DE10117687A1 - Protonenleitende Membran und deren Verwendung - Google Patents

Protonenleitende Membran und deren Verwendung

Info

Publication number
DE10117687A1
DE10117687A1 DE10117687A DE10117687A DE10117687A1 DE 10117687 A1 DE10117687 A1 DE 10117687A1 DE 10117687 A DE10117687 A DE 10117687A DE 10117687 A DE10117687 A DE 10117687A DE 10117687 A1 DE10117687 A1 DE 10117687A1
Authority
DE
Germany
Prior art keywords
membrane
membrane according
polymer
electrode
temperatures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10117687A
Other languages
English (en)
Inventor
Gordon Calundann
Michael J Sansone
Joachim Kiefer
Oemer Uensal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Ventures GmbH
Original Assignee
Celanese Ventures GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Ventures GmbH filed Critical Celanese Ventures GmbH
Priority to DE10117687A priority Critical patent/DE10117687A1/de
Priority to CA002443849A priority patent/CA2443849C/en
Priority to EP10007142A priority patent/EP2270068B1/de
Priority to DE50214833T priority patent/DE50214833D1/de
Priority to KR1020037013151A priority patent/KR100897728B1/ko
Priority to EP02745222A priority patent/EP1379572B1/de
Priority to JP2002579927A priority patent/JP4919578B2/ja
Priority to DK02745222.6T priority patent/DK1379572T3/da
Priority to AT02745222T priority patent/ATE493459T1/de
Priority to MXPA03009187A priority patent/MXPA03009187A/es
Priority to US10/472,810 priority patent/US7235320B2/en
Priority to CNB02807954XA priority patent/CN100489011C/zh
Priority to PCT/EP2002/003901 priority patent/WO2002081547A1/de
Priority to BR0208728-6A priority patent/BR0208728A/pt
Publication of DE10117687A1 publication Critical patent/DE10117687A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0616Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0633Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0683Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0688Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polyquinolines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/109After-treatment of the membrane other than by polymerisation thermal other than drying, e.g. sintering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)
  • Silicon Polymers (AREA)

Abstract

Die vorliegende Erfindung betrifft eine neuartige protonenleitende Polymermembran auf Basis von Polyazolen, die aufgrund ihrer hervorragenden chemischen und thermischen Eigenschaften vielfältig eingesetzt werden kann und sich insbesondere als Polymer-Elektrolyt-Membran (PEM) zur Herstellung von Membran-Elektroden-Einheiten für sogenannte PEM-Brennstoffzellen eignet.

Description

Die vorliegende Erfindung betrifft eine neuartige protonenleitende Polymermembran auf Basis von Polyazolen, die aufgrund ihrer hervorragenden chemischen und thermischen Eigenschaften vielfältig eingesetzt werden kann und sich insbesondere als Polymer-Elektrolyt-Membran (PEM) in sogenannten PEM-Brennstoffzellen eignet.
Polyazole wie beispielsweise Polybenzimidazole (®Celazole) sind seit langem bekannt. Die Herstellung derartiger Polybenzimidazole (PBI) erfolgt üblicherweise durch Umsetzung von 3,3',4,4'-Tetraaminobiphenyl mit Isophthalsäure oder Diphenyl-isophthalsäure bzw. deren Estern in der Schmelze. Das enstehende Präpolymer erstarrt im Reaktor und wird anschließend mechanisch zerkleinert. Anschließend wird das pulverförmige Präpolymer in einer Festphasen-Polymerisation bei Temperaturen von bis zu 400°C endpolymerisiert und das gewünschte Polybenzimidazole erhalten.
Zur Herstellung von Polymerfolien wird das PBI in polaren, aprotischen Lösemitteln wie beispielsweise Dimethylacetamid (DMAc) gelöst und eine Folie mittels klassischer Verfahren erzeugt.
Protonenleitende, d. h. mit Säure dotierte Polyazol-Membranen für den Einsatz in PEM-Brennstoffzellen sind bereits bekannt. Die basischen Polyazol-Folien werden mit konzentrierter Phosphorsäure oder Schwefelsäure dotiert und wirken dann als Protonenleiter und Separatoren in sogenannten Polymerelektrolyt-Membran- Brennstoffzellen (PEM-Brennstoffzellen).
Bedingt durch die hervorragenden Eigenschaften des Polyazol-Polymeren können derartige Polymerelektrolytmembranen - zu Membran-Elektroden-Einheiten (MEE) verarbeitet - bei Dauerbetriebstemperaturen oberhalb 100°C insbesondere oberhalb 120°C in Brennstoffzellen eingesetzt werden. Diese hohe Dauerbetriebstemperatur erlaubt es die Aktivität der in der Membran-Elektroden-Einheit (MEE) enthaltenen Katalysatoren auf Edelmetallbasis zu erhöhen. Insbesondere bei der Verwendung von sogenannten Reformaten aus Kohlenwasserstoffen sind im Reformergas deutliche Mengen an Kohlenmonoxid enthalten, die überlicherweise durch eine aufwendige Gasaufbereitung bzw. Gasreinigung entfernt werden müssen. Durch die Möglichkeit die Betriebstemperatur zu erhöhen, können deutlich höhere Konzentrationen an CO-Verunreinigungen dauerhaft toleriert werden.
Durch Einsatz von Polymer-Elektrolyt-Membranen auf Basis von Polyazol-Polymeren kann zum einen auf die aufwendige Gasaufbereitung bzw. Gasreinigung teilweise verzichtet werden und andererseits die Katalysatorbeladung in der Membran- Elektroden-Einheit reduziert werden. Beides ist für einen Masseneinsatz von PEM- Brennstoffzellen unabdingbare Voraussetzung, da ansonsten die Kosten für ein PEM-Brennstoffzellen-System zu hoch sind.
Die bislang bekannten mit Säure dotierten Polymermembrane auf Basis von Polyazolen zeigen bereits ein günstiges Eigenschaftsprofil. Aufgrund der für PEM- Brennstoffzellen angestrebten Anwendungen, insbesondere im Automobilbereich- und der dezentralen Strom- und Wärmeerzeugung (Stationärbereich), sind diese insgesamt jedoch noch zu verbessern. Darüber hinaus haben die bislang bekannten Polymermembranen einen hohen Gehalt an Dimethylacetamid (DMAc), der mittels bekannter Trocknungsmethoden nicht vollständig entfernt werden kann. In der deutschen Patentanmeldung Nr. 101 09 829.4 wird eine Polymermembran auf Basis von Polyazolen beschrieben, bei der die DMAc-Kontamination beseitigt wurde. Derartige Polymermembran zeigen zwar verbesserte mechanische Eigenschaften, hinsichtlich der spezifischen Leitfähigkeit werden jedoch 0,1 S/cm (bei 140°C) nicht überschritten.
Aufgabe der vorliegenden Erfindung ist mit Säure dotierte Polymermembranen auf Basis von Polyazolen bereitzustellen, die einerseits die anwendungstechnischen Vorteile der Polymermembran auf Basis von Polyazolen aufweisen und andererseits eine gesteigerte spezifische Leitfähigkeit, insbesondere bei Betriebstemperaturen oberhalb von 100°C, aufweisen und zusätzliche ohne Brenngasbefeuchtung auskommen.
Wir haben nun gefunden, daß eine protonenleitende Membran auf Basis von Polyazolen erhalten werden kann, wenn das Polyazol-Präpolymere in Polyphosphorsäure endpolymerisiert wird. Bei dieser neuen Membran kann auf die in der deutschen Patentanmeldung Nr. 101 09 829.4 beschriebe spezielle Nachbehandlung verzichtet werden. Die dotierten Polymermembranen zeigen eine signifikant verbesserte Protonenleitfähigkeit, das nachträgliche dotieren der Folie entfällt.
Gegenstand der vorliegenden Erfindung ist eine protonenleitende Polymermembran auf Basis von Polyazolen erhältlich durch ein Verfahren umfassend die Schritte
  • A) Umsetzung von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen Dicarbonsäuren bzw. deren Ester in der Schmelze bei Temperaturen von bis zu 350°C, vorzugsweise bis zu 300°C,
  • B) Lösen des gemäß Schritt A) erhaltenen festen Prä-Polymeren in Polyphosphorsäure,
  • C) Erwärmen der Lösung erhältlich gemäß Schritt B) unter Inertgas auf Temperaturen von bis zu 300°C, vorzugsweise bis zu 280°C unter Ausbildung des gelösten Polyazol-Polymeren.
  • D) Bilden einer Membran unter Verwendung der Lösung des Polyazol-Polymeren gemäß Schritt C) auf einem Träger und
  • E) Behandlung der in Schritt D) gebildeten Membran bis diese selbsttragend ist.
Bei den erfindungsgemäß eingesetzten aromatischen Tetra-Amino-Verbindungen handelt es sich vorzugsweise um 3,3',4,4'-Tetraaminobiphenyl, 2,3,5,6- Tetraaminopyridin bzw. deren Tetra- oder Trihydrochlorid-Derivate
Bei den erfindungsgemäß eingesetzten aromatischen Dicarbonsäure bzw. deren Estern handelt es sich vorzugsweise um Isophthalsäure oder Terephthalsäure bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester.
Die Prä-Polymerisation gemäß Schritt A) führt bei dem gewählten Temperaturbereich und bei Einsatz von 3,3',4,4'-Tetraaminobiphenyl (TAB) und Isophthalsäureestern (OR) zur Ausbildung von den korrespondierenden Amiden bzw. Iminen (vgl. nachfolgendes Schema)
Während der Reaktion verfestigt sich das erhaltene Präpolymer und nach gegebenenfalls nach grober Mahlung in Polyphosphorsäure gelöst werden.
Bei der in Schritt B) verwendeten Polyphosphorsäure handelt es sich um handelsübliche Polyphosphorsäuren wie diese beispielsweise von Riedel-de Haen erhältlich sind. Die Polyphosphorsäuren Hn+2PnO3n+1 (n < 1) besitzen üblicherweise einen Gehalt berechnet als P2O5 (acidimetrisch) von mindestens 83%. Anstelle einer Lösung des Präpolymeren kann auch eine Dispersion/Suspension erzeugt werden.
Die in Schritt C) gebildete Polymerlösung enthält Polymere auf Basis von Polyazol mit wiederkehrenden Azoleinheiten der allgemeinen Formel (I) und/oder (II)
worin
Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar1 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar2 gleich oder verschieden sind und für eine zwei oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine Aminogruppe, die ein Wasserstoffatom, eine 1-20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt
Bevorzugte aromatische oder heteroaromatische Gruppen leiten sich von Benzol, Naphthalin, Biphenyl, Diphenylether, Diphenylmethan, Diphenyldimethylmethan, Bisphenon, Diphenylsulfon, Chinolin, Pyridin, Bipyridin, Anthracen und Phenanthren, die gegebenenfalls auch substituiert sein können, ab.
Dabei ist das Substitionsmuster von Ar1 beliebig, im Falle vom Phenylen beispielsweise kann Ar1 ortho-, meta- und para-Phenylen sein. Besonders bevorzugte Gruppen leiten sich von Benzol und Biphenylen, die gegebenenfalls auch substituiert sein können, ab.
Bevorzugte Alkylgruppen sind kurzkettige Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, wie z. B. Methyl-, Ethyl-, n- oder i-Propyl- und t-Butyl-Gruppen.
Bevorzugte aromatische Gruppen sind Phenyl- oder Naphthyl-Gruppen. Die Alkylgruppen und die aromatischen Gruppen können substituiert sein.
Bevorzugte Substituenten sind Halogenatome wie z. B. Fluor, Aminogruppen oder kurzkettige Alkylgruppen wie z. B. Methyl- oder Ethylgruppen.
Bevorzugt sind Polyazole mit wiederkehrenden Einheiten der Formel (I) bei denen die Reste X innerhalb einer wiederkehrenden Einheit gleich sind.
Die Polyazole können grundsätzlich auch unterschiedliche wiederkehrende Einheiten aufweisen, die sich beispielsweise in ihrem Rest X unterscheiden. Vorzugsweise jedoch weist es nur gleiche Reste X in einer wiederkehrenden Einheit auf.
In einer weiteren Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Copolymer, das mindestens zwei Einheiten der Formel (I) und/oder (II) enthält, die sich voneinander unterscheiden.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Polyazol, das nur Einheiten der Formel (I) und/oder (II) enthält.
Die Anzahl der wiederkehrende Azoleinheiten im Polymer ist vorzugsweise eine ganze Zahl größer gleich 10. Besonders bevorzugte Polymere enthalten mindestens 100 wiederkehrende Azoleinheiten.
Im Rahmen der vorliegenden Erfindung sind Polymere enthaltend wiederkehrenden Benzimidazoleinheiten bevorzugt. Ein Beispiel eines äußerst zweckmäßigen Polymers enthaltend wiederkehrende Benzimidazoleinheiten wird durch Formel (III) wiedergegeben:
wobei n eine ganze Zahl größer gleich 10, vorzugsweise größer gleich 100 ist.
Die Mittel des beschriebenen Verfahrens erhältlichen Polyazole, inbesondere jedoch die Polybenzimidazole zeichnen sich durch ein hohes Molekulargewicht aus. Gemessen als Intrinsische Viskosität beträgt diese mindestens 1,4 dl/g und liegt somit deutlich über dem von handelsüblichem Polybenzimidazol (IV < 1,3 dl/g).
Weitere bevorzugte Polyazol-Polymere sind Polyimidazole, Polybenzthiazole, Polybenzoxazole, Polyoxadiazole, Polyquinoxalines, Polythiadiazole Poly(pyridine), Poly(pyrimidine), und Poly(tetrazapyrene).
Das Bildung der Polymermembran gemäß Schritt D) erfolgt mittels an sich bekannter Maßnahmen (Gießen, Sprühen, Rakeln) die aus dem Stand der Technik zur Polymerfilm-Herstellung bekannt sind. Als Träger sind alle unter den Bedingungen als inert zu bezeichnenden Träger geeignet. Zur Einstellung der Viskosität kann die Lösung gegebenenfalls mit Phosphorsäure (konz. Phosphorsäure, 85%) versetzt werden. Hierdurch kann die Viskosität auf den gewünschten Wert eingestellt und die Bildung der Membran erleichtert werden. Die Dicke beträgt zwischen 20 und 2000 µm, vorzugsweise zwischen 30 und 1500 µm, insbesondere zwischen 50 und 1200 µm.
Behandlung der gemäß Schritt D) erzeugten Membran in Gegenwart von Feuchtigkeit bei Temperaturen und für eine Dauer ausreichend bis die Membran selbsttragend ist, so daß sie ohne Beschädigung vom Träger abgelöst werden kann.
Die Behandlung der Membran in Schritt E) erfolgt bei Temperaturen oberhalb 0°C und kleiner 150°C, vorzugsweise bei Temperaturen zwischen 10°C und 120°C, insbesondere zwischen Raumtemperatur (20°C) und 90°C, in Gegenwart von Feuchtigkeit bzw. Wasser und/oder Wasserdampf. Die Behandlung erfolgt vorzugsweise unter Normaldruck, kann aber auch unter Einwirkung von Druck erfolgen. Wesentlich ist, daß die Behandlung in Gegenwart von ausreichender Feuchtigkeit geschieht, wodurch die anwesende Polyphosphorsäure durch partielle Hydrolyse unter Ausbildung niedermolekularer Polyphosphorsäure und/oder Phosphorsäure zur Verfestigung der Membran beiträgt.
Die partielle Hydrolyse der Polyphosphorsäure in Schritt E) führt zu einer Verfestigung der Membran und zu einer Abnahme der Schichtdicke und Ausbildung einer Membran mit einer Dicke zwischen 15 und 200 µm, vorzugsweise zwischen 20 und 150 µm, insbesondere zwischen 20 und 100 µm, die selbsttragend ist. Die in der Polyphosphorsäure vorliegenden intra- und intermolekularen Strukturen (z. B. Netzwerke des Polyazols mit der Polyphosphorsäure) führen zu einer geordneten Membranbildung, welche für die besonderen Eigenschaften der gebildeten Membran verantwortlich zeichnet.
Die obere Temperaturgrenze der Behandlung gemäß Schritt E) beträgt in der Regel 150°C. Bei extrem kurzer Einwirkung von Feuchtigkeit, beispielsweise von überhitztem Dampf kann dieser Dampf auch heißer als 150°C sein. Wesentlich für die Temperaturobergrenze ist die Dauer der Behandlung.
Die partielle Hydrolyse (Schritt E) kann auch in Klimakammern erfolgen bei der unter definierter Feuchtigkeitseinwirkung die Hydrolyse gezielt gesteuert werden kann. Hierbei kann die Feuchtigkeit durch die Temperatur bzw. Sättigung der kontaktierenden Umgebung beispielsweise Gase wie Luft, Stickstoff, Kohlendioxid oder andere geeignete Gase, oder Wasserdampf gezielt eingestellt werden. Die Behandlungsdauer ist abhängig von den vorstehend gewählten Parametern.
Weiterhin ist die Behandlungsdauer von der Dicke der Membran abhängig.
In der Regel beträgt die Behandlungsdauer zwischen wenigen Sekunden bis Minuten, beispielsweise unter Einwirkung von überhitztem Wasserdampf, oder bis hin zu ganzen Tagen, beispielsweise an der Luft bei Raumtemperatur und geringer relativer Luftfeuchtigkeit. Bevorzugt beträgt die Behandlungsdauer zwischen 10 Sekunden und 300 Stunden, insbesondere 1 Minute bis 200 Stunden.
Wird die partielle Hydrolyse bei Raumtemperatur (20°C) mit Umgebungsluft einer relativen Luftfeuchtigkeit von 40-80% durchgeführt beträgt die Behandlungsdauer zwischen 1 und 200 Stunden.
Die gemäß Schritt E) erhaltene Membran ist selbsttragend, d. h. sie kann vom Träger ohne Beschädigung gelöst und anschließend gegebenenfalls direkt weiterverarbeitet werden.
Über den Grad der Hydrolyse, d. h. die Dauer, Temperatur und Umgebungsfeuchtigkeit, ist die Konzentration an Phosphorsäure und damit die Leitfähigkeit der erfindungsgemäßen Polymermembran einstellbar. Erfindungsgemäß wird die Konzentration der Phosphorsäure als Mol Säure pro Mol Wiederholungseinheit des Polymers angegeben. Im Rahmen der vorliegenden Erfindung ist eine Konzentration (Mol Phosporsäure bezogen auf eine Wiederholeinheit der Formel (III), d. h. Polybenzimidazol) zwischen 10 und 25, insbesondere zwischen 12 und 20, bevorzugt. Derartig hohe Dotierungsgrade (Konzentrationen) sind durch Dotieren von Polyazolen mit kommerziell erhältlicher ortho-Phosphorsäure nur sehr schwierig bzw. gar nicht zugänglich.
Die erfindungsgemäße Polymermembran weist verbesserte Materialeigenschaften gegenüber den bisher bekannten dotierten Polymermembranen auf. Insbesondere zeigen sie im Vergleich mit bekannten dotierten Polymermembranen bessere Leistungen. Diese begründet sich insbesondere durch eine verbesserte Protonenleitfähigkeit. Diese beträgt bei Temperaturen von 120°C mindestens 0,1 S/cm, vorzugsweise mindestens 0,11 S/cm.
Zu möglichen Einsatzgebieten der erfindungsgemäßen, dotierten Polymermembranen gehören unter anderem die Verwendung in Brennstoffzellen, bei der Elektrolyse, in Kondensatoren und in Batteriesystemen. Aufgrund ihres Eigenschaftsprofils werden die dotierten Polymermembranen vorzugsweise in Brennstoffzellen verwendet.
Die vorliegende Erfindung betrifft auch eine Membran-Elektroden-Einheit, die mindestens eine erfindungsgemäße Polymermembran aufweist. Für weitere Informationen über Membran-Elektroden-Einheiten wird auf die Fachliteratur, insbesondere auf die Patente US-A-4,191,618, US-A-4,212,714 und US-A-4,333,805 verwiesen. Die in den vorstehend genannten Literaturstellen [US-A-4,191,618, US-A- 4,212,714 und US-A-4,333,805] enthaltene Offenbarung hinsichtlich des Aufbaues und der Herstellung von Membran-Elektroden-Einheiten, sowie der zu wählenden Elektroden, Gasdiffusionslagen und Katalysatoren ist auch Bestandteil der Beschreibung.
In einer Variante der vorliegenden Erfindung kann die Membranbildung anstellle auf einem Träger auch direkt auf der Elektrode erfolgen. Die Behandlung gemäß Schritt E) kann hierdurch entsprechend verkürzt werden, da die Membran nicht mehr selbsttragend sein muß. Auch eine solche Membran ist Gegenstand der vorliegenden Erfindung.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Elektrode die mit einer protonenleitenden Polymerbeschichtung auf Basis von Polyazolen erhältlich durch ein Verfahren umfassend die Schritte
  • A) Umsetzung von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen Dicarbonsäuren oder deren Ester in der Schmelze bei Temperaturen von bis zu 350°C, vorzugsweise bis zu 300°C,
  • B) Lösen des gemäß Schritt A) erhaltenen festen Prä-Polymeren in Polyphosphorsäure,
  • C) Erwärmen der Lösung erhältlich gemäß Schritt B) unter Inertgas auf Temperaturen von bis zu 300°C, vorzugsweise 280°C unter Ausbildung des gelösten Polyazol-Polymeren [
  • D) Aufbringen einer Schicht unter Verwendung der Lösung des Polyazol- Polymeren gemäß Schritt C) auf einer Elektrode und
  • E) Behandlung der in Schritt D) gebildeten Schicht.
Die Beschichtung hat eine Dicke zwischen 2 und 50 µm, vorzugsweise zwischen 3 und 19 µm, insbesondere zwischen 5 und 15 µm hat.
Eine derartig beschichtete Elektrode kann in einer Membran-Elektroden-Einheit, die gegebenenfalls mindestens eine erfindungsgemäße Polymermembran aufweist, eingebaut werden.
Nachfolgend wird die Erfindung durch Beispiele und Vergleichsbeispiel eingehender erläutert, ohne daß die Erfindung auf diese Beispiele beschränkt werden soll.
BEISPIELE Probe 1
10 g Präpolymer wurde unter Stickstoffatmosphäre in einem Dreihalskolben vorgelegt, der mit einem mechanischen Rührer, N2-Einlaß und Auslaß ausgestattet wurde. Zum Präpolymer wurde 90 g Polyphosphorsäure (83,4 ± 0.5% P2O5 der Gehalt wurde analytisch bestimmt.) gegeben. Die Mischung wurde zuerst auf 150°C erhitzt und 1 h gerührt. Die Temperatur wurde dann auf 180°C für 4 h, danach auf 240°C für 4 h schließlich auf 270°C für 14 h erhöht. Bei 270°C wurde zu dieser Lösung 25 g 85%-ige Phosphorsäure gegeben und 1 h gerührt. Die erhaltene Lösung wurde dann auf 225°C abgekühlt, um eine noch fließende Lösung für Filmgießen zu erhalten. Diese warme Lösung wurde auf eine Glasplatte mit einem 350 µm Rakelrahmen gerakelt, wobei der Rakelrahmen und die Glasplatte vorher auf 100°C geheizt wurden. Die Membran wurde an der Luft bei Raumtemperatur (RT = 20°C) 3 Tage lang stehengelassen. Die Polyphosphorsäure entzog die Feuchtigkeit aus der Luft und wurde von der Luft absorbierte Feuchtigkeit zu Phoshorsäure hydrolysiert. Die entstandene überschüssige Phosphorsäure floß aus der Membran. Der Gewichtsverlust war 22% bezogen auf das Anfangsgewicht der gerakelten Membran.
Ein Teil der Lösung wurde nach der Temperaturbehandlung durch Mischen mit destilliertem Wasser ausgefallen, gefiltert, dreimal mit destilliertem Wasser gewaschen, mit Ammonuimhydroxid neutralisiert, dann dreimal mit destilliertem. Wasser gewaschen und schließlich bei 120°C 16 h lang bei 1 Torr getrocknet. Es wurden 2,9 g PBI-Pulver mit ηinh 1,47 dL/g wurde erhalten, welche aus einer 0,4%-ige PBI-Lösung in 100 ml in konz. Schwefelsäure (97%) gemessen wurde.
Probe 2
10 g Präpolymer wurde unter Stickstoffatmosphäre in einem Dreihalskolben vorgelegt, der mit einem mechanischen Rührer, N2-Einlaß und Auslas ausgestattet wurde. Zum Präpolymer wurde 90 g Polyphosphorsäure (83,4 ± 0.5% P2O5 der Gehalt wurde analytisch bestimmt.) gegeben. Die Mischung wurde zuerst auf 150°C erhitzt und 1 h gerührt. Die Temperatur wurde dann auf 180°C für 4 h (Stunden), danach auf 240°C für 4 h schließlich auf 270°C für 14 h erhöht. Bei 270°C wurde zu dieser Lösung 25 g 85%-ige Phosphorsäure gegeben und 1 h gerührt. Die erhaltene Lösung wurde dann auf 240°C abgekühlt, um eine noch fließende homogene Lösung für Filmgießen zu erhalten. Diese warme Lösung wurde auf eine Glasplatte mit einem 350 µm, 700 µm, 930 µm und 1170 µm Rakelrahmen gerakelt, wobei der Rakelrahmen und die Glasplatte vorher auf 100°C geheizt wurden. Die Membran wurde an der Luft bei RT 5 d (Tage) lang stehengelassen. Die Polyphosphorsäure entzog die Feuchtigkeit aus der Luft und wurde von der Luft absorbierte Feuchtigkeit zu Phoshorsäure hydrolysiert. Die entstandene überschüssige Phosphorsäure floß aus der Membran. Die Gewichtsverluste von Membranen lagen zwischen 37,5-40% bezogen auf das Anfangsgewicht der gerakelten Membran. Die Enddicke von Membranen waren 210 µm, 376 µm, 551 µm und 629 µm.
Ein Teil der Lösung wurde nach der Temperaturbehandlung durch Mischen mit destilliertem Wasser ausgefallen, gefiltert, dreimal mit destilliertem. Wasser gewaschen, mit Ammonuimhydroxid neutralisiert, dann dreimal mit destilliertem. Wasser gewaschen und schließlich bei 120°C 16 h lang bei 1 Torr getrocknet. Für PBI-Pulver wurde eine inhärente Viskosität von ηinh 2.23 dL/g erhalten, welche aus einer 0,4%-ige PBI-Lösung in 100 ml in konz. Schwefelsäure (97%) gemessen wurde.
Probe 3
10 g Präpolymer wurde unter Stickstoffatmosphäre in einem Dreihalskolben vorgelegt, der mit einem mechanischen Rührer, N2-Einlaß und Auslas ausgestattet wurde. Zum Präpolymer wurde 90 g Polyphosphorsäure (83,4 ± 0.5% P2O5 der Gehalt wurde analytisch bestimmt.) gegeben. Die Mischung wurde zuerst auf 150°C erhitzt und 1 h gerührt. Die Temperatur wurde dann auf 180°C für 4 h, danach auf 240°C für 4 h schließlich auf 270°C für 14 h erhöht. Bei 270°C wurde zu dieser Lösung 25 g 85%-ige Phosphorsäure gegeben und 1 h gerührt. Die erhaltene Lösung wurde dann auf 240°C abgekühlt, um eine noch fließende homogene Lösung für Filmgießen zu erhalten. Die 6,5%-ige warme PBI-Lösung in 104%-ige Polyphosphorsäure wurde bei 200°C auf eine Glasplatte mit einem 350 µm, 230 µm, 190 µm und 93 km Rakelrahmen gerakelt, wobei der Rakelrahmen und die Glasplatte vorher auf 100°C geheizt wurden. Die Membran wurde an der Luft bei RT 7 d lang stehengelassen. Die Polyphosphorsäure entzog die Feuchtigkeit aus der Luft und wurde von der Luft absorbierte Feuchtigkeit zu Phoshorsäure hydrolysiert. Die entstandene überschüssige Phosphorsäure floß aus der Membran. Die Enddicke von Membranen waren 201 µm, 152 µm, 126 µm und 34 µm.
Ein Teil der Lösung wurde nach der Temperaturbehandlung durch Mischen mit destilliertem Wasser ausgefallen, gefiltert, dreimal mit destilliertem. Wasser gewaschen, mit Ammonuimhydroxid neutralisiert, dann dreimal mit destilliertem. Wasser gewaschen und schließlich bei 120°C 16 h lang bei 1 Torr getrocknet. Für PBI-Pulver wurde eine inhärente Viskosität von ηinh 2.6 dL/g erhalten, welche aus einer 0,4%-ige PBI-Lösung in 100 ml in konz. Schwefelsäure (97%) gemessen wurde.
In der Tabelle 1 sind die Ionenaustauschkapazitäten und n(H3PO4)/n(PBI)-Werte von Probe 1-3 mit Referenzprobe verglichen. Diese Werte sind durch Titration mit 0,1 M NaOH erhalten.
Tabelle 1
Vergleich Ionenaustauschkapazitäten und n(H3PO4)/n(PBI)-Werte
In Fig. 1 sind die temperaturabhängige Leitfähigkeiten von Probe 1, Probe 2 und Refernzprobe dargestellt. Die temperaturabhängige Leitfähigkeitsmessung wurde mit einer spezial gefertigten 4-Pol-Glasmesszelle gemessen. Als Impedanzspektrometer wurde IM6 von Zahner Elektrik verwendet.
Fig. 1
Vergleich der temperaturabhängigen Leitähigkeiten der Probe 1 und 2 mit Referenzprobe

Claims (20)

1. Protonenleitende Polymermembran auf Basis von Polyazolen erhältlich durch ein Verfahren umfassend die Schritte
  • A) Umsetzung von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen Dicarbonsäuren oder deren Ester in der Schmelze bei Temperaturen von bis zu 350°C, vorzugsweise bis zu 300°C,
  • B) Lösen des gemäß Schritt A) erhaltenen festen Prä-Polymeren in Polyphosphorsäure,
  • C) Erwärmen der Lösung erhältlich gemäß Schritt B) unter Inertgas auf Temperaturen von bis zu 300°C, vorzugsweise 280°C unter Ausbildung des gelösten Polyazol-Polymeren [
  • D) Bilden einer Membran unter Verwendung der Lösung des Polyazol-Polymeren gemäß Schritt C) auf einem Träger und
  • E) Behandlung der in Schritt D) gebildeten Membran bis diese selbsttragend ist.
2. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß als aromatische Tetra-Amino-Verbindungen 3,3',4,4'-Tetraaminobiphenyl, 2,3,5,6- Tetraaminopyridin bzw. deren Tetra- oder Trihydrochlorid-Derivate eingesetzt wird.
3. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß als aromatische Dicarbonsäure Isophthalsäure oder Diphenyl-isophthalsäure bzw. deren C1- C20-Alkyl-Ester oder C5-C12-Aryl-Ester eingesetzt werden.
4. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt B) eine Polyphosphorsäure mit einem Gehalt berechnet als P2O5 (acidimetrisch) von mindestens 85% eingesetzt wird.
5. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt B) anstelle einer Lösung des Präpolymeren eine Dispersion/Suspension erzeugt wird.
6. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt C) ein Polymer enthaltend wiederkehrende Azoleinheiten der allgemeinen Formel (I) und/oder (II)
worin
Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar1 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar2 gleich oder verschieden sind und für eine zwei oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine Aminogruppe, die ein Wasserstoffatom, eine 1-20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt
gebildet wird.
7. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt C) ein Polymer ausgewählt aus der Gruppe Polybenzimidazol, Poly(pyridine), Poly(pyrimidine), Polyimidazole, Polybenzthiazole, Polybenzoxazole, Polyoxadiazole, Polyquinoxalines, Polythiadiazole und Poly(tetrazapyrene) gebildet wird.
8. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt C) ein Polymer enthaltend wiederkehrende Benzimidazoleinheiten der Formel (III)
wobei n eine ganze Zahl größer gleich 10, vorzugsweise größer gleich 100 ist, gebildet wird.
9. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß nach Schritt C) und vor Schritt D) die Viskosität durch Zugabe von Phosphorsäure eingestellt wird.
10. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die gemäß Schritt D) erzeugten Membran in Gegenwart von Feuchtigkeit bei Temperaturen und für eine Zeitdauer behandelt wird bis die Membran selbsttragend ist und ohne Beschädigung vom Träger abgelöst werden kann.
11. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die Behandlung der Membran in Schritt E) erfolgt bei Temperaturen oberhalb 0°C und 150°C, vorzugsweise bei Temperaturen zwischen 10°C und 120°C, insbesondere zwischen Raumtemperatur (20°C) und 90°C, in Gegenwart von Feuchtigkeit bzw. Wasser und/oder Wasserdampf erfolgt.
12. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die Behandlung der Membran in Schritt E) zwischen 10 Sekunden und 300 Stunden, vorzugsweise 1 Minute bis 200 Stunden, beträgt.
13. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß in Schritt D) als Träger eine Elektrode gewählt wird und die Behandlung gemäß Schritt E) dergestalt ist, daß die gebildete Membran nicht mehr selbsttragend ist.
14. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die in Schritt D) gebildete Membran eine Dicke zwischen 20 und 2000 µm, vorzugsweise zwischen 30 und 1500 µm, insbesondere zwischen 50 und 1200 µm hat.
15. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die in Schritt E) gebildete Membran eine Dicke zwischen 15 und 200 µm, vorzugsweise zwischen 20 und 150 µm, insbesondere zwischen 20 und 100 µm, die selbsttragend ist.
16. Elektrode mit einer protonenleitenden Polymerbeschichtung auf Basis von Polyazolen erhältlich durch ein Verfahren umfassend die Schritte
  • A) Umsetzung von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen Dicarbonsäuren oder deren Ester in der Schmelze bei Temperaturen von bis zu 350°C, vorzugsweise bis zu 300°C,
  • B) Lösen des gemäß Schritt A) erhaltenen festen Prä-Polymeren in Polyphosphorsäure,
  • C) Erwärmen der Lösung erhältlich gemäß Schritt B) unter Inertgas auf Temperaturen von bis zu 300°C, vorzugsweise 280°C unter Ausbildung des gelösten Polyazol-Polymeren
  • D) Aufbringen einer Schicht unter Verwendung der Lösung des Polyazol- Polymeren gemäß Schritt C) auf einer Elektrode und
  • E) Behandlung der in Schritt D) gebildeten Schicht.
17. Elektrode gemäß Anspruch 16, wobei die Beschichtung eine Dicke zwischen 2 und 50 µm, vorzugsweise zwischen 3 und 19 µm, insbesondere zwischen 5 und 15 µm hat.
18. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode gemäß Anspruch 1 oder 17 und mindestens eine Membran gemäß einem oder mehreren der Ansprüche 1 bis 15.
19. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode und mindestens eine Membran gemäß einem oder mehreren der Ansprüche 1 bis 15.
20. Brennstoffzelle enthaltend eine oder mehrere Membran-Elektroden-Einheiten gemäß Anspruch 18 oder 19.
DE10117687A 2001-04-09 2001-04-09 Protonenleitende Membran und deren Verwendung Withdrawn DE10117687A1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
DE10117687A DE10117687A1 (de) 2001-04-09 2001-04-09 Protonenleitende Membran und deren Verwendung
CA002443849A CA2443849C (en) 2001-04-09 2002-04-09 Proton-conducting membrane and the use thereof
EP10007142A EP2270068B1 (de) 2001-04-09 2002-04-09 Protonenleitende Membran und deren Verwendung
DE50214833T DE50214833D1 (de) 2001-04-09 2002-04-09 Protonenleitende membran und deren verwendung
KR1020037013151A KR100897728B1 (ko) 2001-04-09 2002-04-09 폴리아졸계 양성자 전도성 중합체 막, 및 이를 포함하는 전극 및 연료 전지
EP02745222A EP1379572B1 (de) 2001-04-09 2002-04-09 Protonenleitende membran und deren verwendung
JP2002579927A JP4919578B2 (ja) 2001-04-09 2002-04-09 プロトン伝導性ポリマー膜およびその使用
DK02745222.6T DK1379572T3 (da) 2001-04-09 2002-04-09 Protonledende membran samt dens anvendelse
AT02745222T ATE493459T1 (de) 2001-04-09 2002-04-09 Protonenleitende membran und deren verwendung
MXPA03009187A MXPA03009187A (es) 2001-04-09 2002-04-09 Membrana conductora de protones y el uso de esta.
US10/472,810 US7235320B2 (en) 2001-04-09 2002-04-09 Proton-conducting membrane and use thereof
CNB02807954XA CN100489011C (zh) 2001-04-09 2002-04-09 质子导电膜及其应用
PCT/EP2002/003901 WO2002081547A1 (de) 2001-04-09 2002-04-09 Protonenleitende membran und deren verwendung
BR0208728-6A BR0208728A (pt) 2001-04-09 2002-04-09 Membrana condutora de prótons e sua aplicação

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10117687A DE10117687A1 (de) 2001-04-09 2001-04-09 Protonenleitende Membran und deren Verwendung

Publications (1)

Publication Number Publication Date
DE10117687A1 true DE10117687A1 (de) 2002-10-17

Family

ID=7680969

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10117687A Withdrawn DE10117687A1 (de) 2001-04-09 2001-04-09 Protonenleitende Membran und deren Verwendung
DE50214833T Expired - Lifetime DE50214833D1 (de) 2001-04-09 2002-04-09 Protonenleitende membran und deren verwendung

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50214833T Expired - Lifetime DE50214833D1 (de) 2001-04-09 2002-04-09 Protonenleitende membran und deren verwendung

Country Status (12)

Country Link
US (1) US7235320B2 (de)
EP (2) EP2270068B1 (de)
JP (1) JP4919578B2 (de)
KR (1) KR100897728B1 (de)
CN (1) CN100489011C (de)
AT (1) ATE493459T1 (de)
BR (1) BR0208728A (de)
CA (1) CA2443849C (de)
DE (2) DE10117687A1 (de)
DK (1) DK1379572T3 (de)
MX (1) MXPA03009187A (de)
WO (1) WO2002081547A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111123A1 (de) 2004-05-14 2005-11-24 Pemeas Gmbh Anisotroper formkörper, verfahren zur herstellung und verwendung von anisotropen formkörpern
WO2006008158A2 (de) 2004-07-21 2006-01-26 Pemeas Gmbh Membran-elektrodeneinheiten und brennstoffzellen mit erhöhter lebensdauer
WO2007065586A1 (de) * 2005-12-08 2007-06-14 Volkswagen Aktiengesellschaft Membranen aus polyazolen, verfahren zu ihrer herstellung und brennstoffzellen unter verwendung derartiger membranen
US20090214920A1 (en) * 2003-12-30 2009-08-27 Pemeas Gmbh Proton-conducting membrane and use thereof
US7736782B2 (en) * 2004-10-20 2010-06-15 Samsung Sdi Co., Ltd. Proton conductive solid polymer electrolyte and fuel cell
WO2010099948A1 (de) 2009-03-06 2010-09-10 Basf Se Verbesserte membran-elektrodeneinheiten
EP2237356A1 (de) 2004-02-21 2010-10-06 BASF Fuel Cell GmbH Membran-elektroden-einheit mit hoher leistung und deren anwendung in brennstoffzellen
US7820314B2 (en) 2003-07-27 2010-10-26 Basf Fuel Cell Research Gmbh Proton-conducting membrane and use thereof
US7883818B2 (en) 2002-08-29 2011-02-08 Basf Fuel Cell Gmbh Process for producing proton-conducting polymer membranes, improved polymer membranes and the use thereof in fuel cells
US8066784B2 (en) 2004-07-15 2011-11-29 Basf Fuel Cell Gmbh Method for the production of membrane/electrode units
US8076379B2 (en) 2002-06-27 2011-12-13 Basf Fuel Cell Gmbh Proton-conducting membrane and the use thereof
US20110318671A1 (en) * 2003-12-30 2011-12-29 Pemeas Gmbh Proton-conducting membrane and use thereof
US8859150B2 (en) 2003-12-30 2014-10-14 Basf Fuel Cell Gmbh Proton-conducting membrane and use thereof
EP2869382A1 (de) 2013-10-30 2015-05-06 Basf Se Verbesserte Membranelektrodenanordnungen
US9048478B2 (en) 2010-04-22 2015-06-02 Basf Se Polymer electrolyte membrane based on polyazole
US9559367B2 (en) 2002-08-02 2017-01-31 Basf Fuel Cell Gmbh Long-life membrane electrode assemblies and its use in fuel cells

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117686A1 (de) * 2001-04-09 2002-10-24 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10129458A1 (de) * 2001-06-19 2003-01-02 Celanese Ventures Gmbh Verbesserte Polymerfolien auf Basis von Polyazolen
KR100407793B1 (ko) * 2001-09-04 2003-12-01 한국과학기술연구원 분리능이 있는 수소 이온 교환 복합막, 복합 용액, 그제조방법 및 이를 포함하는 연료전지
DE10209419A1 (de) * 2002-03-05 2003-09-25 Celanese Ventures Gmbh Verfahren zur Herstellung einer Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
US20050118478A1 (en) * 2002-03-06 2005-06-02 Joachim Kiefer Mixture comprising sulphonic acid containing vinyl, polymer electrolyte membrane comprising polyvinylsulphonic acid and the use thereof in fuel cells
DE10213540A1 (de) * 2002-03-06 2004-02-19 Celanese Ventures Gmbh Lösung aus Vinylphosphonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphaonsäure und deren Anwendung in Brennstoffzellen
ATE373690T1 (de) 2002-03-06 2007-10-15 Pemeas Gmbh Protonenleitende elektrolytmembran mit geringer methanoldurchlässigkeit und deren anwendung in brennstoffzellen
EP1518282B1 (de) * 2002-04-25 2010-09-08 BASF Fuel Cell GmbH Mehrschichtige elektrolytmembran
DE10230477A1 (de) 2002-07-06 2004-01-15 Celanese Ventures Gmbh Funktionalisierte Polyazole, Verfahren zu ihrer Herstellung sowie ihre Verwendung
KR20050036964A (ko) 2002-08-02 2005-04-20 페메아스 게엠베하 술폰산기를 함유하는 고분자로 이루어진 양성자 전도성고분자막 및 연료전지에서 이의 사용방법
DE10235358A1 (de) * 2002-08-02 2004-02-12 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
DE10239701A1 (de) 2002-08-29 2004-03-11 Celanese Ventures Gmbh Polymerfolie auf Basis von Polyazolen und deren Verwendung
DE10242708A1 (de) 2002-09-13 2004-05-19 Celanese Ventures Gmbh Protonenleitende Membranen und deren Verwendung
DE10246461A1 (de) * 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran enthaltend Polyazolblends und deren Anwendung in Brennstoffzellen
DE10246372A1 (de) * 2002-10-04 2004-04-15 Celanese Ventures Gmbh Mit einer Katalysatorschicht beschichtete protonenleitende Polymermembran enthaltend Polyazole und deren Anwendung in Brennstoffzellen
DE10246373A1 (de) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Sulfonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen
DE10246459A1 (de) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen
DE10301810A1 (de) 2003-01-20 2004-07-29 Sartorius Ag Membran-Elektroden-Einheit, Polymermembranen für eine Membran-Elektroden-Einheit und Polymerelektrolyt-Brennstoffzellen sowie Verfahren zur Herstellung derselben
ES2217957B1 (es) * 2003-01-31 2006-03-01 Consejo Sup. Investig. Cientificas Membranas conductoras protonicas basadas en polimeros de tipo polibencimidazol y materiales hibridos y nanocompuestos derivados de los mismos.
JP4979179B2 (ja) * 2003-08-22 2012-07-18 株式会社豊田中央研究所 固体高分子型燃料電池およびその製造方法
US7259230B2 (en) * 2004-06-07 2007-08-21 Battelle Energy Alliance, Llc Polybenzimidazole compounds, polymeric media, and methods of post-polymerization modifications
US7309758B2 (en) 2004-06-07 2007-12-18 Battelle Energy Alliance, Llc Polybenzimidazole compounds, polymeric media, and methods of post-polymerization modifications
EP1788654B1 (de) * 2004-09-09 2011-11-16 Asahi Kasei Chemicals Corporation Fest-polymerelektrolytmembran und herstellungsverfahren dafür
FR2876222A1 (fr) * 2004-10-06 2006-04-07 Renault Sas Pile a combustible a membrane non-fluoree ou partiellement fluoree et procede de preparation de ladite membrane
KR100647307B1 (ko) * 2004-12-23 2006-11-23 삼성에스디아이 주식회사 양성자 전도체와 이를 이용한 전기화학장치
DE102005020604A1 (de) * 2005-05-03 2006-11-16 Pemeas Gmbh Brennstoffzellen mit geringerem Gewicht und Volumen
KR100819676B1 (ko) 2005-11-14 2008-04-03 주식회사 엘지화학 브랜치된 멀티블록 폴리벤즈이미다졸-벤즈아마이드공중합체 및 제조방법, 이를 이용한 전해질막 및 전해질페이스트/겔
DE102006040749A1 (de) * 2006-08-31 2008-03-06 Daimler Ag Oxidationsstabilisierte Polymer-Elektrolyt-Membranen für Brennstoffzellen
US8299202B2 (en) 2008-01-30 2012-10-30 Doetze Jakob Sikkema Phenol compounds and (co)polymers thereof
US20110003234A1 (en) * 2008-02-27 2011-01-06 Solvay (Societe Anonyme) Polymer Composition, Polymer Membrane Comprising the Polymer Composition, Process for Preparing it and Fuel Cell Comprising the Membrane
DE102009001137A1 (de) 2008-10-29 2010-05-06 Volkswagen Ag Polymerelektrolytmembran für Brennstoffzellen und Verfahren zu ihrer Herstellung
DE102009001141A1 (de) 2008-10-29 2010-05-06 Volkswagen Ag Verfahren zur Herstellung einer Polymerelektrolytmembran
WO2010063489A1 (de) * 2008-12-06 2010-06-10 Basf Se Verfahren zur herstellung einer protonenleitenden membran
KR101144398B1 (ko) * 2009-01-15 2012-05-10 서울대학교산학협력단 염기성 치환기를 갖는 폴리벤즈이미다졸계 고분자 및 이를 포함하는 전해질막
DE102009028758A1 (de) 2009-08-20 2011-02-24 Volkswagen Ag Langzeitstabile Polymerelektrolytmembran für HT-Brennstoffzellen und Verfahren zu ihrer Herstellung
KR101317510B1 (ko) * 2009-09-15 2013-10-15 서울대학교산학협력단 하이드라지늄 설페이트가 분산된 폴리벤즈이미다졸계 복합막 및 이를 사용하는 연료전지용 전해질막
US8673183B2 (en) 2010-07-06 2014-03-18 National Research Council Of Canada Tetrazine monomers and copolymers for use in organic electronic devices
JP5279771B2 (ja) * 2010-08-06 2013-09-04 ベーアーエスエフ フューエル セル ゲーエムベーハー プロトン伝導性ポリマー膜
CN102206342B (zh) * 2011-03-31 2012-10-17 南京大学 导电聚合物及其合成方法、表面覆盖有所述导电聚合物的电活性电极
US8758955B2 (en) 2011-04-07 2014-06-24 Daimler Ag Additives to mitigate catalyst layer degradation in fuel cells
US9325025B2 (en) 2011-04-14 2016-04-26 Basf Se Membrane electrode assemblies and fuel cells with long lifetime
DE102012007178A1 (de) 2011-04-14 2012-10-18 Basf Se Verbesserte Membran-Elektrodeneinheiten und Brennstoffzellen mit langer Lebensdauer
CN102775606A (zh) * 2011-05-12 2012-11-14 北京化工大学 一种聚苯并咪唑树脂的制备
US20130183603A1 (en) 2012-01-17 2013-07-18 Basf Se Proton-conducting membrane, method for their production and their use in electrochemical cells
US9812725B2 (en) 2012-01-17 2017-11-07 Basf Se Proton-conducting membrane and use thereof
CN102623734B (zh) * 2012-04-16 2014-10-15 上海锦众信息科技有限公司 一种燃料电池用高性能复合质子交换膜的制备方法
CN102643426A (zh) * 2012-05-11 2012-08-22 北京化工大学 一种新型聚苯并咪唑树脂的制备
DE102014000630A1 (de) * 2013-08-02 2015-02-26 Forschungszentrum Jülich GmbH Materialprüfung von Membranen für Polymerelektrolytbrennstoffzellen
US10566640B2 (en) * 2015-07-24 2020-02-18 Daimler Ag Composite proton conducting electrolyte with improved additives for fuel cells
EP3945104A1 (de) * 2020-07-27 2022-02-02 Andreas Stihl AG & Co. KG Polymer und produkte oder artikel, die polymer enthalten oder daraus bestehen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1000525A (en) * 1962-07-20 1965-08-04 Teijin Ltd Process for preparation of polybenzimidazoles
US4191618A (en) 1977-12-23 1980-03-04 General Electric Company Production of halogens in an electrolysis cell with catalytic electrodes bonded to an ion transporting membrane and an oxygen depolarized cathode
US4212714A (en) 1979-05-14 1980-07-15 General Electric Company Electrolysis of alkali metal halides in a three compartment cell with self-pressurized buffer compartment
US4333805A (en) 1980-05-02 1982-06-08 General Electric Company Halogen evolution with improved anode catalyst
US5525436A (en) * 1994-11-01 1996-06-11 Case Western Reserve University Proton conducting polymers used as membranes
JP2000273214A (ja) * 1999-03-29 2000-10-03 Toray Ind Inc ポリベンザゾールフィルム及びそれを用いた磁気記録媒体
JP3925764B2 (ja) 1999-10-19 2007-06-06 株式会社豊田中央研究所 高耐久性固体高分子電解質
DE10109829A1 (de) 2001-03-01 2002-09-05 Celanese Ventures Gmbh Polymermembran, Verfahren zu deren Herstellung sowie deren Verwendung
DE10117686A1 (de) 2001-04-09 2002-10-24 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076379B2 (en) 2002-06-27 2011-12-13 Basf Fuel Cell Gmbh Proton-conducting membrane and the use thereof
US9559367B2 (en) 2002-08-02 2017-01-31 Basf Fuel Cell Gmbh Long-life membrane electrode assemblies and its use in fuel cells
US7883818B2 (en) 2002-08-29 2011-02-08 Basf Fuel Cell Gmbh Process for producing proton-conducting polymer membranes, improved polymer membranes and the use thereof in fuel cells
US8323810B2 (en) 2003-07-27 2012-12-04 Basf Fuel Cell Research Gmbh Proton-conducting membrane and use thereof
US7820314B2 (en) 2003-07-27 2010-10-26 Basf Fuel Cell Research Gmbh Proton-conducting membrane and use thereof
US20110318671A1 (en) * 2003-12-30 2011-12-29 Pemeas Gmbh Proton-conducting membrane and use thereof
US8859150B2 (en) 2003-12-30 2014-10-14 Basf Fuel Cell Gmbh Proton-conducting membrane and use thereof
US20090214920A1 (en) * 2003-12-30 2009-08-27 Pemeas Gmbh Proton-conducting membrane and use thereof
US8822091B2 (en) 2003-12-30 2014-09-02 Basf Fuel Cell Gmbh Proton-conducting membrane and use thereof
US8765905B2 (en) * 2003-12-30 2014-07-01 Basf Fuel Cell Gmbh Proton-conducting membrane and use thereof
EP2237356A1 (de) 2004-02-21 2010-10-06 BASF Fuel Cell GmbH Membran-elektroden-einheit mit hoher leistung und deren anwendung in brennstoffzellen
WO2005111123A1 (de) 2004-05-14 2005-11-24 Pemeas Gmbh Anisotroper formkörper, verfahren zur herstellung und verwendung von anisotropen formkörpern
US8066784B2 (en) 2004-07-15 2011-11-29 Basf Fuel Cell Gmbh Method for the production of membrane/electrode units
US8177863B2 (en) 2004-07-15 2012-05-15 Basf Fuel Cell Gmbh Method for the production of membrane/electrode units
WO2006008158A2 (de) 2004-07-21 2006-01-26 Pemeas Gmbh Membran-elektrodeneinheiten und brennstoffzellen mit erhöhter lebensdauer
US7736782B2 (en) * 2004-10-20 2010-06-15 Samsung Sdi Co., Ltd. Proton conductive solid polymer electrolyte and fuel cell
WO2007065586A1 (de) * 2005-12-08 2007-06-14 Volkswagen Aktiengesellschaft Membranen aus polyazolen, verfahren zu ihrer herstellung und brennstoffzellen unter verwendung derartiger membranen
EP2228857A1 (de) 2009-03-06 2010-09-15 Basf Se Verbesserte Membran-Elektrodeneinheiten
WO2010099948A1 (de) 2009-03-06 2010-09-10 Basf Se Verbesserte membran-elektrodeneinheiten
US9048478B2 (en) 2010-04-22 2015-06-02 Basf Se Polymer electrolyte membrane based on polyazole
EP2869382A1 (de) 2013-10-30 2015-05-06 Basf Se Verbesserte Membranelektrodenanordnungen
US9537168B2 (en) 2013-10-30 2017-01-03 Basf Se Membrane electrode assemblies

Also Published As

Publication number Publication date
DE50214833D1 (de) 2011-02-10
JP2005536569A (ja) 2005-12-02
MXPA03009187A (es) 2004-02-17
EP1379572A1 (de) 2004-01-14
CA2443849A1 (en) 2002-10-17
CA2443849C (en) 2008-07-29
US7235320B2 (en) 2007-06-26
KR20040011496A (ko) 2004-02-05
WO2002081547A1 (de) 2002-10-17
EP2270068B1 (de) 2012-08-22
EP1379572B1 (de) 2010-12-29
CN100489011C (zh) 2009-05-20
ATE493459T1 (de) 2011-01-15
EP2270068A1 (de) 2011-01-05
KR100897728B1 (ko) 2009-05-15
BR0208728A (pt) 2004-07-20
DK1379572T3 (da) 2011-04-04
CN1511170A (zh) 2004-07-07
US20040127588A1 (en) 2004-07-01
JP4919578B2 (ja) 2012-04-18

Similar Documents

Publication Publication Date Title
DE10117687A1 (de) Protonenleitende Membran und deren Verwendung
EP1427517B1 (de) Protonleitende membran und beschichtung
DE10117686A1 (de) Protonenleitende Membran und deren Verwendung
EP1519981B1 (de) Protonenleitende membran und deren verwendung
EP1652259A2 (de) Protonenleitende membran und deren verwendung
EP1550174A2 (de) Protonenleitende membran und deren verwendung
DE10239701A1 (de) Polymerfolie auf Basis von Polyazolen und deren Verwendung
EP2009728B1 (de) Verfahren zur Herstellung eines sulfonierten Poly(1,3,4-oxadiazol)-Polymers
EP1583789B1 (de) Hochmolekulare polyazole
EP2443176B1 (de) Verfahren zur herstellung eines hochmolekularen polyazols
EP1971635A1 (de) Protonenleitende polymermembran
WO2010081698A1 (de) Monomerperlen zur herstellung einer protonenleitenden membran
DE112006000037B4 (de) Verzweigtes Multiblock-Polybenzimidazol-Benzamidcopolymer und Verfahren zur Herstellung desselben, Elektrolytmembran und daraus hergestellte Paste/Gel
DE10155543C2 (de) Protonenleitende Elektrolytmembran, Verfahren zu ihrer Herstellung und deren Verwendung
DE20217178U1 (de) Protonenleitende Elektrolytmembran
EP1646674B1 (de) Asymmetrische polymerfolie, verfahren zu deren herstellung sowie deren verwendung
EP2373406A1 (de) Verfahren zur herstellung einer protonenleitenden membran
DE10155545A1 (de) Protonenleitende polymere Elektrolytmembran, Verfahren zu ihrer Herstellung und die Membran enthaltende Brennstoffzelle
WO2011003539A1 (de) Verfahren zur stabilisierung von stickstoffhaltigen polymeren
WO2011020872A1 (de) Langzeitstabile polymerelektrolytmembran für ht-brennstoffzellen und verfahren zu ihrer herstellung
WO2012153172A1 (de) Mechanisch stabilisierte polyazole enthaltend mindestens einen polyvinylalkohol
DE102010029990A1 (de) Polymerfilme auf der Basis von Polyazolen

Legal Events

Date Code Title Description
8130 Withdrawal