DE102005041953A1 - Niedrigviskose alkoxysilangruppenaufweisende Prepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung - Google Patents

Niedrigviskose alkoxysilangruppenaufweisende Prepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung Download PDF

Info

Publication number
DE102005041953A1
DE102005041953A1 DE102005041953A DE102005041953A DE102005041953A1 DE 102005041953 A1 DE102005041953 A1 DE 102005041953A1 DE 102005041953 A DE102005041953 A DE 102005041953A DE 102005041953 A DE102005041953 A DE 102005041953A DE 102005041953 A1 DE102005041953 A1 DE 102005041953A1
Authority
DE
Germany
Prior art keywords
alkoxysilane
preparation
containing prepolymers
mol
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102005041953A
Other languages
English (en)
Inventor
Michael Dr. Ludewig
Mathias Dr. Matner
Frank Kobelka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Priority to DE102005041953A priority Critical patent/DE102005041953A1/de
Priority to BRPI0616128-6A priority patent/BRPI0616128A2/pt
Priority to JP2008528387A priority patent/JP5909316B2/ja
Priority to AT06791626T priority patent/ATE419291T1/de
Priority to CN2006800321684A priority patent/CN101253209B/zh
Priority to CA2620991A priority patent/CA2620991C/en
Priority to DE502006002528T priority patent/DE502006002528D1/de
Priority to ES06791626T priority patent/ES2318789T3/es
Priority to PL06791626T priority patent/PL1924621T3/pl
Priority to EP06791626A priority patent/EP1924621B1/de
Priority to AU2006286874A priority patent/AU2006286874B2/en
Priority to DK06791626T priority patent/DK1924621T3/da
Priority to PCT/EP2006/008275 priority patent/WO2007025668A1/de
Priority to US11/512,487 priority patent/US8067522B2/en
Priority to TW095132267A priority patent/TWI405782B/zh
Publication of DE102005041953A1 publication Critical patent/DE102005041953A1/de
Priority to NO20081437A priority patent/NO20081437L/no
Priority to HK09101570.7A priority patent/HK1123818A1/xx
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/718Monoisocyanates or monoisothiocyanates containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Sealing Material Composition (AREA)
  • Silicon Polymers (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Die vorliegende Erfindung betrifft neuartige niedrigviskose Alkoxysilangruppen aufweisende Prepolymere, ein Verfahren zur Herstellung sowie ihre Anwendung als Bindemittel für Klebstoffe, Dichtstoffe, Primer oder Beschichtungen.

Description

  • Die vorliegende Erfindung betrifft neuartige, niedrigviskose, alkoxysilangruppenaufweisende Prepolymere, ein Verfahren zur Herstellung sowie ihre Anwendung als Bindemittel für Klebstoffe, Dichtstoffe, Primer oder Beschichtungen.
  • Alkoxysilanfunktionelle Polyurethane, die über eine Silanpolykondensation vernetzen, sind lange bekannt. Ein Übersichtsartikel zu dieser Thematik findet sich z.B. in "Adhesives Age" 4/1995, Seite 30 ff. (Autoren: Ta-Min Feng, B. A. Waldmann). Derartige alkoxysilan-terminierte, feuchtigkeitshärtende Einkomponenten-Polyurethane werden in zunehmendem Maße als weichelastische Beschichtungs-, Dichtungs- und Klebemassen im Bauwesen und in der Automobilindustrie verwendet.
  • Solche alkoxysilanfunktionellen Polyurethane können gemäß US 3,627,722 oder US 3,632,557 hergestellt werden, indem z.B. Polyetherpolyole mit einem Überschuss Polyisocyanat zu einem NCO-haltigen Prepolymer umgesetzt werden, das dann wiederum mit einem aminofunktionellen Alkoxysilan weiter umgesetzt wird. Das entstehende alkoxysilanfunktionelle Prepolymer enthält Harnstoff- und Urethangruppen in hoher Konzentration, die zu einer hohen Viskosität der Produkte führen.
  • Ein wirksames Konzept, zumindest den Anteil an der Wasserstoffbrückendichte, der durch die Harnstoffgruppen verursacht wird, zu reduzieren, ist es, durch die Verwendung von sekundären Aminosilanen substituierte Harnstoffe zu erzeugen. Dazu wurden verschiedene Verfahren vorgeschlagen; US 3,627,722 und US 3,632,557 verwenden alkylsubstituierte Aminosilane, US 4,067,844 addiert Acrylate an das primäre Aminosilan, EP-A 596 360 addiert Maleinsäureester an das primäre Aminosilan und EP-A 676 403 führt arylsubstituierte Aminosilane ein. All diese Verfahren können aber nur ein Wasserstoffatom an der terminalen Harnstoffgruppe ersetzten, alle weiteren Harnstoff- und Urethanprotonen tragen über Wasserstoffbrückenbindungen weiter zu einer hohen Viskosität bei.
  • Ein ebenfalls zweckmäßiges Konzept zur Verringerung der Dichte der Wasserstoffbrückenbindungen und damit der Viskosität wird in EP-A 372 561 offenbart. Dabei werden u.a. möglichst langkettige Polyetherpolyole bei einer geringen Vorverlängerung durch die Umsetzung mit dem Polyisocyanat verwendet. Dazu sind Polyether notwendig, die durch spezielle Herstellungsverfahren eine hohe Funktionalität bei einer geringen Unsättigung und Polydispersität haben. Weitere Aspekte dieser Technologie werden in WO 99/48942 und WO 00/26271 beleuchtet. Allerdings führt dieses Prinzip nur bei sehr langkettigen, für niedermodulige Bindemittel konzipierten Prepolymeren zu einen signifikanten Effekt und kann auch hier nur einen Teil der Wasserstoffbrückenbindungsdichte eliminieren.
  • Die Möglichkeit, durch die Verwendung von isocyanatfunktionellen Alkoxysilanbausteinen zu besonders niedrigviskosen Prepolymeren zu gelangen, wird u.a. in US 4,345,053 offenbart. Hier wird ein OH-funktionelles Prepolymer durch ein isocyanatfunktionelles Alkoxysilan terminiert, was letztlich die Einsparung einer Harnstoff-Gruppe pro Terminierung bedeutet. Allerdings enthält das OH-funktionelle Prepolymer noch Urethangruppen, die aus der Vorverlängerung eines Polyetherpolyols mit Diisocyanat resultieren. Diese können, wie ebenfalls in EP-A 372 561 offenbart, eingespart werden, indem speziell hergestellte langkettige Polyether mit einer geringen Unsättigung und Polydispersität eingesetzt werden. Allerdings werden bei der stöchiometrischen Umsetzung solcher isocyanatfunktionellen Alkoxysilanbausteine Bindemittel erhalten, die aufgrund unzureichender Verkappung vor allem bei der Verwendung sehr langkettiger Polyether bei der Aushärtung nicht ausreichend vernetzen können. Dies führt zu sehr weichen Polymeren mit einer hohen Oberflächenklebrigkeit und einem mangelnden Rückstellvermögen, bzw. einer hohen plastischen Deformierbarkeit.
  • Aufgabe der vorliegenden Erfindung war es nun, modifizierte alkoxysilangruppenaufweisende Prepolymere bereitzustellen, die diese im dem Stand der Technik dargelegten Nachteile bei vergleichbarer Viskosität nicht aufweisen.
  • Es wurde nun gefunden, dass sich Prepolymere mit den geforderten Eigenschaften herstellen lassen, indem man langkettige Polyether oder OH-funktionelle Polyetherprepolymere zunächst mit einem Überschuss isocyanatfunktionellem Alkoxysilans umsetzt und den Überschuss an Isocyanatgruppen durch eine anschließende Allophanatisierung oder eine Umsetzung mit einer niedermolekularen NCO-reaktiven Verbindung abbaut.
  • Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung alkoxysilangruppenhaltiger Prepolymere, bei dem
    • A) 1,0 val einer Polyolkomponente mit einem zahlenmittleren Molekulargewicht von 3.000 g/mol bis 20.000 g/mol, enthaltend ein oder mehrere Polyoxyalkylenpolyole oder Polyoxyalkylenpolyolprepolymere mit
    • B) 1,05 bis 1,50 val einer isocyanat- und alkoxysilangruppenaufweisenden Verbindung der Formel (I),
      Figure 00030001
      in welcher X, Y, Z unabhängig voneinander C1-C8-Alkyl- oder C1-C8-Alkoxyreste sind, wobei mindestens einer der Reste eine C1-C8-Alkoxygruppe ist und R ein beliebiger wenigstens difunktioneller organischer Rest ist, bevorzugt ein Alkylenradikal mit 1 bis 8 Kohlenstoffatomen, umgesetzt werden und anschließend
    • C) die verbliebenen freien NCO-Gruppen durch eine Allophanatisierung oder eine Reaktion mit isocyanatreaktiven Verbindungen weiter umgesetzt werden.
  • X, Y, Z können unabhängig voneinander auch verzweigt oder verbrückend sein.
  • Ist R ein Alkylenradikal kann dieses verzweigt oder zyklisch sein.
  • Bevorzugt sind X, Y, und Z in Formel (I) unabhängig voneinander Methoxy oder Ethoxy.
  • Für den Rest R ist ein Methylen- oder Propylenradikal besonders bevorzugt.
  • Ein weiterer Gegenstand der Erfindung sind auch die alkoxysilangruppenhaltigen Prepolymere, die nach dem erfindungsgemäßen Verfahren erhältlich sind.
  • Bevorzugt weist die Komponente A) ein zahlenmittleres Molekulargewicht von 8.000 g/mol bis 18.000 g/mol auf.
  • Als Polyolkomponente A) erfindungsgemäß einsetzbare Polyoxyalkylenpolyole sind die in der Polyurethan-Chemie üblichen Polyether, wie die unter Verwendung von zwei- bis sechswertigen Startermolekülen wie Wasser oder den oben genannten Polyolen oder 1- bis 4-NH-Bindungen aufweisenden Aminen hergestellten Additions- bzw. Mischadditionsverbindungen des Tetrahydrofurans, Styroloxids, Ethylenoxids, Propylenoxids, der Butylenoxide oder des Epichlorhydrins, insbesondere des Ethylenoxids und/oder des Propylenoxids. Bevorzugt sind im Durchschnitt 2 bis 4 Hydroxylgruppen aufweisende Propylenoxidpolyether, die bis zu 50 Gew.-% eingebaute Polyethylenoxid-Einheiten enthalten können. Es ist dabei sowohl denkbar, klassische Polyether, die auf Basis einer Katalyse mit z.B. Kaliumhydroxid hergestellt werden, einzusetzen, als auch solche Polyether, die mit den neueren Verfahren auf Basis der Doppelmetallcyanid-Katalysatoren hergestellt werden. Letztere Polyether haben in der Regel einen besonders niedrigen Gehalt an terminaler Unsättigung von weniger als 0,07 meq/g, enthalten deutlich weniger Monole und haben in der Regel eine geringe Polydispersität von weniger als 1,5. Es ist bevorzugt, solche, durch Doppelmetallcyanid-Katalyse hergestellte, Polyether zu verwenden. Besonders bevorzugt sind dabei Polyether, die eine Polydispersität von 1,0–1,5 aufweisen; ganz besonders bevorzugt ist eine Polydispersität von 1,0 bis 1,3.
  • Die Polydispersität kann auf eine dem Fachmann an sich bekannte Methode ermittelt werden, indem durch Gelpermeationschromatographie (GPC) sowohl das zahlenmittlere Molekulargewicht (Mn) als auch das gewichtsmittlere Molekulargewicht (Mw) bestimmt werden. Die Polydispersität ergibt sich als PD = Mw/Mn.
  • Beispiele für solche bevorzugten Polyether sind die Produkte Acclaim® 4200, Acclaim® 6300, Acclaim® 8200, Acclaim® 12200 und Acclaim® 18200 (oder die entsprechenden Acclaim® xx00N-Typen) der Bayer MaterialScience AG, Leverkusen, DE.
  • Die erfindungsgemäß in A) eingesetzten Polyoxyalkylenpolyole haben bevorzugt zahlenmittlere Molekulargewichte von 3.000 g/mol bis 20.000 g/mol, besonders bevorzugt von 8.000 g/mol bis 18.000 g/mol.
  • Diese Polyoxyalkylenpolyole können in Reinform oder als Mischung aus verschiedenen Polyethern eingesetzt werden. Es ist denkbar, aber nicht bevorzugt, Polyole mit geringeren Molekulargewichten beizumengen.
  • Die verwendeten Polyether haben bevorzugt mittlere OH-Funktionalitäten von 1,8 bis 4, in Polyethermischungen können auch Polyether mit OH-Funktionalitäten von 1 bis 6 eingesetzt werden.
  • Es ist ebenfalls denkbar, statt reiner Polyoxyalkylenpolyole, OH-funktionelle Prepolymere zu verwenden, die erhältlich sind, indem man Polyoxyalkylenpolyole mit zahlenmittleren Molekulargewicht von 1.000 g/mol bis 15.000 g/mol durch Umsetzung mit Diisocyanaten auf ein Molekulargewicht von bevorzugt 3.000 g/mol bis 20.000 g/mol, besonders bevorzugt 8.000 bis 18.000 g/mol aufbaut, wie es z.B. in der US 4,345,053 oder der EP-A 931 800 beschrieben ist. Der Einsatz solcher OH-funktioneller Prepolymere ist aber nicht bevorzugt.
  • Als isocyanat- und alkoxysilangruppenaufweisende Verbindungen B) sind grundsätzlich alle alkoxysilangruppenhaltigen Monoisocyanate mit einem Molekulargewicht von 140 g/mol bis 500 g/mol geeignet. Beispiele für solche Verbindungen sind Isocyanatomethyltrimethoxysilan, Isocyanatomethyltriethoxysilan, (Isocyanatomethyl)methyldimethoxysilan, (Isocyanatomethyl) methyldiethoxysilan, 3-Isocyanato-propyltrimethoxysilan, 3-Isocyanatopropylmethyl-dimethoxysilan, 3-Isocyanatopropyltriethoxysilan und 3-Isocyanatopropylmethyldiethoxysilan. Bevorzugt ist hier die Verwendung von 3-Isocyanatopropyltrimethoxysilan.
  • Auch ist es denkbar, isocyanatfunktionelle Silane zu verwenden, die durch Umsetzung eines Diisocyanates mit einem Amino- oder Thiosilan hergestellt wurden, wie sie in der US 4,146,585 oder der EP-A 1136495 beschrieben werden. Der Einsatz dieser Verbindungen ist aber nicht bevorzugt.
  • In der Regel wird das erfindungsgemäße Verfahren zweistufig durchgeführt. Für den Fall, dass der verbleibende, überschüssige Isocyanatgehalt durch eine anschließende Allophanatisierung abgebaut wird, ist es auch möglich, diesen Reaktionsschritt zusammen mit der zunächst notwendigen Urethanisierung der Komponenten A) und B) durchzuführen.
  • Die Urethanisierung der Komponenten A) und B) kann gegebenenfalls mit einem Katalysator durchgeführt werden. Als solche katalytisch wirksame Verbindungen kommen dem Fachmann an sich bekannte Urethanisierungskatalysatoren wie Organozinnverbindungen oder aminische Katalysatoren in Frage. Als Organozinnverbindungen seien beispielhaft genannt: Dibutylzinndiacetat, Dibutylzinndilaurat, Dibutylzinn-bis-acetoacetonat und Zinncarboxylate wie beispielsweise Zinnoctoat. Die genannten Zinnkatalysatoren können gegebenenfalls in Kombination mit aminischen Katalysatoren wie Aminosilanen oder 1,4-Diazabicyclo[2.2.2]octan verwendet werden.
  • Besonders bevorzugt wird Dibutylzinndilaurat als Urethanisierungskatalysator eingesetzt.
  • Im erfindungsgemäßen Verfahren wird diese Katalysatorkomponente sofern mitverwendet in Mengen von 0,001 bis 5,0 Gew.-%, bevorzugt 0,001 bis 0,1 Gew.-% und besonders bevorzugt 0,005 bis 0,05 Gew.-% bezogen auf Festgehalt des Verfahrensprodukts eingesetzt.
  • Die Urethanisierung der Komponenten A) und B) wird bei Temperaturen von 20 bis 200°C, bevorzugt 40 bis 120°C und besonders bevorzugt von 60 bis 100°C durchgeführt.
  • Die Reaktion wird fortgeführt, bis ein vollständiger Umsatz der OH-Gruppen der Verbindungen der Komponente A) erreicht ist. Der Verlauf der Reaktion kann durch geeignete, im Reaktionsgefäß installierte Messgeräte und/oder anhand von Analysen an entnommenen Proben verfolgt werden. Geeignete Verfahren sind dem Fachmann bekannt. Es handelt sich beispielsweise um Viskositätsmessungen, Messungen des NCO-Gehalts, des Brechungsindex, des OH-Gehalts, Gaschromatographie (GC), kernmagnetische Resonanzspektroskopie (NMR), Infrarotspektroskopie (IR) und Nahinfrarotspektroskopie (NIR). Vorzugsweise wird der NCO-Gehalt der Mischung titrimetrisch bestimmt. Um den vollständigem Umsatz aller OH-Gruppen zu gewährleisten, ist es bevorzugt, auch nach Erreichen des theoretischen NCO-Gehalts die Reaktionsbedingungen beizubehalten bis eine Konstanz des NCO-Gehalts beobachtet wird.
  • Für den weiteren Abbau des NCO-Gehalts des Reaktionsproduktes der Komponenten A) und B) sind nach dem erfindungsgemäßen Verfahren zwei Wege möglich. Die erste Möglichkeit beinhaltet die Zugabe einer weiteren NCO-reaktiven Komponente C), die in einem anschließenden Reaktionsschritt mit den verbleibenden NCO-Gruppen zur Reaktion gebracht wird.
  • Als Komponente C) kommen niedermolekulare Verbindungen mit einem zahlenmittleren Molekulargewicht von bis zu 400 g/mol und mit einer oder mehreren Alkohol-, Amin- oder Thiolfunktionen in Frage, die auch noch andere Funktionalitäten enthalten können. Thiolverbindungen sind dabei aufgrund ihres häufig unangenehmen Geruchs weniger bevorzugt.
  • Beispiele für erfindungsgemäß einsetzbare, monofunktionelle Alkohole sind Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Isobutanol, sec-Butanol, die Isomeren Pentanole, Hexanole, Octanole und Nonanole, n-Decanol, n-Dodecanol, n-Tetradecanol, n-Hexadecanol, n-Octadecanol, Cyclohexanol, die isomeren Methylcyclohexanole oder Hydroxymethylcyclohexan, 3-Ethyl-3-hydroxymethyloxetan oder Tetrahydrofurfurylalkohol, Diethylenglykol-monoalkylether wie beispielsweise Diethylenglykolmonobutylether, ungesättigte Alkohole wie Allylalkohol, 1,1-Dimethylallylalkohol oder Oleinalkohol, aromatische Alkohole (Phenole) wie Phenol, die isomeren Kresole oder Methoxyphenole, araliphatische Alkohole wie Benzylalkohol, Anisalkohol oder Zimtalkohol.
  • Beispiele für mehrfunktionelle Alkohole sind Ethylenglykol, Triethylenglykol, Tetraethylenglykol, Propandiol-1,2 und -1,3, Butandiol-1,4 und -1,3, Hexandiol-1,6, Octandiol-1,8, Neopentylglykol, 1,4-Bis(hydroxymethyl)cyclohexan, Bis(hydroxymethyl)tricyclo[5.2.1.02.6]decan oder 1,4-Bis(2-hydroxyethoxy)benzol, 2-Methyl-1,3-propandiol, 2,2,4-Trimethylpentandiol, 2-Ethyl-1,3-hexandiol, Dipropylenglykol, Polypropylenglykole, Dibutylenglykol, Polybutylenglykole, 1,4-Phenoldimethanol, Bisphenol A, Tetrabrombisphenol A, Glycerin, Trimethylolpropan, Hexantriol-1,2,6-Butantriol-1,2,4, Pentaerythrit, Chinit, Mannit, Sorbit, Methylglykosid und 4,3,6-Dianhydrohexite.
  • Als Amine lassen sich sowohl primäre als auch sekundäre Verbindungen, wie Ethylamin, Propylamin, Isopropylamin, n-Butylamin, sek.-Butylamin, tert.-Butylamin, Hexylamin, 2-Ethylhexylamin, Cyclohexylamin, Benzylamin, Dimethylamin, Diethylamin, Dipropylamin, Diisopropylamin, Dibutylamin, Bis-(2-ethylhexyl)-amin, N-Methyl- und N-Ethylcyclohexylamin oder Dicyclohexylamin sowie heterocyclische sekundäre Amine wie Morpholin, Pyrrolidin, Piperidin oder 1H-Pyrazol einsetzen.
  • Weiterhin sind auch aromatische Amine, wie Anilin, Diphenylamin oder entsprechend substituierte Derivate geeignet.
  • Auch können Verbindungen mit mehreren Aminofunktionen, wie 1,3-Diaminopropan, 1,4-Diaminobutan, 1,6-Diaminohexan, 1,4-Diaminocyclohexan oder Isophorondiamin verwendet werden.
  • Ebenfalls sind Verbindungen, die sowohl Alkohol- als auch Aminofunktionen enthalten, wie z.B. Ethanolamin, 3-Aminopropanol, 2-Amino-2-methylpropanol, 2-Butylaminoethanol und Diethanolamin geeignet.
  • Darüber hinaus können auch Verbindungen eingesetzt werden, die sowohl isocyanatreaktiv also auch silanfunktionell sind. Beispiele solcher Verbindungen sind Aminopropyltrimethoxysilan, Mercaptopropyltrimethoxysilan, Aminopropyl-methyldimethoxysilan, Mercaptopropylmethyldimethoxysilan, Aminopropyltriethoxysilan, Mercaptopropyltriethoxysilan, Aminopropylmethyldiethoxysilan, Mercaptopropyl-methyldiethoxysilan, Aminomethyltrimethoxysilan, Aminomethyltriethoxysilan, (Aminomethyl)methyldimethoxysilan, (Aminomethyl)methyldiethoxysilan, N-Butyl-aminopropyltrimethoxysilan, N-Ethyl-aminopropyltrimethoxysilan, N-Phenyl-aminopropyltrimethoxysilan, N-(3-Triethoxysilylpropyl)asparaginsäurediethylester, N-(3-Trimethoxysilylpropyl)asparaginsäurediethylester und N-(3-Dimethoxymethylsilyl-propyl)asparaginsäurediethylester.
  • Es muss eine, dem verbleibenden NCO-Gehalt zumindest äquivalente Menge der Komponente C) beigemengt werden. Bevorzugt ist die Zugabe von 1 bis 1,5 Äquivalenten C) pro Äquivalent nach der Urethanisierung von A) und B) verbleibender NCO-Gruppe.
  • Es ist denkbar, weiteren Katalysator für die Umsetzung des überschüssigen Isocyanatgehaltes mit der Komponente C) zuzufügen, aber in der Regel nicht notwendig, da die Mischung aus der vorangegangenen Urethanisierung noch Katalysator enthält.
  • Der Abbau des überschüssigen Isocyanatgehaltes mit der Komponente C) wird bei Temperaturen von 20 bis 200°C, bevorzugt 40 bis 120°C und besonders bevorzugt von 60 bis 100°C durchgeführt. Wenn die Komponente C) leicht flüchtig ist, wird eine entsprechend niedrige Temperatur gewählt.
  • Die Reaktion wird fortgeführt, bis ein vollständiger Abbau der NCO-Gruppen (Gehalt an freien NCO-Gruppen < 0,5 Gew.-%, bevorzugt < 0,1 Gew.-%, besonders bevorzugt < 0,05 Gew.-%) erreicht ist. Dies kann analytisch durch die zuvor beschriebenen Methoden überprüft werden.
  • Die zweite Möglichkeit für den weiteren Abbau des NCO-Gehaltes des Reaktionsproduktes der Komponenten A) und B) ist eine Allophanatisierungsreaktion. Dabei wird auf die Zugabe einer weiteren Komponente C) verzichtet und die verbleibenden NCO-Gruppen werden mit den zuvor gebildeten Urethan-Gruppen zur Reaktion gebracht.
  • Um eine solche Allophanatisierung bei moderaten Temperaturen und relativ schnell durchzuführen, ist es bevorzugt, einen die Allophanatisierung fördernden Katalysator zu verwenden.
  • Als Allophanatisierungskatalysatoren können dem Fachmann an sich hierfür bekannten Verbindungen, wie die Zinksalze Zinkoctoat, Zinkacetylacetonat und Zink-2-ethylcaproat, oder Tetraalkylammoniumverbindungen, wie N,N,N-Trimethyl-N-2-hydroxypropylammoniumhydroxid, N,N,N-Trimethyl-N-2-hydroxypropylammonium-2-ethylhexanoat oder Cholin-2-ethylhexanoat verwendet werden. Bevorzugt ist die Verwendung von Zinkoctoat (Zink-2-ethylhexanoat) und der Tetraalkylammoniumverbindungen, besonders bevorzugt diejenige von Zinkoctoat.
  • Der Katalysator wird in Mengen von 0,001 bis 5,0 Gew.-%, bevorzugt 0,01 bis 1,0 Gew.-% und besonders bevorzugt 0,05 bis 0,5 Gew.-% bezogen auf Festgehalt des Verfahrensprodukts eingesetzt.
  • Der Allophanatisierungskatalysator kann in einer Portion auf einmal oder aber auch portionsweise oder auch kontinuierlich zugegeben werden. Bevorzugt ist Zugabe der gesamten Menge in einer Portion.
  • Die erfindungswesentliche Allophanatisierung wird bei Temperaturen von 20 bis 200°C, bevorzugt 40 bis 160°C, besonders bevorzugt von 60 bis 140°C, insbesondere bei 80 bis 120 °C durchgeführt.
  • Es ist unerheblich, ob das erfindungsgemäße Verfahrens kontinuierlich z.B. in einem Statik-Mischer, Extruder oder Kneter oder diskontinuierlich z.B. in einem Rührreaktor durchgeführt wird.
  • Bevorzugt wird das erfindungsgemäße Verfahren in einem Rührreaktor durchgeführt.
  • Auch hier kann der Verlauf der Reaktion, wie zuvor beschrieben durch geeignete im Reaktionsgefäß installierte Messgeräte und/oder anhand von Analysen an entnommenen Proben verfolgt werden.
  • Bevorzugt wird die Reaktion der Allophanatisierung solange geführt, bis der NCO-Gehalt des Produktes unter 0,05 Gew.-%, besonders bevorzugt unter 0,03 Gew.-% liegt.
  • Neben der zweistufigen Fahrweise, bei der zunächst mit einem speziellen Katalysator die Urethanisierung und anschließend, in einem zweiten Reaktionsschritt, mit einem zweiten Katalysator die Allophanatisierung durchgeführt wird, ist es nach dem erfindungsgemäßen Verfahren auch möglich, die Reaktion in einem Schritt durchzuführen. Dabei muss ein Katalysator verwendet werden, der sowohl die Urethanisierung wie auch die Allophanatisierung hinreichend schnell katalysiert. Ein solcher Katalysator ist z.B. Zink-2-ethylhexanoat.
  • Die erfindungsgemäßen Verbindungen eignen sich sehr gut als Bindemittel zur Herstellung von isocyanatfreien elastischen Polyurethankleb- und -dichtstoffen vorzugsweise für den Fahrzeugbau und Baubereich. Diese Klebstoffe vernetzen unter Einwirkung von Luftfeuchtigkeit über eine Silanolpolykondensation.
  • Eine Anwendung in Primern oder Beschichtungen ist ebenfalls denkbar.
  • Ein weiterer Gegenstand der Erfindung sind daher Klebstoffe, Dichtstoffe, Primer und Beschichtungen basierend auf den erfindungsgemäßen Polyurethanprepolymeren.
  • Zur Herstellung solcher Dicht- oder Klebstoffe können die erfindungsgemäßen Alkoxysilan-Endgruppen aufweisenden Polyurethanprepolymere zusammen mit den dabei üblichen Füllstoffen, Pigmenten, Weichmachern, Trockenmitteln, Additiven, Lichtschutzmitteln, Antioxidantien, Thixotropiermitteln, Katalysatoren, Haftvermittlern und gegebenenfalls weiteren Hilfs- und Zusatzstoffen nach bekannten Verfahren der Dichtstoffherstellung formuliert werden.
  • Als geeignete basische Füllstoffe einsetzbar sind gefällte oder gemahlene Kreiden, Metalloxide, -sulfate, -silicate, -hydroxide, -carbonate und -hydrogencarbonate. Weitere Füllstoffe sind z.B. verstärkende und nichtverstärkende Füllstoffe wie Ruß, Fällungskieselsäuren, pyrogene Kieselsäuren, Quarzmehl oder diverse Fasern. Sowohl die basischen Füllstoffe als auch die weiteren verstärkenden oder nichtverstärkenden Füllstoffe können gegebenenfalls oberflächenmodifiziert sein. Besonders bevorzugt einsetzbar sind als basische Füllstoffe gefällte oder gemahlene Kreiden sowie pyrogene Kieselsäuren. Auch Gemische von Füllstoffen können eingesetzt werden.
  • Als geeignete Weichmacher seien beispielhaft Phthalsäureester, Adipinsäureester, Alkylsulfonsäureester des Phenols oder Phosphorsäureester genannt. Auch langkettige Kohlenwasserstoffe, Polyether und pflanzliche Öle können als Weichmacher verwendet werden.
  • Als Thixotropiermittel seien beispielhaft pyrogene Kieselsäuren, Polyamide, hydrierte Rizinusöl-Folgeprodukte oder auch Polyvinylchlorid genannt.
  • Als geeignete Katalysatoren zur Aushärtung können alle metallorganischen Verbindungen und aminische Katalysatoren eingesetzt werden, die bekanntermaßen die Silanpolykondensation fördern. Besonders geeignete metallorganische Verbindungen sind insbesondere Verbindungen des Zinns und des Titans. Bevorzugte Zinnverbindungen sind beispielsweise: Dibutylzinndiacetat, Dibutylzinndilaurat, Dioctylzinnmaleat und Zinncarboxylate wie beispielsweise Zinn(II)octoat oder Dibutylzinn-bis-acetoacetonat. Die genannten Zinnkatalysatoren können gegebenenfalls in Kombination mit aminischen Katalysatoren wie Aminosilanen oder 1,4-Diazabicyclo[2.2.2]octan verwendet werden. Bevorzugte Titanverbindungen sind beispielsweise Alkyltitanate, wie Diisobutyl-bisaceteesigsäureethylester-titanat. Für die alleinige Verwendung von aminischen Katalysatoren sind insbesondere solche geeignet, die eine besonders hohe Basenstärke aufweisen, wie Amine mit Amidin-Struktur. Bevorzugte aminische Katalysatoren sind daher beispielsweise 1,8-Diazabicyclo[5.4.0]undec-7-en oder 1,5-Diazabicyclo[4.3.0]non-5-en.
  • Als Trockenmittel seien insbesondere Alkoxysilylverbindungen genannt wie Vinyltrimethoxysilan, Methyltrimethoxysilan, i-Butyltrimethoxysilan, Hexadecyltrimethoxysilan.
  • Als Haftvermittler werden die bekannten funktionellen Silane eingesetzt wie beispielsweise Aminosilane der vorstehend genannten Art aber auch N-Aminoethyl-3-aminopropyl-trimethoxy und/oder N-Aminoethyl-3-aminopropyl-methyl-dimethoxysilan, Epoxysilane und/oder Mercaptosilane.
  • Die vernetzten Polymere zeichnen sich aus durch eine sehr gute Zugfestigkeit und hohen Modulus bei niedrigen Dehnungen. Zusätzlich ist die Klebrigkeit (Tack) sehr viel geringer als bei den nicht erfindungsgemäßen Vergleichsbeispielen. Dabei beobachtet man mit sinkendem NCO/OH-Verhältnis bei gleichem Molekulargewicht des Polymers eine Abnahme des Modulus und der Shore-Härte sowie eine Zunahme der Bruchdehnung.
  • Alle Prozentangaben beziehen sich, sofern nicht abweichend angegeben, auf Gewichtsprozent.
  • Die Bestimmung der NCO-Gehalte in % wurde über Rücktitration mit 0,1 mol/l Salzsäure nach Reaktion mit Butylamin vorgenommen, Grundlage DIN EN ISO 11909.
  • Die Viskositätsmessungen wurden mit einem Platte-Platte Rotationsviskosimeter, RotoVisko 1 der Firma Haake, DE nach ISO/DIS 3219:1990 durchgeführt.
  • Die zur Zeit der Versuchsdurchführung herrschende Umgebungstemperatur von 23°C wird als RT bezeichnet.
  • Beispiel 1 (erfindungsgemäß, Überschuss abreagiert durch Urethanisierung):
  • 1009,8 g eines Polypropylenglykols der OH-Zahl 6,1 (Acclaim® 18200N, Bayer MaterialScience AG, Leverkusen) wurden sechs Stunden lang im Vakuum (geringer Stickstoffdurchfluss) bei 120°C getrocknet. Dann wurden bei 60°C zunächst 28,88 g 3-Isocyanatopropyltrimethoxysilan (A-link 35®, GE Advanced Materials, Wilton, Connecticut, USA) (Kennzahl 1,20) und dann 100 ppm Dibutylzinndilaurat (Desmorapid Z®, Bayer MaterialScience AG, Leverkusen, DE) zügig zugegeben, und die Reaktion wurde weiter bei 60°C über fünf Stunden fortgeführt bis ein Rest-NCO-Wert von 0,09 % erreicht war. Die Reaktion wurde auf 50°C abgekühlt und es wurden 1,67 g Butandiol beigemengt. Es wurde für etwa 90 Minuten bei 50°C weiter gerührt, bis kein NCO-Gehalt mehr nachweisbar war. Das erhaltene Alkoxysilyl-Endgruppen aufweisende Polyurethanprepolymer hatte eine Viskosität von 35.000 mPas (23°C).
  • Beispiel 2 (erfindungsgemäß, Überschuss abreagiert durch Allophanatisierung):
  • 1009,8 g eines Polypropylenglykols der OH-Zahl 6,1 (Acclaim® 18200N, Bayer MaterialScience AG, Leverkusen) wurden sechs Stunden lang im Vakuum (geringer Stickstoffdurchfluss) bei 120°C getrocknet. Dann wurden bei 60°C zunächst 26,46 g 3-Isocyanatopropyltrimethoxysilan (NCO = 19,2 %, A-link 35®, GE Advanced Materials, Wilton, Connecticut, USA) (Kennzahl 1,10) und dann 100 ppm Dibutylzinndilaurat (Desmorapid Z®, Bayer MaterialScience AG, Leverkusen, DE) zügig zugegeben, und die Reaktion wurde weiter bei 60°C über fünf Stunden fortgeführt bis ein Rest-NCO-Wert von 0,04 % erreicht war. Es wurden dann 1,0 g Zinkoctooat (Zink-2-ethylhexanoat, Octa-Soligen Zink 22, Borchers, Monheim, DE) zugegeben und bei 100°C für etwa sechs Stunden weitergerührt, bis kein NCO-Gehalt mehr nachweisbar war. Das erhaltene Alkoxysilyl-Endgruppen aufweisende Polyurethanprepolymer hatte eine Viskosität von 49.700 mPas (23°C).
  • Vergleichsbeispiel:
  • 918 g eines Polypropylenglykols der OH-Zahl 6,1 (Acclaim® 18200N, Bayer MaterialScience AG, Leverkusen) wurden sechs Stunden lang im Vakuum (geringer Stickstoffdurchfluss) bei 120°C getrocknet. Dann wurden bei 60°C zunächst 21,88 g 3-Isocyanatopropyltrimethoxysilan (A-link 35®, GE Advanced Materials, Wilton, Connecticut, USA) (Kennzahl 1,0) und dann 100 ppm Dibutylzinndilaurat (Desmorapid Z®, Bayer MaterialScience AG, Leverkusen, DE) zügig zugegeben, und die Reaktion wurde weiter bei 60°C über fünf Stunden fortgeführt bis kein NCO-Gehalt mehr nachweisbar war. Das erhaltene Alkoxysilyl-Endgruppen aufweisende Polyurethanprepolymer hatte eine Viskosität von 34.000 mPas (23°C).
  • Formulierung einer Fugendichtungsmasse
  • In einem handelsüblichen Vakuum-Planetendissolver werden die folgenden Komponenten zu einem gebrauchsfertigen Dichtstoff verarbeitet: Stufe 1
    24,3 Gew.-Teile der erfindungsgemäßen alkoxysilangruppenhaltigen Prepolymere aus den Beispielen 1 und 2 sowie aus dem nicht erfindungsgemäßen Vergleichsbeispiel 1
    36,3 Gew.-Teile Weichmacher (Typ Jayflex DIDP der Fa: ExxonMobil Chemical)
    36,5 Gew.-Teile Fällungskreide (Typ: Socal® U1S2 der Fa. Solvay GmbH)
    1,1 Gew.-Teile Cab-o-Sil TS 720 (pyrogene Kieselsäure der Fa. Cabot GmbH)
    1,1 Gew.-Teile Vinyltrimethoxysilan
    0,2 Gew.-Teile Dibutylzinn-bis-acetoacetonat (10 %ig, gelöst in Jayflex DIDP)
  • Die Stufe 1 der Mischung wird bei einem Druck von 200 mbar insgesamt 15 Minuten dispergiert, davon 10 Minuten bei n = 3000 min–1 und weiteren 5 Minuten bei n = 1000 min–1 unter Kühlung und mit statischem Vakuum. Anschließend erfolgt die Einarbeitung von Stufe 2
    0,5 Gew.-Teile N-Aminoethyl-3-aminopropylmethyl-dimethoxysilan
    während 10 Minuten bei n = 1000 min–1 unter Kühlung. Dabei wird 5 Minuten unter statischem sowie weiteren 5 Minuten unter dynamischem Vakuum gefahren.
  • Das Produkt wird in eine handelsübliche Polyethylenkartusche abgefüllt und bei Raumtemperatur gelagert.
  • Nach eintägiger Lagerung härtet die so hergestellte Dichtstoffmasse mit einer Hautbildungszeit von 10 bis 20 Minuten aus.
  • Die folgenden mechanischen Eigenschaften wurden nach vierzehntägiger Aushärtung bei 24°C und 50% relativer Luftfeuchte bestimmt:
    Figure 00130001
    • * Scala von 1–5; 1 = klebfrei, 3 = leichte Oberflächenklebrigkeit, Schmutzteile haften an, 5 = stark klebendes Material, von anhaftendem Material kaum noch zu trennen.
  • Zusammenfassung:
  • Die mechanischen Eigenschaften der formulierten Bindemittel zeigen zum Vergleichsbeispiel deutlich erhöhte Werte für die Shore-A Härte, die Zugfestigkeit und das 100 %-Modul sowie eine verringerte (subjektive) Klebrigkeit der Polymeroberflächen. All dies weist auf eine deutlich verbesserte Vernetzung der langen Polymerketten hin, die durch die erfindungsgemäße Vorgehensweise erreicht werden konnte.

Claims (12)

  1. Verfahren zur Herstellung alkoxysilangruppenhaltiger Prepolymere, bei dem A) 1,0 val einer Polyolkomponente mit einem zahlenmittleren Molekulargewicht von 3.000 g/mol bis 20.000 g/mol, enthaltend ein oder mehrere Polyoxyalkylenpolyole oder Polyoxyalkylenpolyolprepolymere mit B) 1,05 bis 1,50 val einer isocyanat- und alkoxysilangruppenaufweisenden Verbindung der Formel (I),
    Figure 00140001
    in welcher X, Y, Z unabhängig voneinander C1-C8-Alkyl- oder C1-C8-Alkoxyreste sind, wobei mindestens einer der Reste eine C1-C8-Alkoxygruppe ist und R ein beliebiger wenigstens difunktioneller organischer Rest ist, bevorzugt ein Alkylenradikal mit 1 bis 8 Kohlenstoffatomen, umgesetzt werden und anschließend C) die verbliebenen freien NCO-Gruppen durch eine Allophanatisierung oder eine Reaktion mit isocyanatreaktiven Verbindungen weiter umgesetzt wird.
  2. Verfahren zur Herstellung alkoxysilangruppenhaltiger Prepolymere gemäß Anspruch 1, dadurch gekennzeichnet, dass X, Y, und Z in Formel (I) unabhängig voneinander eine Methoxy- oder Ethoxygruppe und R ist ein Methylen- oder Propylenradikal ist.
  3. Verfahren zur Herstellung alkoxysilangruppenhaltiger Prepolymere gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass in A) nur Polyoxyalkylenpolyole mit einem zahlenmittleren Molekulargewicht von 8.000 g/mol bis 18.000 g/mol eingesetzt werden.
  4. Verfahren zur Herstellung alkoxysilangruppenhaltiger Prepolymere gemäß Anspruch 3, dadurch gekennzeichnet, dass die in A) eingesetzten Polyether einen Gehalt an terminaler Unsättigung von weniger als 0,07 meq/g und eine Polydispersität von weniger als 1,5 aufweisen.
  5. Verfahren zur Herstellung alkoxysilangruppenhaltiger Prepolymere gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Verbindungen der Komponente B) Molekulargewichte von 140 g/mol bis 500 g/mol aufweisen.
  6. Verfahren zur Herstellung alkoxysilangruppenhaltiger Prepolymere gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in Stufe C) zur Urethanisierung isocyanatreaktive Verbindungen in solch einer Menge zugesetzt werden, dass pro freier NCO-Gruppe 1 bis 1,5 Äquivalente an isocyanatreaktiven Gruppen vorliegt.
  7. Verfahren zur Herstellung alkoxysilangruppenhaltiger Prepolymere gemäß Anspruch 6, dadurch gekennzeichnet, dass der Gehalt an freien NCO-Gruppen nach der Urethanisierung in Stufe C) weniger als 0,05 Gew.-% bezogen auf das Reaktionsgemisch beträgt.
  8. Verfahren zur Herstellung alkoxysilangruppenhaltiger Prepolymere gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in C) eine Allophanatisierung durchgeführt wird und der Gehalt an freien NCO-Gruppen nach der Allophanatisierung in Stufe C) weniger als 0,05 Gew.-% bezogen auf das Reaktionsgemisch beträgt.
  9. Verfahren zur Herstellung alkoxysilangruppenhaltiger Prepolymere gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in Stufe C) ein Katalysator eingesetzt wird.
  10. Alkoxysilangruppenhaltige Prepolymere erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 9.
  11. Verwendung alkoxysilangruppenhaltiger Prepolymere gemäß Anspruch 10, bei der Herstellung von Klebstoffen, Dichtstoffen, Primern oder Beschichtungen.
  12. Substrate beschichtet, verklebt oder abgedichtet mit Überzügen erhältlich aus alkoxysilangruppenhaltigen Prepolymeren gemäß Anspruch 10.
DE102005041953A 2005-09-03 2005-09-03 Niedrigviskose alkoxysilangruppenaufweisende Prepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung Withdrawn DE102005041953A1 (de)

Priority Applications (17)

Application Number Priority Date Filing Date Title
DE102005041953A DE102005041953A1 (de) 2005-09-03 2005-09-03 Niedrigviskose alkoxysilangruppenaufweisende Prepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung
EP06791626A EP1924621B1 (de) 2005-09-03 2006-08-23 Niedrigviskose alkoxysilangruppenaufweisende prepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung
AU2006286874A AU2006286874B2 (en) 2005-09-03 2006-08-23 Prepolymers comprising low-viscosity alkoxysilane groups, method for the preparation and use thereof
AT06791626T ATE419291T1 (de) 2005-09-03 2006-08-23 Niedrigviskose alkoxysilangruppenaufweisende prepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung
CN2006800321684A CN101253209B (zh) 2005-09-03 2006-08-23 含烷氧基硅烷基团的低粘度预聚物、其制备方法和用途
CA2620991A CA2620991C (en) 2005-09-03 2006-08-23 Prepolymers comprising low-viscosity alkoxysilane groups, method for the preparation and use thereof
DE502006002528T DE502006002528D1 (de) 2005-09-03 2006-08-23 Niedrigviskose alkoxysilangruppenaufweisende prepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung
ES06791626T ES2318789T3 (es) 2005-09-03 2006-08-23 Prepolimeros que presentan grupos alcoxisilano de baja viscosidad, un procedimiento para su preparacion asi como su uso.
PL06791626T PL1924621T3 (pl) 2005-09-03 2006-08-23 Prepolimery o małej lepkości zawierające grupy alkoksysilanowe, sposób ich wytwarzania oraz ich zastosowanie
BRPI0616128-6A BRPI0616128A2 (pt) 2005-09-03 2006-08-23 prepolÍmeros compreendendo grupos alcoxissilano de baixa viscosidade, mÉtodo para a preparaÇço e uso dos mesmos
JP2008528387A JP5909316B2 (ja) 2005-09-03 2006-08-23 低粘性アルコキシシラン基を含んでなるプレポリマー、その製造方法およびその使用
DK06791626T DK1924621T3 (da) 2005-09-03 2006-08-23 Lavviskose alkoxysilangruppeholdige præpolymere, en fremgangsmåde til deres fremstilling samt deres anvendelse
PCT/EP2006/008275 WO2007025668A1 (de) 2005-09-03 2006-08-23 Niedrigviskose alkoxysilangruppenaufweisende prepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung
US11/512,487 US8067522B2 (en) 2005-09-03 2006-08-30 Low viscosity, alkoxysilane-functional prepolymers and a process for their preparation
TW095132267A TWI405782B (zh) 2005-09-03 2006-09-01 低黏度,烷氧基矽烷-官能預聚物及其製備之方法
NO20081437A NO20081437L (no) 2005-09-03 2008-03-19 Prepolymerer omfattende lavviskositetalkoksysilangrupper, fremgangsmate for fremstilling og anvendelse derav
HK09101570.7A HK1123818A1 (en) 2005-09-03 2009-02-18 Prepolymers comprising low-viscosity alkoxysilane groups, method for the preparation and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005041953A DE102005041953A1 (de) 2005-09-03 2005-09-03 Niedrigviskose alkoxysilangruppenaufweisende Prepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung

Publications (1)

Publication Number Publication Date
DE102005041953A1 true DE102005041953A1 (de) 2007-03-08

Family

ID=37594981

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102005041953A Withdrawn DE102005041953A1 (de) 2005-09-03 2005-09-03 Niedrigviskose alkoxysilangruppenaufweisende Prepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE502006002528T Active DE502006002528D1 (de) 2005-09-03 2006-08-23 Niedrigviskose alkoxysilangruppenaufweisende prepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE502006002528T Active DE502006002528D1 (de) 2005-09-03 2006-08-23 Niedrigviskose alkoxysilangruppenaufweisende prepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung

Country Status (16)

Country Link
US (1) US8067522B2 (de)
EP (1) EP1924621B1 (de)
JP (1) JP5909316B2 (de)
CN (1) CN101253209B (de)
AT (1) ATE419291T1 (de)
AU (1) AU2006286874B2 (de)
BR (1) BRPI0616128A2 (de)
CA (1) CA2620991C (de)
DE (2) DE102005041953A1 (de)
DK (1) DK1924621T3 (de)
ES (1) ES2318789T3 (de)
HK (1) HK1123818A1 (de)
NO (1) NO20081437L (de)
PL (1) PL1924621T3 (de)
TW (1) TWI405782B (de)
WO (1) WO2007025668A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058483A1 (de) * 2007-12-04 2009-06-10 Henkel Ag & Co. Kgaa Härtbare Zusammensetzungen enthaltend silylierte Polyurethane
EP2173788A4 (de) * 2007-07-26 2015-05-27 Bayer Materialscience Llc Betonreparaturverfahren
EP2843016B1 (de) 2008-12-19 2016-06-29 Sika Technology AG Flüssigfolie auf Basis von silanterminierten Polyurethanpolymeren
EP3162807A1 (de) 2015-10-29 2017-05-03 Evonik Degussa GmbH Monoallophanate auf basis von alkoxysilanalkylisocyanaten
EP3162827A1 (de) 2015-10-29 2017-05-03 Evonik Degussa GmbH Beschichtungsmittel mit monoallophanaten auf basis von alkoxysilanalkylisocyanaten
DE102016200704A1 (de) 2016-01-20 2017-07-20 Bona Gmbh Deutschland Verfahren zur Erhöhung der Anwendungssicherheit und der Alterungsbeständigkeit von Klebstoffen und anderen Produkten, enthaltend silanfunktionalisierte Präpolymere
EP3263618A1 (de) 2016-06-27 2018-01-03 Evonik Degussa GmbH Alkoxysilan-funktionalisierte allophanate
EP3263617A1 (de) 2016-06-27 2018-01-03 Evonik Degussa GmbH Alkoxysilan-funktionalisierte und allophanat-funktionalisierte urethane
EP3263619A1 (de) 2016-06-27 2018-01-03 Evonik Degussa GmbH Alkoxysilan- und allophanat-funktionalisierte beschichtungsmittel
EP3263616A1 (de) 2016-06-27 2018-01-03 Evonik Degussa GmbH Alkoxysilan-funktionalisierte allophanat-haltige beschichtungsmittel
DE102017115439A1 (de) 2017-07-10 2019-01-10 Bona Gmbh Deutschland Verfahren zur Erhöhung der Anwendungssicherheit und der Alterungsbeständigkeit von Klebstoffen und anderen Produkten, enthaltend silanfunktionalisierte Präpolymere
EP3480232A1 (de) 2017-11-07 2019-05-08 Bona GmbH Deutschland Verwendung von additiven zur erhöhung der zugscherfestigkeit und zusammensetzung enthaltend ein silanfunktionalisiertes präpolymer und additive

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007020404A1 (de) 2006-09-18 2008-10-30 Nano-X Gmbh Verfahren zur Herstellung eines Beschichtungsmaterials
US7732554B2 (en) * 2006-09-21 2010-06-08 Momentive Performance Materials Inc. Process for preparing a curable silylated polyurethane resin
EP2014314A1 (de) 2007-07-10 2009-01-14 Bayer Innovation GmbH Verfahren zur Herstellung von Polyurethan-Schäumen für die Wundbehandlung
DE102007032342A1 (de) * 2007-07-11 2009-01-15 Bayer Materialscience Ag Verfahren zur Herstellung von Polyurethan-Schäumen auf Basis von speziellen alkoxysilanfunktionellen Polymeren
WO2009009654A1 (en) * 2007-07-12 2009-01-15 Dow Global Technologies Inc. Room temperature curable polymers and precursors thereof
US20090030145A1 (en) * 2007-07-26 2009-01-29 Bayer Materialscience Llc Hydrophilic sealants
DE102008003743A1 (de) * 2008-01-10 2009-07-16 Henkel Ag & Co. Kgaa Härtbare Zusammensetzungen enthaltend weichelastische silylierte Polyurethane
DE102009057597A1 (de) * 2009-12-09 2011-06-16 Bayer Materialscience Ag Polyrethan-Prepolymere
DE102009057598A1 (de) 2009-12-09 2011-06-16 Bayer Materialscience Ag Polyurethan-Prepolymere
DE102009057599A1 (de) * 2009-12-09 2011-06-16 Bayer Materialscience Ag Dichtstoffe
CN102261000B (zh) * 2011-05-12 2012-12-05 四川大学 一种溶胶-凝胶法制备水性聚氨酯/SiO2纳米杂化皮革涂饰剂的方法
DE102011077201A1 (de) 2011-06-08 2012-12-13 Bayer Materialscience Aktiengesellschaft Polyurethan-Polymere
DE102011077213A1 (de) 2011-06-08 2012-12-13 Bayer Material Science Ag Polyurethan-Polymere
US20150203624A1 (en) * 2014-01-21 2015-07-23 Vladimyr Wolan Second generation hybrid silane modified polymers of low viscosity for low toxicity rtv sealants and adhesives
EP2905296B1 (de) * 2014-02-10 2015-12-23 Evonik Degussa GmbH Copolymere aus Isocyanatoalkyltrialkoxysilanen und Urethandiolen
CN104861149A (zh) * 2015-06-18 2015-08-26 中国船舶重工集团公司第七二五研究所 一种烷氧基硅烷封端双亲性聚合物的制备方法
EP3328919B1 (de) 2015-07-29 2021-03-10 Bridgestone Corporation Verfahren zur herstellung von funktionalisierten polymeren, zugehörige funktionalisierungsverbindung und herstellung davon
EP3715397A1 (de) * 2019-03-26 2020-09-30 PolyU GmbH Zusammensetzung und verfahren zur herstellung feuchtigkeitsvernetzender polymere und deren verwendung
CN111349242A (zh) * 2019-08-28 2020-06-30 江西纳恩新材料有限公司 一种含异氰酸酯基硅橡胶增粘剂的制备方法
CN114829429B (zh) * 2019-12-16 2024-05-14 瓦克化学股份公司 用于生产有机氧基硅烷封端的聚合物的方法
EP4100452A1 (de) 2020-02-03 2022-12-14 DDP Specialty Electronic Materials US, LLC Polyurethan-basiertes thermisches grenzflächenmaterial mit silan-terminierten urethan-prepolymeren

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1745526B2 (de) * 1967-03-16 1980-04-10 Union Carbide Corp., New York, N.Y. (V.St.A.) Verfahren zur Herstellung vulkanisierbarer, unter wasserfreien Bedingungen beständiger Polymerisate
US3627722A (en) * 1970-05-28 1971-12-14 Minnesota Mining & Mfg Polyurethane sealant containing trialkyloxysilane end groups
DE2243628A1 (de) * 1972-09-06 1974-03-14 Bayer Ag Polymere mit alkoxysilyl-substituierten biuretgruppen und verfahren zu ihrer herstellung
US4067844A (en) * 1976-12-22 1978-01-10 Tremco Incorporated Urethane polymers and sealant compositions containing the same
US4345053A (en) * 1981-07-17 1982-08-17 Essex Chemical Corp. Silicon-terminated polyurethane polymer
DE3410582A1 (de) * 1984-03-22 1985-09-26 Wacker-Chemie GmbH, 8000 München Sic-gebundene biuretgruppen enthaltende siliciumverbindungen, verfahren zu ihrer herstellung und verwendung solcher organosiliciumverbindungen
DE3629237A1 (de) * 1986-08-28 1988-03-03 Henkel Kgaa Alkoxysilanterminierte, feuchtigkeitshaertende polyurethane sowie ihre verwendung fuer klebe- und dichtungsmassen
US5068304A (en) 1988-12-09 1991-11-26 Asahi Glass Company, Ltd. Moisture-curable resin composition
DE4237468A1 (de) * 1992-11-06 1994-05-11 Bayer Ag Alkoxysilan- und Aminogruppen aufweisende Verbindungen
US5319053A (en) * 1993-09-02 1994-06-07 Miles Inc. Liquid diphenylmethane diisocyanate
JP2594024B2 (ja) 1994-04-08 1997-03-26 オーエスアイ・スペシヤルテイーズ・インコーポレーテツド アリールアミノシラン末端キヤツプドウレタンのシーラント
JPH08143660A (ja) * 1994-11-18 1996-06-04 Asahi Glass Co Ltd 加水分解性ケイ素末端重合体の製造方法およびそれを含む組成物
FR2743297B1 (fr) * 1996-01-05 1998-03-13 Oreal Composition cosmetiques a base de polycondensats ionisables multisequences polysiloxane/polyurethane et/ou polyuree en solution et utilisation
US5691441A (en) * 1996-10-11 1997-11-25 Arco Chemical Technology, L.P. Spandex elastomers
US5691439A (en) * 1996-12-16 1997-11-25 Bayer Corporation Low surface energy polyisocyanates and their use in one- or two-component coating compositions
JP3343604B2 (ja) * 1997-03-03 2002-11-11 コニシ株式会社 シリコーン系樹脂組成物
JP3703261B2 (ja) * 1997-08-19 2005-10-05 三井化学株式会社 ケイ素基含有ポリアルキレンオキサイド重合体の製造方法及び湿気硬化性組成物
US5990257A (en) * 1998-01-22 1999-11-23 Witco Corporation Process for producing prepolymers which cure to improved sealants, and products formed thereby
DE19908562A1 (de) * 1998-03-25 1999-10-07 Henkel Kgaa Polyurethan und polyurethanhaltige Zubereitung
JP2000063470A (ja) * 1998-08-21 2000-02-29 Dainichiseika Color & Chem Mfg Co Ltd 親水性ポリウレタン系樹脂及びその製造方法
JP4005231B2 (ja) * 1998-08-24 2007-11-07 大日精化工業株式会社 親水性ポリウレタン系樹脂の製造方法
JP3961689B2 (ja) * 1998-08-26 2007-08-22 大日精化工業株式会社 親水性ポリウレタン系樹脂及びその製造方法
DE19849817A1 (de) * 1998-10-29 2000-05-04 Bayer Ag Alkoxysilan-Endgruppen aufweisende Polyurethanprepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Dichtstoffen
DE19914879A1 (de) * 1999-04-01 2000-10-05 Bayer Ag Polyurethanlösungen mit Alkoxysilanstruktureinheiten
IT1318639B1 (it) * 2000-07-25 2003-08-27 Mapei Spa Procedimento per la preparazione di composizioni organico-sili-coniche.
JP3449991B2 (ja) * 2001-02-22 2003-09-22 オート化学工業株式会社 硬化性組成物
DE10204523A1 (de) * 2002-02-05 2003-08-07 Bayer Ag Alkoxysilan- und OH-Endgruppen aufweisende Polyurethanprepolymere mit erniedrigter Funktionalität, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE10254376A1 (de) * 2002-11-15 2004-05-27 Bayer Ag Raumtemperaturhärtende Reaktivsysteme
DE10355318A1 (de) * 2003-11-27 2005-06-23 Wacker-Chemie Gmbh Verfahren zur Herstellung von organyloxysilylterminierten Polymeren
DE102004040220A1 (de) * 2004-08-19 2006-03-02 Bayer Materialscience Ag Verbessertes Verfahren zur Herstellung organischer Monoisocyanate

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2173788A4 (de) * 2007-07-26 2015-05-27 Bayer Materialscience Llc Betonreparaturverfahren
US8431675B2 (en) 2007-12-04 2013-04-30 Henkel Ag & Co. Kgaa Curable compound comprising silylated polyurethane
DE102007058483A1 (de) * 2007-12-04 2009-06-10 Henkel Ag & Co. Kgaa Härtbare Zusammensetzungen enthaltend silylierte Polyurethane
EP2843016B1 (de) 2008-12-19 2016-06-29 Sika Technology AG Flüssigfolie auf Basis von silanterminierten Polyurethanpolymeren
US10351579B2 (en) 2015-10-29 2019-07-16 Evonik Degussa Gmbh Monoallophanates based on alkoxysilane alkyl isocyanates
EP3162807A1 (de) 2015-10-29 2017-05-03 Evonik Degussa GmbH Monoallophanate auf basis von alkoxysilanalkylisocyanaten
EP3162827A1 (de) 2015-10-29 2017-05-03 Evonik Degussa GmbH Beschichtungsmittel mit monoallophanaten auf basis von alkoxysilanalkylisocyanaten
WO2017071941A1 (de) 2015-10-29 2017-05-04 Evonik Degussa Gmbh Monoallophanate auf basis von alkoxysilanalkylisocyanaten
WO2017071933A1 (de) 2015-10-29 2017-05-04 Evonik Degussa Gmbh Beschichtungsmittel mit monoallophanaten auf basis von alkoxysilanalkylisocyanaten
US10538684B2 (en) 2015-10-29 2020-01-21 Evonik Operations Gmbh Coating compositions comprising monoallophanates based on alkoxysilane alkyl isocyanates
DE102016200704A1 (de) 2016-01-20 2017-07-20 Bona Gmbh Deutschland Verfahren zur Erhöhung der Anwendungssicherheit und der Alterungsbeständigkeit von Klebstoffen und anderen Produkten, enthaltend silanfunktionalisierte Präpolymere
EP3263617A1 (de) 2016-06-27 2018-01-03 Evonik Degussa GmbH Alkoxysilan-funktionalisierte und allophanat-funktionalisierte urethane
EP3263616A1 (de) 2016-06-27 2018-01-03 Evonik Degussa GmbH Alkoxysilan-funktionalisierte allophanat-haltige beschichtungsmittel
US10093765B2 (en) 2016-06-27 2018-10-09 Evonik Degussa Gmbh Alkoxysilane-functionalized allophanates
US10093826B2 (en) 2016-06-27 2018-10-09 Evonik Degussa Gmbh Alkoxysilane-functionalized allophanate-containing coating compositions
US10336854B2 (en) 2016-06-27 2019-07-02 Evonik Degussa Gmbh Alkoxysilane-functionalized and allophanate-functionalized urethanes
US10336856B2 (en) 2016-06-27 2019-07-02 Evonik Degussa Gmbh Alkoxysilane- and allophanate-functionalized coating materials
EP3263619A1 (de) 2016-06-27 2018-01-03 Evonik Degussa GmbH Alkoxysilan- und allophanat-funktionalisierte beschichtungsmittel
EP3263618A1 (de) 2016-06-27 2018-01-03 Evonik Degussa GmbH Alkoxysilan-funktionalisierte allophanate
DE102017115439A1 (de) 2017-07-10 2019-01-10 Bona Gmbh Deutschland Verfahren zur Erhöhung der Anwendungssicherheit und der Alterungsbeständigkeit von Klebstoffen und anderen Produkten, enthaltend silanfunktionalisierte Präpolymere
EP3480232A1 (de) 2017-11-07 2019-05-08 Bona GmbH Deutschland Verwendung von additiven zur erhöhung der zugscherfestigkeit und zusammensetzung enthaltend ein silanfunktionalisiertes präpolymer und additive
DE102017219755A1 (de) 2017-11-07 2019-05-09 Bona Gmbh Deutschland Verwendung von Additiven zur Erhöhung der Zugscherfestigkeit und Zusammensetzung enthaltend ein silanfunktionalisiertes Präpolymer und Additive
US11059953B2 (en) 2017-11-07 2021-07-13 Bona Gmbh Deutschland Use of additives for increasing the tensile shear strength and composition containing a silane-functionalized prepolymer and additives

Also Published As

Publication number Publication date
CN101253209B (zh) 2012-04-04
TW200722447A (en) 2007-06-16
CA2620991C (en) 2014-05-27
US8067522B2 (en) 2011-11-29
US20070055035A1 (en) 2007-03-08
ES2318789T3 (es) 2009-05-01
DE502006002528D1 (de) 2009-02-12
PL1924621T3 (pl) 2009-06-30
BRPI0616128A2 (pt) 2011-12-27
WO2007025668A1 (de) 2007-03-08
HK1123818A1 (en) 2009-06-26
ATE419291T1 (de) 2009-01-15
EP1924621A1 (de) 2008-05-28
NO20081437L (no) 2008-04-02
AU2006286874A1 (en) 2007-03-08
CA2620991A1 (en) 2007-03-08
DK1924621T3 (da) 2009-04-14
EP1924621B1 (de) 2008-12-31
AU2006286874B2 (en) 2011-06-02
JP2009507088A (ja) 2009-02-19
CN101253209A (zh) 2008-08-27
JP5909316B2 (ja) 2016-04-26
TWI405782B (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
EP1924621B1 (de) Niedrigviskose alkoxysilangruppenaufweisende prepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung
EP1124872B1 (de) Alkoxysilan-endgruppen aufweisende polyurethanprepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung zur herstellung von dichtstoffen
EP1924623B1 (de) Alkoxysilan- und spezielle allophanat- und/oder biuretgruppen aufweisende prepolymere, ein verfahren zu ihrer herstellung sowie ihre verwendung
EP1995261B1 (de) Polyester-prepolymere
EP2268650B1 (de) Härtbare zusammensetzungen enthaltend silylierte polyurethane
EP2582738B1 (de) Silanvernetzende zusammensetzungen
EP2510027B1 (de) Polyurethan-prepolymere
EP0807649A1 (de) Alkoxysilan- und Hydantoingruppen aufweisende Polyurethanprepolymere, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Dichtstoffen
EP2473545B1 (de) Isocyanatfreie silanvernetzende zusammensetzungen
DE102007058483A1 (de) Härtbare Zusammensetzungen enthaltend silylierte Polyurethane
EP2274354B1 (de) Härtbare zusammensetzungen enthaltend weichelastische silylierte polyurethane
DE102007058344A1 (de) Härtbare Zusammensetzungen enthaltend silylierte Polyurethane
EP2718345B1 (de) Polyurethan-polymere
EP2510029A1 (de) Dichtstoffe
EP3613785A1 (de) Trocknungsmittel für feuchtigkeitshärtende zusammensetzungen
EP3613786A1 (de) Trocknungsmittel für feuchtigkeitshärtende zusammensetzungen

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee