DE102006032452B4 - Verfahren zur Herstellung nanokristalliner Metalloxide - Google Patents

Verfahren zur Herstellung nanokristalliner Metalloxide Download PDF

Info

Publication number
DE102006032452B4
DE102006032452B4 DE102006032452A DE102006032452A DE102006032452B4 DE 102006032452 B4 DE102006032452 B4 DE 102006032452B4 DE 102006032452 A DE102006032452 A DE 102006032452A DE 102006032452 A DE102006032452 A DE 102006032452A DE 102006032452 B4 DE102006032452 B4 DE 102006032452B4
Authority
DE
Germany
Prior art keywords
metal oxide
nanocrystalline metal
reaction chamber
starting compound
nanocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102006032452A
Other languages
English (en)
Other versions
DE102006032452A1 (de
Inventor
Dr. Wölk Hans-Jörg
Dr. Burgfels Götz
Dr. Polier Siegfried
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Original Assignee
Sued Chemie IP GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38542657&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE102006032452(B4) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sued Chemie IP GmbH and Co KG filed Critical Sued Chemie IP GmbH and Co KG
Priority to DE102006032452A priority Critical patent/DE102006032452B4/de
Priority to CN2007800266253A priority patent/CN101489667B/zh
Priority to JP2009518789A priority patent/JP5399239B2/ja
Priority to EA200970119A priority patent/EA016985B1/ru
Priority to DK11161500.1T priority patent/DK2335821T3/en
Priority to US12/373,440 priority patent/US9579631B2/en
Priority to DK07765176.8T priority patent/DK2054152T3/en
Priority to EP07765176.8A priority patent/EP2054152B1/de
Priority to PCT/EP2007/006158 priority patent/WO2008006565A1/de
Priority to PL07765176.8T priority patent/PL2054152T3/pl
Priority to EP11161500.1A priority patent/EP2335821B1/de
Publication of DE102006032452A1 publication Critical patent/DE102006032452A1/de
Publication of DE102006032452B4 publication Critical patent/DE102006032452B4/de
Application granted granted Critical
Priority to JP2013219575A priority patent/JP5898160B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0054Drying of aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/145After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/34Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of sprayed or atomised solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Verfahren zur Herstellung nanokristalliner Metalloxidpartikel umfassend die Schritte a) des Einbringens einer Ausgangsverbindung in eine Reaktionskammer mittels eines Trägerfluids, b) des Unterwerfens der Ausgangsverbindung in einer Behandlungszone unter eine thermische Behandlung einer pulsierenden Strömung, wobei die thermische Behandlung in einem Temperaturbereich von 400°C bis 700°C und einer Verweilzeit von 200 ms bis 2 s durchgeführt wird, c) des Bildens von nanokristallinen Metalloxidpartikeln, d) des Ausbringens der in Schritt b) und c) erhaltenen nanokristallinen Metallpartikel aus dem Reaktor, dadurch gekennzeichnet, dass die Ausgangsverbindung in Form einer Lösung, Aufschlämmung, Suspension oder in festem Aggregatzustand in die Reaktionskammer eingebracht wird.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von nanokristallinen Metalloxiden sowie nanokristalline Kupfer-, Zink- und Aluminiumoxide oder Kupfer-, Mangan- und Aluminiumoxide, hergestellt nach dem erfindungsgemäßen Verfahren.
  • Metalloxide, insbesondere gemischte Metalloxide finden ein weites Anwendungsgebiet, wie beispielsweise in Keramiken, Polymeradditiven, Füllstoffen, Pigmenten, reaktiven Oberflächen, Katalysatoren etc.
  • Insbesondere finden Metalloxide auch Verwendung als Katalysatoren, beispielsweise im Bereich von Abgaskatalysatoren in Automobilen, bei der Herstellung von Fotokatalysatoren, beispielsweise Titandioxid bzw. dotierten Titanoxiden, und für die Herstellung von oxidischen Katalysatoren, insbesondere für die Herstellung von Methanol. Hierbei beeinflusst der Prozess der Kalzinierung der Katalysatorausgangsmaterialien während der Herstellungsverfahren wesentlich die Qualität der Endkatalysatoren.
  • Die gezielte Steuerung des Kristallisationsprozesses kann durch die Zusammensetzung des/der Edukts(e) beeinflusst werden. Ein wichtiger Faktor ist hierbei insbesondere die Kristallitgröße bei verschiedenen Katalysatorsystemen (R. Schlögl et al., Angewandte Chemie 116, 1628–1637 (2004)).
  • Immer mehr werden dabei so genannte „nanokristalline” Pulver in Betracht gezogen, trotz der oft ungelösten Herstellungsprobleme.
  • Nanokristalline Oxidpulver werden üblicherweise bislang entweder durch chemische Synthese, durch mechanische Verfahren oder durch so genannte thermophysikalische Verfahren hergestellt. Bei Perowskiten werden mit den herkömmlichen Verfahren dabei z. B. BET-Oberflächen von 2–10 m2/g erreicht.
  • Typischerweise wird bei der chemischen Synthese von nanokristallinen Pulvern ausgehend von so genannten precursor-Verbindungen (Vorläuferverbindungen) durch chemische Reaktionen ein Pulver synthetisiert, beispielsweise mittels Hydroxidfällung, Synthese durch Hydrolyse metallorganischer Verbindungen und Hydrothermalverfahren. Die endgültige Struktur der Nanokristallite wird dabei typischerweise erst nach der Kalzination erzielt.
  • Mechanische Herstellungsverfahren sind typischerweise durch intensives Mahlen inhomogener Partikel zu homogenen Partikel charakterisiert, was oftmals auch zu unerwünschten Phasentransformationen bis hin zu amorphen Partikeln aufgrund des auf die Partikel ausgeübten Druckes führt.
  • Typischerweise liegen die dabei gebildeten Partikel nicht in einer gleichmäßigen Größenverteilung vor. Außerdem besteht die Gefahr von Abrieb durch die Mahlwerkzeuge und somit einer Kontamination der Produkte, was insbesondere im Bereich der Katalysatortechnologie von Nachteil ist.
  • Thermophysikalische Methoden, wie sie beispielsweise in der WO 2004/005184 beschrieben sind, beruhen auf der Einbringung thermischer Energie zu festen, flüssigen oder gasförmigen Ausgangsverbindungen. Diese internationale Patentanmeldung betrifft insbesondere das so genannte plasmapyrolytische Sprayverfahren (PSP), bei dem die Ausgangsstoffe in einer Knallgasflamme versprüht und zersetzt werden. Eine typische technische Anwendung findet sich bei der Herstellung von Siliziumdioxid, bei dem leicht flüchtige Siliziumverbindungen in einer Knallgasflamme versprüht werden.
  • Weiterhin wird bei der Synthese nanokristalliner Partikel des so genannten Plasmasyntheseverfahrens eingesetzt, bei dem die Ausgangsstoffe in einem bis zu 6.000 K heißen Plasma verdampft werden. Weitere übliche Verfahren sind beispielsweise CVD-Verfahren, bei dem gasförmige Edukte zur Reaktion gebracht werden, wobei dabei typischerweise nicht oxidische Pulver entstehen.
  • Die DE 10 2004 044 266 A1 und WO 2006/027270 A2 betreffen ein Verfahren zur Herstellung einer mehrkomponentigen Metalloxidverbindung in Pulverform, dadurch gekennzeichnet, dass Vorläuferverbindungen der Komponenten der gewünschten Metalloxidverbindung in fester Form oder in Form einer Lösung oder einer Suspension in einen Pulsationsreaktor mit einer aus einer flammenlosen Verbrennung resultierenden Gasströmung eingebracht und teilweise oder vollständig zur gewünschten Metalloxidverbindung umgesetzt werden, wobei die Vorläuferverbindungen ein Gemisch wenigstens einer ersten Metallverbindung aus der Gruppe der Alkalimetalle mit wenigstens einer zweiten Metallverbindung, ausgewählt aus der Gruppe bestehend aus den Übergangsmetallen, den übrigen Hauptgruppenmetallen, den Lanthaniden und den Actiniden, im gewünschten Verhältnis enthalten. Weiterhin betreffen diese Anmeldungen eine nach dem Verfahren hergestellte Metalloxidverbindung.
  • Die DE 10109892 A1 betrifft ein Verfahren zur Herstellung monomodaler nanokristalliner Oxidpulver mittels eines thermophysikalischen Verfahrens, dadurch gekennzeichnet, dass zur Einstellung der Partikelgrösse, der spezifischen inneren Oberfläche und einer definierter Kristallstruktur im Endprodukt
    • a) die Ausgangsstoffe in einer ersten Prozessstufe auf Verdampfungstemperatur erwärmt werden,
    • b) die verdampften gasförmigen Ausgangsstoffe mittels Unterdruck einer pulsierenden Verbrennung mit enger Tröpfchengrössenverteilung zugeführt werden,
    • c) die verdampften gasförmigen Ausgangsstoffe mittels pulsierender Verbrennung in einem Heissgasstrom einer thermoschockartigen Zersetzungsreaktion zur Bildung von Feststoffpartikeln unterzogen werden,
    • d) der mit dem Oxidpulver entstandene Heissgasstrom einem Heissgasfilter zur Trennung des Oxidpulvers vom Heissgasstrom zugeführt wird.
  • Die vorgenannten Verfahren des Standes der Technik weisen jedoch Nachteile auf in Bezug auf das Vorliegen einer zu breiten Partikelgrößenverteilung, unerwünschten Agglomeration der Partikel untereinander oder unvollständiger Phasenumwandlungen.
  • Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur Herstellung möglichst monomodal verteilter nanokristalliner Pulver zur Verfügung zu stellen, welches die vorgenannten Nachteile des Standes der Technik vermeidet, insbesondere Phasenumwandlungen, eine einstellbare nanokristalline Partikelgröße ermöglicht und Teilchen mit spezifischer innerer Oberfläche und definierter Kristallstruktur zur Verfügung stellt.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung nanokristalliner Metalloxidpartikel umfassend die Schritte
    • a) des Einbringens einer Ausgangsverbindung in eine Reaktionskammer mittels eines Trägerfluids,
    • b) des Unterwerfens der Ausgangsverbindung in einer Behandlungszone unter eine thermische Behandlung einer pulsierenden Strömung, wobei die thermische Behandlung in einem Temperaturbereich von 400°C bis 700°C und einer Verweilzeit von 200 ms bis 2 s durchgeführt wird,
    • c) des Bildens von nanokristallinen Metalloxidpartikeln,
    • d) des Ausbringens der in Schritt b) und c) erhaltenen nanokristallinen Metalloxidpartikel aus dem Reaktor,
    wobei die Ausgangsverbindung in Form einer Lösung, Aufschlämmung, Suspension oder in festem Zustand in die Reaktionskammer eingebracht wird, gelöst.
  • Ganz besonders überraschend wurde gefunden, dass durch das erfindungsgemäße Verfahren der Kristallisationsprozess gezielt gesteuert werden kann, insbesondere die Größe der Kristallite und die Porengrößenverteilung der entsprechenden Metalloxide. Dies kann durch die Verweilzeit in der Flamme bzw. die Reaktortemperatur vorteilhaft beeinflusst werden. Durch die pulsierende thermische Behandlung werden die entstehenden nanokristallinen Partikel daran gehindert, zu agglomerieren. Typischerweise werden die nanokristallinen Partikel sofort durch den Strom an heißem Gas in eine kältere Zone überführt, wo Nanokristallite zum Teil mit Durchmessern von weniger als 20 Nanometern erhalten werden. Dies führt bei den erfindungsgemäß erhaltenen Nanokristalliten zu deutlich erhöhten BET-Oberflächen. Beispielhaft seien die Gruppe der Perowskite erwähnt, die bei herkömmlichen Syntheseverfahren für nanokristalline Perowskite eine BET-Oberfläche von circa 2–10 m2/g aufweisen, wohingegen das erfindungsgemäße Verfahren zu Perowskit-Nanokristalliten mit einer BET-Oberfläche von 100–200 m2/g führt. Weiterhin kann durch die Verwendung von Aluminium-tri-sec-butylat als Ausgangsstoff γ-Al2O3 mit einer spezifischen Oberfläche von 40–150 m2/g bei einer Partikelgröße von 20–40 nm erhalten werden. Erfindungemäß hergestellter Mullit wies einen BET Wert von 12–14 m2/g auf mit einem D50 Wert von 2 μm.
  • Ganz allgemein bestehen wesentliche Vorteile des erfindungsgemäßen Verfahrens darin, dass beispielsweise Suspensionen ohne zusätzliche Filtrations- und/oder Trocknungsschritte bzw. ohne Zugabe von zusätzlichen Lösungmitteln innerhalb eines sehr kurzen Zeitraums, typischerweise innerhalb weniger Millisekunden, bei vergleichsweise niedrigen Temperaturen als bei Verfahren des Standes der Technik üblich kalziniert werden können Die entstehenden Nanokristallite weisen signifikant erhöhte BET-Oberflächen auf, was im Falle katalytisch aktiver Materialien zu Katalysatoren mit erhöhter Reaktivität, verbessertem Umsatz und Selektivität führt. Durch die annähernd gleiche Verweilzeit jedes Partikels in dem durch das Verfahren erzeugte homogene Temperaturfeld entsteht ein äußerst homogenes Endprodukt mit enger monomodaler Teilchenverteilung.
  • Eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens bei Herstellung derartiger monomodaler nanokristallinen Metalloxidpulver ist beispielsweise aus der DE 10109892 A1 bekannt. Im Gegensatz zu der dort beschriebenen Vorrichtung und dem dort offenbarten Verfahren benötigt das vorliegende Verfahren jedoch keinen vorgelagerten Verdampfungsschritt, in der Ausgangsstoffe auf eine Verdampfungstemperatur erwärmt werden.
  • Typischerweise werden die Materialien, aus denen die erfindungsgemäßen Metalloxidpulver hergestellt werden direkt über ein Trägerfluid, insbesondere ein Trägergas, vorzugsweise ein inertes Trägergas, wie beispielsweise Stickstoff etc., in die so genannten Reaktionskammer, genauer gesagt in die Brennkammer, eingeführt. An die Reaktionskammer ist abgasseitig ein Resonanzrohr mit einem gegenüber der Reaktionskammer deutlich verringernden Strömungsquerschnitt angeschlossen. Der Brennkammerboden ist mit mehreren Ventilen zum Eintritt der Verbrennungsluft in die Brennkammer ausgestattet. Die aerodynamischen Ventile sind dabei strömungstechnisch und akustisch so mit der Brennkammer und der Resonanzrohrgeometrie abgestimmt, dass die in der Brennkammer erzeugten Druckwellen des homogenen „flammenlosen” Temperaturfeldes sich vorwiegend im Resonanzrohr pulsierend ausbreiten. Es bildet sich ein so genannter Helmholtz-Resonator mit pulsierender Strömung aus.
  • Die Materialzuführung in die Reaktionskammer erfolgt typischerweise entweder mit einem Injektor oder mit einer geeigneten Zweistoffdüse oder in einem Schenkdosierer.
  • Das erfindungsgemäße Verfahren ermöglicht die Herstellung monomodaler, nanokristalliner Oxidpulver durch direkte Einbringung. Überraschenderweise können auch Oxidpulver direkt in die Brennkammer eingebracht werden, ohne dass die entstehenden kristallinen Materialien filtriert werden müssen. Weiterhin ermöglicht das erfindungsgemäße Verfahren eine geringere Temperatur bei der Herstellung der erfindungsgemäßen Metalloxide. Außerdem lässt sich im Falle der Verwendung von Lösungen von Metallsalzen ein zusätzlicher Fällungsschritt vermeiden, so dass diese direkt im Reaktor kalziniert werden können.
  • Bevorzugt ist das Trägerfluid ein Trägergas, wie beispielsweise Luft, Stickstoff bzw. Luft/Stickstoff-Gemische. Natürlich kann alternativ auch eine Flüssigkeit als Fluid verwendet werden bzw. auch schon in Lösung vorliegende Ausgangsstoffe. Die Art des Trägerfluids hat insbesondere Einfluss auf die Verweilzeit in der Behandlungszone. So können beispielsweise auch direkt Suspensionen und Aufschlämmungen schwerlöslicher Verbindungen wie Sulfate, Oxide, Nitride etc. erfindungsgemäß verwendet werden.
  • Bevorzugt wird die Ausgangsverbindung in verdüster Form in die Reaktionskammer eingebracht, so dass eine feine Verteilung im Bereich der Behandlungszone gewährleistet ist.
  • Von Vorteil ist, wenn verschiedene Ausgangsverbindungen eingesetzt werden, die insbesondere verschieden voneinander sind, um auch komplexe Metalloxide bzw. Mischoxide herstellen zu können. Dies ist insbesondere von Vorteil, wenn komplexere Katalysatorsysteme, die auf der Synergie verschiedener Metalloxide beruhen, hergestellt werden sollen.
  • Durch die Kontrolle der Pulsation (regelmäßig oder unregelmäßig bzw. die Dauer und Amplituden der pulsierenden thermischen Behandlung) sowie der Verweilzeit der Ausgangsverbindung(en) in der Behandlungszone von 200 ms bis 2 s kann auch die Kristallitgröße entscheidend bestimmt werden.
  • Nach der thermischen Behandlung werden die entstandenen nanokristallinen Metalloxide wenn möglich mittels des Trägerfluids sofort in eine kältere Zone der Reaktionskammer überführt, so dass sie in der kälteren Zone abgeschieden werden und ausgetragen werden können. Die Ausbeute des erfindungsgemäßen Verfahrens beträgt nahezu 100%, da das entstehende Produkt vollständig aus dem Reaktor ausgetragen werden kann.
  • Wie vorstehend schon ausgeführt, wurde überraschenderweise gefunden, dass auch schon in fester Form vorliegende Oxide als Ausgangsstoffe verwendet werden können, die erfindungsgemäß durch die anschließende pulsierende Temperaturbehandlung in nanokristalline Teilchen umgewandelt werden. Dies öffnet vorteilhafterweise einen besonders weiten Anwendungsbereich des erfindungsgemäßen Verfahrens, da es nicht nötig ist, spezifische Ausgangsverbindungen, beispielsweise in Bezug auf ihre Löslichkeit, Verdampfung, zu selektionieren, die ggf. eingesetzt werden können. Ebenso ist es möglich, dass in bevorzugten Weiterbildungen des erfindungsgemäßen Verfahrens lösliche Metallverbindungen als Ausgangsverbindung eingesetzt werden. Dabei können insbesondere einfach zugängliche Ausgangsverbindungen wie die Metallnitrate, -chloride, -acetate etc. von Metallen bzw. Übergangsmetallen eingesetzt werden.
  • Die thermische Behandlung wird bei Temperaturen von 400 bis 700°C durchgeführt, was gegenüber den bislang bekannten thermischen Zersetzungsverfahren, die üblicherweise bei Temperaturen von mehr als 1.000° durchgeführt werden, von Vorteil ist. Es sinkt auch die Gefahr von Zersetzungs- und Nebenreaktionen, die zu Verunreinigungen des Produktes führen können bzw. auch die Energiebilanz bei der Durchführung des erfindungsgemäßen Verfahrens ist günstiger, da der Energieverbrauch geringer ist.
  • Typischerweise wird das Verfahren beim Druck zwischen 15 bis 40 Bar durchgeführt.
  • Die Aufgabe der vorliegenden Erfindung wird neben dem erfindungsgemäßen Verfahren auch durch ein nanokristallines Metalloxidmaterial enthaltend Kupfer-, Zink- und Aluminiumoxide oder Kupfer-, Mangan- und Alumniumoxide, das durch erfindungsgemäße Verfahren erhältlich ist, gelöst. Es wurde gefunden, dass das erfindungsgemäße nanokristalline Metalloxidmaterial bevorzugt eine Kristallitgröße im Bereich von 5 Nanometer bis 100 μm, bevorzugt von 10 Nanometern bis 10 μm aufweist, was, wie vorstehend schon ausgeführt, durch die Pulsation der thermischen Behandlung bevorzugt eingestellt werden kann.
  • Das erfindungsgemäße kristalline Metalloxidmaterial ist ein Mischoxid aus Kupfer, Zink und Aluminiumoxid bzw. Kupfer, Mangan und Aluminiumoxid, wie es bevorzugt als Katalysator bei der Synthese von Methanol aus CO und Wasserstoff Verwendung findet.
  • Das erfindungsgemäße Verfahren ist anhand der nachstehenden Ausführungsbeispiele, die nicht als einschränkend verstanden werden sollen, näher erläutert. Die verwendete Vorrichtung entspricht weitgehend der in der DE 10109892 A1 beschriebenen mit dem Unterschied, dass die zur Durchführung des erfindungsgemäßen Verfahrens verwendete Vorrichtung keine Verdampfvorstufe aufwies.
  • Beispiel 1
  • Direkte Zugabe in die Reaktionskammer von sprühgetrocknetem Pulver
  • Die Materialzufuhr des sprühgetrockneten Pulvers aus Metalloxiden erfolgte mittels eines Schenkdosierers. Die Verweilzeit des Pulvers im Reaktor betrug circa 675 Millisekunden beim Versuch VP 1 und beim Versuch VP 5 circa 510 Millisekunden. Es wurde eine Aufgabemenge von circa 10 Kilogramm je Stunde gewählt, wobei die Temperaturen zwischen 245°C und 265°C lagen.
  • Zwischen den einzelnen Versuchspunkten wurden die Filterkassetten circa 20 bis 30 Minuten abgereinigt und das erste Material des neuen Versuchspunktes getrennt aufgefangen.
  • Beispiel 2
  • Zugabe von Suspensionen
  • Zur Durchführung des Beispiels 2 wurden aus zwei Filterkuchen Suspensionen hergestellt und die Suspensionen mittels einer Zweistoffdüse in die Brennkammer des Reaktors verdüst. Das Verfahren wurde bei 460°C und 680°C durchgeführt.
  • Die Suspensionen wurden vor Einbringung in den Reaktorraum durch ein Sieb von nicht aufgelösten Reststoffen getrennt.
  • Beispiel 3
  • Einsprühen einer Kupfer-Zink-Aluminium-Formiat-Lösung
  • Eine wässrige Lösung von Cu-Zn-Al-Formiat wurde mittels einer Schlickdüse in die Brennkammer verdüst. Dabei wurden Temperaturen von circa 350°C bis 460°C für die Durchführung des erfindungsgemäßen Verfahrens gewählt.
  • In sämtlichen Fällen wurde ein amorphes nanokristallines monomodales Material erhalten.
  • Durch die Verwendung unterschiedlicher Ausgangsstoffe können auch unterschiedliche Pulvereigenschaften, beispielsweise in Bezug auf die BET-Oberfläche und die Partikelgröße, bei den mittels des erfindungsgemäßen Verfahrens erhältlichen nanokristallinen Pulvern erhalten werden. Tabelle 1 zeigt Pulvereigenschaften von Aluminiumoxid, das von verschiedenen Ausgangsmaterialien erhalten wurde. Tabelle 1: Pulvereigenschaften bei unterschiedlichen Ausgangsstoffen
    Ausgangsstoff Summenformel Spezifische Oberfläche XRD Korund D = 2,088 Å Partikelgröße
    m2/g cps nm
    Al-Alkoxid Al(C4H9O)3 53 33 0,5–50
    Al-Chlorid AlCl3 81 3 5–100
    Al-Nitrat Al(NO3)3·9H2O 17 56 5–75
    „Pseudo” Böhmit AlO(OH)·H2O 11 286 300–500
    Gibbsit Al(OH)3 26 419 60–100
    Al-Oxid Al2O3 55 12 30–50
    Al-Lösung - 15 1680 30–110
  • Eigenschaften von mittels des erfindungsgemäßen Verfahrens erhaltener nanokristalliner Pulver sind in Tabelle 2 für verschiedene Metalloxide dargestellt. Tabelle 2: Eigenschaften verschiedener nanokristalliner Pulver
    Produkt TiO2 Al2O3 ZnO ZrO2 ZrO2-Y2O3
    Partikelgröße 5 ... 50 5 ... 75 50 ... 100 10 ... 50 10 ... 50
    Morphologie sphärisch sphärisch sphärisch sphärisch Hohlkugeln
    Kristallphase Rutil 80% Anatas 20% -γ-α- Al2O3 Zincit Mischphasen-tetragonal/ Monoklin tetragonal
    Spezifische Oberfläche (m2/g) 25 50 ... 150 19 14 10
  • ZnO, das mit herkömmlichen Verfahren hergestellt wird, weist typischerweise eine BET-Oberfläche von 1,5–1,0 m2/g auf.

Claims (11)

  1. Verfahren zur Herstellung nanokristalliner Metalloxidpartikel umfassend die Schritte a) des Einbringens einer Ausgangsverbindung in eine Reaktionskammer mittels eines Trägerfluids, b) des Unterwerfens der Ausgangsverbindung in einer Behandlungszone unter eine thermische Behandlung einer pulsierenden Strömung, wobei die thermische Behandlung in einem Temperaturbereich von 400°C bis 700°C und einer Verweilzeit von 200 ms bis 2 s durchgeführt wird, c) des Bildens von nanokristallinen Metalloxidpartikeln, d) des Ausbringens der in Schritt b) und c) erhaltenen nanokristallinen Metallpartikel aus dem Reaktor, dadurch gekennzeichnet, dass die Ausgangsverbindung in Form einer Lösung, Aufschlämmung, Suspension oder in festem Aggregatzustand in die Reaktionskammer eingebracht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Trägerfluid ein Gas ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Ausgangsverbindung in verdüster Form in die Reaktionskammer eingebracht wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein oder mehrere Ausgangsverbindungen eingesetzt werden, die gleich oder verschieden voneinander sind.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Pulsation der pulsierenden thermischen Behandlung regelmäßig oder unregelmäßig erfolgt.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach der thermischen Behandlung in der Behandlungszone die entstandenen nanokristallinen Metalloxidpartikel in eine kältere Zone der Reaktionskammer überführt werden.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Ausgangsstoff ein Metalloxid verwendet wird.
  8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Ausgangsverbindung eine lösliche Metallverbindung verwendet wird.
  9. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Verfahren bei einem Druck zwischen 15–40 bar durchgeführt wird.
  10. Nanokristallines Metalloxidmaterial erhältlich durch ein Verfahren nach einem der vorhergehenden Ansprüche 1–9, dadurch gekennzeichnet, dass es Kupfer-, Zink- und Aluminiumoxide oder Kupfer-, Mangan- und Aluminiumoxide enthält.
  11. Nanokristallines Metalloxidmaterial nach Anspruch 10, dadurch gekennzeichnet, dass seine Kristallitgröße im Bereich von 10 Nanometern bis 10 Mikrometern liegt.
DE102006032452A 2006-07-13 2006-07-13 Verfahren zur Herstellung nanokristalliner Metalloxide Expired - Fee Related DE102006032452B4 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE102006032452A DE102006032452B4 (de) 2006-07-13 2006-07-13 Verfahren zur Herstellung nanokristalliner Metalloxide
DK07765176.8T DK2054152T3 (en) 2006-07-13 2007-07-11 Process for Preparation of Nanocrystalline Metal Oxide
PCT/EP2007/006158 WO2008006565A1 (de) 2006-07-13 2007-07-11 Verfahren zur herstellung nanokristalliner metalloxide
EA200970119A EA016985B1 (ru) 2006-07-13 2007-07-11 Способ получения нанокристаллических частиц оксидов металлов
DK11161500.1T DK2335821T3 (en) 2006-07-13 2007-07-11 A process for the preparation of nanocrystalline metal oxides
US12/373,440 US9579631B2 (en) 2006-07-13 2007-07-11 Process for the preparation of nanocrystalline metal oxides
CN2007800266253A CN101489667B (zh) 2006-07-13 2007-07-11 制备纳米晶体金属氧化物的方法
EP07765176.8A EP2054152B1 (de) 2006-07-13 2007-07-11 Verfahren zur herstellung nanokristalliner metalloxide
JP2009518789A JP5399239B2 (ja) 2006-07-13 2007-07-11 ナノ結晶金属酸化物の製造方法
PL07765176.8T PL2054152T3 (pl) 2006-07-13 2007-07-11 Sposób wytwarzania nanokrystalicznego tlenku metalu
EP11161500.1A EP2335821B1 (de) 2006-07-13 2007-07-11 Verfahren zur Herstellung nanokristalliner Metalloxide
JP2013219575A JP5898160B2 (ja) 2006-07-13 2013-10-22 ナノ結晶金属酸化物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006032452A DE102006032452B4 (de) 2006-07-13 2006-07-13 Verfahren zur Herstellung nanokristalliner Metalloxide

Publications (2)

Publication Number Publication Date
DE102006032452A1 DE102006032452A1 (de) 2008-01-17
DE102006032452B4 true DE102006032452B4 (de) 2013-10-02

Family

ID=38542657

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006032452A Expired - Fee Related DE102006032452B4 (de) 2006-07-13 2006-07-13 Verfahren zur Herstellung nanokristalliner Metalloxide

Country Status (9)

Country Link
US (1) US9579631B2 (de)
EP (2) EP2335821B1 (de)
JP (2) JP5399239B2 (de)
CN (1) CN101489667B (de)
DE (1) DE102006032452B4 (de)
DK (2) DK2054152T3 (de)
EA (1) EA016985B1 (de)
PL (1) PL2054152T3 (de)
WO (1) WO2008006565A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016002566A1 (de) 2016-03-04 2017-09-07 Horst Büchner Vorrichtung und Verfahren zur thermischen Materialbehandlung
EP3228876A1 (de) 2016-03-31 2017-10-11 FTE automotive GmbH Vorrichtung zur reduktion von vibrationen in einem hydraulischen betätigungssystem, insbesondere einer hydraulischen kupplungsbetätigung für kraftfahrzeuge
EP3236152A1 (de) 2016-04-22 2017-10-25 Büchner, Horst Verfahren und vorrichtung zur thermischen materialbehandlung in einem schwingfeuer-reaktor

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005020630A1 (de) * 2005-05-03 2006-11-23 Süd-Chemie AG Herstellung von Cu/Zn/Al-Katalysatoren über den Formiatweg
DE102007059990A1 (de) * 2007-12-13 2009-06-18 Süd-Chemie AG Verfahren zur Herstellung nanokristalliner Hydrotalcitverbindungen
DE102008006607B4 (de) * 2008-01-30 2011-03-03 Ibu-Tec Advanced Materials Ag Verfahren zur Herstellung feinteiliger Partikel
DE102008017309A1 (de) * 2008-04-04 2009-10-08 Süd-Chemie AG Verfahren zur Herstellung molybdänhaltiger Mischoxidkatalysatoren
DE102008017311A1 (de) * 2008-04-04 2009-10-08 Süd-Chemie AG Verfahren zur Herstellung eines nanokristallinen Molybdänmischoxidkatalysators
DE102008017308B4 (de) 2008-04-04 2014-09-25 Süd-Chemie Ip Gmbh & Co. Kg Verfahren zur Herstellung von nanokristallinen Bismut-Molybdänmischoxidkatalysatoren
DE102008026094A1 (de) * 2008-05-30 2009-12-03 Süd-Chemie AG Verfahren zur Herstellung nanokristalliner Nickeloxide
DE102008026209A1 (de) * 2008-05-30 2009-12-03 Süd-Chemie AG Verfahren zur Herstellung nanokristalliner Nickeloxide
DE102008026208A1 (de) * 2008-05-30 2009-12-03 Süd-Chemie AG Verfahren zur Herstellung kupfer- und chromhaltiger Mischoxide
DE102008026210B4 (de) * 2008-05-30 2012-06-28 Süd-Chemie AG Nanokristallines Kupferoxid und Verfahren zu dessen Herstellung
DE102009009182A1 (de) * 2009-02-16 2010-08-19 Süd-Chemie AG Zinkoxid-Kristallpartikel und Verfahren zu der Herstellung
US9295978B2 (en) 2012-02-15 2016-03-29 Basf Corporation Catalyst and method for the direct synthesis of dimethyl ether from synthesis gas
WO2014164950A1 (en) * 2013-03-12 2014-10-09 Ut-Battelle, Llc Method for synthesizing metal oxide particles
DE102015003398B4 (de) * 2015-03-18 2018-11-22 Dennert Poraver Gmbh Verfahren und Anlage zur Herstellung von Mikrohohlkugeln aus Glas und Verwendung eines Pulsationsreaktors
KR102498433B1 (ko) * 2015-07-23 2023-02-13 소에이 가가쿠 고교 가부시키가이샤 금속 산화물 나노 결정의 제조 방법, 다원소 산화물 나노 결정의 제조 방법 및 금속 산화물 나노 결정
RU2625877C1 (ru) * 2016-07-18 2017-07-19 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Экстракционный способ получения наноразмерных кристаллов оксидов металлов
DE102016225172A1 (de) * 2016-12-15 2018-06-21 Clariant International Ltd Tablettierter Katalysator mit erhöhter Stabilität gegenüber Säureeinwirkung
US11325183B2 (en) * 2017-03-21 2022-05-10 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Surface-modified metal compound particles, and method for producing surface-modified metal compound particles
DE102018205398A1 (de) * 2018-04-10 2019-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Mischoxid-Pulvern sowie ein Mischoxid-Pulver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10109892A1 (de) * 2001-02-24 2002-09-05 Ibu Tec Gmbh & Co Kg Verfahren zur Herstellung monomodaler nanokristalliner Oxidpulver
WO2006027270A2 (de) * 2004-09-10 2006-03-16 Unicore Ag & Co. Kg Verfahren zur herstellung alkalimetallhaltiger, mehrkomponentiger metalloxidverbindungen und damit hergestellte metalloxidverbindungen

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD114454A1 (de) 1974-04-02 1975-08-05
DD155161B1 (de) 1980-12-10 1988-09-07 Richard Schrader Verfahren zur herstellung von poliermitteln
US4529377A (en) 1983-02-28 1985-07-16 Georgia Tech Research Institute Pulse combustor apparatus
DD238608A1 (de) 1985-06-21 1986-08-27 Dessau Zementanlagenbau Veb Verfahren und vorrichtung zur gewinnung von knochenasche
DD245648A1 (de) 1986-01-02 1987-05-13 Dessau Zementanlagenbau Veb Verfahren und vorrichtung zur herstellung hochdisperser kieselsaeuren
US4699588A (en) 1986-03-06 1987-10-13 Sonotech, Inc. Method and apparatus for conducting a process in a pulsating environment
US4909731A (en) 1986-03-06 1990-03-20 Sonotech, Inc. Method and apparatus for conducting a process in a pulsating environment
US4770626A (en) 1986-03-06 1988-09-13 Sonotech, Inc. Tunable pulse combustor
US4929172A (en) 1989-04-25 1990-05-29 Georgia Tech Research Corporation Stably operating pulse combustor and method
JPH0375812A (ja) 1989-08-17 1991-03-29 Sanyo Electric Co Ltd 文章作成装置
JPH04357117A (ja) * 1991-06-03 1992-12-10 Nkk Corp 噴霧焙焼による酸化鉄の製造方法及びその噴霧焙焼装置
JP3650422B2 (ja) * 1994-08-03 2005-05-18 パルテック株式会社 アルカリ金属化合物の低嵩密度微細粒子の製造方法
JPH09175812A (ja) * 1995-12-26 1997-07-08 Kao Corp 結晶性珪酸化合物の製造方法
US6413489B1 (en) * 1997-04-15 2002-07-02 Massachusetts Institute Of Technology Synthesis of nanometer-sized particles by reverse micelle mediated techniques
DE19827603A1 (de) 1998-06-20 1999-12-23 Zeiss Carl Fa Optisches System, insbesondere Projektions-Belichtungsanlage der Mikrolithographie
EP1142830A1 (de) * 2000-04-03 2001-10-10 Degussa AG Nanoskalige pyrogene Oxide, Verfahren zur deren Herstellung und die Verwendung dieser Oxide
DE60118514T2 (de) 2001-01-24 2006-08-24 Tas, Ahmet Cüneyt, Prof. Dr. Verfahren zur Herstellung von kristallinem Phosphorpulver bei niedriger Temperatur
DE10111938A1 (de) 2001-03-13 2002-09-26 Merck Patent Gmbh Herstellung von Hochtemperatur-Supraleiter-Pulvern in einem Pulsationsreaktor
EP1378489A1 (de) 2002-07-03 2004-01-07 Eidgenössische Technische Hochschule Zürich Durch Flammsprühpyrolyse hergestellte Metalloxide
CN1708354A (zh) * 2002-11-08 2005-12-14 第一工业制药株式会社 无机微粒、无机原料粉末以及它们的制造方法
JP2004321924A (ja) * 2003-04-24 2004-11-18 Toyota Central Res & Dev Lab Inc 水性ガスシフト反応用触媒
JP4928273B2 (ja) 2004-01-23 2012-05-09 ベリー スモール パーティクル コンパニー リミテッド 多孔質複合酸化物の製造方法
EP1761459B1 (de) 2004-03-15 2017-02-01 Eidgenössische Technische Hochschule Zürich Synthese von metallsalz-nanopartikeln in einer flamme, insbesondere nanopartikel enthaltend kalzium und phosphat
JP2005320189A (ja) 2004-05-07 2005-11-17 Toray Ind Inc ジルコニウム含有複合化合物およびその製造方法
WO2006078825A2 (en) * 2005-01-21 2006-07-27 Cabot Corporation Processes for forming nanoparticles
JP4799885B2 (ja) * 2005-03-14 2011-10-26 株式会社 赤見製作所 金属化合物粉末の製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10109892A1 (de) * 2001-02-24 2002-09-05 Ibu Tec Gmbh & Co Kg Verfahren zur Herstellung monomodaler nanokristalliner Oxidpulver
WO2006027270A2 (de) * 2004-09-10 2006-03-16 Unicore Ag & Co. Kg Verfahren zur herstellung alkalimetallhaltiger, mehrkomponentiger metalloxidverbindungen und damit hergestellte metalloxidverbindungen
DE102004044266A1 (de) * 2004-09-10 2006-03-30 Umicore Ag & Co. Kg Verfahren zur Herstellung alkalimetallhaltiger, mehrkomponentiger Metalloxidverbindungen und damit hergestellte Metalloxidverbindungen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Grygar, T. et al. "Voltammetric and X-ray diffraction analysis of the early stages on the thermal crystallization of mixed Cu,Mn oxides", J. Solid State Electrochem. 8, 2004, S.252-259 *
Vissokov, G. "Thermodynamic And Model Studies On The Plasmachemical Preparation Of Nanostructuerd Catalysts For Low-Temperature Water-Gas Shift Reaction", Bulgarian Chemical Communications, Vol.34, No. 3/4, 2002, S. 310-320 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016002566A1 (de) 2016-03-04 2017-09-07 Horst Büchner Vorrichtung und Verfahren zur thermischen Materialbehandlung
WO2017148562A1 (de) 2016-03-04 2017-09-08 Büchner Horst Vorrichtung und verfahren zur thermischen materialbehandlung
DE102016002566B4 (de) 2016-03-04 2022-01-20 Horst Büchner Vorrichtung und Verfahren zur thermischen Materialbehandlung
EP3228876A1 (de) 2016-03-31 2017-10-11 FTE automotive GmbH Vorrichtung zur reduktion von vibrationen in einem hydraulischen betätigungssystem, insbesondere einer hydraulischen kupplungsbetätigung für kraftfahrzeuge
EP3236152A1 (de) 2016-04-22 2017-10-25 Büchner, Horst Verfahren und vorrichtung zur thermischen materialbehandlung in einem schwingfeuer-reaktor
DE102016004977A1 (de) 2016-04-22 2017-10-26 Horst Büchner Verfahren und Vorrichtung zur thermischen Materialbehandlung in einem Schwingfeuer-Reaktor
DE102016004977B4 (de) 2016-04-22 2023-09-21 Ibu-Tec Advanced Materials Ag Verfahren und Vorrichtung zur thermischen Materialbehandlung in einem Schwingfeuer-Reaktor

Also Published As

Publication number Publication date
US20090325794A1 (en) 2009-12-31
PL2054152T3 (pl) 2016-10-31
CN101489667B (zh) 2012-09-12
EP2335821B1 (de) 2016-03-16
DE102006032452A1 (de) 2008-01-17
WO2008006565A1 (de) 2008-01-17
EA200970119A1 (ru) 2009-06-30
EA016985B1 (ru) 2012-08-30
EP2335821A1 (de) 2011-06-22
DK2335821T3 (en) 2016-06-27
DK2054152T3 (en) 2016-06-13
JP5898160B2 (ja) 2016-04-06
US9579631B2 (en) 2017-02-28
JP2009542573A (ja) 2009-12-03
JP2014111520A (ja) 2014-06-19
EP2054152A1 (de) 2009-05-06
EP2054152B1 (de) 2016-04-13
JP5399239B2 (ja) 2014-01-29
CN101489667A (zh) 2009-07-22

Similar Documents

Publication Publication Date Title
DE102006032452B4 (de) Verfahren zur Herstellung nanokristalliner Metalloxide
EP2059477B1 (de) Verfahren zur herstellung nanokristalliner gemischter metalloxide
EP1438361B1 (de) Beschichtete titandioxid-teilchen
WO1996034829A1 (de) Verfahren zur herstellung schwach agglomerierter nanoskaliger teilchen
EP2303782B1 (de) Verfahren zur herstellung nanokristalliner nickeloxide
EP1506940B1 (de) Ceroxidpulver
DE10109892B4 (de) Verfahren zur Herstellung monomodaler nanokristalliner Oxidpulver
DE102008026210B4 (de) Nanokristallines Kupferoxid und Verfahren zu dessen Herstellung
DE102007059990A1 (de) Verfahren zur Herstellung nanokristalliner Hydrotalcitverbindungen
EP1907323B1 (de) Verfahren zur herstellung von nanopartikeln aus aluminiumoxid und oxiden von elementen der i. und ii. hauptgruppe des periodensystems
EP1204597A2 (de) Verfahren zur herstellung von aluminiumoxiden und daraus hergestellte produkte
DE60116355T2 (de) Verfahren zur hydration von olefinen
DE102015102484A1 (de) Katalysatorprecursormaterial auf TiO2-Basis, dessen Herstellung und dessen Verwendung
EP2218685B1 (de) Zinkoxid-Kristallpartikel und Verfahren zu der Herstellung
DE102006046806A1 (de) Verfahren zur Herstellung von beschichteten Partikeln
DE102009054229B4 (de) Verfahren zur Herstellung einer Molybdänmischoxidvorstufe und damit erhältliche Molybdänmischoxidvorstufe
DE102006039462B4 (de) Verfahren zur Herstellung von Partikeln
EP2303781B1 (de) Verfahren zur herstellung nanokristalliner nickeloxide
EP2297039B1 (de) Verfahren zur herstellung kupfer- und chromhaltiger mischoxide
DE102011081000A1 (de) Verfahren zur herstellung von titaniumdioxidpartikeln
DE102006020515B4 (de) Nanopartikel aus Aluminiumoxid und Oxiden von Elementen der I. und II. Hauptgruppe des Periodensystems sowie deren Herstellung

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R130 Divisional application to

Ref document number: 102006062922

Country of ref document: DE

Effective date: 20110407

R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: SUED-CHEMIE IP GMBH & CO. KG, DE

Free format text: FORMER OWNER: SUED-CHEMIE AG, 80333 MUENCHEN, DE

Effective date: 20121025

R082 Change of representative

Representative=s name: PATENTANWAELTE STOLMAR & PARTNER, DE

Effective date: 20121025

Representative=s name: STOLMAR & PARTNER, DE

Effective date: 20121025

R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20140103

R082 Change of representative
R081 Change of applicant/patentee

Owner name: CLARIANT INTERNATIONAL LTD., CH

Free format text: FORMER OWNER: SUED-CHEMIE IP GMBH & CO. KG, 80333 MUENCHEN, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee