CN1992181B - 具有凹形沟道的半导体器件的形成方法 - Google Patents

具有凹形沟道的半导体器件的形成方法 Download PDF

Info

Publication number
CN1992181B
CN1992181B CN200610135575XA CN200610135575A CN1992181B CN 1992181 B CN1992181 B CN 1992181B CN 200610135575X A CN200610135575X A CN 200610135575XA CN 200610135575 A CN200610135575 A CN 200610135575A CN 1992181 B CN1992181 B CN 1992181B
Authority
CN
China
Prior art keywords
groove
film
semiconductor substrate
hard mask
mask film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200610135575XA
Other languages
English (en)
Other versions
CN1992181A (zh
Inventor
李振烈
河敏豪
车宣龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of CN1992181A publication Critical patent/CN1992181A/zh
Application granted granted Critical
Publication of CN1992181B publication Critical patent/CN1992181B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66537Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a self aligned punch through stopper or threshold implant under the gate region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66553Unipolar field-effect transistors with an insulated gate, i.e. MISFET using inside spacers, permanent or not
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明公开了一种具有凹形沟道的半导体器件的形成方法,其包括:在半导体衬底上形成用于暴露用于形成沟槽的第一区的硬掩模膜图案;使用硬掩模膜图案作为掩模通过第一蚀刻工艺来形成第一沟槽且去除硬掩模图案;在包括第一沟槽的半导体衬底上形成阻挡膜;在阻挡膜上形成用于暴露第一沟槽的离子注入掩模膜;使用离子注入掩模膜和阻挡膜,在半导体衬底中第一沟槽下形成离子注入区。所述方法还包括使用离子注入掩模膜和阻挡膜作为掩模通过第二蚀刻工艺形成球状物形第二沟槽,使得形成了用于凹形沟道的球状物形沟槽,每个沟槽具有第一沟槽和第二沟槽,且去除了离子注入掩模膜和阻挡膜。

Description

具有凹形沟道的半导体器件的形成方法
技术领域
本发明涉及一种用于制造半导体器件的方法,且更具体而言,涉及一种具有凹形沟道的半导体器件的形成方法。
背景技术
随着集成电路半导体器件中的集成度提高和设计规则迅速减少,确保晶体管的稳定工作的困难度增加。例如,晶体管栅极宽度和沟道长度迅速减小。这些导致了短沟道效应,并且可能产生在晶体管的源极和漏极之间的穿通(punchthrough)。穿通是器件故障通常的原因之一。为了克服短沟道效应,已经开发了确保足够的沟道长度而不增加设计规则的各种方法。具体而言,已经提出了一种制造具有球状物形(bulb type)凹形沟道的半导体器件的方法,其使用两阶段蚀刻工艺来增加与栅极的线宽相比的沟道的长度。
图1和2是示出制造具有凹形沟道的半导体器件的常规方法的剖面图。
参考图1,首先在半导体衬底100中形成用于凹形沟道的球状物形沟槽104,在半导体衬底100中有源区由隔离结构102界定。为了提供具有适当的阈值电压的单元晶体管,在整个半导体衬底100表面上进行沟道离子注入。由此形成了围绕用于凹形沟道的球状物形沟槽104的杂质区域106。
参考图2,然后在用于凹形沟道的球状物形沟槽104上形成栅极叠层118,且通过将杂质注入到半导体衬底100中来形成源极/漏极区120。栅极叠层118由栅极绝缘膜图案110、导电膜图案112、金属膜图案114和硬掩模膜图案116构成。
区域A显示了杂质区106和源极/漏极区120重叠的区域。重叠的区域导致了杂质浓度的局部增加,这导致了电场的增加。由此,改变了阈值电压且降低了半导体器件的刷新特性。
发明内容
本发明的一个实施例涉及一种具有凹形沟道的半导体器件的形成方法,其减小了在源极/漏极区和杂质区相重叠的区域中的电场强度,由此改善了半导体器件的刷新特性。
另一实施例提供了一种具有凹形沟道的半导体器件的形成方法,其防止了蚀刻期间对于沟槽的上部分的损伤。
根据一个实施例,具有凹形沟道的半导体器件的形成方法包括:在半导体衬底上形成暴露用于形成沟槽的第一区的硬掩模膜图案;使用硬掩模膜图案作为掩模通过第一蚀刻工艺来形成第一沟槽且去除硬掩模图案;在包括第一沟槽的半导体衬底上形成阻挡膜;在阻挡膜上形成用于暴露第一沟槽的离子注入掩模膜;使用离子注入掩模膜和阻挡膜,在半导体衬底中第一沟槽下形成离子注入区。所述方法还包括,使用离子注入掩模膜和阻挡膜作为掩模,通过第二蚀刻工艺形成球状物形第二沟槽,使得形成了用于凹形沟道的球状物形沟槽,且去除了离子注入掩模膜和阻挡膜。
本方法还可以包括在形成硬掩模膜图案之前形成了缓冲膜图案。硬掩模膜图案由多晶硅膜制成,缓冲膜图案可以由氧化膜制成,离子注入掩模膜可以包括光致抗蚀剂膜,且阻挡膜可以包括高热氧化膜。
离子注入区通过局部沟道注入工艺形成,该工艺用于将杂质注入到用于凹形沟道的球状物形沟槽下的半导体衬底的部分中。
另外,优选地,离子注入区通过局部沟道注入工艺形成,该工艺用于以5-7。的倾斜角和0°和180°的角度的旋转方向将杂质注入到半导体衬底中。优选地,离子注入区形成于距第一沟槽的底部的400-的深度的位置。在本实施例中,离子注入区的上区被设置为在第一沟槽的最低端下400
Figure S061D5575X20061027D000022
而且离子注入区的下区延伸得更低。
球状物形第二沟槽可以形成以具有距第一沟槽的底部的400-
Figure S061D5575X20061027D000023
的深度。
第二蚀刻工艺可以使用各向同性蚀刻方法。
根据本发明得另一方面,一种用于形成半导体器件中的凹形沟道的沟槽的方法包括:形成用于暴露第一区的硬掩模膜图案,用于形成半导体衬底上的沟槽;使用硬掩模膜图案作为掩模通过第一蚀刻工艺来形成第一沟槽;使用硬掩模膜图案在半导体衬底中在第一沟槽下形成离子注入区,且去除硬掩模膜图案;在半导体衬底的整个表面上形成阻挡膜;使用阻挡膜作为掩模通过第二蚀刻工艺形成球状物形第二沟槽,从而形成了用于凹形沟道的球状物形沟槽;且去除阻挡膜。
所述方法还可以包括在形成硬掩模膜图案之前形成缓冲膜。硬掩模膜图案可以由非晶碳膜制成,且具有2000-
Figure S061D5575X20061027D000031
的厚度。
缓冲膜图案可以由氧化膜制成。
优选地,第一沟槽具有400-
Figure S061D5575X20061027D000032
的深度。
离子注入区通过局部沟道注入工艺形成,该工艺用于将杂质垂直地注入半导体衬底的用于凹形沟道的在球状物形沟槽下的部分中。
另外,优选地,离子注入区形成于距第一沟槽的底部的400-的深度的位置。
局部沟道注入工艺可以通过以20-30keV的能量和2.0-5.0E13离子/cm2的剂量将杂质注入到半导体衬底中来进行。
缓冲膜可以具有30-
Figure S061D5575X20061027D000034
的厚度。
球状物形第二沟槽可以形成以具有距第一沟槽的底部400-
Figure S061D5575X20061027D000035
的深度。
第二蚀刻工艺可以使用各向同性蚀刻方法。
附图说明
图1和2是示出制造具有凹形沟道的半导体器件的常规方法的剖面图;
图3到9是示出根据本发明的实施例的用于形成半导体器件中凹形沟道的沟槽的方法;以及
图10到16是示出根据本发明的另一实施例的用于形成半导体器件中凹形沟道的沟槽的方法。
具体实施方式
现将参考附图详细描述本发明的实施例。本发明不限于这里阐述的实施例,且在不背离本发明的范围的情况下,各种改进、添加和替换是可能的。为了更容易地示出各种层和区,附图中的元件可能没有按照比例绘制。说明书通篇具有相同或相似功能的元件由相同的附图标号来表示,即使它们出现在不同的图中。
参考图3,在半导体衬底200上形成了用于暴露半导体衬底200的器件隔离区的缓冲膜202以及衬垫氮化膜(未显示)。进行半导体衬底200的暴露区域的蚀刻工艺,由此在半导体衬底200中形成具有指定深度的沟槽(未显示)。其后,在半导体衬底200的整个表面上形成绝缘膜,从而沟槽用绝缘材料填充,然后在半导体衬底200上进行平面化工艺。从半导体衬底200去除衬垫氮化膜图案,由此形成具有沟槽的隔离结构204,该沟槽用于界定半导体衬底200的隔离区。隔离结构204在其他应用中还被称为浅沟槽隔离(STI)。缓冲膜202可以包括氧化膜。
参考图4,在半导体衬底200上形成了硬掩模膜206。在硬掩模膜206上沉积了光致抗蚀剂膜,然后将其构图,由此形成暴露硬掩模膜206的指定区域的光致抗蚀剂膜图案208。这里,硬掩模膜206是具有800-的多晶硅膜。
参考图5,使用光致抗蚀剂图案208作为掩模蚀刻硬掩模膜206和缓冲膜202,由此形成暴露半导体衬底200的第一区的硬掩模膜图案210和缓冲膜图案212。这里,第一区(在图中未显示)指的是其中将形成用于凹形沟道的球状物形沟槽的区域。使用硬掩模膜图案210作为掩模进行第一蚀刻工艺,由此在半导体衬底200中形成第一沟槽214。设置于硬掩模膜图案210下的缓冲膜图案212可以被认为是掩模的一部分。在第一蚀刻工艺之后,从半导体衬底200去除硬掩模膜图案210。这里,第一沟槽214对应于用于凹形沟道的球状物形沟槽的颈部且具有400-
Figure S061D5575X20061027D000042
的深度。
参考图6,在包括第一沟槽214的半导体衬底200的整个表面上形成阻挡膜216。阻挡膜216用于防止半导体衬底200在随后形成用于凹形沟道的球状物形沟槽的第二蚀刻工艺期间被过度蚀刻。在本实施例中,阻挡膜216包括高温氧化膜(HTO)且具有30-
Figure S061D5575X20061027D000043
的厚度。
参考图7,在缓冲膜216上沉积了光致抗蚀剂膜且将其构图,由此形成暴露第一沟槽214的光致抗蚀剂材料的离子注入掩模膜218。离子注入掩模膜218可以在其他实施例中为不同的材料。
使用离子注入掩模膜218和阻挡膜216作为掩模,进行局部沟道离子注入(LCI)工艺来将杂质注入到半导体衬底200中在第一沟槽214下,由此形成离子注入区220。在LCI工艺中,杂质以5°-7°的倾斜角被注入到半导体衬底中且以0°和180°的角度旋转,从而将杂质注入到半导体衬底200中在第一沟槽214下。优选地,离子注入区220形成于距第一沟槽214的底部的400-
Figure S061D5575X20061027D000044
的深度的位置。离子注入区220形成于距第一沟槽214的底部的400-1000
Figure DEST_PATH_G200610135575X01D00011
的深度的位置,从而随后将形成的沟道区的宽度和深度不会彼此相同。
参考图8,使用离子注入掩模膜218和阻挡膜216作为掩模,进行第二蚀刻工艺,由此在第一沟槽214的下部之下形成球状物形第二沟槽222。由此形成用于凹形沟道的球状物形沟槽224,每个均包括第一沟槽214和第二沟槽222。第一沟槽214和第二沟槽222可以被称为成球状物形沟槽的“颈”和“头”。
其后,进行清洗工艺,从半导体衬底200去除保留在球状物形沟槽224上的离子注入掩模膜218和缓冲膜216。然后,在半导体衬底200上形成了具有40-60的厚度的屏蔽(screen)氧化膜(未显示)。使用该屏蔽氧化膜作为离子注入掩模进行了常规的阱离子注入和沟道离子注入,然后从半导体衬底200去除屏蔽氧化膜。
这里,第二沟槽222具有距第一沟槽214的底部的400-1000
Figure DEST_PATH_G200610135575X01D00013
的深度。优选地,第二蚀刻工艺使用了各向同性蚀刻方法,其中所有的方向以相同的速度被蚀刻以在蚀刻之后形成曲面。当进行各向同性蚀刻时,缓冲膜216防止了球状物沟槽224的侧表面的过度蚀刻。
在常规的方法中,仅使用缓冲膜216作为蚀刻掩模进行第二蚀刻工艺,因此由于蚀刻选择性在球状物沟槽224的上边缘215出产生了对于硅(Si)的损伤。在本发明的该实施例中,使用缓冲膜216和光致抗蚀剂材料的离子注入掩模膜218作为蚀刻掩模,进行了第二蚀刻工艺,由此防止在球状物沟槽224的上边缘(或上角)215处产生了对于硅(Si)的损伤。
在本发明的该实施例中,在形成第一沟槽214之后,通过沟道离子注入工艺(即LCI工艺)在第一沟槽214的低端之下形成了离子注入区220。其后,第二沟槽222形成以界定用于凹形沟道的球状物沟槽224,其包括第一沟槽214和第二沟槽222。因此,离子注入区220位于球状物沟槽224的低端或下面。相应地,离子注入区大部分形成于将形成沟道的区域,由此减小了离子注入区220和之后形成的源极/漏极区之间的重叠的可能性,其有助于在重叠区域减小电场强度并改善刷新特性。
]参考图9,在球状物沟槽224上形成栅极叠层234,且通过将杂质注入到半导体衬底200中形成了源极/漏极区236。这里,每个栅极叠层234均包括具有30-50的厚度的栅极绝缘膜图案226、由掺杂的多晶硅膜制成的具有的厚度的导电膜图案228、由硅化钨膜制成的具有1000-的厚度的金属膜图案228、和具有2000-
Figure S061D5575X20061027D000063
的厚度的硬掩模膜图案232。
根据本发明的该实施例,形成第一沟槽214,从而离子注入区220位于球状物沟槽224的低端或下面,且使用由光致抗蚀剂膜制成的离子注入掩模膜218和阻挡膜216作为掩模膜进行LCI工艺。源极/漏极区236和离子注入区220之间的重叠区域在本实施例中被减小,由此防止在重叠的区域处的电场的增加且改善了刷新特性。另外,通过使用由光致抗蚀剂膜制成的离子注入掩模膜218(用于离子注入工艺中)和阻挡膜216作为蚀刻掩模而减小了对于球状物形沟槽的上角的损伤。
图1O示出了根据本发明的另一实施例在半导体衬底300上形成缓冲膜304和硬掩模膜306。衬底300的有源区通过隔离结构302来界定。这里,隔离结构302的形成与之前的实施例的隔离结构204的形成相似,由此将省略其详细描述。缓冲膜304通过常规的热工艺由氧化膜制成,且硬掩模膜306由非晶碳膜制成且具有2000-
Figure S061D5575X20061027D000064
的厚度。因为非晶碳膜具有高于硅(Si)的蚀刻选择性,所以硬掩模膜306在随后用于形成第一沟槽的蚀刻工艺期间几乎不被去除。由此,在随后的离子注入工艺中,比如LCI工艺期间,硬掩模膜306被用作离子注入掩模膜。
参考图11,在硬掩模膜306上沉积光致抗蚀剂膜且将其构图,由此形成暴露了硬掩模膜306的指定区域的光致抗蚀剂图案308。然后,使用暴露缓冲膜304的光致抗蚀剂图案308,形成了硬掩模膜图案310。接下来,从半导体衬底300去除了光致抗蚀剂图案308。
参考图12,使用硬掩模膜图案310作为掩模,形成了缓冲膜图案312,暴露半导体衬底300的第一区(未显示)。这里,第一区被指将形成用于凹形沟道的球状物形沟槽的区域。使用硬掩模膜图案310和缓冲膜图案312进行第一蚀刻工艺,由此在半导体衬底300中形成了第一沟槽314。这里,第一沟槽314对应于用于凹形沟道的球状物形沟槽的颈部,且通过干法蚀刻形成以具有的深度。在由非晶碳膜制成的硬掩模膜图案310被用作蚀刻掩模的情形,在第一蚀刻工艺期间,硬掩模膜图案310几乎不被去除,由此在随后的离子注入工艺中,比如LCI工艺期间,被用作离子注入掩模膜。
参考图13,使用硬掩模膜图案310和缓冲膜图案312作为离子注入掩模,在第一沟槽314下进行用于将杂质注入到半导体衬底300中的LCI工艺,由此形成离子注入区316。在LCI工艺中,以20-30keV的能量和2.0-5.0E13离子/cm2的剂量将杂质注入到半导体衬底300中。优选地,LCI工艺如此进行,使得离子注入区316位于比第二沟槽更深的深度,第二沟槽将在后面形成。然后,从半导体衬底300去除硬掩模膜图案310。
参考图14,在包括缓冲膜图案312的半导体衬底300的整个表面上形成具有的厚度的缓冲膜318。缓冲膜318由氧化膜制成,用于防止在随后的第二蚀刻工艺期间球状物形第二沟槽的侧表面被过度蚀刻,由此防止半导体衬底300被损伤。
参考图15,使用缓冲膜图案312和缓冲膜318作为掩模来进行第二蚀刻工艺,由此在第一沟槽314的低端形成了球状物形第二沟槽320。由此,形成用于凹形沟道的球状物形沟槽322(由第一沟槽314和第二沟槽320构成)。优选地,第二蚀刻工艺使用各向同性蚀刻方法,其中所有的方向以相同的速度蚀刻以在蚀刻之后形成曲面。第二沟槽320具有距第一沟槽314的底部的的深度。当进行各向异性蚀刻时,阻挡膜318防止了球状物形第二沟槽320的侧表面的过度蚀刻。其后,进行清洗工艺,从半导体衬底300去除保留在用于凹形沟道的球状物形沟槽上的阻挡膜318。
在本发明的该实施例中,在形成第一沟槽314之后,通过沟道离子注入工艺(即,LCI工艺)在第一沟槽3 14下形成了离子注入区316。其后,形成了第二沟槽320。由此,形成了包括第一沟槽314和第二沟槽320的用于凹形沟道的球状物形沟槽322。因此,离子注入区316位于用于凹形沟道的球状物形沟槽322的低端。由此,仅在用于形成沟道的区域选择性地进行了离子注入,由此减小了离子注入区316和源棚漏极区(随后形成)之间的重叠区域,减小了重叠区的电场强度且改善了刷新性能。
参考图16,在用于凹形沟道的球状物形沟槽322上形成了栅极叠层332,且通过将杂质注入到半导体衬底300中,在半导体衬底300中形成了源棚漏极区334。这里,每个栅极叠层332均包括栅极绝缘膜图案324、导电膜图案326、金属膜图案328和硬掩模膜图案330。
根据本发明的该实施例,LCI工艺如此进行从而离子注入区316仅形成于球状物形沟槽322的低端,由此最小化了离子注入区316和源棚漏极区334之间的重叠区域,因此减小了在重叠区域的电场强度且改善了刷新性能。
另外,在非晶碳膜被用作形成沟槽的蚀刻掩模的情形,在蚀刻期间非晶碳膜几乎不被去除,由此在LCI工艺期间被用作离子注入掩模膜。
另外,包括阻挡膜318和缓冲膜图案312的双层结构被用作蚀刻掩模,防止在用于形成凹形沟道的球状物形沟槽的蚀刻工艺期间对于半导体衬底300的损伤。
从上述描述显见,本发明提供了一种用于形成半导体器件中的凹形沟道的沟槽的方法,其中仅在半导体衬底在用于沟道的沟槽的下端之下的部分中进行了LCI工艺,由此改善了刷新性能。
另外,具有阻挡膜和光致抗蚀剂膜图案的双层结构的硬掩模膜被用作离子注入掩模膜,防止了在用于形成凹形沟道的球状物形沟槽的蚀刻工艺期间对于半导体衬底的损伤。
虽然已经为了说明性的目的披露了本发明的实施例,但是本领域的普通技术人员将认识到各种改进、添加和替换是可能的,而不背离在权利要求中所公开的本发明的范围和精神。

Claims (26)

1.一种具有凹形沟道的半导体器件的形成方法,包括:
在半导体衬底上形成暴露用于形成沟槽的第一区的硬掩模膜图案;
使用所述硬掩模膜图案作为掩模通过第一蚀刻工艺来形成第一沟槽且去除所述硬掩模图案;
在包括所述第一沟槽的半导体衬底上形成阻挡膜;
在所述阻挡膜上方形成离子注入掩模膜;
使用所述离子注入掩模膜和所述阻挡膜,在所述半导体衬底中第一沟槽下形成离子注入区;
使用所述离子注入掩模膜和所述阻挡膜作为掩模,通过进行第二蚀刻工艺形成了所述第一沟槽下的第二沟槽,使得形成了用于凹形沟道的球状物形沟槽,且每个球状物包括所述第一沟槽和所述第二沟槽;以及
去除所述离子注入掩模膜和所述阻挡膜。
2.根据权利要求1所述的方法,还包括在形成所述硬掩模膜图案之前形成缓冲膜图案。
3.根据权利要求1所述的方法,其中所述硬掩模膜图案包括多晶硅膜图案。
4.根据权利要求1所述的方法,其中所述硬掩模膜图案具有800-1200的厚度。
5.根据权利要求2所述的方法,其中所述缓冲膜图案包括氧化膜。
6.根据权利要求1所述的方法,其中所述离子注入掩模膜包括光致抗蚀剂膜。
7.根据权利要求1所述的方法,其中所述第一沟槽具有400-1000
Figure FSB00000101906500012
的厚度。
8.根据权利要求1所述的方法,其中所述阻挡膜包括高热氧化膜。
9.根据权利要求1所述的方法,其中所述阻挡膜具有30-100的厚度。
10.根据权利要求1所述的方法,其中所述离子注入区通过局部沟道注入工艺形成,所述局部沟道注入工艺用于将杂质注入到所述半导体衬底的在用于凹形沟道的球状物形沟槽下的部分中。
11.根据权利要求1所述的方法,其中所述离子注入区通过局部沟道注入工艺形成,所述局部沟道注入工艺用于以5-7°的倾斜角和0°和180°的角度的旋转方向将杂质注入到所述半导体衬底中。
12.根据权利要求1所述的方法,其中所述离子注入区形成于距所述第一沟槽的低端的400-1000
Figure FSB00000101906500021
的深度的位置。
13.根据权利要求1所述的方法,其中所述第二沟槽形成以具有距所述第一沟槽的低端400-1000的深度。
14.根据权利要求1所述的方法,其中所述第二蚀刻工艺使用各向同性蚀刻方法。
15.一种形成半导体器件的方法,包括:
使用设置在半导体衬底上方的硬掩模膜图案,进行第一蚀刻工艺来形成沟槽的上部;
使用所述硬掩模膜图案,在所述半导体衬底中在所述沟槽的上部下方的给定深度处形成离子注入区;
去除所述硬掩模膜图案;
在所述半导体衬底上方形成阻挡膜;
使用所述阻挡膜作为掩模,通过进行第二蚀刻工艺来形成所述沟槽的下部;且
去除所述阻挡膜,
其中包括所述上部和下部的沟槽界定了所述半导体器件的凹形沟道。
16.根据权利要求15所述的方法,还包括在形成所述硬掩模膜图案之前形成缓冲膜。
17.根据权利要求15所述的方法,其中所述硬掩模膜图案包括非晶碳膜,其中所述沟槽的上部界定了所述沟槽的颈部,且所述沟槽的下部界定了所述沟槽的球形部。
18.根据权利要求17所述的方法,其中所述非晶碳膜具有2000-3000
Figure FSB00000101906500023
的厚度。
19.根据权利要求16所述的方法,其中所述缓冲膜图案包括氧化膜。
20.根据权利要求15所述的方法,其中所述沟槽的上部具有400-1000
Figure FSB00000101906500024
的深度。
21.根据权利要求15所述的方法,其中所述离子注入区通过局部沟道注入工艺形成,所述局部沟道注入工艺用于将杂质垂直地注入半导体衬底中所述沟槽下的部分中。
22.根据权利要求15所述的方法,其中所述离子注入区形成于距所述沟槽的上部的底部400-1000
Figure FSB00000101906500031
的深度的位置。
23.根据权利要求21所述的方法,其中所述局部沟道注入工艺通过以20-30keV的能量和2.0-5.0E13离子/cm2的剂量将杂质注入到所述半导体衬底中来进行。
24.根据权利要求15所述的方法,其中所述缓冲膜具有30-100的厚度。
25.根据权利要求15所述的方法,其中所述沟槽的下部形成为具有距所述沟槽的上部的低端400-1000
Figure FSB00000101906500033
的深度。
26.根据权利要求15所述的方法,其中所述第二蚀刻工艺使用各向同性蚀刻方法。
CN200610135575XA 2005-12-29 2006-10-18 具有凹形沟道的半导体器件的形成方法 Expired - Fee Related CN1992181B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR134292/05 2005-12-29
KR1020050134292A KR100732767B1 (ko) 2005-12-29 2005-12-29 반도체 소자의 리세스 채널용 트렌치 형성방법

Publications (2)

Publication Number Publication Date
CN1992181A CN1992181A (zh) 2007-07-04
CN1992181B true CN1992181B (zh) 2010-09-22

Family

ID=38214331

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610135575XA Expired - Fee Related CN1992181B (zh) 2005-12-29 2006-10-18 具有凹形沟道的半导体器件的形成方法

Country Status (4)

Country Link
US (1) US7799641B2 (zh)
JP (1) JP2007184533A (zh)
KR (1) KR100732767B1 (zh)
CN (1) CN1992181B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100732767B1 (ko) * 2005-12-29 2007-06-27 주식회사 하이닉스반도체 반도체 소자의 리세스 채널용 트렌치 형성방법
JP2007250855A (ja) * 2006-03-16 2007-09-27 Elpida Memory Inc 半導体装置及びその製造方法
US7858476B2 (en) * 2006-10-30 2010-12-28 Hynix Semiconductor Inc. Method for fabricating semiconductor device with recess gate
KR100818654B1 (ko) * 2006-12-01 2008-04-01 주식회사 하이닉스반도체 벌브형 리세스 게이트를 갖는 반도체 소자 및 그 제조 방법
KR100780658B1 (ko) * 2006-12-27 2007-11-30 주식회사 하이닉스반도체 반도체 소자의 제조 방법
US7838361B2 (en) * 2007-09-28 2010-11-23 Hynix Semiconductor Inc. Method for fabricating recess gate in semiconductor device
KR101344019B1 (ko) * 2007-11-01 2013-12-24 삼성전자주식회사 이온 주입 방법
JP2009224520A (ja) * 2008-03-14 2009-10-01 Elpida Memory Inc 半導体装置及び半導体装置の製造方法
DE102009031114B4 (de) * 2009-06-30 2011-07-07 Globalfoundries Dresden Module One LLC & CO. KG, 01109 Halbleiterelement, das in einem kristallinen Substratmaterial hergestellt ist und ein eingebettetes in-situ n-dotiertes Halbleitermaterial aufweist, und Verfahren zur Herstellung desselben
CN102856276B (zh) * 2011-06-27 2015-08-12 中芯国际集成电路制造(上海)有限公司 半导体器件及其制造方法
US9117759B2 (en) 2011-08-10 2015-08-25 Micron Technology, Inc. Methods of forming bulb-shaped trenches in silicon
US20130187159A1 (en) * 2012-01-23 2013-07-25 Infineon Technologies Ag Integrated circuit and method of forming an integrated circuit
KR20140142888A (ko) * 2013-06-05 2014-12-15 에스케이하이닉스 주식회사 반도체 집적 회로 장치 및 그 제조방법
DE102015109545B4 (de) * 2015-06-15 2021-10-21 Infineon Technologies Ag Transistor mit Feldelektroden und verbessertem Lawinendurchbruchsverhalten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010023960A1 (en) * 2000-02-28 2001-09-27 Hajime Soga Method for manufacturing semiconductor device and insulated gate type power transistor
US6297082B1 (en) * 1999-08-25 2001-10-02 United Microelectronics Corp. Method of fabricating a MOS transistor with local channel ion implantation regions
US20050037583A1 (en) * 2002-12-30 2005-02-17 Cheolsoo Park Semiconductor transistors and methods of fabricating the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637275A (ja) * 1992-07-13 1994-02-10 Toshiba Corp 半導体記憶装置及びその製造方法
TW514992B (en) * 1999-12-17 2002-12-21 Koninkl Philips Electronics Nv A method of manufacturing a semiconductor device
US6624016B2 (en) * 2001-02-22 2003-09-23 Silicon-Based Technology Corporation Method of fabricating trench isolation structures with extended buffer spacers
US6764907B2 (en) * 2002-02-19 2004-07-20 Bart J. Van Zeghbroeck Method of fabricating self-aligned silicon carbide semiconductor devices
US7045071B2 (en) * 2002-12-30 2006-05-16 Hynix Semiconductor Inc. Method for fabricating ferroelectric random access memory device
KR100459872B1 (ko) * 2003-05-07 2004-12-03 삼성전자주식회사 트렌치 게이트를 갖는 매몰 채널형 트랜지스터 및 그제조방법
KR100531461B1 (ko) * 2003-06-30 2005-11-28 주식회사 하이닉스반도체 엠피에스 공정을 이용한 캐패시터의 제조 방법
KR100558544B1 (ko) * 2003-07-23 2006-03-10 삼성전자주식회사 리세스 게이트 트랜지스터 구조 및 그에 따른 형성방법
KR100539244B1 (ko) * 2003-10-10 2005-12-27 삼성전자주식회사 리세스 채널 트렌치 패턴의 형성 방법, 리세스 채널트랜지스터의 제조 방법 및 리세스 채널 트랜지스터
KR20050045560A (ko) * 2003-11-12 2005-05-17 삼성전자주식회사 리세스 게이트 트랜지스터의 채널형성용 이온주입 방법
US7052972B2 (en) * 2003-12-19 2006-05-30 Micron Technology, Inc. Method for forming sublithographic features during the manufacture of a semiconductor device and a resulting in-process apparatus
US7582931B2 (en) * 2004-06-04 2009-09-01 Samsung Electronics Co., Ltd. Recessed gate electrodes having covered layer interfaces and methods of forming the same
KR100618861B1 (ko) * 2004-09-09 2006-08-31 삼성전자주식회사 로컬 리세스 채널 트랜지스터를 구비하는 반도체 소자 및그 제조 방법
US7323746B2 (en) * 2004-09-14 2008-01-29 Samsung Electronics Co., Ltd. Recess gate-type semiconductor device and method of manufacturing the same
US20060113590A1 (en) * 2004-11-26 2006-06-01 Samsung Electronics Co., Ltd. Method of forming a recess structure, recessed channel type transistor and method of manufacturing the recessed channel type transistor
KR100668856B1 (ko) * 2005-06-30 2007-01-16 주식회사 하이닉스반도체 반도체 소자의 제조방법
KR100608386B1 (ko) * 2005-06-30 2006-08-08 주식회사 하이닉스반도체 반도체 소자의 제조방법
KR100732767B1 (ko) * 2005-12-29 2007-06-27 주식회사 하이닉스반도체 반도체 소자의 리세스 채널용 트렌치 형성방법
KR100759839B1 (ko) * 2006-06-19 2007-09-18 삼성전자주식회사 수직 채널 반도체 장치 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297082B1 (en) * 1999-08-25 2001-10-02 United Microelectronics Corp. Method of fabricating a MOS transistor with local channel ion implantation regions
US20010023960A1 (en) * 2000-02-28 2001-09-27 Hajime Soga Method for manufacturing semiconductor device and insulated gate type power transistor
US20050037583A1 (en) * 2002-12-30 2005-02-17 Cheolsoo Park Semiconductor transistors and methods of fabricating the same

Also Published As

Publication number Publication date
US7799641B2 (en) 2010-09-21
JP2007184533A (ja) 2007-07-19
US20070155101A1 (en) 2007-07-05
KR100732767B1 (ko) 2007-06-27
CN1992181A (zh) 2007-07-04

Similar Documents

Publication Publication Date Title
CN1992181B (zh) 具有凹形沟道的半导体器件的形成方法
US8415210B2 (en) Field effect transistor and method for manufacturing the same
US7399679B2 (en) Narrow width effect improvement with photoresist plug process and STI corner ion implantation
US6998682B2 (en) Method of forming a partially depleted silicon on insulator (PDSOI) transistor with a pad lock body extension
US6245639B1 (en) Method to reduce a reverse narrow channel effect for MOSFET devices
US6888176B1 (en) Thyrister semiconductor device
KR20060062048A (ko) 핀 전계 효과 트랜지스터 및 그 제조방법
KR20060069561A (ko) 상승된 소오스 및 드레인 영역들을 갖는 씨모스 반도체소자들 및 그 제조방법들
JP4450267B2 (ja) Soi−mos電界効果トランジスタ製造方法
TW200816325A (en) Method for fabricating a semiconductor device with a FinFET
US20120049253A1 (en) Semiconductor device and method for fabricating the same
KR20060099876A (ko) 반도체 소자의 게이트 형성방법
KR20010025030A (ko) 반도체 디바이스 제조 방법
KR100838387B1 (ko) 부동 게이트 메모리 셀
JP3360064B2 (ja) 半導体素子の製造方法
US7279367B1 (en) Method of manufacturing a thyristor semiconductor device
US20050151185A1 (en) Semiconductor device and fabricating method thereof
KR100718248B1 (ko) 리세스 구조의 형성 방법, 이를 이용한 리세스된 채널을갖는 트랜지스터 및 그 제조 방법
KR100485690B1 (ko) 모스 트랜지스터 및 그 제조방법
US8154088B1 (en) Semiconductor topography and method for reducing gate induced drain leakage (GIDL) in MOS transistors
KR100488099B1 (ko) 쇼오트 채널 모오스 트랜지스터 및 그 제조 방법
KR20080006268A (ko) 터널링 전계 효과 트랜지스터의 제조 방법
US20240014319A1 (en) Semiconductor structure and transistor structure
KR100464535B1 (ko) 반도체소자의 트랜지스터 형성 방법
JPH11135739A (ja) Dramチップの改良された製造法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100922

Termination date: 20131018