DD144560A5 - Verfahren zur herstellung von synthetischen strukturgenen - Google Patents

Verfahren zur herstellung von synthetischen strukturgenen Download PDF

Info

Publication number
DD144560A5
DD144560A5 DD78208916A DD20891678A DD144560A5 DD 144560 A5 DD144560 A5 DD 144560A5 DD 78208916 A DD78208916 A DD 78208916A DD 20891678 A DD20891678 A DD 20891678A DD 144560 A5 DD144560 A5 DD 144560A5
Authority
DD
German Democratic Republic
Prior art keywords
dna
somatostatin
gene
fragments
polypeptide
Prior art date
Application number
DD78208916A
Other languages
English (en)
Inventor
Keiichi Itakura
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of DD144560A5 publication Critical patent/DD144560A5/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/71Fusion polypeptide containing domain for protein-protein interaction containing domain for transcriptional activaation, e.g. VP16

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von synthetischen Strukturgenen, die den Code für die Expression von Säugerpolypeptiden in mikrobiellen Clonbildungssystemen liefern. Es handelt sich um mikrobielie Rekombinations-ClonbiIdungs= träger aus heterologer DNA, die den Code für die Expression von Säugerhormon (z.B. Somatostatin) liefert, und andere Polypeptiden einschließlich Plasmiden für die Transformation von bakteriellen Wirten. Letztere umfassen ein Regulon, das zu dem des Wirts in seinem imtransformierten Zustand homolog ist, in Lesephase mit dem Strukturgen für die heterologe DNA.

Description

a-
Verfahren zur Herstellung von synthetischen Strukturgenen
nfrsa'ebiet der Erfindung:
Die Erfindung betrifft ein Verfahren zur Herstellung eines Strukturgens, das den Code für die raikrobielle Expression eines Polypeptids liefert.
Charakteristik der bekannten technischen Lösungen: ' '
Genetische Information befindet sich auf dem Desoxyribonucleinsäure-Doppelstrang ("DNA" oder "Gene") in Form der Reihenfolge, in der der eine spezifische Information, den Code, liefernde DNA-Strang die charakteristischen Basen seiner sieh wiederholenden Nucleotidbestandteile darbietet. Die "Merkmalsauslösung" oder "-ausbildung" der spezifischen oder codierten Information zur Bildung von Polypeptiden erfolgt in einem zweiteiligen Prozeß. Entsprechend den Befehlen bestimmter Regulationsbereiche (Regulationsgene oder "Regulone") im Gen kann RNA-Polymerase zur Bewegung entlang dem den Code liefernden Strang veranlaßt werden, wobei Matrizen-RIs[A (m-RNA) oder Messenger-ENA (Ribonucleinsäure) in einem als Transkription oder "Herstellung einer Arbeitskopie" bezeichneten Prozeß gebildet wird. In einer anschließenden Translations "-Stufe verwandeln die Ribosomen der Zelle -in Verbindung mit der im Cytoplasma löslichen Ribonucleinsäure/ der t-RNA oder Transfer-RNA, die Botschaft oder' Information der m-RNA in Polypeptide. Zu der Information, die m-RNA von DNA transkribiert, gehören auch Signale für den Beginn und die Beendi- ". gung der Ribosomenübertragung sowie für die Identität und Sequenz der Aminosäuren, aus denen das Polypeptid besteht. Der codierende DNA-Strang enthält lange Sequenzen von Nucleotid-Tripletts, die als Codierungseinheiten oder "Codone" bezeichnet werden, weil die charakteristischen Basen der Nucleotide in jedem einzelnen Triplett oder Codon spezifische Informationsbits zum Code beitragen. Beispielsweise ergeben 3 als ATG (Adenin-Thymin-Guanin) bezeichnete Nucleotide ein m-RNA-Signal, das als "beginne mit der Übertragung" "verstanden wird, während Beendigüngscodone TAG, TAA und TGA als "beendige die,Übertragung" verstanden werden. Zwischen den Beginn- und Beendigungscodonen liegen die sogenannten Strukturgene, deren Codone die schließlich übertragene Aminosäuresequenz bestimmen oder definieren. Diese Definition verläuft nach dem allgemein gesicherten "genetischen Code." (vgl. z.B. J. D. Watson, Molecular-Biology of the Gene, W. A. Benjamin , Inc... N.Y., 3. Aufl. 197.6), der die Codone für die verschiedenen Aminosäuren umschreibt. Der genetische Code ist in dem
Sinn degeneriert, daß verschiedene Condone die gleiche Aminosäure ergeben können, aber insofern genau als es für jede Amino säure ein Codon oder mehrere Codone für diese Säure und keine andere gibt. So beinhalten beispielsweise alle der Codone TTT, TTC,-TTA und TTG, wenn als solche -gelesen, die Information für Serin und keine andere Aminosäure. Während der Transkription muß die richtige Reihenfolge oder der richtige Ableserahmeh aufrecht erhalten werden. In diesem Zusammenhang ist zum Beispiel zu bedenken, was geschieht, wenn die die Arbeitskopie erzeugende RNA~Polymerase verschiedene Basen als den Anfang eines Codons (unterstrichen) in der Sequenz ....GCTGGTTGTAAG.... liest: . .
• · ♦ GCT GGT TGT AAG . . . —j> . . . Alä-Gly-Cys-Lys . . . G CTG GTT GTA AG..... .— >.. . Leu-Val-Leu . . V
'.... . GC TGG TTG TAA A . , . —^ .'· . . Trp-Leu-(STOP) .
Das schließlich erzeugte Polypeptid hängt dann in ausschlaggebender Weise von der räumlichen Beziehung des Strukturgens zu dem.Regulon ab.
Ein besseres Verständnis des Prozesses der genetischen Expression oder Merkxnalsausbildung soll durch die Definition bestimmter Genbestandteile gefördert werden: .
Operon -'ein Gen aus Strukturgen oder -genen für die PoIypeptidsynthese und dem Regulationsbereich ("Reguion"), dar diese Synthese regelt. .
Promoter - ein Gen innerhalb des Regulons, womit:RNA-PoIymerase eine Verbindung zum Beginn der Transkription eingehen muß.
— 4 -
Operator - ein Gen, mit dem Repressorprotein eine Verbindung eingeht und dadurch die Bindung von RNA--Polymer ase an dem benachbarten Promoter verhindert.
Induktor - eine Substanz, die Repressorprotein entaktiviert, indem sie den Operator freisetzt und eine Verbindung der RNA-Polymerase mit dem Promoter ermöglicht und damit den Beginn der Transkription einleitet.
Catabolitaktivatorprotein ("CAP")-Bindungsstelle - ein Gen, das zyklisches Adenosinmonophosphat("c AMP")- vermitteltes CAP bindet und üblicherweise gleichfalls für die Einleitung der m-Trankription erforderlich ist. Die CAP-Bindungsstelle kann in besonderen Fällen unnötig sein. Beispielsweise beseitigt eine Promotermutation in dem Laktoseoperon des Phagexi /L plac UV5 die Notwendigkeit von cAMP und CAP für die Expression; J. Beckwith et al, J. Mol. Biol. 69, ISS-16O (1972) .
Promoter-Operator-System - wie hier gebraucht, ein brauchbarer Regelbereich eines Operon hinsichtlich des Vorhandenseins oder Fehlens einer CAP-Bindungsstelle oder der Fähigkeit, Information für Repressorprotexnexpression zu liefern.
Zur Definition und für den Gebrauch in der nachfolgenden Erörterung von Rekombinations-?DNA werden noch folgende Begriffe erläutert:
Clonbildungsträger - nicht aus Chromosomen stammende doppelsträngige DNA enthaltend ein intaktes "Replicon", so daß der Träger verdoppelt wird, wenn es durch einen Prozeß der "Transformation" in einen einzelligen Organismus ("Mikrobe") eingebracht wird. Ein so transformierter
Organismus wird als ''Transformant" bezeichnet.
Pla-smid - für die vorliegenden Zwecke ein Glonbildungs träger, der aus Viren oder Bakterien.stammt, wobei es sich bei den letzteren um "bakterielle Plasmiäe" handelt.
Komp 1 emeηtar-ität - durch die Basensequenzen von DNA-Einzelsträngen, die die Bildung von doppelsträngiger DNA durch Wasserstoffbrücken zwischen komplementären Basen auf den betreffenden Strängen ermöglichen, übertragene Eigenschaft. Adenin (A) paßt komplementär zu Thymin (T') , während Guanin (G) komplementär zu Cytosin (C) ist..
Die Fortschritte auf dem Gebiet der Biochemie in den letzten Jahren haben zu der Konstruktion von "Rekombinat-ions"-Clonbildungstragern geführt, worin beispielsweise Pla'smide, die exogene DNA enthalten, gebildet werden. In besonderen Fällen.. : kann der Rekombinationspartner "heterologe" DNA enthalten, worunter DNA verstanden wird, die Informationen für Polypeptide liefert, die normalerweise von dem Organismus nicht erzeugt werden, der einer Transformation durch den Rekombinationsträger zugänglich ist. So werden Plasmide unter BiI- : dung von linearer DNA mit verbindbaren Enden oder Termini gespalten. Diese werden mit einem exogenen Gen mit verbindbaren Termini unter Bildung einer biologisch funktionsfähi- : gen Gruppe mit einem intakten Replieon und einer angestrebten phänötypischen Eigenschaft verbunden. Die Rekombinationsgruppe wird durch Transformation in einen Mikroorganismus eingebracht, und Transformanten werden isoliert und mit dem Ziel zur Clonbildung gebracht, große Populationen zu erhalten, die zui" Expression der neuen genetischen Information fähig sind =
Methoden und Mittel zur Ausbildung von Rekombinationsclonbildungsträgern und zur Transformation von Organismen mit denselben sind in der Literatur ausführlich beschrieben, vgl. z.B. H; L. Heynecker et al, Mature 263, 748-752 (1976); Cohen et al, Proc. Nat. Acad. Sei. USA 69, 2110 (1972); ibid., 70, 1293 (1973); ibid., 70, 324O (1973); ibid., 71, 1030 (1974); Morrow et al, Proc. Nat. Acad. Sei, USA 71, 1743 (1974); Novick, Bacteriological Rev., 33, 210 (1969); Hershfield et al, Proc. Soc. Nat. Acad. Sei. USA 71, 3455 (1974) and Jackson et al, ibid. 69, 2904 (1972). Eine verallgemeinerte Darstellung dieses Gegenstands gibt S. Cohen in Scientific American 233, 24
(1975) . Außerdem wird a.u£ den DTV-Atläs zur Biologie, 2. Auflage, Deutscher Ta scheribuchver lag, München, 1968, Nachr. Chem. Tech. Lab. 26, 349 (1978) und die dort genannten Literaturstellen, Mölekular-Biologie, Umschau-Verlag Frankfurt a. M., 1967, Pflanzenphysiologie von Dieter Hess, VTB, E. Ulmer GmbH Stuttgart, 1976 und Grundlagen der Biochemie, Otto Müller, Georg Thieme Verlag Stuttgarts 1978, verwiesen. Alle diese Veröffent-. lichungen bilden Teil der vorliegenden Beschreibung.
Es gibt verschiedene bekannte Arbeitsweisen für die DNA-Rekombination, wobei aneinander angrenzende Enden einzelner DNA-Bruchstücke oder Fragmente auf die eine oder andere Weise zur Erleichterung der Bindung zugeschnitten werden. Der Ausdruck Bindung oder Verbindung bezieht sich auf die Ausbildung von Phosphodiester-Bindungen zwischen angrenzenden Nucleotiden, meist mit Hilfe des Enzyms T4-DNA-Ligase. So können unempfindliche Enden direkt miteinander verbunden werden. Fragmente mit komplementären Einzelsträngen an ihren angrenzenden Enden können stattdessen aber auch durch Wasserstoffbindung aktiviert werden, die die jeweiligen Enden für eine anschließende Verbindung in eine geeignete Lage bringt. Solche Einzelstränge, die als Bindeenden oder Cohäsivtermini bezeichnet werden, können durch das Anfügen von Nucleotiden an unempfindliche Enden unter Verwendung von terminaler Transferase und manchmal einfach durch
Abzwicken eines Strangs eines unempfindlichen Endes mit einem Enzym, wie /»--Exonuclease, ausgebildet werden. Wiederum kann man sich, und dies ist das üblichste, Restriktiönsendonucleasen bedienen, die Phosphodiesterbindungen in und um bestimmte Sequenzen von Nucleotiden mit einer Länge von etwa 4 bis 6 Basenpaaren spalten, Viele Restriktiönsendonucleasen und ihre Erkennungsstellen sind bekannt, wobei die sogenannte EcoRI-Endonuclease die am häufigsten angewandte ist. Restriktiönsendonucleasen, die doppelsträngige DNA bei rotationssymmetrischen "Palindromen" spalten, lassen Cohäsivtermini zurück. Somit kann ein Plasmid oder ein anderer Clonbildungsträger unter Bildung von Termini gespalten werden, die jeweils die Hälfte! der Erkennungsstellen der Restriktionsendonuclease aufweisen.! Ein mit der gleichen Restriktionsendonuclease erhaltenes Spaltprodukt von exogener DNA weist zu den Plasmidtermini komplementäre Enden auf. Wie weiter unten noch gezeigt, kann synthetische DNA mit Cohäsivtermini stattdessen . auch für den Einbau in den gespaltenen Träger vorgesehen werden. Zur Unterdrückung der Wiedervereinigung der Cohäsivtermini des Trägers während der Einfügung von exogener DNA können^die Termini mit alkalischer Phosphatase aufgeschlossen werden, was zu einer Molekularselektion von Enden für den Einbau des exogenen Fragments führt. Der Einbau eines· Fragments mit einer bezüglich anderer Merkmale des Trägers richtigen Orientierung kann eine Unterstützung erfahren, wenn sich das Fragment auf Träger-DNA befindet, die durch zwei- verschiedene Restriktiönsendonucleasen herausgeschnitten worden ist und selbst Termini aufweist, die jeweils die Hälfte der Erkennungssequenz der verschiedenen Endonucleasen darstellen.
Weitgespannte Bemühungen auf dem Gebiet der Rekombinations-DNA-Forschung in den letzten Jahren haben nur zu wenigen Ergebnissei geführt, die sich direkt praktisch verwerten lassen. Dies hat sich besonders im Fall mißglückter Versuche gezeigt, durch "synthetische DNA" codierte Polypeptide und dergleichen auszu-
bilden, unabhängig davon, ob die synthetische DNA in üblicher Weise Nucleotid um Nucleotid aufgebaut oder durch Rücktranskription aus isolierter in-RNA (komplementäre oder "cDNA") erhalten worden ist. In dieser Beschreibung wird angegeben, was allem Anschein nach die erste Expression eines funktioneilen Polypeptidprodukfcs aus einem synthetischen Gen darstellt, wobei auch damit zusammenhängende Entwicklungen mitgeteilt werden, die allgemeinere Anwendbarkeit verheißen. Das Produkt, auf das Bezug genommen wird, ist Somatostatin (US-PS 3 904 594), ein Inhibitor der Sekretion von Wachstumshormon, Insulin und Glucagon, dessen Wirkungen seine Anwendung bei der Behandlung von Acromegalie, akuter Pankreatitis und von insulinabhängigem Diabetes begründen ' (vgl. R. Guillemin et al, Annual Rev. Med, 27, 379, 1976) . Das Somatostatinmodell läßt eindeutig die Anwendbarkeit der hier beschriebenen neuen Entwicklungen auf mehreren wichtigen Gebieten erkennen, wie dies auch aus den beigefügten Zeichnungen und der weiteren Beschreibung hervorgeht
Darlegung des Wesens der Erfindung:
Die beigefügten Seichnungen erläutern Zusammenhänge, in welchen bevorzugte Ausführungsformen der Erfindung Anwendung finden, d.h. die Expression des Hormons Somatostatin durch bakterielle Transformanten mit Rekombinationsplasmiden, sowie die Erzeugung von Humaninsulin.
Figur 1
Schematische Darstellung des Prozesses: Das durch chemische DNA-Synthese hergestellte Gen für Somatostatin wird an das .ß-GalacJtosidase-Gen. von E. coli- auf dem Plasmid pBR322 angelagert. Nach Transformation in E. coli dirigiert das Rekombinationsplasmid die Synthese eines Vorläuferproteins, das in vitro durch Bromcyan' spezifisch an den Methioninresten unter Bildung von aktivem Säugerpolypeptxdhormon gespalten werden kann. Mit A, T, C und·G werden die charakteristischen Basen (Adenin, Thymin, Cytosin und Guanin) der Desoxyribormcleotide in dem codierenden Strang des Somatostatingens bezeichnet.
Schematische Struktur eines synthetischen Gens, dessen Codierstrang (d.h. der "obere" Strang) Codone für die Amino- '. . säuresequenz von Somatostatin (wie angegeben) aufweist.
Figur 3
Schematische Erläuterung der bevorzugten Methode zum Aufbau von Nucleotidtrimeren, die zum Aufbau von synthetischen Genen eingesetzt werden. Bei der angewandten üblichen Bezeichnung für die Darstellung von Nucleotiden in Figur 3 befindet sich das S'-OH links und das 3'-0H rechts, zum Beispiel
HO.
OH
Figur 4
Fließschema für den Aufbau eines Rekombinationsplasmids (zum . Beispiel pSOMII-3), das zur Ausbildung eines Somatostatin ("SOM") enthaltenden Proteins fähig ist, ausgehend von dem Stammplasmid pBR322. Das ungefähre Molekulargewicht eines je-
ir ~ r
den Plasmids wird in Dalton ("d") angegeben. Ap bzw. Tc bezeichnen Gene für Ampicillin- und Tetracyclinresistenz, und Tc bedeutet Tetracyclinempfindlichkeit infolge der Herausnahme eines Teils des Tcr-Gens. Die Verhältnisse der Orte der verschiedenen, für Restriktionsendonuclease spezifischen Spaltstellen auf den Piasmiden zueinander sind angegeben (ziim Beispiel EcoRI, Baml, etc.).
Figuren 5A und 5B . . ...' .
Es sind die Nucleotidsequenzen der Schlüsselteile von zwei Plasmiden dargestellt sowie die Richtung der Messenger-RNA-("mRNA")-Transkription, die stets von dem,5'-Ende des Codierstrangs ausgeht. Die Restriktionsendonuclease-Substratstellen sind wie dargestellt. Jede wiedergegebene Sequenz enthält sowohl die Steuerelemente des Iac-(Lactose)-Operons, als auch Codone zur Expression der Aminosäuresequenz von Somatostatin (kursiv). Die Aminosäuresequenzzahlen für ß-Galactosidase ("ß-gal") stehen in Klammern.
Figuren 6 bis 8
Wie weiter unten noch näher ausgeführt, sind in diesen Figuren die Ergebnisse vergleichender Radioimunprüfungsversuche dargestellt, die die Somatostatinaktivität des durch die Rekombinationsplasmide ausgebildeten Produkts zeigen.
Figur 9
Scheitiatische Struktur von synthetischen Genen, deren codierende Stränge Codone für die Aminosäuresequenz des A- und B-Strangs von Humaninsulin aufweisen.
Figur 10
Fließschema für den Aufbau eines Rekombinationsplasmids, das zur Expression der.B-Kette von Humaninsulin fähig ist.
1. Herstellung von Genen/ die den Code für heterologe Polypeptide liefern ·
Den Code für ein beliebiges Polypeptide mit bekannter Aminosäuresequenz liefernde DNA kann durch Auswahl der Codone nach dem genetischen Code hergestellt werden. Zur Erleichterung der Reinigung und dergleichen werden· Oligodesoxyribonucleotidfragmente aus beispielsweise etwa 11 bis 16 Nucleotiden gesondert zubereitet und dann in der gewünschten Reihenfolge
- 11 -
angeordnet. Man bereitet also erste und zweite Reihen von Oligodesoxyribonucleqtidfragmenten von zweckmäßiger Größe. Die Verbindung der ersten Reihen in der richtigen Sequenz führt zu einem DNA-Codierstrang zur Polypeptidexpression (vergleiche z. B. Figur 2, Fragmente A, B, G und D). Die zweiten Reihen führen nach entsprechender Verbindung in der richtigen Reihenfolge zu einem Strang, der zu dem Codierstrang komplementär ist (zum Beispiel Figur 2, Fragmente E, F, G und K). Die Fragmente der jeweiligen Stränge überlappen vorzugsweise derart, daß die Komplementarität ihre Selbstanordnung über Wasserstoffbindung der Cohäsivtermini von Fragmentblöcken begünstigt. Nach dieser Anordnung bzw. diesem Aufbau wird das Strukturgen durch Verbinden oder Verknüpfen inj der üblichen Weise fertiggestellt.
Die; Degeneration oder Entartung des genetischen Codes ermöglichst beträchtliche Freiheit bei der.Wahl von Codonen für eine gegebene Aminosäuresequenz. Für die erfindungsgemäßen Zwecke wird jedoch die Codonwahl durch drei Überlegungen erleichtert. Erstens werden Codone und Fragmente ausgewählt, und die Zusammenstellung der Fragmente erfolgt stufenweise, um eine unzulässige Komplementarität der Fragmente untereinander zu vermeiden, abgesehen von den Fragmenten, die in dem angestrebten Gen nebeneinander liegen. Zweitens werden an AT-Basenpaaren Cz= B. etwa fünf oder mehr) reiche Sequenzen vermieden, insbesondere, wenn ihnen eine an GC-Basenpaaren reiche Sequenz vorangeht, wodurch eine vorzeitige Beendigung der Transkription vermieden wird. Drittens besteht wenigstens iiein größerer Teil der gewählten Codone. aus solchen, die für die Expression von mikrobiellen Genomen (vgl. zum Beispiel W. Fiers, et al, Nature 260, 500, 1976) bevorzugt sind, Als für die Expression von mikrobiellen Genomen bevorzugte Codone werden die folgenden bezeichnet: . ''..
T a b e 1 1 e
Bevorzugte Bedeutung von ser (von links A Godonen , dritte Stellung .(3'-Ende) (von oben nach unten)
erste Stellung (5'-Ende) (von oben nach unten) zweite Stellung T . C •V· mm mi." nach rechts) G T
phe ser tyr cys c
T phe pro Stop ' -.- · A
leu pro ' Stop Stop G
—- · pro his trp T
leu ' pro his arg C
leu thr gin arg A
leu thr gin -— G
C —._ asn T
ile thr asn C
ile ala ser A
· -'— —._ : , lys . G '
A met (Start) asp T
val ala · asp giy .· ·. c '
val glu . ' · ·— A
val glu — . G
G val
— 1 "i
Im Fall von Somatastin am stärksten bevorzugt sind folgende Aminosäure-(Codon)"-beziehungen des Strukturgens: gly (GGT); cys (TGT); lys (AAG; trp (TGG); ala (GCT, GCG); asn (AAT, AAC); phe (TTC, TTT); thr (ACT, ACG); und ser (TCC, TCG).
Wenn das Strukturgen eines angestrebten Polypeptids in einen Clonbldungsträger zur Expression als solches eingeführt ,werden soll, wird dem Gen ein'"Start"-Codon (zum Beispiel ATG) vorangestellt, und ihm folgen unmittelbar ein oder mehrere Beendi- ' gungs- oder Stop-Codone (vergleiche Figur 2). Die Aminosäuresequenz eines bestimmten Polypeptids kann jedoch, wie unten beschrieben, mit weiterem Protein ausgebildet werden, das ihr vorangeht und/oder folgt. Wenn der Verwendungszweck des Polypeptids Spar.tung des weiteren Proteins erfordert, werden ent-' sprechende Spaltstellen neben der Polypeptid-weiteres Protein-· Codon-Bindung eincodiert. So ist beispielsweise in Figur 1 das Produkt der Expression ein Vorläufer-Protein aus Somatostatin und dem größten Teil des ß-Galactosidase-Polypeptids. In diesem Fall ist ATG zum Codieren für den Start der Translation nicht erforderlich, weil die Ribosomenkonstruktion des zusätzlichen ß-gal-Proteins das Somatostatinstrukturgen durchliest. Der Einbau des ATG-Signals ergibt jedoch den Code für die Erzeugung von Methionin, eine Aminosäure, die durch Bromcyan spezifisch gespalten wird, woraus sich eine einfache Methode zur Umwandlung von Vorläuferprotein in das erstrebte Polypeptid ergibt.
Figur 2 erläutert ein weiteres, bevorzugtes Merkmal für heterologe DNA, die zur Rekombination verwendet werden soll, d.h. daß Cohäsivtermini vorgesehen sind, die vorzugsweise einen der beiden Stränge einer Restriktionsendonuclease-Erkennungsstelle, umfassen. Aus den oben erörterten Gründen werden die Termini vorzugsweise dazu bestimmt, nach Rekombination einzelne verschiedene Erkennungsstellen hervorzurufen.
- 14 -'
Nachdem die beschriebenen Entwicklungen als in Verbindung mit dem Somatostatinmodell erfolgreich verlaufend nachgewiesen -wurden, wird anerkannt werden/ daß eine heterologe DNA-Codierung für praktisch jede bekannte Aminosäuresequenz mutatis mutandis angewandt werden kann. So sind die beschriebenen und noch zu beschreibenden Arbeitsweisen mutatis mutandis auf die Erzeugung von Polyaminosäuren, wie Polyleucin und Polyalanin, Enzymen, Serumproteinen und analgetischen Polypeptiden, wie ß-Endorphinen anwendbar, die Schmerz- schwellen ect. beeiflussen können. Die erzeugten Polypeptide sind vorzugsweise als solche Säugerhormone oder Zwischenprodukte dafür. Zu solchen Hormonen gehören u. ä. Somatostatin, Humaninsulin, Human- und Rinderwachstumshormon, Iuteinisierendes Hormon, ACTH und Pankreaspolypeptid. Zu den Zwischenprodukten gehören.n. a. Humanvorproinsulin, Humanproinsulirt und die A- und B-Ketten von Humaninsulin. Außer in vitro hergestellter DNA kann die heterologe DNA cDNA enthalten, die bei der Rücktranskription von mRNA gebildet wird, vergleiche z. B. Ullrich et al, Science 196, 1313/ 1977.
2. Rekombinationsstoffe mit einem Code für die Expression von Vorläuferprotein
Bei dem in Figur 1 schematisch dargestellten Prozeß liefert die Expression ein Vorläuferprotein, das durch ein spezifisches heterologes Strukturgen (Somatostatin) codiertes Polypeptid und außerdem Protein (das einen Teil des ß-Galactosidaseenzyms enthält) umfaßt. Eine selektive Spaltstelie neben der Somatostatin-Aminosäuresequenz ermöglich eine nachfolgende Abtrennung des angestrebten Polypeptids von überflüssigem Protein. Der erläuterte Fall ist für eine große Gruppe von Arbeitsweisen repräsentativ, die durch die Erfindung erschlossen worden sind.
Ih den meisten Fällen wird die Spaltung außerhalb der replikativen Umgebung des Plasiaids oder anderen Trägers, beispielsweise nach Gewinnung der raikrobiellen Kultur bewirkt. "Auf
diese Weise kann eine temporäre Konjugation von kleinen Polypeptiden mit überflüssigem"Protein erstere, zum Beispiel 'gegen einen in vivo erfolgenden Abbau durch endogene Enzyme/ schützen. Gleichzeitig bringt das zusätzliche Protein gewöhnlich das angestrebte Polypeptid um seine Bioaktivität während der extracellulären Spaltung, wodurch die biologische Gefahrlosigkeit des Vorgangs erhöht wird. In besonderen Fällen ist es natürlich zweckmäßig, die Spaltung innerhalb der Zelle zu bewirken. Beispielsweise können mit DNA mit einem Code für Enzyme, die Insulinvorläufer in die aktive Form überführen, Clonbildungsträger ausgebildet werden, die mit einer anderen DNA mit einem Code für die Expression der Vorläuferform zusammenarbeiten. · -
In einem bevorzugten Fall fehlen dem bestimmten angestrebten Polypeptid innere Spaltstellen entsprechend demjenigen, das zum .Abwerfen von überflüssigem Protein verwendet wird, doch können, wie ohne weiteres ersichtlich, auch dann, wenn diese Bedingung nicht erfüllt ist, konkurrierende Reaktionen das angestrebte Produkt liefern, wenn auch in geringerer Ausbeute. Wenn das angestrebte Produkt methioninfrei sein soll, dann erweist sich eine Bromcyanspaltung beim Methionin neben der angestrebten'Sequenz', als hoch wirksam. In entsprechender Weise .können arginin- und lysinfreie Produkte, zum Beispiel mit Trypsin oder Chymotrypsin bei arg-arg, lys-lys oder ähnlichen Spaltstellen neben der angestrebten Sequenz enzymatisch gespalten werden. Falls bei der Spaltung beispielsweise unerwünschtes Arginin an das angestrebte Produkt gebunden bleibt, kann es durch CarboxypeptidaseaufSchluß entfernt werden. Bei Verwendung von Trypsin zur Spaltung bei arg-arg können Lysinstellen innerhalb des angestrebten Polypeptids vorher geschützt werden, beispielsweise mit Maleinsäure- oder Cxtraconsäureanhydrid.:Die 'beispielsweise erörterten Spaltarbeitsweisen sind lediglich repräsentative Varianten der vielen verschiedenen Möglichkeiten, die für den Fachmann aufgrund der hier angegebenen Lehre offensichtlich sind.
Abspaltbares Protein kann am C- oder N-Ende eines bestimmten Polypeptids oder sogar innerhalb des Polypeptids selbst ausgebildet werden, wie dies bei der Einschlußsequenz, durch die sich Proinsulin und Insulin voneinander unterscheiden, der Fall ist. Wiederum kann der verwendete Träger den Code für die Expression von Protein mit sich wiederholenden Sequenzen des angestrebten Polypeptids liefern, die jeweils durch selektive Spaltstellen voneinander getrennt sind. Es ist jedoch besonders bevorzugt, wenn Codone für überflüssiges Protein vor dem Strukturgen des angestrebten Produkts übertragen werden, wie bei dem in den Figuren erläuterten Fäll. In allen Fällen soll für die Aufrechterhaltxing des passenden Ableserahmens in Bezug auf das Regulon gesorgt werden.
3. Expression von Immumogenen
Die Fähigkeit, sowohl ein spezifisches Polypeptid als auch überflüssiges Protein auszubilden, ergibt ein brauchbares Mittel für die Erzeugung von immunogenen Substanzen. Poly- . peptid-"Haptene" (d.h. Substanzen, die spezifisch durch Antikörper und ähnliche Stoffe gebundene Determinanten enthalten, aber gewöhnlich zu klein sind, um eine Immunwirkung hervorzurufen) können als Konjugate mit zusätzlichem Protein ausreichender Größe für eine Iinmunogenität ausgebildet werden. Das ß-gal-Somatostatin-Konjugat, dessen Herstellung hierin beschrieben ist, ist tatsächlich von immunogener Größe und kann deshalb Antikörper erzeugen, die das Somatostatinhapten binden. Proteine mit mehr als 100 Aminosäuren, meist mit mehr als 200 Aminosäuren, zeigen immunogenen Charakter.
Wie vorstehend beschrieben hergestellte Konjugate können zur Bildung von Antikörpern verwendet werden, die sich in Radioimmun- oder anderen Prüfungen auf das Hapten und auch für die Erzeugung von Vaccinen eignen. Im folgenden wird ein Beispiel für die letztgenannte Anwendung gegeben. Bromcyan-·oder an- ' dere Spaltprodukte von viralem Mantelprotein ergeben Oligopeptide,-die sich an Antikörper binden, der selbst zu dem Protein wird. Erhält sie die Aminosäuresequenz eines solchen Oligopeptidhaptens, kann daher heterologe DNA als Konjugat mit weiterem Protein ausgebildet werden, das Immunogenität beisteuert. Solche Konjugate können als Vaccinen verwendet werden, die geringere Nebenwirkungen zeigen, als sie mit der Verwendung von Mantelprotein selbst zur Erzielung von Immunität verbunden sind.
4. Die Kontrollelemente
In Figur 1 ist ein Prozeß dargestellt, bei welchem ein Transformantorganismus ein Polypeptidprodukt aus heterologer DNA ausbildet, die unter die Kontrolle eines Regulons "homolog" zu.dem Organismus in ,seinem nicht umgewandelten oder untransformierten. Zustand gebracht worden ist. Chromosomeη-DNA von lactoseabhängiger E. coli enthält als ein Lactose- oder "lac"-Operon/ das den LactoseaufSchluß u.a. durch Bildung des Enzyms ß-Galactosidase vermittelt. In dem erläuterten Fall werden die lac-Kontrollelemente aus einem Bakteriophagen, /L plac 5, erhalten, der für E. coli infektiös ist. Das lac-Operon des Phagen war seinerseits durch. Überführung aus der gleichen bakteriellen Species erhalten worden, daher die "Homologie". Homologe Regulone, die sich zur Verwendung in dem beschriebenen Verfahren eignen, können stattdessen auch aus für den Organismus nativer. Plasmid-DNA stammen.
Die Einfachheit und Wirksamkeit des lac-Promoter-Operator-Systerns begründen seine Verwendung in dem beschriebenen System genauso wie seine Fähigkeit, von IPTG (Isopropylthio-ß-D-gal.acto.sid) induziert zu werden. Selbstverständlich können
auch andere Operone oder Teile davon, verwendet werden, zum Beispiel /^--Promoter-Operator, Arabinose-Operon (phi 80 dara) oder die Colicin El-, Galactose-, alkalische Phosphatase- oder Tryptophan-Operone. Aus dem letzteren, (d. h. "Tryp-Operoh") stammende Promoter-Operatoren können 100-prozentige Repression während der Induktion (mit Indolacrylsäure) und Gewinnung vermitteln.
5. Plasmidaufbau, allgemein .
Die Einzelheiten des in Figur 4 schematisch erläuterten Prozesses ergeben sich aus dem weiter unten folgenden experimenteilen Teils. Bei diesem Punkt ist es jedoch von Nutzen, einige der zum Aufbau des Rekombinationsplasmids der bevorzugten Ausführungsform angewandten Arbeitsweisen kurz zu erörtern.
Bei der Clonbildung und Expression des synthetischen Somatostatingens werden zwei Plasmide verwendet. Jedes Plasmid hat eine EcoRI-Substrat-Stelle bei einem anderen Bereich des ß-Galactosidase-Strukturgens (vgl. Figur 4 und 5). Die Einfügung des synthetischen Somatostation-DNA-Fragments in die EcoRI-Stellen dieser Plasmide bringt die Expression der genetischen Information in das Fragment ein, das sich unter der Kontrolle der lac-Operon-Kontrollelemente befindet. Nach der Einfügung des Somatostatinfragments in diese Plasmide sollte die Translation zu einem Somatostatinpolypeptid führen, dem entweder 10 Aminosäuren (pS0M1) oder praktisch die gesamte ß-Galactosidase-Untereinheitsstruktur (pS0Mi1-3) vorangestellt ist.
Das Schema des Plasmidaufbaus beginnt mit dem Plasmid pBR322, einem wohldefinierten Clonbildungsträger. Die Einführung der lac-Elemente in dieses Plasmid erfolgt durch Einfügung eines Haelll-Restriktions-Endonucleasefragments (203 Nucleotide) , das den lac-Promoter, die CAP-Bindungsstelle, den Operator, die Ribosomenbindungsstelie und die- ersten 7 Aminosäurecodone des ß-Galactosidase-Strukturgens aufweist. Das HaelII-Fragment stammt aus A- plac5 DNA. Das EcoRI-gespaltene pBR322-Plasmid, dessen Termini mit T4 DNA-Polymersase und Desoxyribonucleotid-. triphosphaten wieder hergestellt worden waren, wird stumpfendig mit dem Haelll-Fragment verbunden, wodurch EcoRI-Termini an den Einfügungspunkten erzeugt werden. Durch Verbinden dieser Haelll- und wiederhergestellten EcoRI-Termini werden die EcoRI-Restrjiktionsstellen (vergleiche Figur 4 und 5) an jedem Terminus erzeugt. Transformanten von E. coil RR1 mit dieser DNA werden auf einem S-Brom-^-chlor-incolylgalactosid- (X-gal.) Madium auf Resistenz gegen Tetracyclin (Tc) und Ampicillin (Ap) selektioniert. Auf diesem .Indikatormedium können Kolonien, die für die Synthese von ß-Galactosidase aufgrund der erhöhten Anzahl von lac-Operatoren, die Repressor titrieren, •verantwortlich sind, durch ihre blaue Farbe identifiziert werden. Zwei Orientierungen des Haelll-Fragments sind möglich, aber sie werden aufgrund der asymmetrischen Lage einer Hha-Restriktionsstelle in dem Fragment unterschieden. Das Plasmid.pBH10 wird weiter modifiziert, wodurch die zu dem lac-Operator(pB20) distale EcoRI-Endonuclease-Stelle eliminiert Wird.
Die acht chemisch synthetisierten Oligodesoxyribonucleotide
: ' 32 '
(Figur 2) werden an den 5'-Termini mit _/ . .P_/--gamma-ATP durch Polynucieotidkinäse markiert und. mit T4 DNA-Lignase verbunden. Durch Wasserstoffbindung zwischen den überlappenden Fragmenten erfolgt eine Selbstanordnung des Somatostatingens und schließlich eine Polymerisation zu großen Molekülen infolge der cohäsiven Restriktionsstellentermini. Die Ligaturprodukte werden mit EcoRI-BarcHI-Restriktionsendonucleasen behandelt, wodurch das Somatostatingen, wie in Figur 2 dargestellt, erzeugt wird.
Das synthetische Somatostatingenfragment mit EcoRI- und Baml-Termini wird an das pBH20-Plasmid gebunden, das mit den EcoRI— und BamHI-Restriktionsendonucleasen und alkalischer Phosphatase vorbehandelt, worden ist. Die Behandlung mit alkalischer Phosphatase führt zu einer Molekularselektion von Plasmiden mit dem eingefügten Fragment. Mit dieser gebundenen DNA erhaltene ampicillxiaresistente Transformanten werden hinsichtlich Tetracyclinempfindlichkeit aussortiert, und mehrere werden bezüglich der Einfügung eines EcoRI—BamHI-Fragments passender Größe untersucht. ;
Beide Stränge der EcoRI-BamHI-Fragmente von Plasmiden aus" zwei Clonen werden einer Nucleotidsequenzanalyse, beginnend · mit-den BamHI- und EcoRI-Stellen, unterworfen. Die Sequenzanalyse wird bis in die lac-Regelelemente ausgedehnt. Die lac-Fragmentsequenz erweist sich als intakt, und in einem Fall werden die Nucleotidsequenzen pS0M1 beider Stränge unabhängig voneinander bestimmt, wobei jede die in Figur 5A angegebene Sequenz ergibt.
Das EcoRI-Pst-Fragment des pS0M1-Plasmids mit dem lac-regeln-' den Element wird entfernt und durch das EcoRI-Pst-Fragment von pBR322 ersetzt, wodurch das Plasmid pS0M11 erzeugt wird. Das EcoRI-Fragment von i\plac , das den lac-Operonkontrollbereich und den größten Teil des ß-Galactosidase-Strukturgens. aufweist, wird in die EcoRI-Stelle von pS0M11 eingefügt. Zwei Orientierungen des EcoSI-lac-Fragments von A. plac sind zu erwarten. Eine davon würde den richtigen Ableserahmen bis in das Somatostatingen hinein behalten und die andere nicht. Die Analyse von für sich allein isolierten Clonen auf Somatostatinaktivität.ergibt dann Clone, die das richtig orientierte Gen enthalten, und einer dieser Clone wird als·pSOMi1-3 bezeichnet.
- 21 6. Der Mikroorganismus .
Als mögliche Organismen für die Transformation sind verschiedene einzellige Mikroorganismen vorgeschlagen worden, beispielsweise Bakterien, Fungi und Algen. Dabei handelt es sich um solche einzelligen Organismen, die in Kulturen oder.durch Fermentation gezüchtet werden können. Bakterien sind größtenteils die für das Arbeiten damit am besten geeigneten Organanismen. Zu einer Transformation zugänglichen Bakterien gehören Enterobacterxaceae, zum Beispiel Stämme von Escherichia coli und Salmonella; Bacillaceae, wie Bacillus subtitis; Pneumo-* coccus; Streptococcus und Haemophilus influenzäe.
Der für die im folgenden beschriebenen experimentellen Arbeiten gewählte Organismus ist E. coli, Stamm RR1, Genotyp: Pro Leu Thi Rn MD rec A Str Lac y .E. coli RR1 wird aus E. eoli ΗΒ1Ό1 (H. W. Boyer et al,. J. MoL Biol. (1969) 41, 459-472) durch Paarung mit E. coli K12 Stamm KL16 als HfriDonor, vgl. vT. H. Miller, Experiments in Molecular Genetics (Cold Spring Harbor, New York, 1972) /Kulturen von Coli-RRI.-" und E. Coli RR1 (pBR322) sind bei der American Type Culture Collection ohne irgendwelche Beschränkung hinsichtlich der Zugänglichkeit hinterlegt worden und haben die ATCC-Nummerη 3/343 und 3/344 erhalten/.
Der Somatostatin erzeugende Organismus ist-gleichfalls hinterlegt worden (ATCC Nr. 3WXA)'.'
Im Fall von Humaninsulin werden Ä- und B-Ketten-Gene in E. col: K-12 Stamm 294 (Ende A, thi~, hsr~, hsrn, *) , ATCC Nr.3/f/Ä gedontj und dieser--Organismus wird zm: Expression der A-Kette E. coli K-12 Stamm 294 /pIÄ_1_/, ATCC Nr. $f ^/verwendet. Die B-Kette von Humaninsulin wird zuerst, in einem Derivat von HB1Ö1, d. h, E. coil K-12 Stamm D1210, ein jac+ (A^V) / ausgebildet, und dieser B-Gen enthaltender Organismus ist gleichfalls hinterlegt worden (ATCC Nr. IiWJ.. ..) . Das B-Gen
kann aber auch in den zuerst genannten Organismus, d. h, - " '·
Stamm 294, eingeführt und davon ausgebildet werden.
Ausführungsbeispiele; .
Durch die folgenden Beispiele wird die Erfindung weiter erläutert. . . "'' . ' . ' ' '. . . . '.
Beispiel 1 .
3E» Somatostatin .'
1. Aufbau von Somatostafcingenfragmenten .
Zuerst v/erden acht Oligodesoxyribinucleotide, die in Figur 2 mit A bis H bezeichnet sind, nach der modifizierten Triestermethode von K. Itakura et al, J. Am. Chem. Soc. 97, 7327 (1975) aufgebaut. Im Fall der Fragmente C, E und H wird jedoch eine verbesserte Arbeitsweise angewandt, wobei zunächst vollständig geschützte Trimere als Gründeinheiten für den Aufbau längerer Oligodesoxyribonucleotide hergestellt werden. Die verbessserte Arbeitsweise ist schematisch in Figur 3 dargestellt, worin B Thymin, N-benzoyliertes Adenin, N-benzoyliertes Cytosin oder N-isobutyraliertes Guanin bedeutet. Unter Bezugnahme auf Figur 3 verläuft mit einem Überschuß von I (2 mmolar) die Kupplungsreaktion II (1 mmolar) mit Hilfe eines starken Kupplungsreagens
2, 4, 6-Triisopropylbenzolsulfonyltetrazolid (TPSTe, 4 mmolar; 2) in 60 Minuten nahezu vollständig. Nach Entfernung der 5'-Schutzgruppe mit einer 2-prozeixtigen Benzolsulfonsäurelösung kann das 51-Hydroxydimere V durch einfache Lösungsmittelextraktion mit wäßriger NaHCO3-Lösung in CHCl- von einem Überschuß des 3'-Phosphodiestermonomeren IV abgetrennt werden. Der vollständig geschützte Trimerblock wird danach aus dem 5'-Hydroxydimeren V, I (2 mmolar) und TPSTe (4 mmolar) hergestellt und durch Chromatographie an Kieselgel nach B. T. Hunt .et al, Chem. and Ind. 1868 (1967) isoliert. Die Ausbeuten der nach der verbesserten Arbeitsweise hergestellten, Trimeren sind in Tabelle II angegeben.
... .... .; - 23 - . -&Wp W 1 »
T ab el le II
Ausbeute an vollständig geschützten-Trimeren, Sequenz TTT TTT GGA AGA ATC GCT ACA ACC CGT, 51 % GAT 60 %
Ausbeute Sequenz Ausbeute
81 % ATG 69 %
75 % GCC 61%
41 % CCA 72 %
49 % CAA 72 %
71 % TTA 71 %
61 % CAT 52 %
63 % CCC 73'%
65 % AAC 59 %
Die acht Oligodesoxyrxbonucleotide werden nach der Entfernung aller Schutzgruppen durch Hochdruckflüssigchromatographie an Perraaphase AAX (R.A. Henry et al J. Chrom. Sei. II, 358 (1973)) gereinigt. Die Reinheit jedes Oligomeren wird durch Homochromatographie an Dünnschicht-DEAE-Cellulose und'auch durch Gelelektrophorese in 20-prozentiger Acrylamidplatte nach Markieren der Oligomeren
32 '
mit /gamma- P_/-ATP in Gegenwart von Polynucleotid-Kinase kontrolliert. Aus jedem DNA-Fragment wird ein markiertes Hauptprodukt erhalten. "
2. Verknüpfung und Acrylamidqelanalyse von Somatostatin-DNA
{ .- ' ' ' · ."'. '.· Die 5' -ORf-Termini der chemisch synthetisierten Fragmente A
bis H werden getrennt- mit T4-Polynucleotid-Kinase phosphory-
32 liert. Zur Phosphorylierung wird /_ P_/-gamma-ATP' verwendet, wodurch die Reaktionsprodukte autoradiographisch verfolgt werden können, obwohl, wie ersichtlich, auch unmarkiertes ATP verwendet werden kann, wenn eine Autoradiographie weggelassen wird,
32
Unmittelbar'vor der Kinasereaktion werden 25 uCi /gamma- P/ATP (etwa 1500 Ci/mmolar) (Maxam and Gilbert, Proc. Nat. Acad. Sei. USA, 74, 1507 (1977)) in 0,5 ml Eppendorf-Rohren zur Trockne eingedampft. 5 Mikrogramm Fragment werden mit zwei Einheiten T4-DNA-Kinase (Hydroxylapatitfraktion, 2500 Einheiten/ml; 27) in 70 mm Tris-HCl pH 7,6, 10 mm MgCl2, 5 mm Dithiothreitol in einem Gesamtvolumen von 150 μΐ 20 Minuten bei 37 0C inkubiert. Zur Gewährleistung maximaler Phosphorylierung der Fragmente für Verknüpfungszwecke werden 10 μΐ einer Mischung aus 70 mm Tris-HCl pH 7,6> 10 mm MgCl2, 5 mm Dithiothreitol, 0,5 mm ATP und zwei Einheiten DNA-Kinase zugegeben, und die Inkubation noch weitere 20 Minuten bei 7 0C fortgesetzt. Die Fragmente (250 ng/μΐ) werden ohne v/eitere Behandlung bei -20 0C aufgehoben. Jeweils 1,25 ^g der mit Kinäse versehenen Fragmente A, B, E und F werden in einem Gesamtvolumen von 50 μΐ in 20 mm Tris-HCl pH 7,6, 10 mm MgCl», 10 mm Dithiothreitol, 0,5 mm ATP und 2 Einheiten T4 DNA-Ligase (Hydroxylapatitfraktion, 400 Einheiten/ml; 27) während 16 Stunden bei 4 0C
verknüpft. Die Fragmente C, D, G und H werden unter vergleichbaren Bedingungen verknüpft. Proben von jeweils 2 ml werden zur Analyse durch Elektrophorese auf einem 10-prozentigen PoIyacrylamidgel und anschließend durch Autoradiographie (H. L. Heyneker et al, Nature 263, 748 (1976) entnommen, wobei nicht umgesetzte DNA-Fragmente durch rasch wanderndes Material dargestellt werden und die monomere Form der verknüpften Fragmente mit Bromphenolblau (BPB) wandert. Aufgrund der kohäsiven Enden der verknüpften Fragmente A, B, E und F sowie der verknüpften Fragmente C, D, G und H erfolgt auch eine gewisse . Dimerisierung. Diese Dimeren stellen das aiii, langsamsten wandernde Material dar und können durch Restriktionsendonuclease Eco RI bzw. Bam HI gespalten werden. Die zwei Halbmoleküle (verknüpftes A + B + E + F und verknüpftes C ' + D + G + H) werden in einer weiteren Verknüpfungsstufe verbunden, die 16 Stunden bei 4 0C in einem Endvolumen von 150 μΐ durchgeführt wird. Zur Analyse wird 1 Mikroliter entnommen. Das Reaktionsgemisch wird 15 Minuten auf 65 0C erwärmt, wodurch die T4-DNA-Ligase entaktiviert wird. Die Wärmebehandlung hat auf das Wanderungsbild der DNA-Mischung keinen Einfluß. Dem Reaktionsgemisch wird für die Spaltung der multimeren Formen der Somatostatin-DNA in 30 Minuten bei 37 ° ausreichende Restriktionsendonuclease BamHI zugesetzt. Nach Zugabe von NaCl auf TOO mMol wird die DNA mit EcoRI-Endonuclease aufgeschlossen. Der RestriktionsendonucleaseaufSchluß wird durch Phenol-Chloroform- Extraktion der DNA beendet. Das Somatostatin-DNA-Fragment wird durch präparative Elektrophorese auf einem 10-pro^ zentigen Polyacrylamidgel von nichtumgesetzten und teilweise verknüpften DNA-Fragmenten befreit. Die das Somatostatin-DNA-Fragment enthaltende Bande wird aus dem Gel ausgeschnitten, und die DNA wird durch Zerschneiden des Gels in kleine Stücke und Extraktion mit Elutionspuffe'r (0,5 m Ammoniumacetat, 10 mm MgCl2, 0,1 mm EDTA, 0,1 % SDS) über Nacht bei 26 0C eluiert. Die DNA wird mit 2 Volumen Ethanol gefällt, zentrifugiert, in 200 μΐ 10mm Tris-HCl pH'7,6 wieder gelöst und gegen den gleichen Puffer dialysiert, wodurch eine Somatostatin-DNÄ-Konzentration von 4 pg/ml erhalten wird.
Aufbau von Rekombina-tionsplasmiden
In Figur 4 ist schematisch die Art und Weise dargestellt, in der das Somatostatingen enthaltende Rekombinationsplastimde aufgebaut werden, weshalb'in.Verbindung mit der folgenden Erörterung darauf Bezug genommen wird. .
A. Das Stammplasmid pBR 322
Das für die experimentelle Somatostatxnclonbildung gewählte Plasmid ist pBR322, ein kleines Plasmid (Molekulargewicht etwa 2,6 Megadalton) mit gegen die Antibiotika Ampicillin (Ap). und Tetracyclin (Tc) resisteriten Genen. Wie in Figur 4 angegeben, weist das ampicillinresistente Gen eine Spaltstelle für die Restriktionsendonuclease Pst I und das tetracyclinresistente Gen eine entsprechende Stelle für Restriktionsendonuclease Bam HI auf, und eine Eco Rl-Stelle.befindet sich zwischen den Apr und TCr-Genen. Das Plasmid pBR322 stammt ans PBR313, einem 5,8 Megadalton AprTcrCollmm-Plasmid (R. L. Rodriquez et al, ICN-UCLA Symposia on Molecular and Cellular Bio- . logy 5, 471-77 (1976), R. L. Rodriques et al, Construction and Characterization of Cloning Vehicles, in Molecular Mechanisms in the Control of Gene Expression, S. 471-77, Academic Press, Inc. (1976). Das Plasmid pBR322 und die Art seiner Gewinnung sind ausführlich in F. Bolivar et al, "Construction and Characterization of New Cloning Vehicles II. A Multipurpose Cloning System", Gene (November 1977) beschrieben.
B. Aufbau des Plasmids pBHIO
5 Mikrogramm·Piasmid pBR322-DNA werden mit 10 Einheiten
der Restriktionsendonuclease EcoRI in 100 millimolärer Tris-HCl pH 7,6, 100 millimolarem NaCl, 6 millimolarem MgCl2 bei 37 0C 30 Minuten lang aufgeschlossen. Die Reaktion wird durch Phenol-Chloroform-Extraktion beendet; die DNA wird dann mit 2 1/2 Volumina Ethanol gefällt und in 50 μΐ T4 DNA Polymerase-Puffer. wieder suspendiert (67 mm Tris-HCl pH 8,8, 6,7 mm MgCl,,, 1.6,6 iru (NPI^)2SOi, 167 μg/ml Rinderserumalbumin, je 50 μm der einzelnen dNTP; A. Panet et al, Biochem. 12, 5045 (1973)). Die Reaktion wird durch Zugabe'von zwei Einheiten T4 DNA-Polymerase eingeleitet. Nach 30 Minuten langem Inkubieren bei 37 0C.wird die Reaktion durch eine Phenol-Chloroform-Extraktion der DNA beendet, worauf mit Ethanol gefällt wird. 3 Mikrogramm Λ. plac DNA (Shapiro et al Nature 224, 768 (1969)) werden 1 Stunde bei 37 0C mit dem Restriktionsenzym Haelll (3 Einheiten) in
6 mm Tris-HCl pH 7,6, 6 mm MgCl2, 6 mm ß-Mercaptoethanöl in einem Gesamtvolumen von 20 μΐ aufgeschlossen. Die Reaktion wird durch 10 Minuten langes Erwärmen auf 65 °C abgebrochen. Die pBR322-behandelte DNA wird mit der HaeIII-aufgeschlossenen ; /\^ pläc -DNA vermischt und in einem Gesamtvolumen von 30 ml mit 1,2 Einheiten T4 DNA-Ligase (Hydroxylapatitfraktion; A. Panet et al, supra) in 20 mm Tris-HCl pH 7,6, 10 mm MgCl2, 10 mm Dithiothreitol, 0,5 mm ATP in 12 Stunden bei 12 °C stumpfendig verknüpft. Die verknüpfte DNA-Mischung wird gegen 10 mm Tris-HCl pH "7,6 diälysiert und zur Tränsformation von E. coli Stamm RRl verwendet. Transformanten werden hinsichtlich Tetra-
' ' ..· ) ' '' . ' . . ' cyclin- und Ampicillin-Resistenz auf Minimalmediumplatten ausgewählt, die 40 μg/ml 5-Brom-4~chlor-incolylgalactosid-(X-gal)-Medium (J. H. Miller, Experiments in Molecular Genetics)'1 Cold Spring Harbor, New York, 1972) enthalten. Zur Synthese von ß~Galactosidase fähige Kolonien werden durch ihre blaue Farbe identifiziert. Nach der Durchsicht von 45 unabhängig voneinander isolierten blauen Kolonien erweisen sich drei davon als zwei EcoRI-Stellen enthaltende Plasmid-ENA, die durch etwa 200 Basenpaare voneindaner getrennt sind. Die Lage eines
asymmetrisch angeordneten Hhal-Fragments in dem Haelll-lac-Kontrollfragment, b.p. 203, (W. Gilbert et al, in Protein-Ligand Interactions, H. Sand und G. Blauer, Herausgeber (De Gruyter, Berlin (1975} S. 193-210) ermöglicht die Bestimmung _ . der Orientierung des Haelll-Fragments, nun ein EcoRI-Fragment, in diesen Plasmiden. Es zeigt sich, daß das Plasmid pBH10 das Fragment in der angestrebten Orientierung trägt, d. h. die lac-Transkription geht in das Tcr Gen des Plasmids ein.
C. Aufbau des Plasmid.5 pBH20 .' ' '
Plasmid pBHiO wird dann modifiziert, um die zu dem lac-Operator disfcale EcoRI-Stelle zu eliminieren. Dies wird durch die bevorzugt verlaufende EcoRI-Endonucleasespaltung an der distalen Seite unter teilweisera Schutz durch RNA-Polymerase der anderen EcoRI-Stelle bewirkt, die sich zwischen dem Tcr- und dem lac- ; Promoter befindet, zwischen denen nur etwa 40 Basenpaare angeordnet sind. 5 μg DNA werden nach Bindung der RNA-Polymerase mit einer Einheit EcoRI in einem Gesamtvolumen von 10 μΐ 10 Minuten bei 37 0C aufgeschlossen. Die Reaktion wird durch 10 Minuten langes Erwäraien auf 65 °C abgebrochen. Die EcoRI- . Cohäsivtermini werden nsit S1 Nuclease in 25 mm Na-acetat pH 4,5, 300 mm NaCl, 1 mm ZnCl„ 5 Minuten lang bei 25 °C aufgeschlossen. Die Reaktion wird durch Zugabe von EDTA bis 10 mm und Tr is-HCl pH 8 (bis 50 mm) abgebrochen. Die DNA wird mit Phenol-Chloroform extrahiert, Mit Ethanol gefällt und in 100 μΐ T4-DNA-Verknüpfungspuffer wieder suspendiert. Nach Zugabe von 1 μΐ T4 DNA-Ligase wird die Mischung 12 Stunden bei 12 0C inkubiert. Die verknüpfte DNA wird in E. coli Stamm RR1 transformiert und Ap Tc -Transformanten werden auf X-gal-Antibiotikummedium selektioniert. Durch Restriktionsenzymana- : lyse von DNA aus 10 isolierten blauen Kolonien ergibt sich, daß diese Clone Plasmid-DNA mit einer EcoRI-Stelle enthalten. Sieben dieser Kolonien haben die EcoRI-Stelle, die sich zwischen dem Iac- und Tcr—Promoter befindet, behalten. Die Nucleo-.tidsequenz von der EcoRI-Stelle bis in den lac-Regelbereich eines dieser Plasmide, pBH20, wird bestätigt gefunden. Dieses Plasmid wird dann zur Clonbildung des Somatqstatingens verwendet.
D. Aufbau von Plasmid pSQM 1
20 Mikrogramm Plasmid pBH20 werden 'mit Restriktionsendonuclease EcoRI und BamHI in einem Gesamtvolumen von 50 μΐ vollständig aufgeschlossen. Nach Zugabe von bakterieller alkalischer Phosphatase (0/1 Einheit von Worthington BAPF) wird die Inkubation 10 Minuten bei 65 0C fortgesetzt. Die Reaktion wird durch Phenol-Chloroform-Extraktion beendet, und die DNA wird mit 2 Volumen Ethanol gefällt, zentrifugiert und in 50 μΐ 10 mm Tris-HCl pH 7,6, 1 mm EDTA gelöst. Die alkalische Phosphatasebehandlung verhindert mit guter Wirkung eine Selbstverknüpfung der EcoRI-BamHI-behandelten pBH20-DNA, aber kreisförmige Rekombinationsplasmide, die Somatostatin-DNA enthalten, können auch nach Verknüpfung noch ausgebildet werden. Da E. coli RRl durch linerare Plasmid-DNA nur mit sehr geringer Wirksamkeit transformiert wird, enthält der größte Teil der Transformanten Rekombinationsplasmide. 50 Mikroliter Somatostatin-DNA (4 >g/ml) werden mit 25 ml der BamHI-EcoRI alkalisch« Phosphatase-behandelter pBM20 DNA in einem Gesamtvolumen von 50 μΐ, enthaltend 20 mm Tris-HCl pH 7,6, 10 mm MgCl2,,10 "mm Dithiothreitol, 0,5 mm ATP und 4 Einheiten T4 DNA-Ligase bei · 22 0C verknüpft. Nach 10, 20 und 30 Minuten werden dem Reaktionsgemisch weitere 40 ng Somtostatin-DNA zugesetzt (die allmähliche Zugabe von Somatostatin-DNA kann die Verknüpfung mit dem Plasmid anstelle einer Selbstverknüpfung begünstigen). Die Verknüpfungsreaktion wird noch 1 Stunde fortgesetzt, worauf die Mischung gegen 10 mm Tris-HCl pH 7,6 dialysiert wird. Bei •einem Vergleichsversuch wird BamHI-, EcoRI-, alkalische Phosphadase-behandete pBH20-DNA unter vergleichbaren Bedingungen, aber in Abwesenheit von Somatostatin DNA verknüpft. Beide Präparate werden ohne weitere Behandlung zum Transformieren von E. coli ., RRl verwendet. Die Transformationsversuche werden in einem. P3-physikalischen Behältergerät National Institutes of Health, USA, Recombinant DNA Research Guidelines, 1976) durchgeführt. Transformanten werden auf Plätten aus Minimalmediuiu , das 20 ug/ml Ap und 40 μg/ml X-gal enthält, selektioniert. Es v;erden 10 Transformanten, von denen alle .Tc-enipfin< lieh sind, isoliert. Zur Bezugnahme werden sie als pSOMi, pSÖM2
etc. ... pSOM 10 bezeichnet. Bei dem Vergleichsversuch werden •keine Transformanten erhalten. Vier der 10 Transformanten enthalten, Plasmide mit sowohl einer EcoRI^- als auch einer BamHI-Stelle. Die Größe des kleinen EcoRI,BamHI-Fragments dieser Rekombinationsplasmide ist in allen 4 Fällen der Größe derin vitro hergestellten Soniatostatin-DNA vergleichbar. Basensequenzanalyse nach Maxam und Gilbert Proc. Nat. Acad. Sei, USA 560 (1977) ergibt, daß das Plasmid pS0M1 das gewünschte Somatostatin-DNA-Fragment als Einfügung enthält.
Die DNA-Sequenanalyse des Clons mit Plasmid pSOM.1. läßt erwarten, daß damit ein Somatostatih enthaltendes Peptid erzeugt wird. Somatostatinradioimmumaktivität läßt sich jedoch in Extrakten von Zellkörnern oder überstehenden Kulturflüssigkeiten nicht nachweisen. Die Gegenwart von Somatostatin läßt sich auch nicht nachweisen, wenn die wachsende Kultur direkt zu 70-prozentiger Ameisensäure und Bromcyan gegeben wird. Es ist beobachtet worden, daß E. coli RRl-Extrakfce exogenes Somatostatin sehr rasch abbauen. Das Fehlen von Somatostatinaktivität in Clonen, die Plasmid pS0M1 enthalten, kann sehr wohl eine Folge eines intracellulären Abbaus durch endogene proteolytische Enzyme sein. Plasmid pSOM T wird daher zum Aufbau eines Plasmids verwendet, das den Code für ein Vorläuferprotein liefert, das Somatostatin enthält und groß genug ist, um einem proteolytischen Abbau zu wiederstehen.
E. Der Aufbau der Plasmide pSOM 11 und pSOM 11-3
Es wird ein Plasmid aufgebaut, worin das Somatostatingen am C-Terminus des ß-Galactosidasegens angeordnet werden kann, das die Translation in Phase hält. Das Vorhandensein einer EcoRI-Stelle nahe dem C-Terminus dieses Gens und die verfügbare Aminosäuresequenz dieses Proteins (B. Polisky et al, Proc. Nat. Acad. Sei. USA, 73, 3900 (1976) , A.V. Fowler et al, ibid 74, 1507 (1976), A..I .Bukhari et al, Nature New Biology 243, 238 (1973) und K.E. Langley, J. Biol. Chem. 250, 2587 (1975)) ermöglichen die Einführuh-g des EcoRI, BamHI-Somatostatingens in die EcoRI-Stelle unter Aufrechterhaltung des richtigen.
Leserahmens. Zum Aufbau eines solchen Plasmids werden 50 \xq pSOMi-DNA mit den Restriktionsenzymen EcoRI und Pstl in einem 'Gesamtvolumen von 100 μΐ aufgeschlossen. Ein präparatives 5-prozentiges Polyacrylamidgel wird zur Abtrennung des großen Pst-EcoRI-Fragments verwendet, das das Somatostatingen des kleinen Fragments mit den lac-Regelelementen aufweist. Die große Bande wird aus dem Gel ausgeschnitten, und die DNA wird durch Aufteilen des Gels in kleine Stücke und Extraktion bei 65 0C über Nacht eluiert. In vergleichbarer Weise werden 50 μg des Piasmids pBR322 DNA mit Pstl- und EcoRI-Restruktionsendonuclease aufgeschlossen, und die beiden erhaltenen DNA-Fragment werden durch präparative Elektrophorse auf einem 5-prozentigen Polyacrylamidgel gereinigt. Das kleine Pstl-EcoRI-Fragment von pBR322 (1 .]i.q) wird mit dem großen Pstl-EcoRI-DNA-Fragment (5 jig) aus pS0M1 in einem Gesamtvolumen von 50 μΐ mit einer Einheit T4-DNA-Ligase in 12 Stunden bei 12 0C verknüpft. Das Verknüpfungsgemisch wird zum Transformieren von E. cöli RRI verwendet, und Transformanten werden auf X-gal-Medium auf Ampicillinresistenz selektioniert. Erwartungsgemäß ergeben nahezu alle der Äpr-Transformanten (95 %) weiße Kolonien (kein lac-Operator) auf X-gal-Indikatorplatten. Das erhaltene Plasmid, pSOMH, wird für den Aufbau des Plasmids pS0M11-3 verwendet. Eine Mischung aus 5 ^g-pS0M11-DNA und 5 -μ-g c -DNA wird mit 10 Einheiten EcoRI 30 Minuten bei ' ..
37 0C aufgeschlossen. Der RestriktionsendonucleaseaüfSchluß wird durch Phenol-Chloroform-Extraktion beendet. Die DNA v;ird dann mit Ethanol gefällt und in 50 μΐ T4-DNA-Ligase-Puffer erneut suspendiert. Eine Einheit T4-DNA-Ligase wird zu der Mischung gegeben, worauf 12 Stunden bei 12 0C inkubiert wird. Die Verknüpfungsmischung wird gegen 10 mm Tris-HCl pH 7,6 dialysiert Und zum Transformieren von E. coli, Stamm RRl, verwendet. Transformanten werden auf X-gäl-Platten, die Ampicillin enthalten, auf Ap selektioniert und auf wesentliche ß-Galactosidaseerzeugung ausgelesen. Etwa .2 % der Kolonien sind blau (pSOMI1-1, 11-2 etc.). Restriktionsenzymanalyse von aus diesen Clonen erhaltener Plasmid-DNA ergibt, daß alle Plasmide ein neues EcoRI-Fragment von etwa 4,4 Megadalton
aufweisen, das die lac-Operon-Regelstellen und den größten Teil des ß-Galactosidasegens aufweist. Da zwei Orientierungen des EcoRI-Fragments möglich sind, wird die asymmetrische Lage einer Hindlll-Restrictionsstelle dazu benutzt festzustellen, welche dieser Kolonien dieses EcoRI-Fragments mit fortschreitender lac-Transkription bis in das Somatostatingen aufweist.Hindlll-BamHI-DoppelaufSchlüsse zeigen, daß nur die Clone, die die Plasmide pSOM11-3, pSOMH-5, pSOM11-6 und pSOM11-7 aufweisen, das EcoRI-Fragment in dieser Orientierung enthalten. .
4. Radioimmumprüfung auf Somatostatinaktivität
Die standartisierte Radioimmumprüfung (RIA) auf Somatostatin (A. Arimura et al, Proc. Soc. Exp. Biol. Med. 148, 784 (1975)) 'wird durch Verringerung des Prüfvolumens und durch Verwendung
11
von Phosphatpuffer modifiziert. Tyr -Somatostatin wird unter Anwendung einer Chloramin-T-Arbeitsweise (ibid.) iodiert. Für die Prüfung auf Somatostatin wird die Probe, gewöhnlich in 70-prozentiger Ameisensäure, die 5 mg/ml Bromcyan enthält, in einem konischen Polypropylenrohr (0,7 ml, Sarstedt) über feuchtem KOH.im Vakuum getrocknet. Nach Zugabe von 20 Mikro- . liter PBSA-Puffer (75 mm NaCl; 75 mm Natriumphosphat, pH 7,2;
1 mg/ml Rinderserumalbuittin und 0,2 mg/ml Natriumazid) werden
125
40 μΐ eines / jy-Somafcostatin-"Cocktails" und 20 μΐ einer 1000-fachen Verdünnung von Kaninchenantisomatostatinimmunserum S39 (VaIe et al·,. Metabolism 25, 1491 (1976) ) in PBSA zugegeben.
125
Der / JZ-Somatostatin-Cocktail enthält je Milliliter PBSA-Puffer 250 μg normales Kaninchen-gamma-Globulin (Antibodies, Inc.), 1500 Einheiten Proteaseinhibitor ("Trasylol", Calbio-
125 11 ehem.) und ca.. 100 000 Zählungen _/ J/Tyr -Somatostatin.
Nach wenigstens 16 Stunden bei Zimmertemperatur werden 0,333 ml Ziegen-Antikaninchen-gaiama-Globulin (Antibodies, Inc., P=O,03) in PBSA-Puffer zu den Proberöhrchen gegeben. Die Mischung wird
2 Stunden bei 37 °C inkubiert, auf 5 0C abgekühlt und dann bei 10 000 χ g 5 Minuten zentrifugiert. Die überstehende Flüssigkeit
.· . -. - 33 -. 4£ *$'%$ ^ '9'-W. ; '
wird entfernt, und das Korn wird in einem gamma-Zähler gezählt. Mit der verwendeten Menge an Antiserura werden 20 % der Zählungen ohne unmarkiertes konkurrierendes Somatostatin gefällt. Der Hintergrund mit unendlichem Somatostatin (200 ng) macht gewöhnlich 3 % aus. Die Hälfte der maximalen Konkurrenz wird mit 10 ρ Somatostatin erhalten. Vorversuche mit Extrakten von E.. coli Stamm RRl (Empfängerstamm) ergaben, daß weniger als 10 pg Somatostatin in Gegenwart von 16 μg oder mehr bromcyanbehandeltem bakteriellen Protein ohne weiteres erkennbar sind. Mehr als 2 μg Protein aus mit Ameisensäure behandelten bakteriellen Extrakten wirken sich durch Verstärkung des Hintergrunds etwas störend aus, aber diese Störung wird durch Bromcyanspaltung weitgehend kompensiert. Rekonstruktionsversuche zeigen, daß Somatostatin in mit Bromcyan behandelten Extrakten stabil ist. ' . . ... . .. . . . . ' ' '. ' . '
A· Konkurrenz durch bakterielle Extrakte
Die Stämme E. coli RRl (pSOMU-5) und E. coli RRl (pS0M11~4) werden in Luria-Brühe bei 37 0C bis 5 χ ίθ Zelien/ml gezüchtet Nach Zugabe von IPTG bis auf 1 mm wird die Züchtung noch 2 Stun den fortgesetzt. Aliquote Anteile von je 1 ml werden in einer Eppendorf-Zentrifuge einige Sekunden zentrifugiert, und die Körner werden in 500 μΐ 70-prozentiger Ameisensäure, die 5 mg/ml Bromcyan enthält, suspendiert. Nach etwa 24 Stunden bei Zimmertemperatur werden die aliquoten Anteile mit Wasser auf das 10-fache verdünnt, und die in Figur 6 angegebenen Volumina werden dreimal auf Somatostatin geprüft. Ih Figur 6 bedeutet "B/B " das Verhältnis von in Gegenwart
125
der Probe gebundenem /_ J/-Somastostatin zu dem in Abwesenheit von konkurrierendem Somatostatin gebundenem. Jeder Punkt entspricht dem Durchschnitt von drei Rohren. Der Proteingehalt der unverdünnten Proben wird mit 2,2 mg/ml für E. coli RRl (pS0M1.1-5) und mit 1,5 mg/ml für E. coli RRl (pSOM-4) bestimmt.
B. Das Auslesen von pSOMI1-Clonen auf Somatostatin
Wie oben in Verbindung mit Figur 6 beschrieben werden mit Bromcyan behandelte Extrakte von 11 Clonen (p.SOM11.-2, pSOMH-3, etc.) hergestellt.. Dreimal 30.Mikroliter jedes . Extrakts werden zur Radioimmunprüfung entnommen, deren Ergebnisse in Figur 7 earscheinen. Der Bereich der Prüfpunkte ist angegeben. Die Werte für picogramm Somatostatin sind von einer Standardkurve abgelesen, dieals Teil des gleichen Versuchs erhalten wurde.
Die oben angegebenen Ergebnisse der Radioimmunprüfung können folgendermaßen zusammeugefaßt werden: Im Gegensatz zu den Ergebnissen der Versuche mit pSOMI zeigen vier Clone (pSOMH-3, 11-5, 11-6 und 11-7) otaae weiteres nachweisbare Somatostatinradioimmunaktivität (Figuren 6 und 7). Restriktionsfragmentanalyse ergibt, daß pSQMH-3, pSOMH-5, pS0M11-6 und pS0Mi1-7 die gewünschte Orientierung des. lac-Operon aufweisen, wohingegen pS0M11~2 und 11-4 die entgegengesetzte Orientierung zeigen. Es besteht somit eine einwandfreie Beziehung zwischen der richtigen Orientierung des lac-Operon und der Erzeugung von Somatostatin-Radioimmunaktivität,. .
C. Wirkungen von IPTG-Isduktion und CNBr-Spaltung auf positive und negative Clone
Die Ausgestaltung des Sömatostatxnplasmids läßt darauf schließen, daß die Synthese von Sosaatostatin unter der Kontrolle des lac-Operon steht. Das lac-Repressorgen ist nicht in dem Plasmid enthalten, und der. Empfänger- oder Rezipientenstamm (E. coli RRl) enthält das Wildtyp-Chromosomen-lac-Repressorgen, das nur 10 bis 20 Repressormolelcüle je Zelle (15) erzeugt. Die Anzahl der Plasmidkopien (und damit die Anzahl an lac-Operatoren) beläuft sich auf etwa 20 bis 30 pro Zelle, so 'daß eine vollständige Repression unmöglich ist. Wie aus der folgenden Tabelle III hervorgeht, wird die Aktivität von Somatostatin in E. coii RRl
(pSOMII-3) durch IPTG, einem Induktor des lac-Operons, erhöht. Wie erwartet ist der Grad der Induktion gering und liegt zwischi dem 2,4- bis 7-fachen. Im Versuch 7 (Tabelle III) wirdC^-Aktivi ein Maß der ersten 92 Aminosäuren von ß-Galacto.sidase gleichfal um einen Faktor von 2 induziert. In mehreren Versuchen kann eine nachweisbare Somatostatinradioimmunaktivität vor der Bromcyänspaltung des gesamten cellularen Proteins nicht festgestellt werden. Da das bei der Radioimraunprüfung verwendete Antiserum S 39 ein freies N-terminales Alanin erfordert, ist vor der Bromcyanspaltung eine Aktivität nicht zu erwarten.
' . ./...... .. - .36 - ^, w w & 9 ^. ;
T a b e 1 1 e III
Somatostatinradioimmunaktivität·
Abkürzungen:
LB = Luriabrühe
IPTG = Isopropylthiogalactosid ·
CNBr = Bromcyan -
SS = Somatostatin
Protein wird nach der Methode von Bradford, Anal. Biochem. 72, 248 (1976) bestimmt.
IPTG CNBr
Versuch Stamm Medium 1 mmolar 5 mg/ml pg SS/μg Protein
+ 12
+. ; < Ov4
+ 15
+ 12
+ 61
< 0,1
+ 71
+ 62
+ 250
+ 320
+ 24
+ 10
*Vogel-Bonner-Mxnimalmedium plus Glycerin
1 11-2 LB +
11-3 LB +
11-4 LB +
11 -5 LB +
2 11-3 LB +
11-3 LB +
3 11-3 LB +
11-3 LB
11-3 LB +
4 11-3 LB +
11-3 VB + Glycerin*+
5 11-3 LB + Glycerin +
6 11-3 LB +
11-2 LB +
7 11-3 LB +
11-3 LB
D. Gelfiltration von mit. Broirtcyan behandelten Extrakten
Mit Ameisensäure und Bromcyan behandelte Extrakte der positiven Clone (pSOM 11-3, 11-5, 11-6 und 11-7) werden vereinigt, (Gesamtvolumen 250 μΐ), getrocknet'und in 0,1 ml 50-prozentiger Essigsäure wieder suspendiert. Nach Zugabe von / H/Leucin wird die Probe auf eine 0,7 χ 47 cm-Säule aus Sephadex G-50 in 50-prozentiger Essigsäure aufgebracht. Aliquote Anteile von jeweils 50 Mikroliter der Kolonnenfraktionen werden auf Somatostatin geprüft. Vereinigte negative Clonextrakte (11-2, 11-4 und 11-11) werden genauso behandelt. Die Ergebnisse sind der Figur 8 zu entnehmen. Auf der gleichen Säule wird bekanntes Somatostatine (Beckman Corp.) wie angegeben (SS) eluiert. In diesem System wird Somatostatin von ausgeschlossenen großen Peptiden und vollständig eingeschlossenen kleinen Molekülen gut getrennt. Nur Extrakte von für Somatostatin positiven C.Ionen zeigen Radioimmunaktivität in den Säulenfraktionen, und diese Aktivität wird in der gleichen Position wie chemisch synthetisiertes Somatostatin eluiert.
Zusammenfassung der Aktivitätsinformation ,
Die Daten für den Beweis der Synthese eines Polypeptide mit der Somatostatinaminosäuresequenz sind wie folgt zusammenzufassen:
(1) Somatostatinradioimmunaktivität liegt vor in E. coli-· Zellen mit dem Plasmid pS0M11-3, das ein Somatostatingen mit erwiesener richtiger Sequenz enthält und die richtige Orientierung des lac-EcoRI--DNA-Fragments hat. Zellen mit dem verwandten Plasmid pS0Mi1-2, das das gleiche Somatostatingen enthält, aber eine entgegengesetzte Orientierung des lac-EcoRI-Fragments hat,, erzeugen keine nachweisbare Somatostatinaktivität.
(2) Wie aufgrund des Gesaltungsschemas vorherzusehen, ist bis zur Bromcyanbehandlung des Zellextrakts eine nachweisbare Somtostatinradioimmunaktivität nicht zu beobachten. :
(3) Die Somatostatioaktivität steht unter der Kontrolle des lac-Operons, was durch Induktion durch IPTG, einen Induktor des lac-Operons, nachgewiesen:wird... - .
(4) Die Somatostatimaktivität ergibt auf Sephadex G-50 ein gemeinsames Chromatograxrai mit bekanntem Somatostatin.
(5) Die DNA-Sequenz des geclonten Somatostatingens ist richtig. Wenn die Translation nicht in Phase ist, wird ein Peptid gebildet, das sich in jeder Stellung von Somatostatin unterscheidet. Es wird eine Radioimmunaktivität festgestellt, die anzeigt, daß ein dem Somatostatin nahestehendes Peptid gebil-' det worden ist, und die Translation muß in Phase sein. Da Translation in Phase erfolgt,- bestimmt der genetische Code, daß ein Peptid mit der genauen Sequenz von Somatostatin gebildet wird.
(6) Schließlich inhibieren die obigen Proben von E. coli RRl(pSOM11-3)-Extrakt die Freisetzung von Wachstumshormon aus Hypophysenzellen von Ratten, wohingegen parallel und mit identischer Proteinkonzentration hergestellte Proben von E. coli RRl(pS0M11-2) keine Wirkung auf Wachstumshormonfreisetzung ausüben.
Stabilität, Ausbeute und Reinigung von Somatostatin
Die Stämme mit dem EcoRI-lac-Qperon-Fragment (pSOMi1-2, pSOMII-3, etc.) trennen sich hinsichtlich des Plasmidphänotyps. Beispielsweise ist nach etwa 15 Generationen etwa die Hälfte der E. coli RRl (pSOMH-3)-Kultur für ß-Galactosidase verantwortlich, d. h. weist den lac-Operator aaf, und etwa die Hälfte hiervon ist ampicillinresistent. Für Somatostatin positive (pSOM11-3) und negative (pS0M11-2) Stämme sind unbeständig, und deshalb rührt der Wachstumsnachteil .vermutlich von 'der Überproduktion der großen aber unvollständigen und inaktiven Galactosidase her. Die Ausbeute
an Somatostatin schwankt von 0,001 bis 0,03 % des gesamten cellularen Proteins (Tabelle I), vermutlich infolge der Selektic von KuTturzellen mit Plasmiden mit einem fehlenden lac-Bereich. Die höchsten Ausbeuten an Somatostatin werden mit Präparaten erzielt, bei deren Herstellung das Wachstum von einer einzigen ampicillinresistenten richtunggebenden oder konstitutiven Kolonie ausgegangen ist. Selbst'in diesen Fällen haben 30 % der Zellen bei der Gewinnung oder Ernte Verluste an lac-Bereichen. Lagerung in gefrorenem Zutand (Lyophilisierung) und Wachstum bis zur Gewinnung aus einer einzigen derartigen Kolonie ist daher für das beschriebene System angezeigt.-Ausbeuten können beispielsweise durch Verwendung von Bakterienstämmen erhöht .werden, die ,lac-Repressor überproduzieren, so daß eine Expression von Vorlauferprotein vor Induktion und Ernte praktisch völlig unterdrückt wird. Wie bereits erörtert, kann aber auch ein Tryptophan- oder anderes Operatorpromotersystem angewandt . werden, das gewöhnlieh vollständig unterdrückt ist.
In dem rohen Extrakt, der beim Aufbrechen der Zellen in zum Beispiel einer Eaton-Presse erhalten wird/ ist das ß-Galactosidase-Somatostatinvorläuferprotein unlöslich und findet sich in dem Korn der ersten Zentrifugierung mit geringer Geschwindigkeii Die Aktivität kann in 70-prozentiger Ameisensäure, 6m Guanidinii hydrochlorid oder 2-prozentigem Natriumdodecylsulfat gelöst werden. Vorzugsweise wird jedoch der Rohextrakt aus der Eaton-Presse mit 8m Harnstoff extrahiert und der Rückstand mit Bromcyan gespalten. Bei den anfänglichen Versuchen ist Somatostatinaktivität aus E. coli Stamm RRl (pSOM 11-3) durch Aikoholextraktion des gespaltenen Produkts und Chromatographie an Sephadex G-50 in 50-prozentiger Essigsäure etwa 100-fach angereichert worden. Wird das Produkt erneut an Sephadex G-50 chromatographiert und dann einer Hochdruckflüssigchromatographie unterworfen/kann praktisch reines Somatostatin erhalten Werden.
II. Humaninsulin
Die oben beschriebenen Arbeitsweisen werden als nächstes auf \ die Erzeugung von Humaninsulin angewandt. So werden die Gene für die Insulin B Kette (104 Basenpaare) und für die Insulin A Kette (77 Basenpaare) aus der Aminosäuresequenz der Humanpolypeptide jeweils mit einzelsträngigen Kohäsivtermini für die : y, EcoRI- und BamHI-Restriktionsendonuclease -und jeweils für die getrennte Einführung in pBR322-Plasmide bestimmt, ge- : staltet. Die synthetischen Fragmente, Deca- bis Pentadecarmcleotide, werden durch die Blockphosphotr ie sterinethode unter Verwendung von Trinucleotiden als Baublöcke synthetisiert und schließlich mit einer Hochleistungsflüssigchromatographie (HPLC) gereinigt. Die synthetischen Gene für Humaninsulin A- und B-Ketten werden dann getrennt in Plasmid pBR322 zur ClOnbildung gebracht. Die synthetischen Gene werden dann in Clonform an E. coli-ß-Galactosidasegen wie oben angelagert, wodurch eine wirksame Transkription und Translation und ein stabiles Vorläuferprotein erhalten wird. Insulinpeptide werden vom ß-Galactosidasevorläufer gespalten, durch Radioimmunprüfung nachgewiesen und gereinigt. Insulinradioimmunprüfungsaktivität wird dann durch Vermischen der E. coli-Produkte erzeugt..
1. Ausgestaltung und Synthese von.Humaninsulingenen
Die für Humaninsulin aufgebauten Gene sind in Figur 9 dargestellt. Die Gene für Humaninsulin, B-Kette und Α-Kette, werden aus der Aminosäuresequenz von Humanpölypeptiden gestaltet. Die 5*-Enden jedes Gens haben einsträngige kohäsive Termini für die EcoRI- und BamHI-Restriktionsendonuclease für die richtige Einfügung jedes Gens in das Plasmid pBR322. In die Mitte des B-Ket- -ten-Gens für die Aminosäuresequenz Glu-Ala wird eine HindiII-Endonuclease-Erkennungsstelle eingebaut, um Verbreitung und Nachweis jeder Hälfte des Gens gesondert vor dem Aufbau des gesamten B-Kettengens zu ermöglichen. Die B-Ketten- und A-Ketten-Gene werden so gestaltet, daß sie ;:cr„.---^'^lea
Oligodesoxyribonucleotiden, vom Decameren bis zu den: Pentadecanieren, aufgebaut werden. Jeder Pfeil bezeichnet das Fragment, das durch die verbesserte- Phosphotriestermethode synthetisiert wird, Hi bis Ηδ und B1 bis Bi2 für das B-Kettengen und AT bis A11 für das A-Kettengen.
Λ 2. Chemische Synthese von Oligodesoxyribonucleotiden
Die für die Synthese von Oligodesoxyribonucleotiden angewandten Materialien und Methoden sind im Wesentlichen die in Itakura, K. et al (1975); J. Biol. >Chem. 250, 4592 und Itakura, K. et al (1975) J. Amer. Chem. Soc. 97, 7327 beschriebenen, mit Ausnah-. ine der folgenden Modifikationen: .
a) ; Die vollständig geschützten Mononucleotide 5'-O-Dimethoj trityl~3'-p-chlorphenyl-ß-oyanethyl-phosphate werden aus den Nucleosidderivaten unter Verwendung des monofunktionellen Phosphorylierungsmittels p-Ghlorphenyl-ß-cyanethyl-phosphorochloExdat (1,5 Moläquivalente) in Acetonitril in Gegenwart von
I -Metliylimidäzol, Van Boom, J.. H. et al. (1975) Tetrahedron 31 ·, 2953, synthetisiert. Die Produkte werden in großem Maßstab (100 bis 300 g)durch präpärative Flüssigchromatographie (Prep 500 LC, Waters Associates) isoliert.
b) Unter Anwendung der Lösungsmittelextraktionsmethode /Hirose, T. et al (1978) Tetrahedron Letters, 2449;/ werden 32 bifunktionelle Trimere (vergleiche Tabelle IV) in einem Maßstab von 5 bis 10 mm und 13 Trimere, 3 Tetramere und 4 DiBaere als 3'-Terminusblöcke In einem Maßstab von 1 mf-lol synthetisiert. Die Homogenität der vollständig geschützten Trimeren wird durch Dünnschichtchromatographie auf Kieselgel in zweiüMethanol/Chloroform-Lösungsmittelsvstemen: ' Lösungsmittel a 5 % Vol.'/Vol. ..und Lösungsmittel b 10 % Vol./Vol. (vgl. Tabelle IV) kontrolliert. Ausgehend von diesen verschiedenen Verbindungen werden 29 pligodesoxyribonucleotide mit aeFlp*"r~~-~"-->>te^ucri^ synthetisiert, 18 für das B-Ketten- und
I1 für das A-Kett'en~w;r~;~
Als Grundeinheiten für den Aufbau von Polynucleotiden werden zwei Arten von Trimerhlöcken, d. h. die bifunktionellen Trimerblöcke von Tabelle ϊ¥ und entsprechende an der 3'-Hydroxygruppe durch eine Anisoylgruppe geschützte 3'-T.erminus-Trimere verwendet. Das bifunktionelle Trimere wird mit einer Mischung aus Pyridiri, Triethylamin und Wasser.(3 : 1 : 1, Vol./Vol.) zu der entsprechenden 3*-Phosphodiesterkomponente und mit· 2 % Benzolsulfonsäure zu der entsprechenden 5'-Hydroxykomponesite hydrolysiert. Der bereits erwähnte 3'-Terminus-Block wird mit 2-prozentiger Benzolsulfonsäure behandelt, wodurch die entsprechende 5'-Hydroxylverbindung gebildet wird. Die Kupplungsreaktion eines Überschusses des 3'-Phosphodiestertrimeren (1,5 Moläquivalente) mit der 5'-Hydroxylkomponente (1 Moläquivalent) in Gegenwart von 2,4,6-Triisopropylbenzolsulfonyltetrazolid (TPSTe, 3 bis 4 Äquivalente) ist nach drei Stunden nahezu vollständig abgelaufen. Zur Entfernung des Überschusses des 31-Phosphodiesterblocks wird das Reaktionsgemisch durch eine kurze Kiesigelsäule auf einem Sinterglasfilter geleitet. Die Säule wird zuerst mit CHCl-, zvm Eluieren einiger Nebenprodukte und des Kupplungsreagens und dann mit CHCl^rMeOH (95:5 Vol./Vol.), worin nahezu das gesamte, vollständig geschützte Oligomere eluxert wird, gewaschen. Unter diesen Bedingungen bleibt der eingesetzte 3'-Phosphodiesterblock-Reaktionsteilnehmer in der Säule. In entsprechender Weise werden Blockkupplungen wiederholt, bis die gewünschte Länge aufgebaut ist.
Tabelle IV Synthese von Trimerbaublöcken
Verbin Ausbeute ** a. Rf !Reinheit*** (%) ··.· zugegen in .
Nr. dung* 0,15 - b. 93 (siehe Fig. 9)
IV ; MG 47 0.25 0.40 95 Βδ,Βδ
2. AAT - 49 0.28 0T52 93 .Η1,.Α1,Α6;
3. AAC ' 52. G-27 .0.55 : 91 Ε5/Β6ΛΑ2/Α8. ·
4.. ACT 43 . 0,33 0T53 9 δ Β4ΓΒ5ΥΑ5
5. ACC 56 0,18 0,60 90 Β7 :
6. ACG 39 O7IO 0,45 89 Η5,Β7
7. AGG 45- · 0,14 0T26 96 Η6/Η7,Β9
8. AGT 33. 0,19 0,40 92 Β9/Α2/Α11
9. AGC 50 0,24 " 0 48 91 Η8,Β1,Α5,Α10
10. AGA 48 0,26 0150 95 Α9,
11. TTC 44 0.11 0,52 94 Β4,Β7,Α3
12. TTC 49 0.24 0,31 96 Η3/Η5/Α2,Α3,Α5
13 .v TCT 58 0.28 0,49 92 ' A4
14. TCA 45 G'12 0,53 91 Hl,Ή2,Η4,Al
15. TCG 39 0,10 0,34 87 Α2. '
16. TGG 32 0,18 0,28 93 HS-Al7AlQ
17. TGC-: 51 0,12 0,47 94 Η6/Β2,Α4ΓΑ7/Α8
18. -'--TGA 46 0,22 0,37 90 Η7 ,
19 . TAG 61 0,17 0,50 95 Β4,Α11 " ·
20, TAA ' . 55 0,30 0,44 97 Β5,Α1Ο
21. CCT 53 0,25 0,55 92 Η3,Η4,Β1Ο
22. CAC 47 0,25 0,51 93 A3
23. CAA 58 0,28 0,51 92 Η2,Η6,Κ8,Α7 '
24. CTT 41 • 0,27 0,54 93 82,39^^4
25. CGA 40 0,25 0.52 89 Α7
26. CGT 75 0,09 0,50 90 Ε2,Η4,Β3,Β1
27. GGT , 35 0.18 0,26 93 Β3
28. . ν GTT .46. 0;25 0,45 95 \ Β2 :·
29. GTA. 38 0,15 0,50 88 Βδ,Βδ,Αβ
30. GAA 39 0,22 0-39 89 Ε7,Β3,38,Α5
31. GAT 52 0,14 0,49 93 BIO,A9
32. GCA 42 0,39- A3
* vollständig geschützte Tridesoxynucleotide; 5-0 9-Dimethoxytrityl-3'-p-chlorphenyl-ß-cyanethylphosphpat
** Gesamtausbeute, bezogen auf die 5'-Hydroxylmonomeren *** Aufgrund der HPLC-Analyse ; ν
Während der Oligonucleo/tidsynthese wird ausgiebig von der . Hochleistungsflüssigchroinatographie (HPLG) Gebrauch gemacht, und zwar für die Analyse von a) jedem Trimer- und Tetramerblock, b) den als Zwiscfeenprodukte auftretenden Fragmenten (Hexamere, Nonamere und Decamere)', c) der letzten Kupplungsreaktiön und d) zur Reinigung der Endprodukte. Für die HPLC wird ein Spectra-Physics 35QOB Flüssgchromatograph verwendet. Nach Entfernung aller Schutzgruppen mit konzentriertem NH.OH bei 5O 0C (6 Stunden) und 80-prozentiger Essigsäure bei Zimmertemperatur (15 Minuten) werden die Verbindungen an einer. Permaphase AAX (DuPont) /Van Boom, J. et al (1977) J. Chromatography 131, 16_9_/ Säule (1m .2 mm) unter Anwendung eines linearen Gradienten des Lösungsmittels B (0,05m KH„PO4 - 1,0m KCl, pH 4,5) in Lösungsmittel A (0,01m KH3PO4, pH 4,5) analysiert. Der Gradient verläuft folgendermaßen: Es wird mit Puffer A begonnen, und dann werden 3 % Puffer B in der Minute angewandt. Die Elution wird bei 60 0C mit einer Strömungsgeschwindigkeit von 2 Ml/Minute durchgeführt. Auch die Reinigung der 29 End-Oligomicleotide wird an Permaphase AAX unter den gleichen oben angegebenen Bedingungen durchgeführt. Die Materialien mit dem gewünschten Peak werden vereinigt, durch Dialyse .entsalzt und lyophilisiert. Nach Markieren der 5'-Termini
32
mit (gamma- P)ATP unter Verwendung von T4-Polynucleotidkinase wird die Homogenität jedes Oligonucleotids durch Elektrophorese auf einem 20-prozentigen Polyacrylarnidgel kontrolliert.
3. Anordnung und Clonbildung von B-Kettengen und A-Ketten-Gen
Das Gen für die B-Kette von Insulin weist eine EcoRI-Restriktionsstelle am linken Ende, eine Hindlll-Stelle in der Mitte und eine BamHI-Stelle am rechten Ende auf. Dadurch ist es möglich, beide Hälften, die linke EcoRI-Hindlll-Hälfte (BH) und die rechte Hindlll-BamHI-Hälfte (BB), in dem gut geeigneten Clonbildungsträger pBR322 getrennt zu clonen und nach Feststellung ihrer Sequenzen zu dem vollständigen B-Gen zu verbinden (Figur 10). Die BB-Hälfte wird durch Verknüpfen aus 10 Oligodesoxyribonucleotiden, in Figur 9 mit B1 bis.B10 bezeichnet f-
zusammengestellt, die durch chemische Phosphotriestersynthese gebildet würden. B1 und B10 sind nicht phosphoryliert, wodurch eine unerwünschte Polymerisation dieser Fragmente über ihre Cohäsivenden (Hindlll und BamHI) vermieden wird. Nach Reinigung durch präparative Acrylamidgelelektrophorese und Elution der größten DNA-Bande wird das BB-Fragment .in das mit Hindlll und BamHI gespaltene Plasmid pBR322 eingefügt. Etwa 50 % der von der DNA stammenden ampicillinresistenten Kolonien sind tetracyclinempfindlich, was zeigt, daß ein Nichtplasmid-Hindlll-BamHI-Fragment eingeführt worden ist. Die kleinen Hindlll-BamHI-Fragmente aus vier dieser Kolonien (pBB101 bis pBB104) erweisen sich bei der Sequenzprüfung als richtig gestaltet.
Das BH-Fragment wird in entsprechender Weise hergestellt und in mit EcoRI- und Hindlll-Restriktionsendonuclea'se gespaltenes pBR322 eingefügt. Plasmide aus drei ampicillinresistenten, tetracyclinempfindlichen Transformanten (pBHI bis pBH3) v^erden analysiert.' Dabei wird festgestellt, daß die kleinen EcoRI-Hindlll-Fragmente die erwartete Nucleotidseguenz aufweisen.
Das A-Kettengen wird aus drei Teilen zusammengestellt. Die vier linken, vier mittleren und vier rechten Oligonucleotide (vergleiche Figur 9)' werden gesondert verknüpft, dann vermischt und- verknüpft (die OligonucieÖtide Ai und Al 2 sind unphosphoryliert). Das zusammengestellte A-Kettengen wird phosphoryliert, durch Gelelektrophorese gereinigt und in pBR322 an den EcoRI-BamHI-Stellen geclont. Die EcoRI-BamHI-Fragmente von zwei ampicillinresistenten, tetracyclinempfindlichen Clonen (pAiO, pÄl1) enthalten die angestrebte A-Gensequenz. , · . . '
4 · ' Aufbau: Von -Pläsmiden' zur' Expression von A- und B-Insulingenen
Figur 10 zeigt den Aufbau des lac-Insulin B Plasmids (pIB1). Die Plasmide pBHi und PBB1O1 werden mit EcoRI- und Hindlll-Endonuclease aufgeschlosen. Das kleine BH-Fragment von pBH1 und das große Fragment von pBBi01 (enthaltend das BB-Fragment und den größten Teil von-pBR322) v/erden durch Gelelektrophorese gereinigt, vermischt und in Gegenwart von mit EcoRI gespaltenen A- plac verknüpft. Das Megadalton-EcoRI-Fragment von/l_ plac enthält den lac-Regelbereich und den größte.! Te.il des ß-Galactosidase-Strukturgens. Die Konfiguration der Restriktionsstellen gewährleistet die richtige Verbindung von BH an BB. Das lac-EcoRI-Fragment kann sich in zwei Orientierungen einfügen; deshalb hat nur eine Hälfte der nach Transformation erhaltenen Clone die angestrebte •Orientierung. Die Orientierung von 10 ampicillinresistenten · ß-Galactosidase bildenden Clonen wird durch Restriktionsanalyse kontrolliert. Fünf dieser Kolonien enthalten die gesamte B-Gensequenz und den richtigen Leserahmen aus dem ß-Galactosidasegen in das B-Kettengen. Eine Kolonie, pIBi, wird für anschließende Versuche ausgewählt.
Bei einem vergleichbaren Versuch wird das 4,4-Megadalton-
-x 5
lac-Fragment -A. plac an der EcoRI-Stelle in das pA11- . Plasmid eingeführt, wodurch pIA1 erhalten wird. Letzteres erweist sich als mit pIB1 identisch mit der Ausnahme, daß das B-Gen-Fragmerit durch das A-Gen-Fragment ersetzt ist. Die DNA-Sequenzanalyse zeigt, daß die korrekten A- und B-Kettengensequenzen in pIA1 bzw. pIB1 erhalten geblieben sind.
5·.' Expression
Die Stämme mit den in richtiger Weise an ß-Galactosidase ' . gebundenen Isulingenen erzeugen beide große Mengen eines Proteins mit der Größe von ß-Galactosidase. Etwa 20 % des
gesamten Zellproteins bestehen aus diesem ß-Galactösidase-Insulin A- oder B-Ketten-Hybrid. Die Hybridproteine sind unlöslich und finden sich in dem ersten· bei geringer Geschwindigkeit erhaltenen Korn, worin sie etwa 50 % des Proteins ausmachen.
Zum Kachweis der Expression der Insulin^A- und -B-Ketten wird · eine Radioimmunprüfung (RIA) angewandt, die auf der Bildung von vollständigem Insulin aus den gesonderten Ketten beruht. Die Insulinbildungsmaßnahmen von Katsoyannis et al (1967) Biöche mistry,: 6> 2642-2655, ergeben, angepaßt, an ein Prüfvolumen von 27 Mikroliter, eine sehr gut geeignete Prüfung. Nach Vermischen und Bildung von S-sulfonierteri Derivaten der Insulinketten wird ohne weiteres nachweisbare Insulinaktivität erhalten. Die getrennten S-sulfonierten Ketten von Insulin reagieren nach Reduktion und Oxidation nicht merklich mit dem verwendeten Antiinsulin-Antikörper.
Für die Insulinbildungsprüfung wird das ß-Galactosidase-A- oder B-kefcten-Hybridprotein teilweise gereinigt, mit Bromcyan gespalten und in S-sulfonierte Derivate übergeführt. .
Der Nachweis dafür, daß die richtige Expression von chemisch synthetisierten Genen für Humaninsulin erzielt worden ist, kann folgendermaßen zusammengefaßt'werden: ·
a) Radioimmunaktivität ist für beide Ketten nachgewiesen worden.
b) Die nach Clonbildung und Plasmidäufbau erhaltenen DNA-Sequehsen sind direkt "als der Gesaltung entsprechend nachgewiesen worden. Da Radioimmunaktivität erhalten .wird, muß die Translation in Phase sein. Der genetische Code bestimmt daher, dai Peptide mit der Sequenz von Humaninsulin erzeugt werden.
c) Nach der Bromcyanspaltung verhalten sich die E. coli-Produkte \ in drei verschiedenen chromatographischen Systemen, bei denen die Trennung auf verschiedenen Prinzipien beruht (-Gelfiltration, Ionenaustausch und Umkehrphasen-HPLC) ..als Insulinketten.
d) Die von E. coli erzeugte Α-Kette ist durch HPLC in einem kleinen Maßstab gereinigt worden und hat die richtige Aminosäurezusammensetzt.

Claims (8)

  1. Bif indungsänspriicg
    1. Verfahren zur Herstellung eines Strukturgens, das den: Code für. die mikrobielle Expression eines Polypeptids liefert, durch Herstellung und Zusammenstellung .einer Reihe von Oligodesoxyribonucleotidfragmenten,
    (a) eine erste Reihe von Oligodesoxyribonucleotidfragmenten, die nach Verbinden in der richtigen Reihenfolge eine DNA mit einem Codierstrang für die Aminosäuresequenz des Polypeptids ergibt, und
    (b) eine zweite Reihe von Oligodesoxyribonucleotidfragmenten, die nach Verbinden in der richtigen Reihenfolge einen DNA-Strang ergeben, der zu dem Codierstrang komplementär ist, hergestellt,
    (c) Wasserstoffbindung zwischen zueinander komplementären Stellen der Fragmente der ersten und der zweiten Reihe unter Bildung einer doppelsträngigen Struktur ausgebildet wird'und
    (d) die 'jeweiligen Stränge durch Verknüpfung vervollständigt werden, d ad ure h gekennzeichnet, daß
    (1) das gebildete Gen den Code für die Expression eines Säugerpolypeptids liefert,
    (2) die Codone in dem Codierstrang wenigstens zum überwiegenden Teil solche für die Expression von mikrobiellen Genomen bevorzugte sind und
    (3) den in Stufe (c) verbundenen Fragmenten untereinander Komplementerität mangelt mit Ausnahme von in dem Strukturgen aneinanderangrenzenden. Fragmenten. . - ·
    153/244
    .- 50 -1
  2. 2. Verfahren nach Punkt 1, da du r c h gekennzeichnet , daß Fragmente verwendet werden, bei deren Verwendung dem Codierstrang des Strukturgens das Codon ATG unmittelbar vorausgeht und ein oder mehrere Be^- endigungscodone unmittelbar folgen-.
  3. 3. Verfahren nach Punkt 2, d a d u r c h gekennzeichnet , daß die verwendeten Fragmente das gebildete Gen mit Cohäsivtermini mit einem der beiden Stränge einer Restriktionsendonucleasen-Erkennungsstelle ver* sehen.
  4. 4. Verfahren nach . Punkt 3, d a d u r c h g e — k e η η zeichnet, daß das gebildete Gen den Code für ein Hormon oder ein Zwischenprodukt dafür als Polypeptid liefert. . ' .
  5. 5. Verfahren nach Punkt 4, dadurch gek e η η ζ ei c h net , daß das Polypeptid Somatostatin ist und die Codone für die Aminosäuren von Somatostatin folgendermaßen ausgewählt werden: ... ;
  6. 6. Verfahren nach Punkt 4, d ä d u r c h g e ken η ζ e i c h η e t, daß das gebildete Gen den Code für Humanvorproinsulin, Humanproinsulin/ die Ä-Kette von Humaninsulin, die B-Kette von Humaninsulin, Human- oder Rinderwachstumshormon, luteinisierendes Hormon, ACTH oder Pancreaspolypeptid liefert. . .
  7. 7. Verfahren nach Punkt 3, d a d u r c h g e k e η η ζ e ich η e t , daß· die entgegengesetzten Termini des gebildeten Gens einen der zwei Stränge verschiedener Restriktionsendonucleasen-Erkennungsstellen aufweisen.
  8. 8. Verfahren nach Punkt 3 oder 4, d a durch g e k e η η ζ e i c h η e t , daß die verwendeten Fragmente jeweils etwa 11 bis 16 Nucleotide aufweisen.
DD78208916A 1977-11-08 1978-11-07 Verfahren zur herstellung von synthetischen strukturgenen DD144560A5 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84969177A 1977-11-08 1977-11-08

Publications (1)

Publication Number Publication Date
DD144560A5 true DD144560A5 (de) 1980-10-22

Family

ID=25306287

Family Applications (1)

Application Number Title Priority Date Filing Date
DD78208916A DD144560A5 (de) 1977-11-08 1978-11-07 Verfahren zur herstellung von synthetischen strukturgenen

Country Status (30)

Country Link
EP (1) EP0001931A3 (de)
JP (1) JPS5492696A (de)
AT (1) AT373281B (de)
BG (1) BG38167A3 (de)
CA (1) CA1201668A (de)
CH (1) CH655935B (de)
CZ (1) CZ280822B6 (de)
DD (1) DD144560A5 (de)
DE (1) DE2848051A1 (de)
DK (1) DK493978A (de)
ES (1) ES474851A1 (de)
FI (1) FI783367A (de)
GB (1) GB2007675B (de)
GR (1) GR71687B (de)
HK (1) HK87084A (de)
IE (1) IE47889B1 (de)
IL (1) IL55891A (de)
IT (1) IT1100473B (de)
KE (1) KE3448A (de)
MY (1) MY8500761A (de)
NL (1) NL7811040A (de)
NO (1) NO783724L (de)
NZ (1) NZ188838A (de)
PH (1) PH21157A (de)
PL (1) PL210785A1 (de)
PT (1) PT68757A (de)
SE (1) SE7811460L (de)
SK (1) SK278170B6 (de)
YU (2) YU257078A (de)
ZA (1) ZA786306B (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA782933B (en) * 1977-09-23 1979-05-30 Univ California Purification of nucleotide sequences suitable for expression in bacteria
US4565785A (en) * 1978-06-08 1986-01-21 The President And Fellows Of Harvard College Recombinant DNA molecule
US6270955B1 (en) 1978-12-22 2001-08-07 Biogen, Inc. Pharmaceutical compositions and methods for producing antibodies to hepatitis b virus and kits and methods for detecting antibodies to hepatitis b virus
US4342832A (en) * 1979-07-05 1982-08-03 Genentech, Inc. Method of constructing a replicable cloning vehicle having quasi-synthetic genes
GR70279B (de) * 1979-09-12 1982-09-03 Univ California
US6455275B1 (en) 1980-02-25 2002-09-24 The Trustees Of Columbia University In The City Of New York DNA construct for producing proteinaceous materials in eucaryotic cells
JPS56138154A (en) * 1980-02-28 1981-10-28 Genentech Inc Desacetylthymosin-alpha-1 and manufacture
EP0036258A3 (de) * 1980-03-14 1982-02-10 Cetus Corporation Verfahren zur Herstellung von Aspartam
CA1202581A (en) * 1980-03-27 1986-04-01 Saran A. Narang Adaptor molecules for dna and their application to synthesis of gene-derived products
JP2687995B2 (ja) 1980-04-03 1997-12-08 バイオゲン インコーポレイテッド Dna配列、組替えdna分子およびヒト繊維芽細胞インターフェロン様ポリペプチドの製造方法
IE53166B1 (en) * 1980-08-05 1988-08-03 Searle & Co Synthetic urogastrone gene,corresponding plasmid recombinants,transformed cells,production thereof and urogastrone expression
IE52122B1 (en) * 1980-08-25 1987-06-24 Univ California Somatostatin or somatostatin precursors
US5525484A (en) * 1981-01-16 1996-06-11 Genome Therapeutics Corp. Recombinant DNA means and method for producing rennin, prorenin and pre-prorennin
EP0062971B1 (de) * 1981-03-27 1990-03-07 Imperial Chemical Industries Plc Genetisch modifizierte Mikroorganismen
JPS58134998A (ja) * 1982-02-04 1983-08-11 Wakunaga Yakuhin Kk 27−デスアミドセクレチンの製造法
JPS57200343A (en) * 1981-06-02 1982-12-08 Wakunaga Yakuhin Kk 27-desamidosecretin and its preparation
EP0068375A3 (de) * 1981-06-22 1983-04-13 G.D. Searle & Co. Rekombinante DNS Technik zur Herstellung von Relaxin
JPS57202300A (en) * 1981-07-08 1982-12-11 Wakunaga Yakuhin Kk Synthesis of duplex polydeoxyribonucleoside
NZ201918A (en) * 1981-09-18 1987-04-30 Genentech Inc N-terminal methionyl analogues of bovine growth hormone
US5254463A (en) * 1981-09-18 1993-10-19 Genentech, Inc. Method for expression of bovine growth hormone
EP0090433A1 (de) * 1982-03-31 1983-10-05 Genetics Institute, Inc. Herstellung von modifizierten Proinsulin-Vorläufer codierenden DNA-Sequenzen
DE3381567D1 (de) * 1982-11-04 1990-06-21 Hoffmann La Roche Hestellung von rekombinanten wachstumsausloesenden faktoren.
US4673641A (en) * 1982-12-16 1987-06-16 Molecular Genetics Research And Development Limited Partnership Co-aggregate purification of proteins
SE8300693L (sv) * 1983-02-09 1984-08-10 Sven Lofdahl Sett att framstella och isolera proteiner och polypeptider samt en hybridvektor for detta
GB8308483D0 (en) * 1983-03-28 1983-05-05 Health Lab Service Board Secretion of gene products
JPS60501290A (ja) * 1983-05-19 1985-08-15 ユニリ−バ− ナ−ムロ−ゼ ベンノ−トシヤ−プ 酵母細胞に新しく導入した遺伝子の発現改良
GB8522977D0 (en) * 1985-09-17 1985-10-23 Fujisawa Pharmaceutical Co Production of insulin-like growth factor 1
DK108685A (da) * 1984-03-19 1985-09-20 Fujisawa Pharmaceutical Co Vaekstfaktor i
US5489529A (en) * 1984-07-19 1996-02-06 De Boer; Herman A. DNA for expression of bovine growth hormone
EP0181634A3 (de) * 1984-11-14 1987-09-09 Takeda Chemical Industries, Ltd. Synthetisches Gen für menschliches Lysozym
US4987070A (en) * 1987-03-04 1991-01-22 Suntory Limited Use of a 97 amino acid leader sequence from the E. coli B-galactosidase gene for the production of hanp and hptc as fusion proteins
JPH04500970A (ja) 1988-09-02 1992-02-20 ザ ロックフェラー ユニヴァーシティ マクロファージ由来炎症メディエーター (mip―2)
CA2003383A1 (en) * 1988-11-23 1990-05-23 Sushil G. Devare Synthetic dna derived recombinant hiv antigens
JPH08508640A (ja) 1993-03-10 1996-09-17 スミスクライン・ビーチャム・コーポレイション ヒト脳ホスホジエステラーゼ
US6087128A (en) 1998-02-12 2000-07-11 Ndsu Research Foundation DNA encoding an avian E. coli iss

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1142571A (en) * 1966-02-22 1969-02-12 Walter Friedrich Wilhelm Kuhlm A new polypeptide, and a method of preparing it
GB1394846A (en) * 1972-11-29 1975-05-21 Ici Ltd Polypeptides
GB1521032A (en) * 1974-08-08 1978-08-09 Ici Ltd Biological treatment
DE2712615A1 (de) * 1977-03-18 1978-09-21 Max Planck Gesellschaft Verfahren zur herstellung von filamentoesen phagen als vektor fuer synthetische rekombinate

Also Published As

Publication number Publication date
PL210785A1 (de) 1980-02-25
PT68757A (en) 1978-12-01
IT1100473B (it) 1985-09-28
GB2007675B (en) 1982-09-02
CA1201668A (en) 1986-03-11
AT373281B (de) 1984-01-10
HK87084A (en) 1984-11-16
NZ188838A (en) 1982-09-14
DK493978A (da) 1979-05-09
JPS5492696A (en) 1979-07-23
ATA793678A (de) 1983-05-15
ZA786306B (en) 1979-10-31
IE782191L (en) 1979-05-08
BG38167A3 (en) 1985-10-15
IT7829520A0 (it) 1978-11-07
ES474851A1 (es) 1979-12-01
CZ280822B6 (cs) 1996-04-17
SK723878A3 (en) 1996-03-06
NL7811040A (nl) 1979-05-10
SE7811460L (sv) 1979-05-09
PH21157A (en) 1987-08-05
IL55891A0 (en) 1979-01-31
IL55891A (en) 1983-10-31
EP0001931A3 (de) 1979-06-13
KE3448A (en) 1984-10-05
GB2007675A (en) 1979-05-23
EP0001931A2 (de) 1979-05-16
GR71687B (de) 1983-06-21
YU257078A (en) 1983-12-31
IE47889B1 (en) 1984-07-11
MY8500761A (en) 1985-12-31
SK278170B6 (en) 1996-03-06
CZ723878A3 (en) 1995-12-13
FI783367A (fi) 1979-05-09
YU257178A (en) 1983-12-31
NO783724L (no) 1979-05-09
DE2848051A1 (de) 1979-05-10
CH655935B (de) 1986-05-30

Similar Documents

Publication Publication Date Title
DD144560A5 (de) Verfahren zur herstellung von synthetischen strukturgenen
DD142561A5 (de) Synthetische dna und verfahren zu ihrer herstellung
DD145928A5 (de) Verfahren zur erzeugung eines spez fischen polypeptids
US4366246A (en) Method for microbial polypeptide expression
US4431739A (en) Transformant bacterial culture capable of expressing heterologous protein
US4425437A (en) Microbial polypeptide expression vehicle
US4356270A (en) Recombinant DNA cloning vehicle
US4704362A (en) Recombinant cloning vehicle microbial polypeptide expression
DE3111405C2 (de)
US5221619A (en) Method and means for microbial polypeptide expression
DE3050725C2 (de)
US5583013A (en) Method and means for microbial polypeptide expression
DD216044A5 (de) Verfahren zur herstellung eines rekombinierenden dna-klonierungsvektors
US4563424A (en) Method and means for somatostatin protein conjugate expression
US4571421A (en) Mammalian gene for microbial expression
US4812554A (en) Somatostatin peptide conjugate
AT387584B (de) Verfahren zur mikrobiellen herstellung eines vorher gewaehlten heterologen polypeptids oder zwischenproduktes dafuer
US5420020A (en) Method and means for microbial polypeptide expression
CA1340003C (en) Method and means for microbial polypeptide expression
CA1259043A (en) Method and means for microbial polypeptide expression
NO875114L (no) Fremgangsmaate for fremstilling av et forloeperpolypeptid inneholdende et spesifikt polypeptid.
DD255170A5 (de) Verfahren zur Herstellung von proteinen mit Hirudinaktivität