DE102017116272A1 - Verfahren und anlage zur herstellung eines ausgangsmaterials für die herstellung von seltenerdmagneten - Google Patents

Verfahren und anlage zur herstellung eines ausgangsmaterials für die herstellung von seltenerdmagneten Download PDF

Info

Publication number
DE102017116272A1
DE102017116272A1 DE102017116272.0A DE102017116272A DE102017116272A1 DE 102017116272 A1 DE102017116272 A1 DE 102017116272A1 DE 102017116272 A DE102017116272 A DE 102017116272A DE 102017116272 A1 DE102017116272 A1 DE 102017116272A1
Authority
DE
Germany
Prior art keywords
rare earth
intermediate product
starting material
production
powdery intermediate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102017116272.0A
Other languages
English (en)
Inventor
Frank Winter
Hermann Sickel
Wilhelm Fernengel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netzsch Trockenmahltechnik GmbH
Original Assignee
Netzsch Trockenmahltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netzsch Trockenmahltechnik GmbH filed Critical Netzsch Trockenmahltechnik GmbH
Priority to DE102017116272.0A priority Critical patent/DE102017116272A1/de
Priority to CN201810735630.1A priority patent/CN109277577A/zh
Priority to DK18182618.1T priority patent/DK3431209T3/da
Priority to LTEP18182618.1T priority patent/LT3431209T/lt
Priority to EP18182618.1A priority patent/EP3431209B1/de
Priority to EP23190243.8A priority patent/EP4268995A1/de
Priority to FIEP18182618.1T priority patent/FI3431209T3/fi
Priority to SI201831039T priority patent/SI3431209T1/sl
Priority to ES18182618T priority patent/ES2966804T3/es
Priority to PL18182618.1T priority patent/PL3431209T3/pl
Priority to RU2018125682A priority patent/RU2706258C1/ru
Priority to US16/035,154 priority patent/US11660639B2/en
Publication of DE102017116272A1 publication Critical patent/DE102017116272A1/de
Priority to US18/300,948 priority patent/US20230271224A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/003Separation of articles by differences in their geometrical form or by difference in their physical properties, e.g. elasticity, compressibility, hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/04Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices according to size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C2015/002Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs combined with a classifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/025Making ferrous alloys by powder metallurgy having an intermetallic of the REM-Fe type which is not magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines pulverförmigen und zur Fertigung von Seltenerd-Magneten vorgesehenen Ausgangsmaterials (AM). Das Verfahren umfasst folgende Schritte:
- Zerkleinern einer mindestens ein Seltenerdmetall umfassenden Legierung, wobei aus der einen mindestens ein Seltenerdmetall umfassenden Legierung ein pulverförmiges Zwischenprodukt (ZP) entsteht und
- Durchführen mindestens einer auf Partikelgröße und/oder Dichte ausgerichteten Klassierung für das pulverförmige Zwischenprodukt (ZP), wobei eine mittels der mindestens einen Klassierung gebildete Fraktion des pulverförmigen Zwischenproduktes (ZP) das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial (AM) ausbildet.
Es ist zudem wenigstens ein dynamischer Sichter vorgesehen, welcher wenigstens eine dynamische Sichter wenigstens eine auf Partikelgröße und/oder Dichte ausgerichtete Klassierung für das pulverförmige Zwischenprodukt (ZP) umsetzt und hierbei die Fraktion aus dem pulverförmigen Zwischenprodukt (ZP) abtrennt, welche das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial (AM) ausbildet.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Ausgangsmaterials für die Herstellung von Seltenerd- Magneten, ein Ausgangsmaterial und eine Anlage zur Herstellung eines Ausgangsmaterials für die Herstellung von Seltenerd- Magneten.
  • Stand der Technik
  • Ein Dauermagnet (auch: Permanentmagnet) ist ein Stück eines magnetisierbaren Materials, zum Beispiel Eisen, Kobalt oder Nickel, welches sein statisches Magnetfeld behält, ohne dass man (im Gegensatz zu Elektromagneten) einen elektrischen Stromfluss benötigt. Ein Dauermagnet kann durch die Einwirkung eines Magnetfeldes auf ein ferromagnetisches Material erzeugt werden.
  • Unter dem Namen Seltenerd- Magnete fasst man eine Gruppe von Permanentmagneten zusammen, die im Wesentlichen aus Eisenmetallen (Eisen, Cobalt, seltener Nickel) und Seltenerdmetallen (insbesondere Neodym, Samarium, Praseodym, Dysprosium, Terbium, Gadolinium) bestehen. Sie zeichnen sich dadurch aus, dass sie gleichzeitig eine hohe magnetische Remanenzflussdichteund eine hohe magnetische Koerzitivfeldstärke und damit eine hohe magnetische Energiedichte aufweisen.
  • Eine Legierung aus Neodym, Eisen und Bor (NdFeB) ermöglicht beispielsweise die Herstellung von sehr starken Magneten zu verhältnismäßig günstigen Kosten. Die Herstellung erfolgt über pulvermetallurgische Verfahren, heute aber teilweise auch als kunststoffgebundene Magnete. Lange Zeit waren die Einsatztemperaturen auf 60-120 °C begrenzt. Bei einigen neueren Entwicklungen mit weiteren Zusätzen anderer Seltenerdelemente, insbesondere Dysprosium oder Terbium, kann die Temperaturstabilität auf über 200 °C angehoben werden. Zur Erhöhung der Korrosionsstabilität werden oft andere Legierungsbestandteile wie Kobalt hinzulegiert.
  • Permanentmagnete werden aus kristallinem Pulver hergestellt. Das Magnetpulver wird in Gegenwart eines starken Magnetfelds in eine Form gepresst. Dabei richten sich die Kristalle mit ihrer bevorzugten Magnetisierungsachse in Richtung des Magnetfelds aus. Die Presslinge werden anschließend gesintert. Beim Sintern werden die pulverisierten Bestandteile des Pulvers durch Erwärmung miteinander verbunden oder verdichtet, wobei jedoch keine oder zumindest nicht alle Ausgangsstoffe aufgeschmolzen werden. Dabei werden die Presslinge - oft unter erhöhtem Druck - derart erhitzt, dass die Temperaturen unterhalb der Schmelztemperatur der Hauptkomponenten bleiben, so dass die Gestalt (Form) des Werkstückes erhalten bleibt.
  • Bei der oberhalb von 1000 C liegenden Sintertemperatur geht die nach außen hin wirksame Magnetisierung verloren, weil die thermische Bewegung der Atome zur weitestgehend antiparallelen Ausrichtung der Elementarmagnete in den Kristallen führt. Da die Orientierung der Körner im Sinterverbund jedoch nicht verloren geht, kann die Parallelausrichtung der Elementarströme nach dem Abkühlen der Magnete durch einen ausreichend starken Magnetisierungsimpuls wiederhergestellt werden.
  • Die Herstellung des Magnetpulvers erfolgt insbesondere durch Vermahlen der entsprechenden Legierungen bzw. Bestandteile beispielsweise in Fließbettstrahlmühlen oder ähnlichen Mahlanlagen. In Fließbettstrahlmühlen erfolgt insbesondere eine definierte Feinstvermahlung, zwar mit exakter Oberkornbegrenzung, jedoch mit nicht unerheblichem Anteil an Feinstpartikeln. Die Zerkleinerungsenergie wird hierbei durch Gasstrahlen bereitgestellt.
  • Die Praxis hat gezeigt, dass Magnetpulver, welche mittels der aus dem Stand der Technik bekannten Verfahren hergestellt werden können, chemisch sehr reaktiv sind und aus diesem Grunde bereits bei geringen Sauerstoffkonzentrationen mit dem Sauerstoff oder Stickstoff aus der Umgebung reagieren. Hierdurch können mit einer Weiterverarbeitung des Magnetpulvers Pulverbrände einhergehen. Auch hat die Praxis gezeigt, dass sich Magnete, die mittels aus dem Stand der Technik bekannten Magnetpulvern hergestellt werden, häufig nur sehr schlecht orientierten lassen, wodurch die Remanenz der aus den bereits bekannten Magnetpulvern hergestellten Magnete verschlechtert wird. Solche Nachteile können insbesondere mit bzw. bei einem hohen Volumenprozentsatz an Feinanteilen im Magnetpulver einhergehen.
  • Weiter kann es sein, dass aus den bereits aus dem Stand der Technik bekannten Magnetpulvern hergestellte Magnete aufgrund eines hohen Volumenprozentsatzes an Grobanteil eine verbesserungswürdige Gegenfeldstabilität bzw. Koerzitivfeldstärke besitzen.
  • Beschreibung
  • Die Aufgabe der Erfindung besteht darin, die Herstellung des Ausgangsgemisches zur Herstellung von Seltenerd- Magneten weiter zu optimieren, um damit verbesserte Seltenerd- Magneten herstellen zu können.
  • Die obige Aufgabe wird durch die Gegenstände mit den Merkmalen in den unabhängigen Ansprüchen gelöst. Weitere vorteilhafte Ausgestaltungen werden durch die Unteransprüche beschrieben.
  • Die Erfindung betrifft ein Verfahren zur Herstellung eines pulverförmigen und zur Fertigung von Seltenerd-Magneten vorgesehenen Ausgangsmaterials.
  • Ein erster Schritt des Verfahrens sieht ein Zerkleinern einer mindestens ein Seltenerdmetall umfassenden Legierung vor, wobei aus der einen mindestens ein Seltenerdmetall umfassenden Legierung ein pulverförmiges Zwischenprodukt entsteht.
  • Ein weiterer Schritt sieht ein Durchführen mindestens einer auf Partikelgröße und/oder Dichte ausgerichteten Klassierung für das pulverförmige Zwischenprodukt vor, wobei eine mittels der mindestens einen Klassierung gebildete Fraktion des pulverförmigen Zwischenproduktes das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet.
  • Für das Verfahren ist wenigstens ein dynamischer Sichter vorgesehen, welcher wenigstens eine dynamische Sichter wenigstens eine auf Partikelgröße und/oder Dichte ausgerichtete Klassierung für das pulverförmige Zwischenprodukt umsetzt und hierbei die Fraktion aus dem pulverförmigen Zwischenprodukt abtrennt, welche das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet.
  • In bevorzugten Ausführungsformen kann vorgesehen sein, dass das pulverförmige Zwischenprodukt mindestens einem statischen Sichter zugeführt wird. Hierauf folgend kann ein mittels des mindestens einen statischen Sichters aus dem pulverförmigen Zwischenprodukt abgetrennter Anteil dem wenigstens einen dynamischen Sichter zugeführt werden, welcher wenigstens eine dynamische Sichter die wenigstens eine auf Partikelgröße und/oder Dichte ausgerichtete Klassierung für den mittels des mindestens einen statischen Sichters aus dem pulverförmigen Zwischenprodukt abgetrennten Anteil umsetzt und hierbei die Fraktion aus dem Anteil abtrennt, welche das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet.
  • Auch kann es sein, dass der wenigstens eine dynamische Sichter das pulverförmige Zwischenprodukt sichtet und zudem dispergiert, woraus resultierend die Fraktion aus dem pulverförmigen Zwischenprodukt abgetrennt wird, welche das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet.
  • Vorstellbar ist darüber hinaus, dass im Rahmen einer ersten auf Partikelgröße und/oder Dichte ausgerichteten Klassierung der wenigstens eine dynamische Sichter Grobgut aus dem pulverförmigen Zwischenprodukt abtrennt und dass im Rahmen einer zweiten auf Partikelgröße und/oder Dichte ausgerichteten Klassierung der wenigstens eine dynamische Sichter Feingut aus dem pulverförmigen Zwischenprodukt abtrennt. Hierbei kann ein vom Feingut und Grobgut abgetrennter Anteil des pulverförmigen Zwischenproduktes die Fraktion bereitstellen, welche das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet.
  • Es haben sich Ausführungsformen bewährt, bei welchen die erste auf Partikelgröße und/oder Dichte ausgerichtete Klassierung und die zweite auf Partikelgröße und/oder Dichte ausgerichtete Klassierung über genau einen dynamischen Sichter durchgeführt werden. Weiter kann die mindestens ein Seltenerdmetall umfassende Legierung in zwei voneinander getrennten Schritten jeweils vorzugsweise mechanisch zerkleinert werden, wobei aus den Zerkleinerungen in getrennten Schritten das pulverförmige Zwischenprodukt entsteht.
  • Es kann sein, dass der wenigstens eine dynamische Sichter die wenigstens eine auf Partikelgröße und/oder Dichte ausgerichtete Klassierung für das pulverförmige Zwischenprodukt unter Schutzgasatmosphäre umsetzt.
  • Die Erfindung betrifft zudem ein zur Fertigung von Seltenerd-Magneten vorgesehenes Ausgangsmaterial, welches durch ein Verfahren gemäß einer der vorhergehend beschriebenen Ausführungsformen hergestellt wurde. Bei dem erfindungsgemäßen Ausgangsmaterial liegt ein Anteil an Partikeln > 8µm bei ≤ 2 Volumenprozent, insbesondere in einem Bereich zwischen 0,1 Volumenprozent und 1 Volumenprozent und/oder ein Anteil an Partikeln < 2 µm bei ≤ 2 Volumenprozent und insbesondere in einem Bereich zwischen 0,05 Volumenprozent und 2 Volumenprozent.
  • Die Erfindung betrifft darüber hinaus ein Verfahren zur Fertigung von Seltenerd-Magneten. Das Verfahren umfasst folgende Schritte:
    • - Herstellen eines Ausgangsmaterials mittels eines Verfahrens gemäß einem Ausführungsbeispiel der vorhergehenden Beschreibung,
    • - Einbringen des Ausgangsmaterials in Formen und Verpressen des Ausgangsmaterials in den Formen, wobei Rohlinge aus dem Ausgangsmaterial entstehen,
    • - Sintern der Rohlinge und Beaufschlagen gesinterten Rohlinge mit einem Magnetisierungsimpuls, so dass hieraus resultierend die gesinterten und mit einem Magnetisierungsimpuls beaufschlagten Rohlinge als Seltenerd-Magnete ausgebildet sind, optional können die Rohlinge einer mechanischen Bearbeitung unterzogen werden.
  • Es kann zudem sein, dass mittels des beschriebenen Verfahrens zur Fertigung von Seltenerd-Magneten ein Ausgangsmaterial gemäß vorheriger Beschreibung hergestellt wird und dass dieses Ausgangsmaterial in die Formen eingebracht und verpresst wird.
  • Die Erfindung betrifft darüber hinaus eine Anlage zur Herstellung eines pulverförmigen und zur Fertigung von Seltenerd-Magneten vorgesehenen Ausgangsmaterials. Merkmale, welche vorhergehend bereits zu diversen Ausführungsformen der Verfahren beschrieben wurden, können ebenso bei nachfolgend beschriebener Anlage vorgesehen sein und werden daher nicht redundant erwähnt. Auch können nachfolgend beschriebene Merkmale, welche diverse Ausführungsformen der erfindungsgemäßen Anlage betreffen, ggf. in den vorherig bereits beschriebenen Verfahren vorgesehen sein.
  • Die Anlage zur Herstellung eines pulverförmigen und zur Fertigung von Seltenerd-Magneten vorgesehenen Ausgangsmaterials umfasst mindestens eine Zerkleinerungseinrichtung, welche auf eine Erzeugung eines pulverförmigen Zwischenproduktes durch Zerkleinerung einer mindestens ein Seltenerdmetall umfassenden Legierung ausgerichtet ist.
  • Weiter umfasst die Anlage wenigstens eine Trenneinrichtung, welche über wenigstens eine auf Partikelgröße und/oder Dichte ausgerichtete Klassierung bzw. Sichtung eine Fraktion aus dem pulverförmigen Zwischenprodukt abtrennen kann, die das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet.
  • Es ist vorgesehen, dass die wenigstens eine Trenneinrichtung wenigstens einen dynamischen Sichter umfasst, der über eine auf Partikelgröße und/oder Dichte ausgerichtete Klassierung die Fraktion aus dem pulverförmigen Zwischenprodukt abtrennen kann, die das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet.
  • In bevorzugten Ausführungsformen kann vorgesehen sein, dass die wenigstens eine Trenneinrichtung mindestens einen statischen Sichter umfasst, welchem das pulverförmige Zwischenprodukt zuführbar ist. Hierbei können der mindestens eine statische Sichter und der wenigstens eine dynamische Sichter derart miteinander in Verbindung stehen, dass ein mittels des mindestens einen statischen Sichters aus dem zugeführten Zwischenprodukt abgetrennter Anteil dem wenigstens einen dynamischen Sichter zuführbar ist. Der wenigstens eine dynamische Sicher kann sodann ggf. aus dem zugeführten Anteil die Fraktion abtrennen, die das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet.
  • Es kann sein, dass der wenigstens eine dynamische Sichter zum Sichten und Dispergieren des zugeführten pulverförmigen Zwischenproduktes ausgebildet ist.
  • Auch kann es sein, dass die mindestens eine Zerkleinerungseinrichtung zwei aufeinanderfolgende Zerkleinerungsmaschinen umfasst, die jeweils zur vorzugsweise mechanischen Zerkleinerung der mindestens ein Seltenerdmetall umfassenden Legierung ausgebildet sind und zur Erzeugung des pulverförmigen Zwischenproduktes aus der mindestens ein Seltenerdmetall umfassenden Legierung miteinander zusammenwirken.
  • Bewährt haben sich zudem Ausführungsformen, bei welchen der wenigstens eine dynamische Sicher die auf Partikelgröße und/oder Dichte ausgerichtete Klassierung unter Schutzgasatmosphäre umsetzen kann.
  • Das Ausgangsmaterial, welche im Rahmen der vorhergehend beschriebenen Verfahren bzw. mittels der vorhergehend beschriebenen Anlage herstellbar ist, kann im Wesentlichen Partikel eines Zielgrößenbereichs umfassen und kaum Verschmutzungen mit Partikeln aufweisen, die kleiner sind als Partikel eines Zielgrößenbereichs. Diese werden nachfolgend auch als Feinstpartikel bezeichnet. Weiterhin kann das im Rahmen der vorhergehend beschriebenen Verfahren bzw. mittels der vorhergehend beschriebenen Anlage hergestellte Ausgangsmaterial im Wesentlichen kaum Verschmutzungen mit Partikeln, die größer als die Partikel des Zielgrößenbereichs sind, aufweisen. Diese werden nachfolgend auch als Grobpartikel bezeichnet.
  • Mit einem Verfahren bzw. einer Anlage gemäß vorhergehender Beschreibung kann insbesondere ein Ausgangsmaterial herstellbar sein, das im Wesentlichen nur Partikel mit einer Größe innerhalb des Zielgrößenbereichs in einer im Wesentlichen homogenen Mischung umfasst. Im Hinblick auf das Ausgangsmaterial, welches mit den vorhergehend beschriebenen Verfahren bzw. mittels der vorhergehend beschriebenen Anlage herstellbar ist, haben sich Ausführungsformen bewährt, bei welchen das Ausgangsmaterial Partikel im Zielgrößenbereich zwischen 1µm und 10µm, insbesondere in einem Zielgrößenbereich zwischen 2µm und 8µm, aufweist. Bei einer Zerkleinerung einer mindestens ein Seltenerd-Metall umfassenden Legierung, lässt sich in der Praxis nicht vermeiden, dass ein Anteil an Feinstpartikeln entsteht, die kleiner sind als der Zielgrößenbereich. Zudem liegt meist ein Anteil an Grobpartikeln vor, die nicht ausreichend zerkleinert worden sind. Hier muss immer ein guter Kompromiss gefunden werden. Eine weitere Vermahlung des Ausgangsmaterials würde zwar zu einer Reduzierung des Anteils an Grobpartikeln führen, gleichzeitig würde sich aber der Anteil an ebenfalls unerwünschten Feinstpartikeln erhöhen. Ein hoher volumenprozentmäßiger Anteil an Feinstpartikeln und/oder Grobpartikeln im Ausgangsmaterial geht mit unerwünschten Eigenschaften der jeweiligen aus dem Ausgangsmaterial hergestellten bzw. gefertigen Seltenerd-Magneten einher.
  • Besonders bevorzugt enthält ein im Rahmen der vorhergehenden Verfahren bzw. mittels der vorhergehend beschriebenen Anlage hergestelltes Ausgangsmaterial ≤ 2 Volumenprozent an Feinstpartikeln, insbesondere ≤ 1 Volumenprozent. Weiterhin kann vorgesehen sein, dass das im Rahmen der vorhergehenden Verfahren bzw. mittels der vorhergehend beschriebenen Anlage hergestellte Ausgangsmaterial ≤ 2 Volumenprozent an Grobpartikeln umfasst, insbesondere ≤ 1 Volumenprozent.
  • Gemäß einer bevorzugten Ausführungsform enthält das im Rahmen der vorhergehend beschriebenen Verfahren bzw. mittels der vorhergehend beschriebenen Anlage hergestellte Ausgangsmaterial im Wesentlichen bzw. überwiegend Partikel im Zielgrößenbereich zwischen 2µm und 8µm, wobei ein Anteil an Partikeln, deren Größe oberhalb von 8µm liegt, bei ≤ 2 Volumenprozent liegt, insbesondere in einem Bereich zwischen 0,1 Volumenprozent und 1 Volumenprozent und wobei ein Anteil an Partikeln, deren Größe unterhalb von 2µm liegt bei ≤ 2 Volumenprozent liegt, insbesondere in einem Bereich zwischen 0,05 Volumenprozent und 2 Volumenprozent.
  • Der vorhergehend bereits erwähnte und als Bestandteil der erfindungsgemäßen Verfahren bzw. der erfindungsgemäßen Anlage ausgebildete wenigstens eine dynamische Sichter kann einen Klassierrotor umfassen. Eine Drehzahl des Klassierrotors kann ggf. in Abhängigkeit einer für das herzustellende Ausgangsmaterial gewünschten Partikelgrößenverteilung gesteuert bzw. geregelt werden. Hierzu kann eine Steuer- und/oder Regeleinheit vorgesehen sein, welche mit dem wenigstens einen dynamischen Sichter in Verbindung steht. Auf der Steuer- und/oder Regeleinheit kann ein Algorithmus abgelegt sein, über welchen die Steuer- und/oder Regeleinheit unter Berücksichtigung der jeweiligen für das herzustellende Ausgangsmaterial gewünschten Partikelgrößenverteilung eine Drehzahl des als Bestandteils des wenigstens einen dynamischen Sichters ausgebildeten Klassierrotors selbständig regelt bzw. steuert.
  • Der vorherig bereits erwähnte und in diversen Ausführungsformen eines erfindungsgemäßen Verfahrens bzw. einer erfindungsgemäßen Anlage vorgesehene mindestens eine statische Sichter kann ggf. durch mindestens seinen Zyklonklassierer ausgebildet sein. Durch den mindestens einen Zyklonklassierer kann ggf. bereits eine Reduzierung des Anteils an Feinstpartikeln erzielt werden. Ein via den mindestens einen statischen Sichter bzw. den mindestens einen Zyklonklassierer abgetrenntes pulveriges Gemisch, welches nachfolgend auch als pulverförmiges Zwischenprodukt bezeichnet wird, enthält auch nach der Abtrennung von Feinstpartikeln in der Regel immer noch bis zu 10 Volumenprozent an Feinstpartikeln und/oder bis zu 10 Volumenprozent an Grobpartikeln. Die Feinstanteile, die in einem solchen pulverförmigen Zwischenprodukt notgedrungen immer vorhanden sind, wirken sich somit in mehrfacher Hinsicht nachteilig auf die Eigenschaften der daraus hergestellten Seltenerd-Magnete aus.
  • Um die Partikelzusammensetzung noch weiter zu verbessern, wird das gemahlene und ggf. teilweise bereits über den mindestens einen statischen Sichter von Feinstpartikeln anteilig befreite pulverförmige Zwischenprodukt noch mindestens einem weiteren Sichterprozess, umgesetzt durch wenigstens einen dynamischen Sichter, unterworfen. Um diesen Sichterprozess effizient durchzuführen zu können, haben sich Ausführungsformen bewährt, bei welchen das pulverförmige Zwischenprodukt zunächst dispergiert wird und anschließend eine Klassierung nach Partikelgröße und/oder Dichte für das dispergierte pulverförmige Zwischenprodukt durchgeführt wird. Diese Dispergierung und Klassierung nach Partikelgröße und/oder Dichte können in genau einem dynamischen Sichter durchgeführt wird. Über den wenigstens einen dynamischen Sichter bzw. über den genau einen dynamischen Sichter können sodann Feinstpartikel und/oder Grobpartikel aus dem pulverförmigen Zwischenprodukt abgetrennt werden.
  • D.h. das Verfahren kann folgende Schritte einzeln oder in Kombination umfassen:
    • - Dispersion des Zwischenproduktes UND/ODER
    • - erneute Abtrennung von Feinstpartikeln und/oder Grobpartikeln.
  • Vorzugsweise kann somit vorgesehen sein, dass die Dispersion des Zwischenproduktes und das erneute Abtrennen von Feinstpartikeln und/oder Grobpartikeln innerhalb einer einzigen Vorrichtung, insbesondere innerhalb eines einzigen dynamischen Sichters, durchgeführt werden. Aufgrund der hohen chemischen Reaktivität von ggf. in hoher Konzentration im pulverförmigen Zwischenprodukt vorhandenen Feinstpartikeln, kann der einzige dynamische Sichter eine Dispergierung und/oder Sichtung ggf. unter Schutzgasatmosphäre umsetzen. Als Schutzgas findet beispielsweise Helium, Argon, Stickstoff o.ä. Verwendung.
  • Das mindestens eine als Bestandteil der Legierung ausgebildete Seltenerdmetall kann beispielsweise durch Eisen und/oder Bor ausgebildet sein. Beispielsweise kann es sich bei der mindestens ein Seltenerdmetall umfassenden Legierung um eine NdFeB- Legierung handeln. Über die oben beschriebenen Verfahrensschritte bzw. mittels der bereits beschriebenen Anlage kann aus dieser mindestens ein Seltenerd-Metall umfassenden Legierung ein Ausgangsmaterial hergestellt werden, das im Wesentlichen nur Partikel im Zielgrößenbereich zwischen 1µm bis 10µm, vorzugsweise zwischen 2µm bis 8µm, umfasst. Vorzugsweise umfasst das Ausgangsgemisch ≥ 95 Volumenprozent, insbesondere ≥ 98 Volumenprozent an Partikeln im Zielgrößenbereich, welcher Zielgrößenbereich von 2µm bis 8µm festgesetzt ist.
  • Die bereits beschriebene Anlage kann eine Vorrichtung zur Grobzerkleinerung einer mindestens ein Seltenerdmetall umfassenden Legierung umfassen. Eine unter Zuhilfenahme der Vorrichtung zur Grobzerkleinerung ggf. aus der mindestens ein Seltenerdmetall umfassenden Legierung gebildete grobe Pulverfraktion kann ggf. in einer als Bestandteil der Anlage ggf. ausgebildeten Vorrichtung zur Feinzerkleinerung zu einer feinen Pulverfraktion vermahlen werden, wobei die feine Pulverfraktion das pulverförmige Zwischenprodukt ausgebildet. Beispielsweise kann die Vorrichtung zur Feinzerkleinerung als Fließbettstrahlmühle ausgebildet sein.
  • Figurenliste
  • Im Folgenden sollen Ausführungsbeispiele die Erfindung und ihre Vorteile anhand der beigefügten Figuren näher erläutern. Die Größenverhältnisse der einzelnen Elemente zueinander in den Figuren entsprechen nicht immer den realen Größenverhältnissen, da einige Formen vereinfacht und andere Formen zur besseren Veranschaulichung vergrößert im Verhältnis zu anderen Elementen dargestellt sind. Nachfolgend beschriebene Merkmale sind nicht eng mit dem jeweiligen Ausführungsbeispiel verknüpft sondern können im allgemeinen Zusammenhang Verwendung finden.
    • 1 zeigt schematisch Verfahrensschritte zur Herstellung eines Ausgangsmaterials zur Fertigung von Seltenerd- Magneten, wie sie in diversen Ausführungsformen jeweils einzeln oder in der gezeigten Kombination vorgesehen sein können;
    • 2 zeigt einen Querschnitt durch einen dynamischen Sichter, wie er in diversen Ausführungsformen des erfindungsgemäßen Verfahrens sowie in diversen Ausführungsformen der erfindungsgemäßen Anlage vorgesehen sein kann.
    • 3 zeigt einen seitlichen Querschnitt durch den dynamischen Sichter nach 2.
    • 4 stellt einer für diverse Ausführungsformen des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Anlage denkbare Partikelgrößenverteilung eines pulverförmigen Zwischenproduktes einer denkbaren Partikelgrößenverteilung eines zur Fertigung von Seltenerd-Magneten vorgesehenen Ausgangsmaterials gegenüber;
    • 5 zeigt eine rasterelektronenmikroskopische Aufnahme, wie sie für das pulverförmige Zwischenprodukt ausgebildet sein kann;
    • 6 zeigt eine rasterelektronenmikroskopische Aufnahme, eines Ausgangsmaterials, wie es mittels des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Anlage in diversen Ausführungsformen hergestellt werden kann.
  • Für gleiche oder gleich wirkende Elemente der Erfindung werden identische Bezugszeichen verwendet. Ferner werden der Übersicht halber nur Bezugszeichen in den einzelnen Figuren dargestellt, die für die Beschreibung der jeweiligen Figur erforderlich sind. Die dargestellten Ausführungsformen stellen lediglich Beispiele dar, wie die Erfindung ausgestaltet sein kann und stellen keine abschließende Begrenzung dar.
  • 1 zeigt schematisch Verfahrensschritte zur Herstellung eines Ausgangsmaterials AM zur Fertigung von Seltenerd- Magneten. Als Basis hierzu dient eine geeignete RFeB- Legierung, die die Bestandteile R = Seltenerdmetall, Fe = Eisen und B = Bor in den gewünschten Mengenverhältnissen enthält. Beispielsweise wird eine NdFeB- Legierung zur Herstellung eines sogenannten Neodym- Magneten verwendet. Unter Umständen muss zuerst eine Legierung aus den Elementen in den gewünschten Mengenverhältnissen hergestellt werden. Diese Legierung wird in einem ersten Arbeitsschritt einer Grobvermahlung unterworfen. Beispielsweise in einer mechanischen Mahlanalage oder durch Versprödung mit Wasserstoff. Dabei werden insbesondere Partikel mit einer Größe von bis zu einigen mm erzeugt. Anschließend wird die im Rahmen der Grobvermahlung gewonnene grobe Pulverfraktion gPF einer Feinvermahlung unterzogen, wobei Partikel mit einer durchschnittlichen Partikelgröße zwischen d50= 2 µm bis 5 µm erzeugt werden bzw. erzeugt werden sollen. Das heißt der d50 Wert der feinen Pulverfraktion fPF liegt zwischen 2µm bis 5µm mit einer entsprechend breiten Partikelverteilung hin zu feineren und auch zu gröberen Partikeln, mit den entsprechenden Mengen von Feinstanteilen (d10 = ca. 1 - 2µm) bzw. von Grobanteilen (d90 = ca. 8- 15µm). Die groben Partikel gP sind im Gegensatz zu den nachfolgend beschriebenen Partikeln fP des Feinstanteils zwar chemisch stabil und lassen sich in Magnetfeldern auch gut orientieren, sie haben jedoch negative Auswirkungen auf die Gegenfeldstabilität des Magneten, weil diese groben Partikel gP sich bereits bei kleinen magnetischen Gegenfeldern ummagnetisieren und somit die Gegenfeldstabilität (bzw. die Koerzitivfeldstärke) des gesamten Magneten verschlechtern. Aus diesem Grund ist es vorteilhaft, den Anteil von groben Partikeln gP im Ausgangsgemisch für die Herstellung von gesinterten Permanentmagneten weiter zu reduzieren.
  • Die Partikel fP des Feinstanteils sind auf Grund ihrer Feinheit chemisch sehr reaktiv und reagieren bereits bei geringsten Sauerstoffkonzentrationen mit dem Sauerstoff oder auch mit dem Stickstoff aus der Umgebung. Diese Feinstpartikel fP können bei der weiteren Verarbeitung der Pulver spontane Pulverbrände hervorrufen. Ein weiterer Nachteil der Feinstpartikel fP besteht darin, dass diese feinen Pulverteilchen sich in den üblicherweise zur Verfügung stehenden Magnetfeldern und Pressvorrichtungen (Größenordnung etwa 10-20 kOe) nur sehr schlecht orientieren lassen und deshalb die Remanenz der daraus hergestellten Magnete verschlechtern. Aus diesem Grund werden in einem vierten bzw. zusätzlichen Verfahrensschritt Feinstanteile, insbesondere Partikel mit einem Durchmesser von ≤ 1-2µm, aus der feinen Pulverfraktion fPF entfernt. Hierzu wird das Gemisch beispielsweise im Anschluss an die Grobvermahlung und Feinvermahlung nach Ziffern 1. und 2. durch einen Zyklon geführt, dass den Feinstanteil über einen geeigneten Gasstrom mitführt und dabei von dem Gemisch abtrennt. Dadurch wird das Zwischenprodukt ZP gebildet. Dieses enthält aber immer noch einen nicht unerheblichen Anteil von bis zu 10% an Feinstpartikeln kleiner ca. 1 µm bis 2µm.
  • Um diese verbleibenden Anteile an Feinstpartikeln fP ≤ 1 µm bis 2µm und/oder Grobpartikeln gP zwischen 10µm und 15µm möglichst vollständig zu entfernen, wird das Zwischenprodukt ZP mindestens einem weiteren Sichterprozess unterzogen, um ungewünschte Feinstpartikel fP oder Grobpartikeln gP oder Feinstpartikel fP und Grobpartikel gP zu entfernen und somit die Homogenität der Partikel in der Zielgröße ZG weiter zu verbessern, insbesondere um als Ausgangsmaterial AM ein Pulvergemisch zu erhalten, das im Wesentlichen nur noch Partikel mit Partikelgrößen in einem Zielbereich zwischen etwa 2µm bis 8µm umfasst, da diese Partikel in magnetischer Hinsicht die beste Pulverfraktion darstellen. Sämtlich weiteren Schritte, welche in zeitlicher Hinsicht an den Schritt nach Ziffer 4. Anschließen, werden unter Zuhilfenahme eines dynamischen Sichters 10 (vgl. 2 und 3) bzw. eines Hochleistungssichters umgesetzt.
  • Die Partikel mit der Zielgröße ZG zwischen 2µm bis 8µm sind chemisch hinreichend stabil, so dass sie im normalen Herstellungsprozess keinerlei zusätzliche Oxidation bewirken. Zudem lassen sie sich mit den üblichen Magnetfeldern gut orientieren. Sie tragen somit wesentlich zum Erreichen einer hohen Remanenz der hergestellten Magnete bei und sind deshalb erwünscht, notwendig und nützlich. Je mehr Pulverteilchen von dieser Zielgröße ZG vorhanden sind, umso besser sind die Magnetwerte (Remanenz Br und Gegenfeldstabilität HcJ) der daraus hergestellten Magnete.
  • In einem weiteren bzw. vorliegend 5. Verfahrensschritt wird das pulverförmige Zwischenprodukt ZP dispergiert, um eine möglichst homogene Verteilung der unterschiedlichen Partikel des Zwischenproduktes ZP herzustellen. Dabei werden insbesondere molekulare und magnetische Anziehungskräfte zwischen den Partikeln überwunden und eine der Dispergierung folgende erneute Sichtung und Abtrennung von Partikel des Feinstanteils und/oder Partikel des Grobanteils möglich. Auch für diesen Verfahrensschritt wird ein dynamischer Sichter 10 (vgl. 2 und 3) bzw. Hochleistungssichter eingesetzt.
  • Das dispergierte pulverförmige Zwischenprodukt ZP wird erneut gesichtet und Partikel des Feinstanteils und/oder Partikel des Grobanteils werden dabei entfernt. Dadurch wird eine optimierte Trennung von Feinst- und Grobanteil zur gewünschten Partikel- Zielgröße ZG hergestellt. Der Feinstanteil von Partikeln, deren Größe kleiner 1µm beträgt, wird dabei auf einen Anteil von weniger als 1 % reduziert. Alternativ oder zusätzlich kann der Grobanteil von Partikeln, deren Größe über 10µm liegt, ebenfalls auf einen Anteil von weniger als 1 % reduziert werden.
  • Dieser mindestens eine zusätzliche Sichtersprozess wird vorzugsweise unter Schutzgasatmosphäre durchgeführt, beispielsweise unter Helium, Argon, oder Stickstoff, wobei dies keine abschließende Aufzählung der Möglichkeiten darstellen soll. Die Schutzgasatmosphäre verhindert insbesondere spontane Pulverbrände aufgrund der Feinstpartikel fP.
  • Besonders bevorzugt können der fünfte und sechste Verfahrensschritt bzw. die beiden letzten Verfahrensschritte, d.h. die Dispersion und die Abtrennung von Feinstpartikeln fP und/oder die Abtrennung von Grobpartikeln gP in einem dynamischen Sichter 10 gemäß 2 und 3 gemeinsam erfolgen.
  • Im Hinblick auf die Ausführungsform eines dynamischen Sichters 1 nach 2 und 3 wird über die Produktzugabe 1 das pulverförmige Zwischenprodukt ZP der Sichtervorrichtung bzw. dem dynamischen Sichter 10 von oben zugeführt. Durch den Sichterlufteintritt 2 erfolgt die Zuführung der notwendigen Verfahrensluft VL, die das über die Produktzugabe 1 zugeführte pulverförmige Zwischenprodukt ZP mitnimmt und durch eine Vielzahl einstellbarer Leitschaufel-Spalte des statischen Leitschaufelkorbes 3 führt, wodurch das Zwischenprodukt ZP aufdispergiert wird. Als Verfahrensluft VL wird vorliegend ein Schutzgas verwendet.
  • Das derart aufdispergierte Zwischenprodukt ZP wird über ein in der Drehzahl stufenlos einstellbares Sichterrad 4 geleitet, wobei die Trennung der Partikelgrößen entweder in Ziel- und Grobgut oder aber in Ziel- und Feinstgut erfolgt.
  • Durch das optimierte Sichterraddesign ist gewährleistet, dass mit nur einem Sichterrad 4 sehr hohe Feinheiten auch bei hohen Durchsätzen erreicht werden können. Die Feinstpartikel fP verlassen die Sichtervorrichtung 10 über das mit horizontaler Welle 8 eingebaute Sichterrad 4 im Zentrum der Sichtervorrichtung bzw. des dynamischen Sichters 10. Die groben Partikel gP werden vom Sichterrad 4 abgewiesen und durch das schraubenförmig ausgebildete und mit einer Trennwand 5 versehene Maschinengehäuse 9 rückseitig über den Grobgutaustritt 6 an der Unterseite des Maschinengehäuses 9 ausgetragen. Über die Stellung der Grobgutklappe 7 kann der Austrag der Grobpartikel gP bei schwierigen Trennaufgaben geregelt, und so die Sauberkeit der Grobpartikel gP beeinflusst werden. Die Partikel der Zielgröße ZP verlassen zusammen mit dem Grobgut den dynamischen Sichter 10 über den Grobgutaustritt 6. Der Feinstpartikel fP wurden von den Partikeln der Zielgröße ZP abgetrennt und bilden somit keinen Bestandteil der Fraktion, welche den dynamischen Sichter 10 über den Grobgutaustritt 6 verlässt.
  • Die Regulierung der gewünschten Zielpartikelgröße ZG erfolgt hierbei insbesondere über eine Regulierung des Gasstroms der Verfahrensluft VL und/oder der Drehzahl des Sichterrads 4. Ein höherer Gasstrom und/oder eine niedrigere Drehzahl führen zu einem gröberen Produkt, während ein niedrigerer Gasstrom und/oder eine höhere Drehzahl zu einem feineren Produkt führen.
  • Zusätzlich zeigt die 3 die mindestens zwei Spaltgaszuführungen (11), diese sind Notwendig um den Spalt zwischen Feingutastritt und dem Sichterrad (4) mit sogenannten Spaltgas zu spülen. Es sind aber auch Ausführungen mit nur einer Spaltgaszufühung (11) möglich. Durch diese Spülung wird vermieden, dass sich Partikel im Sichterrad (4) und/oder dem Spalt zwischen Feingutausstritt und dem Sichterrad (4) festsetzten und dieses verstopfen. Die Spülung erfolgt mittels eines dafür geeigneten Fluides, in einer bevorzugten Ausführungsform mittels Schutzgas.
  • 4 zeigt die Partikelgrößenverteilung im Zwischenprodukt ZP und im Ausgangsmaterial AM. Im Diagramm ist insbesondere die Partikelgröße in µm gegen den Anteil an der Volumendichte der jeweiligen Mischung in % aufgetragen. Hierbei wird deutlich sichtbar, dass durch die zusätzlichen Verfahrensschritt des Dispergierens des Zwischenproduktes ZP und des Sichtens mit anschließendem Abtrennen von feinsten Partikeln fP ≤ 1µm und/oder groben Partikeln gP ≥ 10 über einen dynamischen Sichter 10 eine homogenere Partikelmischung im Ausgangsmaterial AM erzielt werden kann, bei der der Anteil an Feinstpartikeln fP ≤1% der Volumendichte ausmacht und bei der der Anteil an Grobpartikeln gP ebenfalls ≤1% der Volumendichte ausmacht. Insbesondere werden die schraffiert dargestellten Anteile von Feinstpartikeln fP und Grobpartikeln gP aus dem pulverförmigen Zwischenprodukt ZP entfernt.
  • Das derart hergestellte Ausgangsmaterial AM eignet sich aufgrund der zwischen 1µm und 10µm, vorzugsweise zwischen 2µm und 8µm, liegenden Partikelgröße besonders für die Herstellung von gesinterten Seltenerd- Magneten, da bei diesen Partikelgrößen des Ausgangsmaterials AM besonders gute Magnetwerde erzielt werden können. Insbesondere werden mit diesem Ausgangsmaterial AM für die Herstellung von Permanentmagneten hohe (verbesserte) Remanenzwerte BR und eine gute (verbesserte) Gegenfeldstabilität HcJ sowie eine deutliche Verbesserung der Rechteckigkeit der Entmagnetisierungskurve erzielt.
  • 5 zeigt eine rasterelektronenmikroskopische Aufnahme des pulverförmigen Zwischenproduktes ZP und 6 zeigt eine rasterelektronenmikroskopische Aufnahme des Ausgangsmaterials AM, wie es in diversen Ausführungsformen des erfindungsgemäßen Verfahrens hergestellt und zur Fertigung von Seltenerd-Magneten Verwendung finden kann. Während das Zwischenprodukt ZP eine stark inhomogene Mischung verschiedener Partikelgrößen darstellt und insbesondere auch einen hohen Anteil an Feinstpartikeln fP enthält, zeigt 6 deutlich, dass das doppelt gesichtete Ausgangsmaterial AM hauptsächlich nur noch Partikel einer Zielgröße ZG zwischen 1µm und 10µm, vorzugsweise zwischen 2µm und 8µm enthält.
  • Die Ausführungsformen, Beispiele und Varianten der vorhergehenden Absätze, die Ansprüche oder die folgende Beschreibung und die Figuren, einschließlich ihrer verschiedenen Ansichten oder jeweiligen individuellen Merkmale, können unabhängig voneinander oder in beliebiger Kombination verwendet werden. Merkmale, die in Verbindung mit einer Ausführungsform beschrieben werden, sind für alle Ausführungsformen anwendbar, sofern die Merkmale nicht unvereinbar sind. Die Erfindung wurde unter Bezugnahme auf bevorzugte Ausführungsformen beschrieben. Es ist für einen Fachmann vorstellbar, dass Abwandlungen oder Änderungen der Erfindung gemacht werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen. Es ist möglich, einige der Komponenten oder Merkmale eines der Beispiele in Kombination mit Merkmalen oder Komponenten eines anderen Beispiels anzuwenden.
  • Bezugszeichenliste
  • 1
    Produktzugabe
    2
    Sichterlufteintritt
    3
    Leitschaufelkorb
    4
    Sichterrad
    5
    Trennwand
    6
    Grobgutaustritt
    7
    Grobgutklappe
    8
    Welle
    9
    Maschinengehäuse
    10
    Sichtervorrichtung
    11
    Spaltgaszuführung
    AM
    Ausgangsmaterial
    fP
    feinste Partikel / Feinstpartikel
    fPF
    feine Pulverfraktion
    gP
    grobe Partikel Grobpartikel
    gPF
    grobe Pulverfraktion
    VL
    Verfahrensluft
    ZG
    Zielgröße
    ZP
    Zwischenprodukt
    SG
    Spaltgas

Claims (15)

  1. Verfahren zur Herstellung eines pulverförmigen und zur Fertigung von Seltenerd-Magneten vorgesehenen Ausgangsmaterials (AM), umfassend folgende Schritte: - Zerkleinern einer mindestens ein Seltenerdmetall umfassenden Legierung, wobei aus der einen mindestens ein Seltenerdmetall umfassenden Legierung ein pulverförmiges Zwischenprodukt (ZP) entsteht und - Durchführen mindestens einer auf Partikelgröße und/oder Dichte ausgerichteten Klassierung für das pulverförmige Zwischenprodukt (ZP), wobei eine mittels der mindestens einen Klassierung gebildete Fraktion des pulverförmigen Zwischenproduktes (ZP) das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial (AM) ausbildet, dadurch gekennzeichnet, dass für das Verfahren wenigstens ein dynamischer Sichter (10) vorgesehen ist, welcher wenigstens eine auf Partikelgröße und/oder Dichte ausgerichtete Klassierung für das pulverförmige Zwischenprodukt (ZP) umsetzt und hierbei die Fraktion aus dem pulverförmigen Zwischenprodukt (ZP) abtrennt, welche das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial (AM) ausbildet.
  2. Verfahren nach Anspruch 1, bei welchem das pulverförmige Zwischenprodukt (ZP) zunächst mindestens einem ersten statischen Sichter zugeführt wird und wobei hierauf folgend ein mittels des mindestens statischen Sichters aus dem pulverförmigen Zwischenprodukt (ZP) abgetrennter Anteil dem wenigstens einen dynamischen Sichter (10) zugeführt wird, welcher wenigstens eine dynamische Sichter (10) die wenigstens eine auf Partikelgröße und/oder Dichte ausgerichtete Klassierung für den mittels des mindestens einen statischen Sichters aus dem pulverförmigen Zwischenprodukt (ZP) abgetrennten Anteil umsetzt und hierbei die Fraktion aus dem Anteil abtrennt, welche das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial (AM) ausbildet.
  3. Verfahren nach Anspruch 1 oder Anspruch 2, bei welchem der wenigstens eine dynamische Sichter (10) das pulverförmige Zwischenprodukt (ZP) sichtet und zudem dispergiert, woraus resultierend die Fraktion aus dem pulverförmigen Zwischenprodukt abgetrennt wird, welche das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial (AM) ausbildet.
  4. Verfahren nach einem der Ansprüche 1 bis 3, bei welchem über den wenigstens einen dynamischen Sichter (10) mindestens zwei zeitlich aufeinanderfolgende und jeweils auf Partikelgröße und/oder Dichte ausgerichtete Klassierungen umgesetzt werden, wobei - im Rahmen einer ersten auf Partikelgröße und/oder Dichte ausgerichteten Klassierung der wenigstens eine dynamische Sichter (10) Grobgut (gP) aus dem pulverförmigen Zwischenprodukt (ZP) abtrennt und wobei - im Rahmen einer zweiten auf Partikelgröße und/oder Dichte ausgerichteten Klassierung der wenigstens eine dynamische Sichter (10) Feingut (fP) aus dem pulverförmigen Zwischenprodukt (ZP) abtrennt, wonach ein vom Feingut und Grobgut abgetrennter Anteil des pulverförmigen Zwischenproduktes die Fraktion bereitstellt, welche das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial (AM) ausbildet.
  5. Verfahren nach Anspruch 4, bei welchem die erste auf Partikelgröße und/oder Dichte ausgerichtete Klassierung und die zweite auf Partikelgröße und/oder Dichte ausgerichtete Klassierung über genau einen dynamischen Sichter (10) durchgeführt werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, bei welchem die mindestens ein Seltenerdmetall umfassend Legierung in zwei voneinander getrennten Schritten jeweils vorzugsweise mechanisch zerkleinert wird, wobei aus den Zerkleinerungen in getrennten Schritten das pulverförmige Zwischenprodukt (ZP) entsteht.
  7. Verfahren nach einem der Ansprüche 1 bis 6, bei welchem der wenigstens eine dynamische Sichter (10) die wenigstens eine auf Partikelgröße und/oder Dichte ausgerichtete Klassierung für das pulverförmige Zwischenprodukt (ZP) unter Schutzgasatmosphäre umsetzt.
  8. Zur Fertigung von Seltenerd-Magneten vorgesehenes Ausgangsmaterial (AM), hergestellt durch ein Verfahren nach einem der Ansprüche 1 bis 7, bei welchem ein Anteil an Partikeln > 8µm bei ≤ 2 Volumenprozent liegt, insbesondere in einem Bereich zwischen 0,1 Volumenprozent und 1 Volumenprozent und/oder bei welchem ein Anteil an Partikeln < 2µm bei ≤ 2 Volumenprozent liegt, insbesondere in einem Bereich zwischen 0,05 Volumenprozent und 2 Volumenprozent.
  9. Verfahren zur Fertigung von Seltenerd-Magneten, umfassend folgende Schritte: - Herstellen eines Ausgangsmaterials (AM) mittels eines Verfahrens nach einem der Ansprüche 1 bis 7, - Einbringen des Ausgangsmaterials (AM) in Formen und Verpressen des Ausgangsmaterials (AM) in den Formen, wobei Rohlinge aus dem Ausgangsmaterial (AM) entstehen, - Sintern der Rohlinge und Beaufschlagen der gesinterten Rohlinge mit einem Magnetisierungsimpuls, so dass hieraus resultierend die gesinterten und mit einem Magnetisierungsimpuls beaufschlagten Rohlinge als Seltenerd-Magnete ausgebildet sind.
  10. Verfahren zur Fertigung von Seltenerd-Magneten nach Anspruch 9, bei welchem mittels des Verfahrens nach einem der Ansprüche 1 bis 7 ein Ausgangsmaterial (AM) nach Anspruch 8 hergestellt wird.
  11. Anlage zur Herstellung eines pulverförmigen und zur Fertigung von Seltenerd-Magneten vorgesehenen Ausgangsmaterials (AM), umfassend - mindestens eine Zerkleinerungseinrichtung, welche auf eine Erzeugung eines pulverförmigen Zwischenproduktes (ZP) durch Zerkleinerung einer mindestens ein Seltenerdmetall umfassenden Legierung ausgerichtet ist und - wenigstens eine Trenneinrichtung, welche über wenigstens eine auf Partikelgröße und/oder Dichte ausgerichtete Klassierung eine Fraktion aus dem pulverförmigen Zwischenprodukt (ZP) abtrennen kann, die das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial (AM) ausbildet, dadurch gekennzeichnet, dass - die wenigstens eine Trenneinrichtung wenigstens einen dynamischen Sichter (10) umfasst, der über eine auf Partikelgröße und/oder Dichte ausgerichtete Klassierung die Fraktion aus dem pulverförmigen Zwischenprodukt (ZP) abtrennen kann, die das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial (AM) ausbildet.
  12. Anlage nach Anspruch 11, bei welcher die wenigstens eine Trenneinrichtung mindestens einen statischen Sichter umfasst, welchem das pulverförmige Zwischenprodukt (ZP) zuführbar ist und wobei der mindestens eine statische Sichter und der wenigstens eine dynamische Sichter (10) derart miteinander in Verbindung stehen, dass ein mittels des mindestens einen statischen Sichters aus dem zugeführten Zwischenprodukt (ZP) abgetrennter Anteil dem wenigstens einen dynamischen Sichter (10) zuführbar ist.
  13. Anlage nach Anspruch 11 oder Anspruch 12, bei welcher der wenigstens eine dynamische Sichter (10) zum Sichten und Dispergieren des zugeführten pulverförmigen Zwischenproduktes (ZP) ausgebildet ist.
  14. Anlage nach einem der Ansprüche 11 bis 13, bei welchem die mindestens eine Zerkleinerungseinrichtung zwei aufeinanderfolgende Zerkleinerungsmaschinen umfasst, die jeweils zur mechanischen Zerkleinerung der mindestens ein Seltenerdmetall umfassenden Legierung ausgebildet sind und zur Erzeugung des pulverförmigen Zwischenproduktes (ZP) aus der mindestens ein Seltenerdmetall umfassenden Legierung miteinander zusammenwirken.
  15. Anlage nach einem der Ansprüche 1 bis 14, bei welcher der wenigstens eine dynamische Sichter (10) die auf eine Partikelgröße und/oder Dichte ausgerichtete Klassierung unter Schutzgasatmosphäre umsetzen kann.
DE102017116272.0A 2017-07-19 2017-07-19 Verfahren und anlage zur herstellung eines ausgangsmaterials für die herstellung von seltenerdmagneten Pending DE102017116272A1 (de)

Priority Applications (13)

Application Number Priority Date Filing Date Title
DE102017116272.0A DE102017116272A1 (de) 2017-07-19 2017-07-19 Verfahren und anlage zur herstellung eines ausgangsmaterials für die herstellung von seltenerdmagneten
CN201810735630.1A CN109277577A (zh) 2017-07-19 2018-07-06 制造用于制造稀土元素磁体的原材料的方法和设备
SI201831039T SI3431209T1 (sl) 2017-07-19 2018-07-10 Postopek in naprava za proizvodnjo začetnega materiala za proizvodnjo magnetov redkih zemelj
LTEP18182618.1T LT3431209T (lt) 2017-07-19 2018-07-10 Pradinės medžiagos retųjų žemės elementų magnetams gaminti gamybos metodas ir įrenginys
EP18182618.1A EP3431209B1 (de) 2017-07-19 2018-07-10 Verfahren und anlage zur herstellung eines ausgangsmaterials für die herstellung von seltenerdmagneten
EP23190243.8A EP4268995A1 (de) 2017-07-19 2018-07-10 Verfahren und anlage zur herstellung eines ausgangsmaterials für die herstellung von seltenerdmagneten
FIEP18182618.1T FI3431209T3 (fi) 2017-07-19 2018-07-10 Menetelmä ja laitteisto lähtömateriaalin valmistamiseksi harvinaista maametallia sisältävien magneettien valmistamiseksi
DK18182618.1T DK3431209T3 (da) 2017-07-19 2018-07-10 Fremgangsmåde og anlæg til fremstilling af et udgangsmateriale til fremstilling af sjældne jordarters magneter
ES18182618T ES2966804T3 (es) 2017-07-19 2018-07-10 Procedimiento y equipo para producir un material de partida para la producción de imanes de tierras raras
PL18182618.1T PL3431209T3 (pl) 2017-07-19 2018-07-10 Metoda i instalacja do produkcji materiału wyjściowego do produkcji magnesu ziem rzadkich
RU2018125682A RU2706258C1 (ru) 2017-07-19 2018-07-12 Способ и установка для получения исходного материала для изготовления редкоземельных магнитов
US16/035,154 US11660639B2 (en) 2017-07-19 2018-07-13 Method and installation for manufacturing a starting material for producing rare earth magnets
US18/300,948 US20230271224A1 (en) 2017-07-19 2023-04-14 Method And Installation For Manufacturing A Starting Material For Producing Rare Earth Magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017116272.0A DE102017116272A1 (de) 2017-07-19 2017-07-19 Verfahren und anlage zur herstellung eines ausgangsmaterials für die herstellung von seltenerdmagneten

Publications (1)

Publication Number Publication Date
DE102017116272A1 true DE102017116272A1 (de) 2019-01-24

Family

ID=62909424

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017116272.0A Pending DE102017116272A1 (de) 2017-07-19 2017-07-19 Verfahren und anlage zur herstellung eines ausgangsmaterials für die herstellung von seltenerdmagneten

Country Status (11)

Country Link
US (2) US11660639B2 (de)
EP (2) EP4268995A1 (de)
CN (1) CN109277577A (de)
DE (1) DE102017116272A1 (de)
DK (1) DK3431209T3 (de)
ES (1) ES2966804T3 (de)
FI (1) FI3431209T3 (de)
LT (1) LT3431209T (de)
PL (1) PL3431209T3 (de)
RU (1) RU2706258C1 (de)
SI (1) SI3431209T1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109848030A (zh) * 2019-01-26 2019-06-07 南通理工学院 一种增材制造用原料筛选装置
DE102018112406A1 (de) * 2018-05-24 2019-11-28 Netzsch Trockenmahltechnik Gmbh Verfahren und Anlage zur Herstellung eines Ausgangsmaterials für die Herstellung von Seltenerd-Magneten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010017865A2 (de) * 2008-08-12 2010-02-18 Loesche Gmbh Verfahren zur sichtung eines mahlgut-fluid-gemisches und mühlensichter
EP2599555A1 (de) * 2010-07-30 2013-06-05 Hosokawa Micron Corporation Strahlmühle
CN104550023A (zh) * 2014-11-26 2015-04-29 宁波宏垒磁业有限公司 一种气流磨分选轮及用该气流磨分选轮制粉的烧结钕铁硼磁体的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1252042A1 (ru) * 1985-02-27 1986-08-23 Предприятие П/Я В-8392 Лини дл приготовлени ферритового порошка
JPH0354806A (ja) * 1989-07-24 1991-03-08 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
DE4320025A1 (de) * 1993-06-17 1994-12-22 Krupp Polysius Ag Mahlanlage und Verfahren zum Mahlen und Sichten von sprödem Mahlgut
UA28403A (uk) * 1996-12-26 2000-10-16 Олег Доміанович Нейков Спосіб одержання порошків, гранул і брикетів хімічно активних металів і сплавів та технологічна лінія для його здійснення
RU2111088C1 (ru) * 1997-01-31 1998-05-20 Государственный научный центр РФ Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара Способ получения быстрозакаленных порошков магнитных сплавов системы неодим - железо - бор
US5976224A (en) * 1998-05-04 1999-11-02 Durant; James F. Separating carbon from ash
JP4230050B2 (ja) * 1999-05-11 2009-02-25 日本ニューマチック工業株式会社 ジェット粉砕装置及びジェット粉砕方法
US6676773B2 (en) * 2000-11-08 2004-01-13 Sumitomo Special Metals Co., Ltd. Rare earth magnet and method for producing the magnet
US20070089806A1 (en) * 2005-10-21 2007-04-26 Rolf Blank Powders for rare earth magnets, rare earth magnets and methods for manufacturing the same
RU2317149C1 (ru) * 2006-05-10 2008-02-20 Валентин Николаевич Аполицкий Способ мокрой инерционно-динамической классификации порошкового материала
JP5477282B2 (ja) * 2008-03-31 2014-04-23 日立金属株式会社 R−t−b系焼結磁石およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010017865A2 (de) * 2008-08-12 2010-02-18 Loesche Gmbh Verfahren zur sichtung eines mahlgut-fluid-gemisches und mühlensichter
EP2599555A1 (de) * 2010-07-30 2013-06-05 Hosokawa Micron Corporation Strahlmühle
CN104550023A (zh) * 2014-11-26 2015-04-29 宁波宏垒磁业有限公司 一种气流磨分选轮及用该气流磨分选轮制粉的烧结钕铁硼磁体的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018112406A1 (de) * 2018-05-24 2019-11-28 Netzsch Trockenmahltechnik Gmbh Verfahren und Anlage zur Herstellung eines Ausgangsmaterials für die Herstellung von Seltenerd-Magneten
CN109848030A (zh) * 2019-01-26 2019-06-07 南通理工学院 一种增材制造用原料筛选装置

Also Published As

Publication number Publication date
EP3431209B1 (de) 2023-09-20
EP3431209A1 (de) 2019-01-23
US20190027284A1 (en) 2019-01-24
CN109277577A (zh) 2019-01-29
LT3431209T (lt) 2024-01-10
EP4268995A1 (de) 2023-11-01
DK3431209T3 (da) 2024-01-02
RU2706258C1 (ru) 2019-11-15
SI3431209T1 (sl) 2024-02-29
PL3431209T3 (pl) 2024-03-04
ES2966804T3 (es) 2024-04-24
US11660639B2 (en) 2023-05-30
FI3431209T3 (fi) 2023-12-21
US20230271224A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
DE60100154T2 (de) Seltenerd-Magnet und Herstellungsverfahren
DE69431096T2 (de) Herstellung eines Dauermagneten
DE69316047T2 (de) Vorlegierung zur Herstellung von Magneten und deren Produktion sowie Magnet-Herstellung
DE60311421T2 (de) Seltenerdelement-permanentmagnet auf r-t-b-basis
DE10291720T5 (de) Verfahren zur Herstellung eines gesinterten Presslings für einen Seltenerdmetall-Magneten
EP3055870B1 (de) Verfahren zur herstellung eines permanentmagneten
DE69200698T2 (de) Verfahren zur Herstellung eines dispergierten Hartstoffpartikeln enthaltenden Legierungspulvers.
DE69007720T2 (de) Magnetmaterial, welches seltenes Erdelement, Eisen, Stickstoff, Wasserstoff und Sauerstoff enthält.
EP3431209B1 (de) Verfahren und anlage zur herstellung eines ausgangsmaterials für die herstellung von seltenerdmagneten
DE10255604B4 (de) Verfahren zum Herstellen eines anisotropen Magnetpulvers und eines gebundenen anisotropen Magneten daraus
DE60217667T2 (de) Verfahren zur herstellung von pulvergranulat des typs r-fe-b-legierung und verfahren zur herstellung eines gesinterten presslings aus der r-fe-b-legierung
DE60317460T2 (de) Seltenerdelement-permanentmagnet auf r-t-b-basis
DE112014001584T5 (de) R-T-B-Basierter Dauermagnet
DE3889151T2 (de) Verfahren zur Herstellung, Konzentration und Trennung von Werkstoffen mit gesteigertem magnetischem Parameter von anderen magnetischen Nebenprodukten.
DE10297484B4 (de) Verfahren und Vorrichtung zur Herstellung eines granulierten Seltenerdmetall-Legierungspulvers und Verfahren zur Herstellung eines Seltenerdmetall-Legierungssinterkörpers
EP3572165B1 (de) Verfahren zur herstellung eines materials für die herstellung von seltenerd-magneten
DE10066419B4 (de) Verfahren zum Konservieren (Aufrechterhalten) eines Legierungspulvermaterials für einen gesinterten Magneten von R-Fe-B-Typ
EP2758357B1 (de) Verfahren zur herstellung von kugelförmigem hartstoffpulver
DE102019116748A1 (de) Trennung von mangan-bismut-pulvern
EP3572170A1 (de) Verfahren und anlage zur herstellung eines ausgangsmaterials für die herstellung von seltenerd-magneten
WO2019120388A1 (de) Verfahren zur herstellung eines gesinterten gradientenmaterials, gesintertes gradientenmaterial und dessen verwendung
DE102018102322A1 (de) Verfahren zum Herstellen einer Mangan-Bismut Legierung
DE102020117761A1 (de) Aluminium-Werkstoff und Verfahren zum Herstellen eines Aluminium-Werkstoffes
DE102014206899A1 (de) Verfahren zur Herstellung eines Sintermagneten, Sintermagnet sowie seine Verwendung
EP4244876A1 (de) Verfahren zur herstellung eines permanentmagneten aus einem magnetischen ausgangsmaterial

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication