt.
Die Hauptmenge des Mischgutes befindet sich im Bereich der Fernbereichsvermischung durch Umwälzung des Mischungsbettes. Geeignet sind beispielsweise ein Drehrohr, ein Pflugscharmischer, ein Schaufelmischer oder ein Kegelschneckenmischer.
Eine Teilmenge des Mischungsgutes befindet sich im Bereich der Nahbereichsvermischung, einem hohe gegenseitige Aufprallgeschwindigkeiten erzeugenden Mischaggregat. Für die Nahbereichsvermischung geeignete Aggregate sind insbesondere schnell rotierende Mischorgane. Erfindungsgemäß bevorzugt sind solche mit Umfangsgeschwindigkeiten von 8 bis 25 m/s, insbesondere bevorzugt 12 bis 18 m/s. Vorzugsweise ist das Mischgut zumindest im Bereich der Nahbereichsvermischung in der Gas-Atmosphäre des Mischbehälters fluidisiert, wobei das Gas durch das Mischorgan stark verwirbelt wird und die Pulverteilchen aufgrund der in den Wirbeln herrschenden Schergeschwindigkeiten aufeinanderprallen. Ein geeignetes Mischorgan ist beispielsweise ein mit wandgängigen Rührblättern versehenes schnell laufendes Rührorgan, wobei zwischen Behälterwand und Rührblatt ein Spalt verbleibt, dessen Breite mindestens das 50-fache des Teilchendurchmessers beträgt. Bevorzugt beträgt die Spaltbreite das 100 bis 500-fache der Teilchengröße.
Für die Nahbereichsvermischung ferner geeignete Aggregate sind beispielsweise aus den US-A 3 348 779, US-A 4 747 550, der EP-A 200 003, der EP-A 474 102, der EP-A 645 179 sowie der DE-U 29 515 434 unter der Bezeichnung Mikrowirbelmühle bekannt. Derartige Mühlen bestehen aus einem Stator in Form eines zylindrischen Gehäuses, in dem axial ein Rotor angeordnet ist, der eine oder mehrere auf einer gemeinsamen antreibbaren Achse übereinander angeordnete Kreisscheiben aufweist, wobei die Kreisscheiben auf ihrem Umfang eine Vielzahl von im wesentlichen radial und parallel zur Rotorachse angeordnete Mahlplatten aufweisen, die die Kreisscheiben überragen, wobei ein Spalt zwischen Stator und Mahlplatten verbleibt, der "Scherspalt". Wird der Rotor zu hoher Umdrehungsgeschwindigkeit angetrieben, typischerweise 1000 bis 5000 U/Min., erfahren die in der Mikrowirbelmühle befindlichen gasdispergierten Teilchen aufgrund der dem Gas aufgeprägten Schergeschwindigkeit zwischen Rotor und Stator hohe Beschleunigungskräfte, so daß die Teilchen unter Überwindung der elektrostatischen Abstoßungskräfte aufeinanderprallen. Bei dem Aufprall der Teilchen findet ein Ladungsaustausch bzw. eine dielektrische Umladung statt, so daß die Abstoßungskräfte der Teilchen untereinander nach dem Aufprall aufgehoben bleiben.
Erfindungsgemäß bevorzugt soll der Scherspalt zwischen Rotor und Stator eine lichte Weite aufweisen, die mindestens dem 50-fachen mittleren Durchmesser der Teilchengröße mit dem größeren mittleren Durchmesser, d.h. der Hartstoffteilchen, entspricht. Bevorzugt ist ein Scherspalt mit einer lichten Weite, die dem 100- bis 500-fachen mittleren Durchmesser der Hartstoffteilchen entspricht. Typischerweise kann demgemäß der Scherspalt eine lichte Weite von 0,5 bis 5 mm, vorzugsweise 1 bis 3 mm aufweisen.
Vorzugsweise soll die Schergeschwindigkeit im Scherspalt, ausgedrückt als das Verhältnis von Umfangsgeschwindigkeit des Rotors und Spaltbreite mindestens 800/s, besonders bevorzugt 1000 bis 20.000/s betragen.
Die Verweilzeit bei der Nahbereichsvermischung wird so gewählt, daß die Temperatur der Pulvermischung beim Durchgang durch die Nahbereichsvermischung nicht über 300°C ansteigt. Im Falle, daß in einer sauerstoffhaltigen Atmosphäre, insbesondere Luft, vermischt wird, sind niedrigere Temperaturen bevorzugt um eine Oxidation der Pulverteilchen sicher zu vermeiden. Im Falle, daß die Vermischung in Schutzgasatmosphäre, beispielsweise Argon, erfolgt, sind gegebenenfalls Temperaturen bis 500° zulässig. Typischerweise liegt die Verweilzeit bei der Nahbereichsvermischung im Sekundenbereich.
Die Gesamt-Mischdauer beträgt vorzugsweise 30 bis 90 Minuten, insbesondere bevorzugt mehr als 40 Minuten, und weiter bevorzugt weniger als 1 Stunde.
Nach einer bevorzugten Ausführungsform der Erfindung wird die Pulvermischung zwischen Nahbereichs- und Fernbereichsvermischung rezirkuliert, d.h. Teilmengen der Pulvermischung werden als kontinuierlicher Teilstrom der Fernbereichsvermischung entnommen, der Nahbereichsvermischung zugeführt und wieder in die Fernbereichsvermischung eingeleitet.
Vorzugsweise wird die Umlaufgeschwindigkeit der Pulvermischung durch die Nahbereichsvermischung so gewählt, daß während der Gesamtmischzeit im Mittel mindestens 5 Durchgänge, besonders bevorzugt mindestens 10 Durchgänge jedes Pulverteilchens durch die Nahbereichsvermischung gewährleistet ist.
Bei kontinuierlicher Durchführung des Verfahrens können die beiden Pulverkomponenten bzw. eine Rohmischung der Pulverkomponenten kontinuierlich an einem Ende des Umwälzmischaggregates eingespeist werden und an dem anderen Ende kontinuierlich homogen vermischtes Pulver ausgeschleust werden.
Eine alternative kontinuierliche Durchführung des Verfahrens besteht darin, in einem ersten Umwälzmischaggregat eine Rohmischung der Pulverkomponenten herzustellen, die Rohmischung kontinuierlich aus dem ersten Umwälzmischaggregat zu entnehmen, in die Mikrowirbelmühle einzuschleusen, und anschließend einem zweiten Umwälzmischaggregat zuzuführen, wobei es zweckmäßig sein kann, im Anschluß an das zweite Umwälzmischaggregat eine weitere Nahbereichsvermischung in einer Mikrowirbelmühle und anschließend eine weitere Fernbereichsvermischung in einem Umwälzmischaggregat durchzuführen.
Nach einer weiter bevorzugten Ausführungsform der Erfindung wird das Mischgut sowohl in der Nahbereichs- als auch in der Fernbereichsvermischung fluidisiert. Ein geeignetes Verfahren hierzu weist beispielsweise einen boden- und wandgängigen Rotor mit Scherspalt zur Behälterwand auf, wobei die radialen Rotorblätter gegen die Senkrechte angestellt sind, so daß das fluidisierte Mahlgut in dem Behälter peripher nach oben gefördert wird und zentral nach unten gefördert wird. Vorzugsweise beträgt der Anstellwinkel weniger als 25°, insbesondere bevorzugt 10 bis 20°. Diese Zirkulation des Mischgutes zur Fernbereichsvermischung kann durch einen gegensinnig angestellten koaxialen Rotor mit einem nur auf den halben Behälterquerschnitt begrenzten Durchmesser intensiviert werden. Es wurde gefunden, daß in einem derartigen Aggregat noch hervorragende Hartmetallmischungen erzielt werden, wenn der Behälter bis zu 7 Vol-% mit Mischgut (Gewicht des Mischgutes dividiert durch die Dichte des Pulvermaterials) gefüllt wird.
Vorteilhaft können die für die Weiterverarbeitung der Pulvermischungen von der Hartmetallindustrie eingesetzten Zusatzstoffe wie organische Haftvermittler, Oxidationsverhinderer, Granulatstabilisatoren und/oder Preßhilfsmittel, z.B. auf Paraffinoder Polyethylenglykol-Basis gemeinsam mit dem Hartstoff- und Binderpulver vermischt und homogen verteilt werden. Die Preßhilfsmittel schmelzen aufgrund der während des Mischvorgangs erzeugten Wärme auf, so daß eine gleichmäßige Oberflächenbelegung bewirkt wird. Falls die so erzeugten Mischungen noch keine ausreichende Fließfähigkeit oder Preßfähigkeit aufweisen, kann ein Granulationsschritt nachgeschaltet werden.
Die erfindungsgemäßen Hartmetallmischungen und deren Granulate sind zur Herstellung von Hartmetallformkörpern durch Axialpressen, isostatisches Pressen, Extrusion oder Spritzgießen und Sintern geeignet.
Die Erfindung wird anhand der nachfolgenden Figuren näher erläutert:
Fig. 1
zeigt schematisch eine erste Ausführungsform der Erfindung
Fig. 2
zeigt schematisch eine zweite Ausführungsform der Erfindung
Fig. 3
zeigt schematisch eine dritte Ausführungsform der Erfindung
Fig. 4
zeigt den prinzipiellen Aufbau einer Mikrowirbelmühle als Schnittbild
Fig. 5
zeigt eine erfindungsgemäß geeignete Mischvorrichtung als Schnittbild
Fig. 6.
zeigt eine weitere erfindungsgemäß geeignete Mischvorrichtung.
Fig. 7
zeigt die REM-Aufnahme des in Beispiel 1 eingesetzten Wolframcarbidpulvers
Fig. 8
zeigt die REM-Aufnahme einer Wolframcarbid-/Kobalt-Pulvermischung
Fig. 9
zeigt die REM-Aufnahme des in Beispiel 2 eingesetzten Wolframcarbid
Fig. 10
zeigt die REM-Aufnahme einer Wolframcarbid-/Kobalt-Pulvermischung gemäß Beispiel 2
Fig. 11
zeigt das Schliffbild eines gemäß Beispiel 2 hergestellten Hartmetalls
Fig. 12, 13 und 14
zeigen entsprechende Aufnahmen mit Bezug auf Beispiel 3.
Fig. 1 zeigt schematisch eine Fernbereichsmischeinrichtung A in die die beiden Pulver P1 und P2 kontinuierlich oder diskontinuierlich eingeleitet werden. Aus dem Fernbereichsmischaggregat A wird ständig ein Teilstrom der Pulvermischung in das Nahbereichsmischaggregat B überführt und in das Fembereichsmischaggregat A zurückgeführt. Aus dem Fernbereichsmischaggregat A wird schließlich die fertige Pulvermischung PM kontinuierlich oder diskontinuierlich entnommen.
Fig. 2 zeigt eine insbesondere für die kontinuierliche Ausführung des erfindungsgemäßen Verfahrens geeignete prinzipielle Anordnung. Die Pulver P1 und P2 werden in ein erstes Fernbereichsmischaggregat, insbesondere beispielsweise ein Drehrohr eingeführt. Sie gelangen aus dem Drehrohr in eine erste Mikrowirbelmühle B1 und werden anschließend in ein zweites Fernbereichsmischaggregat A2 überführt. Gegebenenfalls kann eine weitere Nahbereichsvermischung B2 und eine nicht dargestellte Fernbereichsvermischung A3 angeschlossen werden.
Fig. 3 zeigt eine Anordnung, die insbesondere für die diskontinuierliche Batch-Vermischung geeignet ist. Die Mikrowirbelmühle B als Nahbereichsmischorgan ist innerhalb des Fembereichsmischorgans A angeordnet.
Fig. 4 zeigt den Aufbau einer Mikrowirbelmühle 1. Diese besteht aus einem zylindrischen Gehäuse 2, dessen Innenwandung den Stator bildet. Die Innenwand des zylindrischen Gehäuses 2 kann mit abriebfestem Material belegt sein. Innerhalb des zylindrischen Gehäuses 2 ist eine zur Rotation antreibbare Achse vorgesehen, auf der Achse 3 sind eine oder mehrere, insbesondere 2 bis 5, mit der Achse antreibbare Kreisscheiben 4.1, 4.2 und 4.3 vorgesehen, die auf ihrem Umfang je eine Vielzahl von radial und parallel zur Achse 3 angeordnete Mahlplatten 5.1, 5.2 und 5.3 aufweisen. Die Außenkanten der Mahlplatten 5.1, 5.2 und 5.3 bilden gemeinsam mit der Innenwand des zylindrischen Gehäuses 2 den Scherspalt 6 aus. Wird die Mikrowirbelmühle innerhalb eines Fernbereichsmischorgans unterhalb des Füllniveaus angeordnet, weist die Mikrowirbelmühle ferner vorzugsweise eine konische Abdeckung 7 auf, die mit Öffnungen 8 versehen ist, durch die das rieselfähige Pulver gut in das zylindrische Gehäuse 2 einrieselt. Eine zusätzliche, mit der Achse 3 versehene Kreisscheibe 9 kann als Verteilerplatte vorgesehen sein.
Fig. 5 zeigt eine erfindungsgemäß einsetzbare Vorrichtung, wie sie schematisch in Fig. 3 dargestellt ist. Diese besteht aus einer Mischtrommel 10, die über die Achse 11 zur Rotation mit geringer Rotationsgeschwindigkeit, beispielsweise 1 bis 2 Umdrehungen pro Minute, antreibbar ist. Die Trommel ist durch die nicht mitrotierende Abdeckkappe 12 verschlossen. Innerhalb der Trommel 10 befindet sich die Mikrowirbelmühle 1, wie in Fig. 4 dargestellt. Innerhalb der Trommel 10 können femer Leitbleche 13 angeordnet sein. Das Füllniveau der Trommel 10 ist durch die strichlierte Linie 14 angedeutet. Das erfindungsgemäße Verfahren besteht nun darin, daß die Pulvermischung kontinuierlich durch die Öffnungen 8 in die Mikrowirbelmühle 1 eintritt, wo die Nahbereichsvermischung stattfindet, und durch den unten offenen Zylinder in die Fernbereichsvermischung zurückgeführt wird.
Fig. 6 zeigt eine erfindungsgemäß einsetzbare Vorrichtung, in der das Mischgut sowohl bei der Nahbereichsvermischung als auch bei der Fernbereichsvermischung fluidisiert ist. In dem Behälter 10 befindet sich auf einer antreibbaren Achse 3 ein boden- und wandgängiger Rotor mit 4 Rotorblättern 5a, 5b, 5c und 5d, die zur Behälterwand den Scherspalt 6 bilden. Die Rotorblätter sind um den Winkel α=23° gegen die zur Rotorachse senkrechte Ebene angestellt. Oberhalb des Rotors 5 ist ein gegensinnig angestellter Rotor 20 auf der Achse 3 vorgesehen, dessen Durchmesser etwa dem halben Behälterdurchmesser entspricht.
Bei Rotation der Achse 3 in Richtung des Pfeiles 21 wird das Mischgut fluidisiert und zusätzlich zur Rotation um die Achse 3 wie durch Pfeil 22 umgewälzt. Eine Teilmenge des fluidisierten Mischgutes gelangt in den Scherspalt 6, wo die hohe Schergeschwindigkeit des Fluids eine starke Teilchenbeschleunigung bewirken.
Die Erfindung wird anhand der nachfolgenden Beispiele näher erläutert:
Beispiel 1
Es werden 13,6 kg eines Kobaltpulvers mit einer mittleren Korngröße von 1,55 µm (FSSS, ASTM B 330) und 122,4 kg eines leicht agglomerisierten Wolframcarbidpulvers einer mittleren Korngröße von 3 µm (FSSS, ASTM B 330) in ein prinzipiell in Fig. 5 dargestelltes Mischaggregat eingefüllt. Fig. 7 zeigt eine REM-Aufnahme des Wolframcarbindpulvers vor der Vermischung.
Nach 20, 30 und 40 Minuten Mischzeit werden jeweils Proben der Pulvermischung entnommen. Fig. 8 zeigt eine REM-Aufnahme der nach 40 Minuten Mischzeit erhaltenen Pulvermischung. Der Sauerstoffgehalt vor der Vermischung beträgt 0,068 Gew.-%, nach der Mischung 0,172 Gew.-%.
Die Proben werden durch Pressen und nachfolgendes Sintern bei 1380°C über 45 Minuten zu Hartmetall-Testkörpern verarbeitet.
Zum Vergleich wird eine entsprechende Pulvermischung in einer Kugelmühle 20 Stunden mit Hexan gemahlen. Aus der Vergleichs-Pulvermischung wird in gleicher weise ein Hartmetall-Testkörper hergestellt.
An den Hartmetall-Testkörpern werden die Dichte in g/cm3, die magnetische Koerzitivkraft HC in kA/m, die magnetische Sättigung in µTm3/kg (jeweils mit Foerster Koerzinat 1.096), die Härte nach Vickers bei 30 kg Last in kg/mm2 sowie die A-Porosität nach ISO 4505 gemessen. Die Ergebnisse sind in Tabelle 1 dargestellt.
Beispiel 2
11,9 kg eines Kobaltmetallpulvers mit einer mittleren Körngröße von 1,5 µm und 122,4 kg eines leicht agglomerierten Wolframcarbidpulvers mit einer mittleren Korngröße von 6 µm (FSSS, ASTM B 330) werden wie in Beispiel 1 vermischt. Der Sauerstoffgehalt vor der Vermischung beträgt 0,058 Gew.-%, nach 40 Minuten Mischzeit 0,109 Gew.-%.
Ferner wird eine Vergleichsmischung (Beispiel 2f) in einer Kugelmühle wie in Beispiel 1 hergestellt.
Fig. 9 zeigt eine REM-Aufnahme des Ausgangs-Wolframcarbidpulvers. Fig. 10 zeigt die Pulvermischung nach 30 Minuten Mischzeit.
Hartmetallproben werden wie in Beispiel 1 hergestellt. Die erhaltenen Testwerte sind in Tabelle 1 dargestellt.
Fig. 11 zeigt die Schliffaufnahme eines Hartmetalls nach Beispiel 2d).
Beispiel 3
13 kg eines Kobaltmetallpulvers mit einer mittleren Korngröße von 1,55 µm, 117 kg eines weniger agglomerierten Wolframcarbidpulvers (Fig. 12) werden wie in Beispiel 1 vermischt. Fig. 13 zeigt eine REM-Aufnahme der erhaltenen Pulvermischung. Der Sauerstoffgehalt vor der Vermischung beträgt 0,065 Gew.-%, nach der Vermischung 0,088 Gew.-%.
Fig. 14 zeigt ein Schliffbild des wie in Beispiel 1 hergestellten Hartmetalls. Die Hartmetall-Testergebnisse sind in Tabelle 1 dargestellt.
Bsp. Mischzeit
(min)
Dichte
(g/cm3)
Hc
(kA/m)
4πσ
(µTm3/kg)
HV30
(kg/mm2)
A-Porosität
ISO 4505
1a 20 14,47 9,4 18,8 1226 Besser A02
1b 30 14,52 9,2 18,1 1274 Besser A02
1c 40 14,58 9,4 18,7 1311 Besser A02
1d 1200
(Vgl.)
14,52 10,4 18,4 1345 Besser A02
2a 10 14,56 6,7 18,8 1198 Besser A02
2b 15 14,56 6,7 18,7 1203 Besser A02
2c 20 14,51 6,4 17,8 1190 Besser A02
2d 30 14,55 6,5 18,1 1203 Besser A02
2e 40 14,59 6,5 18,5 1203 Besser A02
2f 1200
(Vgl.)
14,55 7,3 18,0 1261 Besser A02
3 40 14,51 6,9 18,6 1203 Besser A02
Beispiel 4
2,6 kg Kobaltmetallpulver 1 µm FSSS nach ASTM B 330, 23,26 kg WC 0,6 µm FSSS (nach ASTM B 330), und 0,143 kg Cr3C2 1,6 µm nach ASTM B 330 sowie 375 g Paraffinwachs mit Schmelzpunkt 54°C werden in einem Mischer (gemäß Fig. 6) bei 1000 U/min. solange gemischt, bis eine Temperatur von 80°C erreicht ist. die so erhaltene Hartmetallmischung wird mit 1,5 to/cm2 zu Probekörpern gepreßt. Diese werden in einem Sinter-Ofen zunächst entwachst und dann bei 1380°C für 45 min. bei einem Druck von 25 bar gesintert. Das erhaltene Hartmetal hat eine Dichte von 14,45 g/cm3, eine Koerzitivkraft von 20,7 kA/m, eine magnetische Sättigung von 15.14 µT m3/kg, eine Vickershärte von HV = 1603 kg/mm2 und eine Restporosität besser A02 B00 C00. Das Hartmetall weist ein gutes Gefüge und eine gute Binderverteilung auf.
Beispiel 5
2,57 kg Kobaltmetallpulver 1 µm FSSS nach ASTM B 330; 26 kg WC 6 µm FSSS nach ASTM B 330 werden wie in Beispiel 4 solange gemischt, bis eine Temperatur von 80°C erreicht war. Die so erhaltene Hartmetallmischung wird mit 1,5 t/cm2 zu Probekörpern gepreßt und anschließend bei 1400°C für 45 min. im Vakuum gesintert. Das erhaltene Hartmetall hat eine Dichte von 14,65 g/cm3, eine Koerzitivkraft von 5,5 kA/m, eine magnetische Sättigung von 17,11 µTm3/kg, eine Vickershärte von HV30 = 1181 kg/mm3 und eine Restporosität von A00 B00 C00. Das Hartmetall weist ein gutes Gefüge und eine gute Binderverteilung auf.

Claims (10)

  1. Verfahren zur Herstellung einer homogenen Mischung eines aus Hartstoffund Bindermetallpulvern bestehenden Mischgutes ohne Einsatz von Mahlkörpern und flüssigen Mahlhilfsmitteln und Suspendiermedien, dadurch gekennzeichnet, dass eine Teilmenge des Mischgutes in sich unter Erzeugung hoher scherender Aufprallgeschwindigkeit der Pulverteilchen in einem mit Rotor- und Statorelementen ausgerüsteten Behälter mit Scherspalt zwischen den Elementen gemischt wird und die Hauptmenge des Mischungsgutes durch Umwälzung des Mischgutes vermischt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Teilmenge des Mischgutes bei der Vermischung in sich fluidisiert ist und die hohe Aufprallgeschwindigkeit durch Verwirbelung des Fluids erzeugt wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Scherspalt eine lichte Weite aufweist, die mindestens dem 50-fachen mittleren Durchmesser der Teilchensorte mit dem größeren mittleren Durchmesser entspricht.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verhältnis aus Relativgeschwindigkeit von Rotor und Stator zu Scherspaltweite mindestens 800/s beträgt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Rotor eine Umfangsgeschwindigkeit von 12 bis 20 m/s aufweist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Vermischung der Hauptmenge des Mischgutes in einem gerührten Behälter mit langsam drehenden Rührelementen erfolgt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Mischgut sowohl bei der Vermischung der Teilmenge in sich, als auch bei der Vermischung der Hauptmenge des Mischungsgutes fluidisiert ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Gesamtmischzeit weniger als 1 h dauert.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Mischgut zusätzlich Presshilfsmittel enthält.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Pulvermischung granuliert wird.
EP00904876A 1999-01-15 2000-01-05 Verfahren zur herstellung von hartmetallmischungen Expired - Lifetime EP1153150B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19901305 1999-01-15
DE19901305A DE19901305A1 (de) 1999-01-15 1999-01-15 Verfahren zur Herstellung von Hartmetallmischungen
PCT/EP2000/000043 WO2000042230A1 (de) 1999-01-15 2000-01-05 Verfahren zur herstellung von hartmetallmischungen

Publications (2)

Publication Number Publication Date
EP1153150A1 EP1153150A1 (de) 2001-11-14
EP1153150B1 true EP1153150B1 (de) 2002-11-27

Family

ID=7894317

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00904876A Expired - Lifetime EP1153150B1 (de) 1999-01-15 2000-01-05 Verfahren zur herstellung von hartmetallmischungen

Country Status (15)

Country Link
US (1) US6626975B1 (de)
EP (1) EP1153150B1 (de)
JP (1) JP2002534613A (de)
KR (1) KR100653810B1 (de)
CN (1) CN1114706C (de)
AT (1) ATE228579T1 (de)
AU (1) AU2662200A (de)
CZ (1) CZ20012376A3 (de)
DE (2) DE19901305A1 (de)
HK (1) HK1044356B (de)
IL (1) IL143869A0 (de)
PL (1) PL191783B1 (de)
PT (1) PT1153150E (de)
WO (1) WO2000042230A1 (de)
ZA (1) ZA200105109B (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ502032A (en) * 2000-04-23 2002-08-28 Ind Res Ltd Particulate solid material blender with rotatable closable bin having internal baffle
WO2006003872A1 (ja) * 2004-06-30 2006-01-12 Tdk Corporation 希土類焼結磁石用原料粉体の製造方法、希土類焼結磁石の製造方法、顆粒及び焼結体
DE102005031459A1 (de) * 2005-07-04 2007-01-11 Vitzthum, Frank, Dr. Vorrichtung und Verfahren zur Rotor-Stator-Homogenisation
EP1951921A2 (de) * 2005-10-11 2008-08-06 Baker Hughes Incorporated System, verfahren und vorrichtung zur erhöhung der dauerhaftigkeit von erdbohrern
DE102006043581B4 (de) * 2006-09-12 2011-11-03 Artur Wiegand Verfahren und Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung
CN100436065C (zh) * 2006-11-04 2008-11-26 燕山大学 一种超硬磨具结合剂的处理方法
SE533922C2 (sv) * 2008-12-18 2011-03-01 Seco Tools Ab Sätt att tillverka hårdmetallprodukter
US9127335B2 (en) * 2009-04-27 2015-09-08 Sandvik Intellectual Property Ab Cemented carbide tools
EA024836B1 (ru) * 2012-12-20 2016-10-31 Государственное Научное Учреждение "Физико-Технический Институт Национальной Академии Наук Беларуси" Способ вакуумного нанесения металлического покрытия на частицы порошка абразивного материала
GB2529449B (en) * 2014-08-20 2016-08-03 Cassinath Zen A device and method for high shear liquid metal treatment
CN115109960A (zh) * 2021-03-19 2022-09-27 广东金鑫得新材料有限公司 一种无磁镍基硬质合金的快速制备方法
CN117858755A (zh) * 2021-12-20 2024-04-09 瓦克化学股份公司 使细颗粒与气相在搅拌床反应器中接触

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB346473A (en) 1930-01-18 1931-04-16 Firth Sterling Steel Co Improvements in and relating to methods of making compositions of matter having cutting or abrading characteristics
US3348779A (en) 1964-10-02 1967-10-24 Norwood H Andrews Method and apparatus for comminuting materials
US4320156A (en) * 1981-01-12 1982-03-16 Gte Products Corporation Intimate mixtures of refractory metal carbides and a binder metal
DE3515318A1 (de) 1985-04-27 1986-10-30 Draiswerke Gmbh, 6800 Mannheim Stiftmuehle fuer mischer
DE3543370A1 (de) 1985-12-07 1987-06-11 Jackering Altenburger Masch Muehle mit mehreren mahlstufen
US4886638A (en) 1989-07-24 1989-12-12 Gte Products Corporation Method for producing metal carbide grade powders
US4902471A (en) 1989-09-11 1990-02-20 Gte Products Corporation Method for producing metal carbide grade powders
DE4028108C1 (de) 1990-09-05 1992-05-27 Imcatec-Gmbh Maschinen Fuer Die Verfahrenstechnik, 6800 Mannheim, De
US5007957A (en) 1990-09-10 1991-04-16 Gte Products Corporation Method for producing tungsten carbide grade powders suitable for isostatic compaction
US5045277A (en) 1990-09-10 1991-09-03 Gte Products Corporation Method of producing metal carbide grade powders and controlling the shrinkage of articles made therefrom
SE9101386D0 (sv) * 1991-05-07 1991-05-07 Sandvik Ab Sintrad karbonitridlegering med foerbaettrad slit- styrka
DE4332977A1 (de) 1993-09-28 1995-03-30 Draiswerke Gmbh Reib-Mühle und deren Verwendung
SE504244C2 (sv) 1994-03-29 1996-12-16 Sandvik Ab Sätt att tillverka kompositmaterial av hårdämnen i en metallbindefas
SE502754C2 (sv) 1994-03-31 1995-12-18 Sandvik Ab Sätt att framställa belagt hårdämnespulver
DE29515434U1 (de) 1995-09-27 1995-11-23 Mahltechnik Görgens GmbH, 41541 Dormagen Micro-Wirbel-Mühle
SE518810C2 (sv) 1996-07-19 2002-11-26 Sandvik Ab Hårdmetallkropp med förbättrade högtemperatur- och termomekaniska egenskaper
SE509616C2 (sv) * 1996-07-19 1999-02-15 Sandvik Ab Hårdmetallskär med smal kornstorleksfördelning av WC
SE509609C2 (sv) 1996-07-19 1999-02-15 Sandvik Ab Hårdmetallkropp med två kornstorlekar av WC
SE9603936D0 (sv) 1996-10-25 1996-10-25 Sandvik Ab Method of making cemented carbide by metal injection molding
SE9704847L (sv) 1997-12-22 1999-06-21 Sandvik Ab Sätt att framställa ett metallkompositmaterial innehållande hårda partiklar och bindemetall
US5922978A (en) 1998-03-27 1999-07-13 Omg Americas, Inc. Method of preparing pressable powders of a transition metal carbide, iron group metal or mixtures thereof
SE9802519D0 (sv) 1998-07-13 1998-07-13 Sandvik Ab Method of making cemented carbide
US6245288B1 (en) 1999-03-26 2001-06-12 Omg Americas, Inc. Method of preparing pressable powders of a transition metal carbide, iron group metal of mixtures thereof

Also Published As

Publication number Publication date
HK1044356B (zh) 2004-04-02
PT1153150E (pt) 2003-04-30
DE50000822D1 (de) 2003-01-09
ZA200105109B (en) 2002-06-21
CN1114706C (zh) 2003-07-16
AU2662200A (en) 2000-08-01
US6626975B1 (en) 2003-09-30
WO2000042230A1 (de) 2000-07-20
KR20010089830A (ko) 2001-10-08
ATE228579T1 (de) 2002-12-15
DE19901305A1 (de) 2000-07-20
CN1336962A (zh) 2002-02-20
KR100653810B1 (ko) 2006-12-05
CZ20012376A3 (cs) 2002-05-15
IL143869A0 (en) 2002-04-21
HK1044356A1 (en) 2002-10-18
PL349919A1 (en) 2002-10-07
JP2002534613A (ja) 2002-10-15
EP1153150A1 (de) 2001-11-14
PL191783B1 (pl) 2006-07-31

Similar Documents

Publication Publication Date Title
DE69231381T2 (de) Verfahren zur herstellung zementierter karbidartikel
DE60000522T2 (de) Verfahren zur Herstellung von einem zementierten Submicron-Karbid mit erhöhter Zähigkeit
EP1153150B1 (de) Verfahren zur herstellung von hartmetallmischungen
EP1373585B2 (de) Verfahren zur herstellung eines hartmetallansatzes
DE3785806T2 (de) Zaehes hartmetall und verfahren zu seiner herstellung.
DE3239718A1 (de) Sinter-schnellarbeitsstahl und verfahren zu seiner herstellung
DE102005001198A1 (de) Metallische Pulvermischungen
WO2005007327A2 (de) Verfahren zur herstellung feiner metall-, legierungs- und verbundpulver
DE10135790A1 (de) Feinkörniges Sinterhartmetall, Verfahren zu seiner Herstellung und Verwendung
WO2018050474A1 (de) Neuartiges wolframcarbidpulver und dessen herstellung
DE102006043581B4 (de) Verfahren und Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung
DE3806602A1 (de) Hartmetallkoerper
DE69320633T2 (de) Gesinterte karbonitridlegierung auf titanbasis mit extrem feiner korngrösse mit hoher zähigkeit und/oder verschleissfestigkeit
EP2424672B1 (de) Mahlverfahren für pulvermischungen mit cermet oder zementiertem karbid
DE19640788C1 (de) Beschichtungspulver und Verfahren zu seiner Herstellung
DE68927586T2 (de) Cermet und dessen Herstellungsverfahren
DE69303998T2 (de) Gesinterte Karbonitridlegierung und Verfahren zu ihrer Herstellung
EP0209179B1 (de) Verfahren zur Herstellung eines mechanisch legierten Verbundpulvers
EP2046521A1 (de) Metallische pulvermischungen
EP0377170B1 (de) Verfahren zur Herstellung feinkörniges Polyetherketonpulvers und dessen Verwendung
EP1215249B1 (de) Perlruss
DE202007012740U1 (de) Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung sowie hierbei verwendbare Dispergiermaschine
EP0471048A1 (de) Halbzeug aus kupfer oder einer kupferlegierung mit kohlenstoffzusatz
DE3830111C2 (de)
DE2338285C3 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20011112

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20021127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021127

REF Corresponds to:

Ref document number: 228579

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030105

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50000822

Country of ref document: DE

Date of ref document: 20030109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030227

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20030226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030529

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030828

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: H.C. STARCK GMBH & CO. KG

Free format text: H.C. STARCK GMBH#IM SCHLEEKE 78-91#38642 GOSLAR (DE) -TRANSFER TO- H.C. STARCK GMBH & CO. KG#IM SCHLEEKE 78-91#38642 GOSLAR (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: H.C. STARCK GMBH

Free format text: H.C. STARCK GMBH & CO. KG#IM SCHLEEKE 78-91#38642 GOSLAR (DE) -TRANSFER TO- H.C. STARCK GMBH#IM SCHLEEKE 78-91#38642 GOSLAR (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: H.C. STARCK GMBH

Free format text: H.C. STARCK GMBH#IM SCHLEEKE 78-91#38642 GOSLAR (DE) -TRANSFER TO- H.C. STARCK GMBH#IM SCHLEEKE 78-91#38642 GOSLAR (DE)

BECA Be: change of holder's address

Owner name: H.C. STARCK G.M.B.H.IM SCHLEEKE 78-91, D-38642 GOS

Effective date: 20090923

BECH Be: change of holder

Owner name: H.C. STARCK G.M.B.H.

Effective date: 20090923

BECN Be: change of holder's name

Owner name: H.C. STARCK G.M.B.H.

Effective date: 20090923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20120110

Year of fee payment: 13

Ref country code: FR

Payment date: 20120202

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20120102

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120112

Year of fee payment: 13

Ref country code: FI

Payment date: 20120111

Year of fee payment: 13

Ref country code: BE

Payment date: 20120117

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20111229

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130102

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130110

Year of fee payment: 14

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20130705

BERE Be: lapsed

Owner name: H.C. STARCK G.M.B.H.

Effective date: 20130131

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 228579

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130105

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130106

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130705

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130105

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20160113

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160111

Year of fee payment: 17

Ref country code: DE

Payment date: 20151229

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50000822

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170105