CZ297906B6 - Zpusob výroby krystalického tetrahydrátu hexaboritanu vápenatého - Google Patents
Zpusob výroby krystalického tetrahydrátu hexaboritanu vápenatého Download PDFInfo
- Publication number
- CZ297906B6 CZ297906B6 CZ0362799A CZ362799A CZ297906B6 CZ 297906 B6 CZ297906 B6 CZ 297906B6 CZ 0362799 A CZ0362799 A CZ 0362799A CZ 362799 A CZ362799 A CZ 362799A CZ 297906 B6 CZ297906 B6 CZ 297906B6
- Authority
- CZ
- Czechia
- Prior art keywords
- boric acid
- lime
- range
- molar ratio
- temperature
- Prior art date
Links
- TUBRASVCAZOZTC-UHFFFAOYSA-N O.O.O.O.B([O-])([O-])[O-].B([O-])([O-])[O-].B([O-])([O-])[O-].B([O-])([O-])[O-].B([O-])([O-])[O-].B([O-])([O-])[O-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2] Chemical compound O.O.O.O.B([O-])([O-])[O-].B([O-])([O-])[O-].B([O-])([O-])[O-].B([O-])([O-])[O-].B([O-])([O-])[O-].B([O-])([O-])[O-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2] TUBRASVCAZOZTC-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000004327 boric acid Substances 0.000 claims abstract description 62
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims abstract description 30
- 235000011941 Tilia x europaea Nutrition 0.000 claims abstract description 30
- 239000004571 lime Substances 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000007787 solid Substances 0.000 claims abstract description 25
- 239000000376 reactant Substances 0.000 claims abstract description 12
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 16
- 239000000920 calcium hydroxide Substances 0.000 claims description 15
- 235000011116 calcium hydroxide Nutrition 0.000 claims description 15
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 15
- 239000000725 suspension Substances 0.000 claims description 12
- 239000007900 aqueous suspension Substances 0.000 claims description 11
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 10
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 abstract description 19
- 229910052796 boron Inorganic materials 0.000 abstract description 6
- 239000003063 flame retardant Substances 0.000 abstract description 5
- 239000011521 glass Substances 0.000 abstract description 5
- 239000011734 sodium Substances 0.000 abstract description 5
- -1 cellulosics Polymers 0.000 abstract description 4
- 239000002002 slurry Substances 0.000 abstract description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 3
- 229910000831 Steel Inorganic materials 0.000 abstract description 3
- 239000000919 ceramic Substances 0.000 abstract description 3
- 229920001971 elastomer Polymers 0.000 abstract description 3
- 239000003921 oil Substances 0.000 abstract description 3
- 239000004033 plastic Substances 0.000 abstract description 3
- 229920003023 plastic Polymers 0.000 abstract description 3
- 229920000642 polymer Polymers 0.000 abstract description 3
- 229920005989 resin Polymers 0.000 abstract description 3
- 239000011347 resin Substances 0.000 abstract description 3
- 229910052708 sodium Inorganic materials 0.000 abstract description 3
- 239000010959 steel Substances 0.000 abstract description 3
- 239000004753 textile Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 2
- 239000011152 fibreglass Substances 0.000 abstract 2
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 230000018044 dehydration Effects 0.000 abstract 1
- 238000006297 dehydration reaction Methods 0.000 abstract 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 39
- 239000000047 product Substances 0.000 description 26
- 239000000292 calcium oxide Substances 0.000 description 23
- 235000012255 calcium oxide Nutrition 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 18
- 239000011541 reaction mixture Substances 0.000 description 16
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 11
- 239000012452 mother liquor Substances 0.000 description 10
- 229910052810 boron oxide Inorganic materials 0.000 description 8
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- VLCLHFYFMCKBRP-UHFFFAOYSA-N tricalcium;diborate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]B([O-])[O-].[O-]B([O-])[O-] VLCLHFYFMCKBRP-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 description 6
- 235000010755 mineral Nutrition 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 229910021539 ulexite Inorganic materials 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910021540 colemanite Inorganic materials 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- 239000012265 solid product Substances 0.000 description 4
- 238000004448 titration Methods 0.000 description 4
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- ILOKQJWLMPPMQU-UHFFFAOYSA-N calcium;oxido(oxo)borane Chemical compound [Ca+2].[O-]B=O.[O-]B=O ILOKQJWLMPPMQU-UHFFFAOYSA-N 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 150000004685 tetrahydrates Chemical class 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 239000012066 reaction slurry Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 229910011255 B2O3 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- GIPPEVXRSKRWIR-UHFFFAOYSA-N O.O.O.O.[Ca++].[Ca++].[Ca++].[O-]B([O-])[O-].[O-]B([O-])[O-] Chemical compound O.O.O.O.[Ca++].[Ca++].[Ca++].[O-]B([O-])[O-].[O-]B([O-])[O-] GIPPEVXRSKRWIR-UHFFFAOYSA-N 0.000 description 1
- LBZRRXXISSKCHV-UHFFFAOYSA-N [B].[O] Chemical class [B].[O] LBZRRXXISSKCHV-UHFFFAOYSA-N 0.000 description 1
- YLSLKNMMMXLUNK-UHFFFAOYSA-N [Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] Chemical compound [Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] YLSLKNMMMXLUNK-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001576 calcium mineral Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000004687 hexahydrates Chemical group 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- IKWSEXHZOOJPHO-UHFFFAOYSA-N nonacalcium hexaborate pentahydrate Chemical compound O.O.O.O.O.B([O-])([O-])[O-].B([O-])([O-])[O-].B([O-])([O-])[O-].B([O-])([O-])[O-].B([O-])([O-])[O-].B([O-])([O-])[O-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2] IKWSEXHZOOJPHO-UHFFFAOYSA-N 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- 150000004686 pentahydrates Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/08—Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
- C01B35/10—Compounds containing boron and oxygen
- C01B35/12—Borates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/08—Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
- C01B35/10—Compounds containing boron and oxygen
- C01B35/12—Borates
- C01B35/126—Borates of alkaline-earth metals, beryllium, aluminium or magnesium
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Paper (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Zpusob spocívá v tom, ze se nechá reagovat kyselina boritá a vápno ve vodné suspenzi pri teplote 60 az 85 .degree.C, pricemz molární pomer kyseliny borité k vode je vetsí nez 0,25:1 a molární pomer vápna ke kyseline borité je 0,05 az 0,15:1 a reakcní slozky jsou obsazeny v dostatecném mnozství k vytvorení alespon 25 % hmotn. nerozpustené pevné látky ve vodném suspenzním produktu a z tohoto produktu se krystalický tetrahydrát hexaboritanu vápenatého oddelí. Dehydratace tetrahydrátu hexaboritanuvápenatého se provádí pri teplote nad 325 .degree.C. Produkt je vhodný napríklad pro výrobu zvláknovatelného skla pro textilní úcely, jakozto zpomalovac horení napríklad pro plasty a pro kaucukové polymery, pro celulózové hmoty, pro pryskyrice a oleje a také pro výrobu oceli a keramiky.
Description
Způsob výroby krystalického tetrahydrátu hexaboritanu vápenatého
Oblast techniky
Vynález se týká způsobu výroby boritanu vápenatého a zvláště zlepšeného způsobu výroby krystalického tetrahydrátu hexaboritanu vápenatého, což je syntetická forma minerálu nobleit. Způsob výroby je založen na reakci kyseliny borité a vápna ve vodné suspenzi.
Dosavadní stav techniky
Boritany vápenaté mají průmyslové použití. Používá se jich jakožto zdroje boru ve výrobě zvlákňovatelného skla, kde žádané složení skla vyžaduje eliminaci přísady sodíku, jako je v případě zvlákňovatelného skla pro textilní účely. Jsou užitečné také jakožto zpomalovače hoření například pro plasty a pro kaučukové polymery, pro celulózové hmoty, pro pryskyřice a oleje. Kromě toho jsou užitečné pro výrobu oceli a keramiky.
Jsou známy různé sloučeniny boritanu vápenatého, jak přírodní tak syntetické, přičemž jde většinou o hydratované sloučeniny. Přírodně se vyskytující boritany vápenaté, které se běžně průmyslově používají, jsou colemanit, chemickým složením 2CaO.3B2O3.5H2O, a ulexit a běžné sodnovápenaté boritany chemickým složením Na2O.2Ca2O3.5B2O3.16H2O. Nedostatkem těchto přírodně se vyskytujících kalciumboritanových minerálů je obsah minerálních nečistot, potřeba jemného mletí, pokud jsou žádoucí velmi jemné částice například k dosahování jemných disperzí v polymemích pryskyřicích v případě použití jako zpomalovačů hoření a v případě ulexitu obsah sodíku a podstatný obsah vody. Hmotnostní obsah boritanu v colemanitu a v ulexitu je přibližně 51 % B2O3 a 43 B2O3 a 43 B2O3 %.
Známé syntetické boritany vápenaté zahrnují tetrahydrátové a hexahydrátové formy metaboritanu vápenatého chemickým složením CaO.B2O3.4H2O a CaO.B2O3.6H2O, které obsahují přibližně 35 % B2O3 a 30 % B2O3. Jakkoliv tyto syntetické sloučeniny by mohly být vysoce čisté, jelikož jsou prosty minerálních nečistot, které jsou v přírodně se vyskytujícím colemanitu a v ulexitu, mají poměrně nízký obsah boritanu. Syntetický gowerit, sestávající z pentahydrátu hexaboritanu vápenatého (CaO.3B2O3.5H2O) obsahuje přibližně 59 % B2O3, což je podstatně více než v kalciummetaboritanových sloučeninách. Avšak gowerit má sklon krystalizovat ve hrubých granulačních formách, takže vyžaduje drcení k dosažení jemných velikostí částic, potřebných pro mnohá použití.
Tetrahydrát hexaboritanu vápenatého, chemickým složením CaO.3B2O3.4H2O, má stejný poměr boru k vápníku jako syntetický gowerit, obsahuje však méně vody. Při 62% obsahu oxidu boritého má vyšší obsah boritanu než gowerit, metaboritan vápenatý a minerály colemanit a ulexit. Je známo, že se přírodně vyskytuje jako minerál nobleit, avšak v přírodě se nenachází v průmyslově využitelných množstvích.
Jsou známy různé způsoby výroby syntetických forem minerálů nobleit a gowerit. Například se syntetický nobleit může vyrábět hydrotermálním zpracováním meyerhofferitu (2CaO.3B2O3. 7H2O) v roztoku kyseliny borité po dobu osmi dnů při teplotě 85 °C (spis US 3 337 292).
Ditte (Acad. Sci. Paris Coptes rendus 77, str. 783 až 785, 1873) popsal vytváření boritanů vápenatých reakcí islandského kalcitu s nasyceným roztokem kyseliny borité. Vzniklá sůl je popsána jako malé jehličky „hydratovaného boritanu vápenatého“. Následně Erd, McAllister a Vlisidis (Američan Mineralogist 46, str. 560 až 571, 1961) označili Dittův produkt jako nobleit. Erd a kol. také syntetizovali nobleit mícháním oxidu vápenatého a kyseliny borité ve vodě po dobu 30 hodin při teplotě 48 °C a pak udržováním produktu na teplotě 68 °C po dobu 10 dnů.
Kemp (The Chemistry of Borates, část I, str. 70, 1956) uvádí, že vodný roztok kyseliny borité, udržovaný na teplotě 40 °C po dobu tří týdnů ukládá směs CaO.3B2O3.4H2O a 2CaO. 3B2O3.9H2O. Podle Suplement to Mellor’s Comprehensive Treatise on Inorganic and Theoretical
- 1 CZ 297906 B6
Chemistry, svazek V, část A, Boron-Oxygen Compounds, str. 550 až 551, 1980, existuje CaO.
3B2O3.4H2O jakožto pevná fáze v systému: Na2O-CaO-B2O3-H2O a CaO-NaCl-B2O3-H2O při teplotě 25°C a při hodnotě pH 5,5 až 6,5. Hydrotermální zpracování meyrhofferitu v roztoku kyseliny borité při teplotě 85 až 250 °C produkuje krystaly jak tetrahydrátu, tak pentahydrátu spolu s ginoritem (Chemického složení 2CaO.7B2O3.8H2O).
Mellor dále uvádí, že nobleit je stabilní fází v systému CaO.B2O3.H2O při teplotě 25 a 45 °C a vytváří se také z vodné směsi vápna (oxidu vápenatého) a kyseliny borité při teplotě 60 °C. Mellor také uvádí na str. 551, že CaO.3B2O3.5H2O (gowerit) se vytváří z vápna a z kyseliny borité ve vodném prostředí při teplotě 100 °C.
Lehmann a kol. (Zeitschrift fur Anorganische und Allgemeine Chemie, svazek 346, str. 12 až 20, 1966, uvádí, že vytváření goweritu z oxidu vápenatého a z kyseliny borité a z vody je podporována poměrně vysokou teplotou (100 °C) a vyšší koncentrací oxidu vápenatého, přičemž vytváření nobleitu probíhá převážně v mnohem zředěnějších roztocích s nižším obsahem oxidu vápenatého a při nižší teplotě (60 °C).
Podle vynálezu se zjistilo, že nová krystalická sloučenina tetrahydrátu hexaboritanu vápenatého, mající typický krystalický habitus, se může připravovat reakcí vápna s kyselinou boritou ve vodné suspenzi při teplotě přibližně 60 až 85 °C, za podmínky, že konečná koncentrace nerozpuštěné pevné látky ve vodném produktu je vysoká a molámí poměr přidaného vápna a kyseliny borité (CaO:H3BO3) je v určitých hranicích. Vzniklý krystalický tetrahydrátový produkt má obecně žádoucí krystalický habitus sestávající z tenkých prorostlých destiček uspořádaných v téměř kulovitých radiálních shlucích.
Podstata vynálezu
Způsob výroby krystalického tetrahydrátu hexaboritanu vápenatého, spočívá podle vynálezu v tom, že se nechává reagovat kyselina boritá a vápno ve vodné suspenzi při teplotě v rozmezí 60 až 85 °C, přičemž molámí poměr kyseliny borité kvodě (H3BO3:H2O) je větší než 0,25:1 a molámí poměr vápna ke kyselině borité (CaO:H3BO3) je v rozmezí 0,05 až 0,15:1 a reakční složky jsou obsaženy v množství k vytvoření alespoň hmotnostně 25 % nerozpuštěné pevné látky ve vodném suspenzním produktu a z vodného suspenzního produktu se krystalický tetrahydrát hexaboritanu vápenatého oddělí.
Nová krystalická sloučenina tetrahydrátu hexaboritanu vápenatého má obecně žádoucí krystalický habitus sestávající z tenkých prorostlých destiček uspořádaných v téměř kulovitých radiálních shlucích.
Způsob podle vynálezu je rychlý, výtěžek produktu je vysoký a produkt má příznivé charakteristiky, jako jsou rozdělení jemných částic, dobré tokové vlastnosti a dobrá manipulovatelnost. Kromě toho má nový krystalický tetrahydrát hexaboritanu vápenatého typický krystalický habitus.
Při způsobu podle vynálezu se nechávají reagovat kyselina boritá a vápno ve vodě při teplotách v rozmezí 60 až 85 °C za vzniku krystalického tetrahydrátu hexaboritanu vápenatého. Výhodnou je reakční teplota v rozmezí 70 až 85 °C. Vysoká koncentrace nerozpuštěných pevných látek v reakční směsi je žádoucí, aby se získalo hmotnostně alespoň 25 a s výhodou alespoň 30 % nerozpuštěných pevných látek v konečné produktové suspenzi.
Koncentrace reakčních složek je důležitá pro produkci tetrahydrátu hexaboritanu vápenatého způsobem podle vynálezu. Zvláště vysoký poměr kyseliny borité k vodě v reakční směsi produkuje nobleit spíše než gowerit za podmínek zvýšených teplot podle vynálezu. Kyselina boritá, která je vysoce rozpustná ve vodě při vysokých teplotách, se má přidávat v množstvích, která jsou podstatně větší než je hranice rozpustnosti, aby se při těchto teplotách vytvářel nobleit. Molámí poměr kyseliny borité kvodě (H3BO3:H2O) ve výchozí směsi má být větší než 0,25:1,
-2CZ 297906 B6 například v rozmezí 0,25 až 0,5:1 a s výhodou v rozmezí 0,3 až 0,45:1. To je podstatně vyšší než hranice rozpustnosti kyseliny borité při teplotě v rozmezí 60 až 85 °C, která je v rozmezí přibližně 0,04 až 0,08 mol kyseliny borité na mol vody.
Molámí poměr vápna ke kyselině borité (CaO:H3BO3) ve výchozí směsi je v rozmezí 0,05 až 0,15:1 a s výhodou v rozmezí 0,1 až 0,14:1. Vápnem se zde rozumí oxid vápenatý, jako je pálené a nehašené vápno, hydroxid vápenatý, jako je hydratované vápno, hašené vápno, hydrát vápna a uhličitan vápenatý, včetně kalcitu a vápence.
Způsobu podle vynálezu se může používat pro výrobu tetrahydrátu hexaboritanu vápenatého přetržitým, kontinuálním nebo polokontinuálním způsobem. Při přetržitém způsobu se kyselina boritá a vápno smísí s vodou a zahřívají se na žádanou teplotu k iniciaci reakce. Nebo se recykluje matečný louh z předchozí dávky nebo se jako reakční prostředí může použít čerstvě připravený matečný louh. Při kontinuálním nebo polokontinuálním způsobu se žádaný produkt odvádí z reakční nádoby a zbylý matečný louh se recykluje po přidání přídavné kyseliny borité a zahřátí reakční směsi na reakční teploty.
Obecně je reakce úplná v průběhu jedné hodiny, jakkoliv malá zlepšení se zřetelem na produkovaný oxid boritý se mohou dosáhnout zahříváním reakční směsi po dobu až čtyř hodin. Jestliže se jako reakčních složek používá oxidu vápenatého nebo hydroxidu vápenatého, probíhá reakce jako výrazně exotermní po dobu 15 až 25 minut, přičemž se většina výchozích látek převede na žádaný produkt.
S výhodou se reakční směs v průběhu reakce mísí například mícháním. Po ukončení reakce se produkovaný nobleit oddělí od horkého matečného louhu například filtrací nebo odstředěním nebo jiným vhodným způsobem pro dělení systému pevná látka/kapalina. Mokrá pevná látka se promyje například vodou k odstranění veškerého ulpěného matečného louhu a následně se usuší za získání krystalického tetrahydrátu hexaboritanu vápenatého.
Pokud je žádoucí produkt s vysokým obsahem oxidu boritého, může se tetrahydrát hexaboritanu vápenatého dehydratovat zahříváním na teplotu alespoň 325 °C, s výhodou na teplotu v rozmezí 450 až 600 °C k získání nového amorfního bezvodého krystalického hexaboritanu vápenatého (CaO.3B2O3), který obsahuje hmotnostně přibližně 79 % oxidu boritého.
Analýza velikosti částic krystalického produktu podle vynálezu uvádí poměrně malou distribuci střední velikosti částic, zpravidla hmotnostně 90 % s menším průměrem než 75 mikrometrů. Tento malý střední průměr částic je výhodný pro mnohá použití, kde je žádoucí jemná disperze pevných částic, například pro použití jako zpomalovačů hoření v polymemích pryskyřicích. Částice se však dobře filtrují, což usnadňuje oddělení pevného produktu od matečného louhu, který se do procesu může vracet zpět. Kromě toho kulovitý tvar krystalického habitu vede k vynikající manipulovatelnosti a k vynikajícím tokovým vlastnostem suchých pevných látek přes jejich mimořádnou jemnost. Také se jistilo, že krystalický produkt nemá výrazný sklon k vytváření koláče.
Produkty dehydratují ve třech typických stupních, ztrácejí vodu při teplotě 91, 177 a 312 °C. Jejich teplota tání je 927 °C. Bezvodý boritan vápenatý, získaný dehydratací produktu, je méně hygroskopický než většina dehydratovaných kovových boritanových sloučenin.
Vynález blíže objasňují, nijak však neomezují, následující příklady praktického provedení. Procenta jsou míněna hmotnostně, pokud není uvedeno jinak.
-3 CZ 297906 B6
Příklady provedení vynálezu
Příklad 1
Baňka o obsahu 12 litrů se vybaví zpětným chladičem, mechanickým míchadlem a teploměrem. Připraví se matečný louh tak, že se do baňky dávkuje 5 kg neionizované vody, 1448 g (23,42 mol) kyseliny borité a 31,7 g (0,43 mol) hydroxidu vápenatého. Směs se zahřeje na teplotu 80 °C a přidá se 1876 g (30,34 mol) kyseliny borité a 417 g (5,63 mol) hydroxidu vápenatého a 3 g syntetického nobleitu jako naočkování. Druhým přidáním 1876 g kyseliny borité a 417 g hydroxidu vápenatého do reakční suspenze s kyselinou boritou a vodou v molámím poměru H3BO3:H2O 0,30:1 a vápna ke kyselině borité v molámím poměru CaO:H3BO3 0,14:1. Vypočte se množství reakčních složek tak, aby konečná produkovaná suspenze obsahovala přibližně 36 % nerozpuštěných pevných látek za předpokladu dokonalé konverze vápna na pevný nobleitový produkt. Reakční složky se přidávají za poklesu teploty na 72 °C, přičemž však kontinuální zahřívání vrací teplotu na 80 °C v průběhu 9 minut. Po 20 až 25 minutách od přidání reakčních složek vede exotermní reakce ke vzrůstu teploty na 86 °C. Reakční směs se postupně vrací na řízenou teplotu 80 °C, která se udržuje za míchání. Chemická analýza pevné fáze uvádí 61,2 % kyseliny borité po celkem 165 minutách, což naznačuje že reakce proběhla v podstatě kompletně. Reakční směs se míchá přes noc při teplotě 80 °C. Po 21 hodinách se produkovaná suspenze filtruje a odfiltrovaná pevná látka se promyje vodou a vysuší se na vzduchu, čímž se získá volně tekoucí bílý prášek. Krystalický produkt se identifikuje jako nobleit X-paprskovou difrakční analýzou. Chemická analýza naznačuje, že konečný produkt obsahuje 62,3 % oxidu boritého Produkt má rozdělení velikosti částic takové, že 99 % podílu prochází zkušebním sítem o průměru ok 150 mikrometrů (100 mesh), 97 % podílu o průměru ok 75 mikrometrů (200 mesh) a 94 % podílu o průměru ok 45 mikrometrů (325 mesh). Produkt má dobré charakteristiky tečení, má však sklon ke snadné fluorizaci vedoucí k bimodálnímu tokovému chování.
Příklad 2
Do míchané baňky se pro vytvoření matečného louhu vnese 603,4 g kyseliny borité a 13,2 g hydroxidu vápenatého do neionizované vody. Tato reakční směs se míchá a zahříváním udržuje na teplotě 60 °C a přidají se dvě dávky vždy 781,7 g kyseliny borité a 173,8 g hydroxidu vápenatého, čímž se získá reakční suspenze obsahující vápno a kyselinu boritou v molámím poměru CaO:H3BO3 0,14:1 a kyselinu boritou a vodu v molámím poměru H3BO3:H2O 0,30:1, přičemž jsou množství vypočtena tak, aby konečná produkovaná suspenze obsahovala přibližně 36 % nerozpuštěného pevného nobleitu. Při každém přidání reakčních složek mírně poklesne teplota. Přidají se přibližně 3,0 g předem připraveného syntetického nobleitu jako naočkování po konečném přidání kyseliny borité a vápna k vyvolání krystalizace produkovaného nobleitu. Pozoruje se vzrůst teploty na 63,1 °C přibližně 25 minut po přísadě nobleitu jakožto očkovací látky. Reakční směs se trvale míchá za udržování teploty 60 °C po dobu 20 hodin od začátku zkoušky. Po 20 hodinách se reakční suspenze zfiltruje a filtrační koláč se promyje 1500 g neionizované vody k odstranění ulpěného matečného louhu a suší se při teplotě 60 °C po dobu čtyř dnů. Získaný krystalický produkt, obsahující 63,8% oxidu boritého a 16,1 % oxidu vápenatého, je podle analýzy X-paprskovou difrakcí nobleit.
Příklad 3
Smísí se 2000 g vody s 579,2 g kyseliny borité a 17,1 g uhličitanu vápenatého (Aromáte® CaCO3, produkt společnosti ECC America lne., střední velikost částic 3 pm) a získaná směs se zahřeje na teplotu 80 °C. Pomalu se přidává směs 835,6 g kyseliny borité a 225,3 g uhličitanu vápenatého, čímž dojde k pěnění suspenze v důsledku uvolňování plynného oxidu uhličitého a k poklesu teploty na 70 °C. Když pěnění ustane a teplota se vrátí na 80 °C přidá se další směs 835,6 g kyseliny borité a 225,3 g uhličitanu vápenatého. Reakční suspenze se znovu zahřeje a udržuje na
-4CZ 297906 B6 teplotě 80 °C. Molámí poměr kyseliny borité je 0,33:1 a vody a vápna kyseliny borité je 0,13:1, přičemž se množství reakčních složek vypočte tak, aby konečná produkovaná suspenze obsahovala přibližně 35 % nerozpuštěného pevného nobleitu. Po třech hodinách se odebere vzorek reakční směsi a celá dávka se zfíltruje a promyje neionizovanou vodou po pěti hodinách a suší se při teplotě 60 °C po dobu několika dnů. Získaný produkt se analyzuje titrací, přičemž podle analýzy obsahuje 63,4 % oxidu boritého po pětihodinové reakční době. Konečný produkt podle analýzy X-paprskovou difrakce je nobleit.
Příklad 4
Opakuje se způsob podle příkladu 3, reakce se však provádí při teplotě 60 °C místo při teplotě 80 °C a velikost dávky se sníží o 25 % k přizpůsobení pěnění způsobeného uvolňováním plynného oxidu uhličitého. Podobně jako podle příkladu 3 je molámí poměr kyseliny borité a vody 0,31:1 a vápna a kyseliny borité 0,14:1, k dosažení toho, aby podle výpočtu konečná produkovaná suspenze obsahovala přibližně 35 % nerozpuštěného pevného nobleitu. Po třech hodinách se reakční směs stane velmi hustou. Tato směs se míchá přes noc a v průběhu této doby se stane tak hustou, že se jeví jako míchatelná jedině v centru reakční směsi. Přidají se 2 litry neionizované vody o teplotě 60 °C pro zředění suspenze před zavedením směsi na filtr. Produkt se však velmi obtížně filtruje a jeví obsah velmi jemných částic pevné hmoty. Pevný produkt se analyzuje X-paprskovou difrakcí a identifikuje se jako nobleit. Hodnocení produktu řádkovou elektronovou mikroskopií naznačuje, že nobleit se vytvořil jako hexagonální destičky avšak s jedinečnou morfologií, přičemž forma destiček jako kulovitých radiálních shluků při vyšší teplotě ve velké míře chybí, jelikož mnohé destičky zůstávají nedotčeny. Získaný krystalický produkt se analyzuje titrací, přičemž podle analýzy obsahuje 62,3 % oxidu boritého.
Příklad 5 a 6
Reakce se provádí při teplotě 75 °C a při nižším poměru kyseliny borité a vody (a tedy při nižší koncentraci pevných látek) za použití hydroxidu vápenatého jako zdroje vápna. Podle příkladu 5 se smísí kyselina boritá (1448 g) a hydroxid vápenatý (31,7 g) s 5 litry neionizované vody a reakční směs se zahřeje na teplotu 75 °C. Přidá se dalších 1506 g kyseliny borité a 300,7 g hydroxidu vápenatého. Molámí poměr kyseliny borité a vody je 0,17:1 a vápna a kyseliny borité 0,09:1. Množství reakčních složek se vypočte tak, aby konečná produkovaná suspenze obsahovala přibližně 18% nerozpuštěných pevných látek, za předpokladu dokonalé konverze vápna je pevný produkovaný nobleit. Po 45 minutách se pozoruje vznik částic. Po třech hodinách se odebere vzorek reakční směsi, zředí se na 50 % teplou vodou a zfíltruje se. Filtrační koláč se promyje přibližně třemi litry neionizované vody k odstranění ulpěného matečného louhu. Získaný pevný produkt se analyzuje titrací, přičemž podle analýzy obsahuje 61,8% oxidu boritého. Konečný produkt podle analýzy X-paprskovou difrakcí je nobleit obsahující 7 % goweritu.
Způsob podle příkladu 6 se provádí obdobně avšak při mnohem nižší koncentraci kyseliny borité. Podle příkladu 6 se smísí 1321 g kyseliny borité, 20 g hydroxidu vápenatého a 6419 g neionizované vody a reakční směs se zahřeje na teplotu 75 °C. Přidá se dalších 100 g kyseliny borité a 140 g hydroxidu vápenatého. Molámí poměr kyseliny borité a vody je 0,06:1 a vápna a kyseliny borité 0,09:1. Množství reakčních složek se vypočte tak, aby konečná produkovaná suspenze obsahovala přibližně 9 % nerozpuštěných pevných látek, za předpokladu dokonalé konverze vápna na pevný produkovaný nobleit. Po třech hodinách se odebere vzorek reakční směsi a zfíltruje se. Získaným pevným produktem je podle zjištění málo krystalická směs nobleitu a goweritu. Produkt se analyzuje titrací, přičemž podle analýzy obsahuje jen 46,5 % oxidu boritého.
Pracovníkům v oboru je zřejmé, že v rámci vynálezu jsou možné různé obměny a uvedené příklady tedy nejsou míněny jako jakékoliv omezení vynálezu.
-5CZ 297906 B6
Průmyslová využitelnost
Krystalický tetrahydrátový hexaboritan vápenatý mající žádoucí krystalický habitus sestávající z tenkých prorostlých destiček uspořádaných v téměř kulovitých radiálních shlucích a vhodný například pro výrobu zvlákňovatelného skla pro textilní účely, jakožto zpomalovač hoření například pro plasty a pro kaučukové polymery, pro celulózové hmoty, pro pryskyřice a oleje a také pro výrobu oceli a keramiky.
Claims (11)
- PATENTOVÉ NÁROKY1. Způsob výroby krystalického tetrahydrátu hexaboritanu vápenatého, vyznačující se tím, že se nechává reagovat kyselina boritá a vápno ve vodné suspenzi při teplotě v rozmezí 60 až 85 °C, přičemž molámí poměr kyseliny borité k vodě je větší než 0,25:1 a molámí poměr vápna ke kyselině borité je v rozmezí 0,05 až 0,15:1, a reakční složky jsou obsaženy v dostatečném množství k vytvoření alespoň 25 % hmotn. nerozpuštěné pevné látky ve vodném suspenzním produktu, a z vodného suspenzního produktu se oddělí krystalický tetrahydrát hexaboritanu vápenatého.
- 2. Způsob podle nároku 1, vyznačující se tím, že se nastavuje molámí poměr kyseliny borité k vodě v rozmezí 0,3 až 0,45:1.
- 3. Způsob podle nároku 1 nebo 2, vyznačující se tím, že se nastavuje molámí poměr vápna ke kyselině borité v rozmezí 0,1 až 0,14:1.
- 4. Způsob podle nároků laž3, vyznačující se tím, že se nastavuje teplota v rozmezí 70 až 85 °C.
- 5. Způsob podle nároků laž4, vyznačující se tím, že se jakožto vápno nechává reagovat uhličitan vápenatý.
- 6. Způsob podle nároků laž4, vyznačující se tím, že se jakožto vápno nechává reagovat hydratované vápno.
- 7. Způsob podle nároků 1 až 6, vyznačující se tím, že se koncentrace nerozpuštěných pevných látek v produkované suspenzi nastavuje na 30 % hmotn.
- 8. Způsob podle nároku 1, vyznačující se tím, že se nechává reagovat kyselina boritá a vápno ve vodné suspenzi při teplotě v rozmezí 70 až 85 °C, přičemž molámí poměr kyseliny borité k vodě je v rozmezí 0,3 až 0,45:1 a molámí poměr vápna ke kyselině borité je v rozmezí 0,1 až 0,14:1, a reakční složky jsou obsaženy v dostatečném množství k vytvoření alespoň 30 % hmotn. nerozpuštěné pevné látky ve vodném suspenzním produktu, a z vodného suspenzního produktu se oddělí krystalický tetrahydrát hexaboritanu vápenatého.
- 9. Krystalický tetrahydrát hexaboritanu vápenatého v podobě tenkých navzájem prorostlých destiček uspořádaných do téměř kulovitých radiálních shluků.
- 10. Způsob podle nároku 1, vyznačující se tím, že se produkovaný krystalický tetrahydrát hexaboritanu vápenatého přídavně zahřívá na teplotu nad 325 °C.
- 11. Způsob podle nároku 10, vyznačující se tím, že se zahřívání provádí na teplotu v rozmezí 450 až 600 °C.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/844,481 US5785939A (en) | 1995-10-18 | 1997-04-18 | Method for producing calcium borate |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CZ362799A3 CZ362799A3 (cs) | 2000-05-17 |
| CZ297906B6 true CZ297906B6 (cs) | 2007-04-25 |
Family
ID=25292832
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CZ0362799A CZ297906B6 (cs) | 1997-04-18 | 1998-04-17 | Zpusob výroby krystalického tetrahydrátu hexaboritanu vápenatého |
Country Status (19)
| Country | Link |
|---|---|
| US (1) | US5785939A (cs) |
| EP (1) | EP1009716B1 (cs) |
| JP (1) | JP2001522344A (cs) |
| KR (1) | KR100528571B1 (cs) |
| CN (1) | CN100402425C (cs) |
| AR (1) | AR012475A1 (cs) |
| AT (1) | ATE229478T1 (cs) |
| AU (1) | AU735325B2 (cs) |
| BR (1) | BR9808558A (cs) |
| CA (1) | CA2287464C (cs) |
| CZ (1) | CZ297906B6 (cs) |
| DE (1) | DE69810121T2 (cs) |
| ES (1) | ES2184254T3 (cs) |
| HU (1) | HU220786B1 (cs) |
| PE (1) | PE95099A1 (cs) |
| PL (1) | PL336166A1 (cs) |
| PT (1) | PT1009716E (cs) |
| TR (1) | TR199800692A3 (cs) |
| WO (1) | WO1998047815A1 (cs) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5837621A (en) * | 1995-04-25 | 1998-11-17 | Johns Manville International, Inc. | Fire resistant glass fiber mats |
| US20010037035A1 (en) * | 2000-05-24 | 2001-11-01 | Kevin Kutcel | Method for preparing polyborate compounds and uses for same |
| US20070199350A1 (en) * | 2006-02-24 | 2007-08-30 | Butts Dennis I | Methods for producing glass compositions |
| CN100402424C (zh) * | 2006-09-21 | 2008-07-16 | 杭州电子科技大学 | 一种纳米六硼化物的合成方法 |
| WO2010096631A2 (en) * | 2009-02-20 | 2010-08-26 | Nisus Corporation, Inc. | Borate micro emulsion and method for making the same |
| CN103011187B (zh) * | 2012-12-14 | 2014-12-03 | 陕西师范大学 | 纳米级CaO·3B2O3·4H2O的制备方法 |
| CN103601208B (zh) * | 2013-11-25 | 2015-11-18 | 武汉大学 | 微纳结构硼钙复合氧化物的制备方法 |
| WO2017030978A1 (en) * | 2015-08-14 | 2017-02-23 | U.S. Borax Inc. | Potassium magnesium borate use for delayed release of borate and methods of manufacturing the same |
| CN106082252B (zh) * | 2016-05-28 | 2018-05-25 | 曲阜师范大学 | 一种水合硼酸钙微球、无水硼酸钙微球及其制备方法 |
| CN106939166B (zh) * | 2017-03-16 | 2018-07-10 | 陕西师范大学 | 一种2CaO·B2O3·H2O/Mg(OH)2纳米复合阻燃剂 |
| CN107128943B (zh) * | 2017-06-23 | 2019-05-21 | 齐鲁工业大学 | 一种利用溶胶—凝胶法合成制备硼酸铝粉体的方法 |
| CN114180951B (zh) * | 2021-12-24 | 2023-02-28 | 安徽龙磁科技股份有限公司 | 一种含硬硼钙石的铁氧体浆料及其制备方法 |
| WO2024147962A1 (en) * | 2023-01-06 | 2024-07-11 | U.S. Borax Inc. | Process for borate crystallization and composition |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4179493A (en) * | 1977-03-18 | 1979-12-18 | Abraham Sadan | Dehydration process |
| US4683126A (en) * | 1985-03-08 | 1987-07-28 | Nippon Oil Co., Ltd. | Method for producing alkaline earth metal borate dispersions |
| SU1754656A1 (ru) * | 1990-08-01 | 1992-08-15 | Приморское производственное объединение "Бор" им.50-летия СССР | Способ получени гексабората кальци |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3032391A (en) * | 1958-08-20 | 1962-05-01 | United States Borax Chem | Production of calcium borates |
| US3032392A (en) * | 1958-10-29 | 1962-05-01 | United States Borax Chem | Manufacture of calcium borates |
| US3337292A (en) * | 1963-03-28 | 1967-08-22 | Harry H Wieder | Preparation of hydrates of 2cao.3b2o3 |
| US3337293A (en) * | 1963-03-28 | 1967-08-22 | Harry H Wieder | Process for preparing the strontium isomorph of colemanite |
| JPS5171300A (ja) * | 1974-12-18 | 1976-06-19 | Shiraishi Chuo Kenkyusho Kk | Ketsushoshitsuhosankarushiumu no seizohoho |
| US4233051A (en) * | 1979-06-11 | 1980-11-11 | Owens-Corning Fiberglas Corporation | Method for producing calcium borates |
| JPS5914408B2 (ja) * | 1980-07-22 | 1984-04-04 | 工業技術院長 | 含水アルカリ土金属ホウ酸塩の製造方法 |
| SU1321678A1 (ru) * | 1985-02-14 | 1987-07-07 | Приморское производственное объединение "Бор" им.50-летия СССР | Способ получени гексабората кальци |
| US5688481A (en) * | 1995-10-18 | 1997-11-18 | U.S. Borax Inc. | Method for producing calcium borate |
-
1997
- 1997-04-18 US US08/844,481 patent/US5785939A/en not_active Expired - Lifetime
-
1998
- 1998-04-17 PL PL98336166A patent/PL336166A1/xx unknown
- 1998-04-17 EP EP98918436A patent/EP1009716B1/en not_active Expired - Lifetime
- 1998-04-17 JP JP54621298A patent/JP2001522344A/ja not_active Ceased
- 1998-04-17 AT AT98918436T patent/ATE229478T1/de not_active IP Right Cessation
- 1998-04-17 HU HU0003957A patent/HU220786B1/hu not_active IP Right Cessation
- 1998-04-17 ES ES98918436T patent/ES2184254T3/es not_active Expired - Lifetime
- 1998-04-17 AU AU71358/98A patent/AU735325B2/en not_active Ceased
- 1998-04-17 KR KR10-1999-7009619A patent/KR100528571B1/ko not_active Expired - Fee Related
- 1998-04-17 DE DE69810121T patent/DE69810121T2/de not_active Expired - Fee Related
- 1998-04-17 CA CA002287464A patent/CA2287464C/en not_active Expired - Fee Related
- 1998-04-17 WO PCT/US1998/007876 patent/WO1998047815A1/en not_active Ceased
- 1998-04-17 CN CNB988042800A patent/CN100402425C/zh not_active Expired - Fee Related
- 1998-04-17 PT PT98918436T patent/PT1009716E/pt unknown
- 1998-04-17 CZ CZ0362799A patent/CZ297906B6/cs not_active IP Right Cessation
- 1998-04-17 AR ARP980101801A patent/AR012475A1/es active IP Right Grant
- 1998-04-17 TR TR1998/00692A patent/TR199800692A3/tr unknown
- 1998-04-17 BR BR9808558-1A patent/BR9808558A/pt not_active IP Right Cessation
- 1998-04-17 PE PE1998000280A patent/PE95099A1/es not_active Application Discontinuation
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4179493A (en) * | 1977-03-18 | 1979-12-18 | Abraham Sadan | Dehydration process |
| US4683126A (en) * | 1985-03-08 | 1987-07-28 | Nippon Oil Co., Ltd. | Method for producing alkaline earth metal borate dispersions |
| SU1754656A1 (ru) * | 1990-08-01 | 1992-08-15 | Приморское производственное объединение "Бор" им.50-летия СССР | Способ получени гексабората кальци |
Also Published As
| Publication number | Publication date |
|---|---|
| CZ362799A3 (cs) | 2000-05-17 |
| WO1998047815A1 (en) | 1998-10-29 |
| KR20010006529A (ko) | 2001-01-26 |
| HUP0003957A3 (en) | 2001-04-28 |
| EP1009716B1 (en) | 2002-12-11 |
| CA2287464A1 (en) | 1998-10-29 |
| DE69810121D1 (de) | 2003-01-23 |
| EP1009716A4 (en) | 2000-07-05 |
| JP2001522344A (ja) | 2001-11-13 |
| TR199800692A2 (xx) | 1999-03-22 |
| KR100528571B1 (ko) | 2005-11-16 |
| CN100402425C (zh) | 2008-07-16 |
| CN1252775A (zh) | 2000-05-10 |
| PE95099A1 (es) | 1999-10-06 |
| HU220786B1 (hu) | 2002-05-28 |
| TR199800692A3 (tr) | 1999-03-22 |
| ATE229478T1 (de) | 2002-12-15 |
| AR012475A1 (es) | 2000-10-18 |
| EP1009716A1 (en) | 2000-06-21 |
| HUP0003957A2 (en) | 2001-03-28 |
| CA2287464C (en) | 2007-06-19 |
| BR9808558A (pt) | 2000-05-23 |
| ES2184254T3 (es) | 2003-04-01 |
| US5785939A (en) | 1998-07-28 |
| DE69810121T2 (de) | 2003-04-24 |
| AU7135898A (en) | 1998-11-13 |
| AU735325B2 (en) | 2001-07-05 |
| PT1009716E (pt) | 2003-04-30 |
| PL336166A1 (en) | 2000-06-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CZ297906B6 (cs) | Zpusob výroby krystalického tetrahydrátu hexaboritanu vápenatého | |
| JP4194655B2 (ja) | ホウ酸カルシウム及びその製造方法 | |
| US3035054A (en) | Cross kbl-tklihul | |
| US6274111B1 (en) | Synthetic magnesium silicate | |
| US4650654A (en) | Process for preparation of ferrierite type zeolites | |
| US4277457A (en) | Alkali calcium silicates and process for preparation thereof | |
| HU181898B (en) | Semicontinuous industrial process for producing zeolite a | |
| US4294810A (en) | Alkali calcium silicates and process for preparation thereof | |
| AU715684C (en) | Method for producing calcium borate | |
| US3032392A (en) | Manufacture of calcium borates | |
| US3032391A (en) | Production of calcium borates | |
| MXPA98002983A (es) | Metodo para producir borato de calcio | |
| US3300278A (en) | Crystalline sodium metaborate tetrahydrate and process for production thereof | |
| JPS6126494B2 (cs) | ||
| JPH1017318A (ja) | 純粋な合成カルシウムほう酸塩の製造方法 | |
| JPS6126495B2 (cs) | ||
| JPS60141617A (ja) | フェリエライト型ゼオライトの製造法 | |
| MXPA96002046A (en) | Process for the production of calciosintet borato |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PD00 | Pending as of 2000-06-30 in czech republic | ||
| MM4A | Patent lapsed due to non-payment of fee |
Effective date: 20090417 |