CN1951151B - 高频加热设备 - Google Patents

高频加热设备 Download PDF

Info

Publication number
CN1951151B
CN1951151B CN2005800137520A CN200580013752A CN1951151B CN 1951151 B CN1951151 B CN 1951151B CN 2005800137520 A CN2005800137520 A CN 2005800137520A CN 200580013752 A CN200580013752 A CN 200580013752A CN 1951151 B CN1951151 B CN 1951151B
Authority
CN
China
Prior art keywords
circuit
control signal
voltage
dead time
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2005800137520A
Other languages
English (en)
Other versions
CN1951151A (zh
Inventor
末永治雄
守屋英明
酒井伸一
森川久
松仓丰继
城川信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1951151A publication Critical patent/CN1951151A/zh
Application granted granted Critical
Publication of CN1951151B publication Critical patent/CN1951151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/666Safety circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Inverter Devices (AREA)

Abstract

一种在从启动状态变成稳定状态的时刻,可以抑制输入电流的过冲,因此可以防止IGBT和磁控管损坏的高频加热设备。该高频加热设备包含:控制信号形成电路,用于根据AC电源的输入电流与参考电流之间的差值形成控制信号;调频信号形成电路,用于利用来自控制信号形成电路的控制信号,校正通过整流AC电源获得的整流电压/整流电流;和停滞时间形成电路,用于接收来自调频信号形成电路的输出;其中,具有进一步降低控制信号的值的功能的控制信号转换电路连接在控制信号形成电路和调频信号形成电路之间。

Description

高频加热设备
技术领域
本发明涉及像微波炉那样使用磁控管的高频加热设备。更具体地说,本发明涉及这种高频加热设备的反相器电路。
背景技术
由于安装在高频加热设备上的传统电源做得既笨重又庞大,人们希望使这些传统电源更小型和轻质。结果,能够小型、轻质和低成本制造这些电源的各种技术思想以这样的方式取得积极进展,那就是,以开关方式构建这些电源。在利用磁控管生成的微波烹调食品的高频加热设备中,要求用于驱动磁控管的能够使电源小型和轻质的各种必要条件。这些必要条件可以通过开关型反相器电路实现。
更具体地说,在这些开关型反相器电路中,本发明针对的高频反相器电路对应于应用构成电桥电路的臂的两个开关元件的共振型电路系统(参照,例如,JP-A-2000-58252)。
当布置1-晶体管型反相器(宽度ON/OFF-控制型反相器)时,这个晶体管的集电极和发射极之间的耐压需要大约1000V。但是,当布置含有电桥电路的2-晶体管型反相器时,这些晶体管的集电极和发射极之间的耐压就需要那么高的耐压。结果,如果反相器电路由电桥电路布置构成,那么,这些晶体管的集电极和发射极之间的耐压可能降低到大约600V。于是,存在可以将低成本晶体管用在这些晶体管反相器中的优点。在这种类型的晶体管中,虽然共振电路由电感“L”和电容“C”构成,但这个反相器拥有像表示在图1中那样的共振特性,其中,共振频率“f0”被定义成峰。
图1是代表在恒定电压应用于根据本发明的反相器共振电路的情况下的电流-使用频率特性的曲线图。
频率“f0”对应于反相器电路的LC共振电路的共振频率,并且利用了比这个共振频率“f0”高的、频率范围被定义成从“f1”到“f3”的电流-频率特性曲线“I1”。
在共振频率“f0”上,电流I1变成极大,并随着频率从f1增大到f3,这个电流I1逐渐减小。在定义成从f1到f3的频率范围内,频率降得越低,频率就越接近共振频率f0,以便电流I1增大。结果,流过漏磁变压器的次级绕组的电流增大。相反,频率增得越高,频率就离共振频率f0越远,以便电流I1减小。结果,流过漏磁变压器的次级绕组的电流减小。在驱动起非线性负载作用的微波炉的反相器电路中,由于这个频率是可变的,所以微波炉的功率也发生变化。
正如后面说明的那样,在利用磁控管的非线性负载的微波炉的输入电源对应于像商用电源那样的AC(交流)电流的情况下,微波炉使开关频率发生改变。
关于微波炉的相应高频功率,最高频率出现在大约90°和大约270°的温度上.例如,当微波炉在200W下工作时,工作频率接近f3;当微波炉在500W下工作时,工作频率低于f3;和当微波炉在1000W下工作时,工作频率进一步低于f3.显然,由于进行输入功率控制或输入电流控制,这个频率可以随与商用电源的电压、微波炉的温度等有关的变化而变化.
此外,在上述电源电压的相位的0°和180°附近,由于磁控管的工作频率被设置成接近频率“f1”,频率“f1”与共振频率“f0”接近,在共振频率“f0”上,共振电流与这样的磁控管特性相对应地增加,以致于如果未对其施加高电压,那么,这个磁控管不会在高频率下共振,所以施加在磁控管上的电压与商用电源的电压的升压比提高了,并且,从磁控管中产生电磁波的商用电源的相位宽度被设置成得更宽了。
图2示出了描述在JP-A-2000-58252中的、通过双元件电桥电路的开关元件操作的共振型高频加热设备的例子。在图2中,通过DC(直流)电源1、漏磁变压器2、第一半导体开关元件6、第一电容器4、第二电容器5、第三电容器(平滑电容器)13、第二半导体开关元件7、驱动单元8、全波倍增整流电路10以及磁控管11布置了高频加热设备。
DC电源1以全波整流方式整流商用电源的AC电压,生成DC电压VDC,然后,将DC电压VDC施加给由第二电容器5和漏磁变压器2的初级绕组3构成的串联电路。虽然第一半导体开关元件6与第二半导体开关元件7串联,但由漏磁变压器2的初级绕组3和第二电容器5构成的串联电路与第二半导体开关元件7并联。
第一电容器4与第二半导体开关元件7并联。漏磁变压器2的次级绕组9的AC高压输出由全波倍增整流电路10转换成DC高压,然后,将这个DC高压施加在磁控管11的阳极和阴极之间。漏磁变压器2的第三绕组12将电流供应给磁控管11的阴极。
第一半导体开关元件6由IGBT(绝缘栅双极晶体管)和与IGBT并联的续流二极管(flywheel diode)构成。类似地,第二半导体开关元件7由IGBT和与IGBT并联的续流二极管构成。
从上面的描述中可明显看出,第一和第二半导体开关元件6和7两者都不局限于上述那种类型的半导体开关元件,而是可替代地,也可应用晶闸管、GTO(栅极断开)开关元件等。
驱动单元8包含用于产生驱动第一半导体开关元件6和第二半导体开关元件7的驱动信号的振荡单元。当这个振荡单元发生振荡产生具有预定频率和忙闲度的驱动信号时,驱动单元8将这些驱动信号施加在第一半导体开关元件6和第二半导体开关元件7上。
交替地驱动或通过提供第一和第二半导体开关元件6和7两者共同断开的时间间隔,即,通过应用停滞时间形成装置(如后所述)提供停滞时间来驱动第一半导体开关元件6和第二半导体开关元件7。在第一和第二半导体开关元件6和7中的某一个断开之后,在另一个半导体开关元件两端的电压就处在高电平。结果,如果另一个半导体开关元件此时被接通,那么,具有尖峰形状的过分大电流可能流过这个接通的开关元件,从而可能产生不必要的损耗和不想要的噪声。但是,由于这个接通操作可能延迟到开关元件两端的高压下降到接近0V,所以上述损耗和噪声可能得到防止。显然,当与上述开关元件相对的开关元件被断开时,可以执行类似的操作。
图3表示了操作图2的电路的相应模式。
此外,图4示出了与应用在电路中的像半导体开关元件那样的部件有关的电压和电流波形图。
在图中,在图3(a)的模式1下,将驱动信号供应给第一半导体开关元件6。此时,电流从DC电源1流入漏磁变压器2的初级绕组3和第二电容器5。
在图3(b)的模式2下,第一半导体开关元件6断开,和流过初级绕组3和第二电容器5的电流开始沿着到第一电容器4的方向流动,此时,第一半导体开关元件6的电压升高了。
在图3(c)的模式3下,第一电容器4的电压从VDC指向0V。在模式3下,第一电容器4两端的电压到达0V,从而接通构成第二开关元件7的二极管。
在图3(d)的模式4下,由于共振现象,流过初级绕组3和第二电容器5的电流的方向反向,此时,必须断开第二半导体开关元件7。在模式2、3以及4的时间间隔中,第一半导体开关元件6的电压变成等于DC电源电压VDC。在与商用电源电压有关的有效值是230V的像欧洲那样的地区中,由于电压峰值变成有效电压的倍,所以DC电源电压VDC变成接近等于325V。
在图3(e)的模式5下,第二半导体开关元件7被断开,并且流过第二电容器5和初级绕组3的电流开始沿着到第一电容器4的方向流动,以便第一电容器4的电压升高到VDC。
在图3(f)的模式6下,第一电容器4的电压达到VDC,因此,构成第一半导体开关元件6的二极管被断开。由于共振现象,流过初级绕组3和第二电容器5的电流的方向反向,此时,必须接通第一半导体开关元件6,这就构成模式1。在模式1和6的时间间隔中,第二半导体开关元件7的电压变成等于DC电源电压VDC。
按照这种电路布置,与施加给第一半导体开关元件6和第二半导体开关元件7的电压有关的最大值可以被设置成DC电源电压VD。
模式2和模式5两者对应于从初级绕组3流出的电流可以流过第一电容器4和第二电容器5的共振间隔。由于第一电容器4的电容值被设置成低于第二电容器5的电容值,或等于第二电容器5的电容值的1/10,所以总电容值变成接近等于第一电容器的电容值。在模式3和4下施加给第一半导体开关元件6和第二半导体开关元件7的电压随由这个总电容值和漏磁变压器3的阻抗确定的时间常数而改变。由于这种电压变化具有根据上述时间常数确定的倾斜度,所以可以降低在模式3下断开第一半导体开关元件6时造成的开关损耗。
此外,在模式5下,由于电压变成零,当在模式1下接通第一半导体开关元件6时,施加给第一半导体开关元件6的电压变成零,从而当接通第一半导体开关元件6时,可以降低这个开关元件6的开关损耗。将此称为“零电压开关”操作,而且这些项都是共振电路系统的特征。本系统利用了这些特征,并且拥有半导体开关元件的电压不变成大于或等于DC电源电压VDC的优点。如图4所示,以使第二电容器5的电压包含少量波动成分的方式将这种第二电容器5的电容值设置成足够高的电容值。
另一方面,如图2所示,在由第一和第二半导体开关元件6和7构成的串联电路与DC电源1并联和臂由两个开关装置构成的反相器电路中,由于交替地重复第一和第二半导体开关元件6和7的ON/OFF操作,在漏磁变压器2的初级绕组3中生成高频AC电压,然后,在次级绕组9中感应出高频电压。第一和第二半导体开关元件6和7同时接通这样的瞬时时间间隔不完全都能提供。这是因为DC电源1可能会发生短路。
在这样的情况下,传统上,有必要提供在第一和第二半导体开关元件6和7的某一个断开之后,不接通第一和第二半导体开关元件6和7两者,直到其余一个半导体开关元件被接通为止的时间间隔(称为“停滞时间(deadtime)”和缩写成“DT”).
现在,参照图4说明停滞时间(DT)。
图4表示了在上述相应模式1到6下与第一和第二半导体开关元件6和7(图7)以及第一和第二电容器4和5(图2)有关的电压波形和电流波形。
图4的(a)部分示出了在上述相应模式1到6下第一半导体开关元件6的电流波形。在模式1的结束时刻“t1”断开(即,电流变成0)了从时刻“t0”开始导通(于是,在图4的(b)中第一半导体开关元件的发射极和集电极之间的电压变成零)的第一半导体开关元件6。
另一方面,图4的(d)示出了第二半导体开关元件7的电压波形。从时刻“t0”开始断开的第二半导体开关元件7一直断开到施加接通信号的模式3的开始时刻“t2”。
因此,在定义成从时刻“t1”到时刻“t2”的时间间隔“DT1”中,第一半导体开关元件6和第二半导体开关元件7两者共同断开。
这个时间间隔DT1对应于停滞时间所需的最小值。停滞时间的最大值对应于定义成从时刻t1直到时刻t3的时间间隔。因此,停滞时间在这个时间范围内都是允许的。
类似地,这样的时间间隔“DT2”对应于停滞时间所需的最小值。这个时间间隔“DT2”通过在时刻“t4”(参见图4的(c))断开(即,电流变成零)了第二半导体开关元件7之后,直到如图4的(f)所表示的那样,在模式6的开始时刻“t5”将接通信号施加给第一半导体开关元件6的时间间隔来定义。停滞时间的最大值对应于从时刻“t4”直到时刻“t6”的时间间隔。因此,停滞时间在这个时间范围内都是允许的。
在传统2-晶体管型反相器电路中,以这样的方式将这些停滞时间“DT”定义成时间间隔“DT1”和时间间隔“DT2”,那就是,计算第一半导体开关元件6的接通和断开操作与第二半导体开关元件7的接通和断开操作不重叠的时间范围。将这些时间间隔DT1和DT2计算出来,作为固定值。
但是,在反相器电路用于微波炉的情况下,当在高开关频率的范围内驱动反相器电路时,一个半导体开关元件断开之后,直到另一个半导体开关元件的发射极和集电极之间的电压Vce下降到0V的时间间隔延长了。因此,在断开了一个半导体开关元件,并且已经经过了固定停滞时间之后,如果将接通信号施加给另一个开关元件,那么,另一个半导体开关元件被接通,而发射极和集电极之间的电压Vce不下降到0V。当开关频率高时,在半导体开关元件中可能会产生热损耗。因此,半导体开关元件的故障和尖峰电流的出现可能构成噪声生成源。
现在还参照图4说明产生上述热损耗和噪声的理由。
也就是说,即使在时刻t1(参见图4的(a))断开(即,电流变成零)第一半导体开关元件6,也需要定义成时刻“t2”减去时刻“t1”的时间间隔,以便第二半导体开关元件7两端的电压(实线)下降到0V(参见图4的(d))。结果,当在时刻t2将接通信号施加给另一个半导体开关元件7时,由于第二开关元件7的发射极和集电极之间的电压Vce已经下降到0V,这个第二半导体开关元件7从0V的电压开始(这个操作被称为“零伏开关”操作)被接通(变成导电的)。因此,不存在与热损耗和噪声有关的问题。
但是,电压VDC的梯形倾斜度随共振强度而改变.如果共振强(即,频率低),那么,倾斜度变成剧烈的,以便第二半导体开关元件7两端的电压迅速地变成零电压.如果共振弱(即,频率高),那么,倾斜度变成和缓的,从而需要较长时间,以便使第二半导体开关元件7两端的电压降到零电压.
如前所述,当反相器电路在高频范围内工作时,将开关频率与共振频率分开,以便延长时间常数,和在图4的(d)中,时间间隔变成另一个(第二)半导体开关元件7两端的电压(虚线所示)下降到0V的长度。因此,这个电压在时刻t1和时刻t2之间的时间间隔内不能完全下降到0V,而是即使经过了时刻t2之后,仍然有预定电压(参照图4的(d)中虚线F的符号Vt2)施加在这个第二半导体开关元件7上。
因此,当按照正常操作方式在时刻“t2”将接通信号施加给第二半导体开关元件7时,这个第二半导体开关元件7被接通,而预定电压Vt2仍然施加在这个第二半导体开关元件7的发射极和集电极之间,从而产生了热损耗。此外,由于出现大的dv/dt,可能有陡峭的尖峰电流流过,从而形成噪声源。
即使在进行这样的硬开关操作(即,即使电压或电流不是零,也强行进行开关操作)时,由于停滞时间有保障,所以这种硬开关操作决不会导致电源短路的故障,而仅仅在IGBT中产生额外的热损耗。但是,由于这些热损耗会被吸热设备吸收掉,所以即使可能出现这样的热损耗,也可以在正常条件下连续进行反相器操作。此外,尖峰电流引起的噪声不会变成相当大的噪声值,造成严重问题。于是,在传统反相器电路中,与上述硬开关操作有关的故障不完全有问题。因此,可以构想出下述的反相器电路。也就是说,虽然在这个反相器电路中,传统上固定的停滞时间“DT”是可变的,但不消耗无用能量,不对半导体开关元件的寿命造成负面影响,此外,可以几乎不产生噪声。
在这样配有形成固定停滞时间或可变停滞时间的停滞时间形成电路的高频加热设备中,需要这个高频加热设备被启动之后,直到磁控管的振荡变稳定的预定时间间隔。
并且,当磁控管的振荡达到稳定,然后过渡到正常条件时,可能会发生流过主要电路的输入电流Iin超过规定电流值的过冲现象。然后,如果主要电路的输入电流Iin过冲了,那么,存在IGBT和磁控管两者被损坏的风险。因此,需要迅速抑制过冲现象,以便保护这些电子部件。
发明内容
本发明要解决的问题
本发明就是为了解决上述问题而作出的,因此,本发明的一个目的是提供一种在高频加热设备被启动之后能够迅速稳定磁控管的振荡的高频加热设备。
并且,本发明的第二个目的是提供一种能够避免当磁控管的振荡达到稳定和过渡到正常条件时,主要电路的输入电流发生过冲的操作的高频加热设备。
解决问题的手段
为了解决上述问题,本发明的高频加热设备具有如下特征,这样的驱动磁控管的高频加热设备包含:DC电源,由AC电源、整流所述AC电源的AC电压的整流电路以及平滑所述整流电路的输出电压的平滑电容器构成;由两个半导体开关元件构成的串联电路;漏磁变压器的初级绕组和电容器连接而成的共振电路,所述串联电路与所述DC电源并联,而所述共振电路的一端与所述串联电路的中心点连接和所述共振电路的另一端与AC等效电路中的所述DC电源的一端连接;驱动装置,用于分别驱动所述半导体开关元件;与所述漏磁变压器的次级绕组连接的整流装置;与所述整流装置连接的磁控管;控制信号形成电路,用于根据AC电源的输入电流与参考电流之间的差值,或施加给磁控管的电压与参考电压之间的差值形成控制信号;调频信号形成电路,用于根据从控制信号形成电路或控制信号转换电路输出的控制信号,校正通过整流AC电源的AC电压/电流获得的整流电压/整流电流;停滞时间形成电路,用于接收调频信号形成电路的输出,并形成停滞时间,该停滞时间是在所述两个半导体开关元件中的一个断开之后、不接通所述两个半导体开关元件两者,直到所述两个半导体开关元件中的另一个被接通为止的时间间隔;和该控制信号转换电路,该控制信号转换电路被布置在所述控制信号形成电路和所述调频信号形成电路之间,并在正极性的情况下进一步降低所述控制信号的值,其中,在磁控管的启动操作中,从该控制信号转换电路输出的控制信号被输入到该调频信号形成电路,而在磁控管的正常操作中,从该控制信号形成电路输出的控制信号被输入到该调频信号形成电路.
本发明的高频加热设备具有如下特征,这样的驱动磁控管的高频加热设备包含:DC电源,由AC电源、整流所述AC电源的AC电压的整流电路以及平滑所述整流电路的输出电压的平滑电容器构成;两组串联电路,每组所述串联电路由两个半导体开关元件构成;漏磁变压器的初级绕组和电容器连接而成的共振电路,所述两组串联电路分别与所述DC电源并联,而所述共振电路的一端与所述一个串联电路的中心点连接和所述共振电路的另一端与另一个串联电路的中心点连接;驱动装置,用于分别驱动所述半导体开关元件;与所述漏磁变压器的次级绕组连接的整流装置;与所述整流装置连接的磁控管;控制信号形成电路,用于根据AC电源的输入电流与参考电流之间的差值,或施加给磁控管的电压与参考电压之间的差值形成控制信号;调频信号形成电路,用于根据从控制信号形成电路或控制信号转换电路输出的控制信号,校正通过整流AC电源的AC电压/电流获得的整流电压/整流电流;停滞时间形成电路,用于接收调频信号形成电路的输出,并形成停滞时间,该停滞时间是在所述两个半导体开关元件中的一个断开之后、不接通所述两个半导体开关元件两者,直到所述两个半导体开关元件中的另一个被接通为止的时间间隔;和该控制信号转换电路,该控制信号转换电路被布置在所述控制信号形成电路和所述调频信号形成电路之间,并在正极性的情况下进一步降低所述控制信号的值,其中,在磁控管的启动操作中,从该控制信号转换电路输出的控制信号被输入到该调频信号形成电路,而在磁控管的正常操作中,从该控制信号形成电路输出的控制信号被输入到该调频信号形成电路。
本发明的高频加热设备具有如下特征,这样的驱动磁控管的高频加热设备包含:DC电源,由AC电源、整流所述AC电源的AC电压的整流电路以及平滑所述整流电路的输出电压的平滑电容器构成;由两个半导体开关元件构成的串联电路;漏磁变压器的初级绕组和电容器连接而成的共振电路,所述串联电路与所述DC电源并联,而所述共振电路以并联的方式与所述半导体开关元件之一连接;驱动装置,用于分别驱动所述半导体开关元件;与所述漏磁变压器的次级绕组连接的整流装置;与所述整流装置连接的磁控管;控制信号形成电路,用于根据AC电源的输入电流与参考电流之间的差值,或施加给磁控管的电压与参考电压之间的差值形成控制信号;调频信号形成电路,用于根据从控制信号形成电路或控制信号转换电路输出的控制信号,校正通过整流AC电源的AC电压/电流获得的整流电压/整流电流;停滞时间形成电路,用于接收调频信号形成电路的输出,并形成停滞时间,该停滞时间是在所述两个半导体开关元件中的一个断开之后、不接通所述两个半导体开关元件两者,直到所述两个半导体开关元件中的另一个被接通为止的时间间隔;和该控制信号转换电路,该控制信号转换电路被布置在所述控制信号形成电路和所述调频信号形成电路之间,并在正极性的情况下进一步降低所述控制信号的值,其中,在磁控管的启动操作中,从该控制信号转换电路输出的控制信号被输入到该调频信号形成电路,而在磁控管的正常操作中,从该控制信号形成电路输出的控制信号被输入到该调频信号形成电路.
在本发明的高频加热设备中,控制信号转换电路包括运算放大器;控制信号转换电路的输出被施加给运算放大器的一个输入端,而串联电路的两个电阻之间的结点上的电位被施加给运算放大器的另一个输入端;和串联电路由这两个电阻和插在另一个DC电源的正电位与运算放大器的输出端之间的二极管构成。
在本发明的高频加热设备中,控制信号转换电路包括具有比较功能的放大器;控制信号形成电路的输出被送入放大器的一个输入端,和DC电源的正电位被送入放大器的另一个输入端;和作为比较功能,通过导通/不导通二极管开关放大器的增益。
在本发明的高频加热设备中,控制信号转换电路包括具有比较功能的放大器;控制信号形成电路的输出被送入放大器的一个输入端,和放大器的另一个输入端拥有将DC电源的正电位与控制信号形成电路的输出相比较的比较器;和通过比较器开关放大器的增益。
在本发明的高频加热设备中,在控制信号转换电路在负极性下工作,而不是在正极性下工作的情况下,控制信号转换电路使正极性下的各个信号反相。
在本发明的高频加热设备中,根据磁控管振荡感测装置的感测信号开关控制信号。
在本发明的高频加热设备中,停滞时间形成电路与开关频率无关地使停滞时间恒定,或者轻微增加停滞时间。
在本发明的高频加热设备中,停滞时间形成电路随开关频率的升高增加停滞时间。
在本发明的高频加热设备中,在低于或等于预定开关频率的开关频率上停滞时间形成电路使停滞时间恒定,或者轻微增加停滞时间。
在本发明的高频加热设备中,在高于或等于预定开关频率的开关频率上停滞时间形成电路迅速增加停滞时间。
在本发明的高频加热设备中,在低于或等于预定开关频率的开关频率上与停滞时间有关的恒定值或轻微增加值是可变的,而在高于或等于预定开关频率的开关频率上与停滞时间有关的迅速增加值也是可变的。
在本发明的高频加热设备中,预定频率是可变的。
在本发明的高频加热设备中,停滞时间形成电路随开关频率的升高以步进的方式增加停滞时间。
在本发明的高频加热设备中,停滞时间形成电路根据以与开关频率的升高成正比的第一倾斜度改变的,以及以从预定开关频率开始的第二倾斜度改变的正偏移电压和负偏移电压形成停滞时间。
在本发明的高频加热设备中,停滞时间形成电路包含:VCC电源;负载控制电源;与开关频率成正比变化的第一电流;从预定开关频率流出和与开关频率成正比地变化的第二电流;通过将第一电流和第二电流组合在一起并将该组合电流乘以预定系数产生的第三电流;和上/下电位形成装置,用于形成通过将与第三电流成正比的正偏移电压和负偏移电压与负载控制电源的电压相加得出的上电位和下电位;和可变停滞时间形成电路根据上电位和下电位形成停滞时间.
在本发明的高频加热设备中,通过改变负载控制电源的电压和开关频率中的至少一个进行输入功率控制操作或输入电流控制操作。
附图说明
图1是代表在恒定电压应用于根据本发明的反相器共振电路的情况下的电流-使用频率特性的曲线图;
图2是示出描述在专利出版物1中的、通过2-开关元件电桥的开关元件驱动的共振型高频加热设备的例子的电路图;
图3(a)-3(f)是代表操作图2的电路的相应模式的图形;
图4示出了与应用在图2的电路中的半导体开关元件有关的电压/电流波形图;
图5是表示根据本发明的通过2-开关元件电桥的开关元件驱动的高频加热设备的图形;
图6是示出与根据本发明的图5的高频加热设备有关的详细电路部分的电路图;
图7表示了与图6的控制信号形成电路有关的具体电路例子;
图8示出了与图6的控制信号转换电路有关的具体电路例子;
图9(a)是表示现有技术的控制信号与通过本发明获得的转换控制信号之间的关系的曲线图;图9(b1)是表示在启动操作期间Va与Vb之间的关系的曲线图;和图9(b2)是表示在正常操作期间开关214的输出与Vb之间的另一种关系的曲线图;
图10(a)和10(b)是表示控制信号的瞬时变化的曲线图;图10(a)示出了根据本发明的转换控制信号;和图10(b)示出了现有技术的控制信号;
图11(a)和11(b)是表示在在图10中控制信号达到饱和的情况下控制信号的瞬时变化的曲线图;图11(a)示出了根据本发明的转换控制信号;和图11(b)示出了现有技术的控制信号;
图12(a)和12(b)是说明形成停滞时间的基本思想的图形;图12(a)是说明振荡电路和可变停滞时间形成电路的相应输出与矩形波形成电路的输出之间的关系的图形;和图12(b)是说明即使频率发生变化,在频率低的范围内停滞时间DT也不改变的基本思想的图形;
图13是示出根据本发明的可变停滞时间形成电路的具体例子的电路图;
图14是示出可变停滞时间形成电路拥有的电流-频率特性的曲线图;
图15(a)、15(b1)、15(b2)以及15(b3)是示出可变停滞时间形成电路拥有的停滞时间-频率特性的曲线图;图15(a)示出了在低于或等于频率f1的频率上停滞时间DT被设置成恒定或轻微增加,或在高于或等于预定开关频率f1的频率上停滞时间DT迅速增加的例子;图15(b1)是沿着上/下方向改变停滞时间DT的恒定值和迅速增加值两者的修正例子;图15(b2)是改变频率f1上的倾斜度的修正例子;和图15(b3)是拐点的频率可沿左/右方向移动的修正例子;
图16是说明停滞时间DT可变的本发明第二实施例的曲线图;
图17是表示图5的振荡电路的一个例子的图形;
图18(a)-18(c)示出了与2-开关元件电桥的开关元件驱动的共振型高频加热设备有关的三组其它例子;
图19是表示与根据本发明的反相器电路有关的频率-相位特性的曲线图;和
图20是表示与反相器电路有关的输出电压-相位特性的曲线图。
标号说明
1    DC电源;
2    漏磁变压器;
3    初级绕组;
4    第一电容器;
5    第二电容器;
6    第一半导体开关元件;
7    第二半导体开关元件;
8    驱动单元;
9    次级绕组;
10   全波倍增整流电路;
11   磁控管;
12   第三绕组;
13   第三电容器;
21   控制信号形成电路;
211  控制信号转换电路;
212  磁控管振荡感测装置;
213  模式切换信号生成电路;
214  模式切换开关;
215  电池组;
22   调频信号形成电路;
221a 晶体管;
221b、221d、221e  电阻;
221c 电容器;
221f 开关;
221g 放大器;
221h 恒流源;
23   三角形载波振荡电路;
24   停滞时间形成电路;
25   矩形波形成电路;
26   开关元件驱动电路。
具体实施方式
图5是示出根据本发明的通过2-开关元件电桥的开关元件驱动的高频加热设备的图形。
在这个图中,通过DC电源1、漏磁变压器2、第一半导体开关元件6、第一电容器4、第二电容器5、第三电容器(平滑电容器)13、第二半导体开关元件7、驱动单元8、全波倍增整流电路10以及磁控管11布置了这个高频加热设备的主要电路。由于如图5所示的主要电路的布置与如图2所示的那个相同,因此,省略相同的说明。
然后,通过控制信号形成电路21、控制信号转换电路211、调频信号形成电路22、振荡电路23、停滞时间形成电路24、矩形波形成电路25以及开关元件驱动电路26布置控制第一和第二半导体开关元件6和7的控制电路。控制信号形成电路21从上述AC电源的输入电流“Iin”与参考电流“Ref”之间的差值,或施加给磁控管11的电压与参考电压之间的差值形成控制信号。在控制信号形成电路21的输出侧配有控制信号转换电路211。调频信号形成电路22根据控制信号转换电路211的输出信号和AC全波整流信号形成调频信号。振荡电路23产生三角形载波。停滞时间形成电路24根据开关频率的幅度改变停滞时间。矩形波形成电路25根据从振荡电路23输出的三角形波和可变停滞时间形成电路24的输出“VQ7C”和“VQ8C”的每一个形成各个矩形波。开关元件驱动电路26通过从矩形波形成电路25输出的矩形波生成接通/断开开关元件的脉冲。开关元件驱动电路26的相应脉冲输出被施加给第一和第二半导体开关元件(IGBT)6和7的栅极。
图6是表示与根据本发明的图5的高频加热设备有关的详细电路部分的电路图。这个电路部分的特征在于,控制信号转换电路211插在控制信号形成电路21与调频信号形成电路22之间。
在图6中,符号“C11”和“C12”示出了比较器;标号21表示控制信号形成电路;标号22表示调频信号形成电路;和标号211-215示出了按照本发明新应用的电路。也就是说,标号211示出了控制信号转换电路;标号212表示磁控管振荡感测装置;标号213表示将操作模式从启动操作切换到正常操作的模式切换信号生成电路;标号214代表将操作模式从启动操作切换到正常操作的模式切换开关;此外,标号215示出了DC电源(电池组)。
电池组电压切换开关S61与比较器C11连接。现在假设电容器(参见图2)的正电位等于“P1”,电池组电压切换开关S61将这样的电位“V1”施加给比较器C11的正侧输入端,而这个电位V1是通过将电位P1除以电阻R61和电阻R62的分压比确定的。另一方面,电池组电压切换开关S61在高频加热设备在启动操作模式下工作时,将低的DC电位“V11”施加给比较器C11的负侧输入端,在高频加热设备在正常操作模式下工作时,将高的DC电位“V12”施加给比较器C11的负侧输入端。
比较器C12对应于应用在传统电路中的相同比较器。将输入电流“Iin”供应给这个比较器C12的正侧输入端,和将参考电流“Ref”供应给比较器C12的负侧输入端。
如上所述,控制信号形成电路21的输入侧配有比较器C11的系统和比较器C12的另一个系统.比较器C11的系统根据施加给磁控管11的电压与参考电压之间的差值产生控制信号.比较器C12的系统根据AC电源的输入电流与参考电流之间的差值产生控制信号.由于高频加热设备被启动之后,直到磁控管11开始振荡,磁控管11的阻抗很高,所以通过电压感测这个磁控管11的振荡.当磁控管11开始振荡时,这个磁控管11的阻抗变低,并且由于施加了较低DC电压V1的比较器C11的控制功能,变压器2(参见图2)的初级侧电压被控制在启动模式的预定电压值上,以便流过变压器2的初级绕组侧的电流“Iin”开始增大.因而,磁控管振荡感测装置212感测到上述电流Iin增大,因此,判断磁控管11开始振荡.
磁控管振荡感测装置通过感测输入电流Iin超过预定电流值的条件,获得与磁控管11的振荡有关的认识。显然,这个有关磁控管11的振荡的感测条件只是一个例子,本发明不局限于这个感测条件。
模式切换信号生成电路213根据磁控管振荡感测装置212感测的磁控管11的振荡信号,生成这样的切换信号。响应这个切换信号,模式切换开关214和电池组电压切换开关S61两者从启动操作侧切换到正常操作侧。
当模式切换开关214被设置到启动操作侧时,选择从控制信号转换电路211输出的控制信号,而当模式切换开关214被设置到正常操作侧时,选择从控制信号形成电路21输出的控制信号,然后,将所选控制信号施加给调频信号形成电路22。
图7示出了与图6的控制信号形成电路21有关的具体电路例子,而图8表示了与图6的控制信号转换电路211有关的具体电路例子。
在图7中,标号21B示出了缓冲器(缓冲放大器),符号“Vb”表示控制信号形成电路21的输出电位,而符号“Vc”代表缓冲器21B的输入端电位。
符号“21S3”表示用于将缓冲器21B的输入侧电位Vc设置成DC电源21V1的电位“V1”(与图10的电位“V1”对应)的开关。符号“21S1”和“21S2”分别示出了响应比较器C11的输出状态和比较器C12的输出状态接通/断开的开关。这些开关21S1和21S2按如下工作:也就是说,当比较器C11和C12的输入电位是(正侧输入端的电位>负侧输入端的电位)时,分别接通(即,闭合)这些开关21S1和21S2,以便缓冲器21B的输入侧电位Vc可以通过电阻21R1和21R2增加。换句话说,这些开关21S1和21S2这样工作,使施加给磁控管11的电压降低,或使到这个磁控管11的输入电流减小。
电容器21C1和电阻21R3两者构成时间常数电路。这个电阻21R3对应于可以使电容器21C放电的放电电阻,并且可以具有能够降低缓冲器21B的输入侧电位Vc的功能。因而,这个电阻21R3提高了施加给磁控管11的电压,或增大了磁控管11的输入电流。应该明白,取代上述放电电阻21R3,在这个电流中可以改用恒流负载。
通过缓冲器21B和电阻21R4将缓冲器21B的输入侧电位Vc作为控制信号形成电路21的输出电位Vb施加给开关214和控制信号转换电路211两者。
当启动高频加热设备时(或者,当停止高频加热设备时),另一个开关21S4闭合,使下限电路21k与控制信号形成电路21的输出侧连接,以便形成这样的限制。也就是说,电位Vb不会变成低于DC电源21V5的电位V5。
图8示出了与图6的控制信号转换电路211有关的具体电路例子。
在这个图形中,符号C13示出了运算放大器。比较器C12(参见图6)的输出Vb施加给这个运算放大器C13的正侧(非反相)输入端C31,而串联电路的电阻R32和R33之间的连接点上的电位施加给比较器C13的负侧(反相)输入端C32。串联电路由上述电阻R32和R33以及二极管R32构成。这个串联电路插在DC电压V31与运算放大器C13的输出端C33之间。还应该明白,符号“Va”表示本发明转换的控制信号对应电压,和符号“Vb”表示现有技术的控制信号,即,减小等于参考信号与当前值之差的误差的控制信号。
这个控制信号转换电路211的操作定义如下:
(1)当Va≥V31时,变成Va=Vb。
(2)当Va<V31时,变成下述公式(1):
Va=(R32+R33)*Vb/R32-R33*V3/R32    ---公式(1)
还应该注意到,虽然上述控制信号转换电路211是应用图3中的运算放大器C3实现的,但本发明不只局限于此,可替代地,可以应用具有比较功能实现控制信号转换电路211。在这种替代情况下,可以应用等效于图8的控制信号转换电路211的电路布置。也就是说,虽然从控制信号形成电路21输出的控制信号被送入这个具有比较功能的放大器的一个输入端和DC电源V31的电位被送入该放大器的另一个输入端,但作为比较功能,可以通过导通/不导通二极管开关放大器的增益。
并且,可替代地,可以应用普通放大器实现等效于如图8所示控制信号转换电路211的电路。
在这种替代情况下,控制信号形成电路21的控制信号被送入这个普通放大器的一个输入端,而取代如图8所示的二极管D32,在普通放大器的另一个输入端上配备比较器和开关两者。比较器将DC电源V31的正电位与从控制信号形成电路21输出的控制信号相比较。开关用于开关普通放大器的增益。
此外,从上面的描述中可明显看出,如果可以用通过将“正电位”设置成临界电位开关其增益的电路取代与比较器和开关增益的开关两者有关的上述功能,那么,可以实现上述功能。
图9(a)是用曲线表示现有技术的控制信号与按照本发明获得的转换控制信号之间的关系的图形。图9(b1)是用曲线示出当启动高频加热设备时Va与Vb之间的关系的图形。图9(b2)是用曲线示出当在正常条件下操作高频加热设备时开关214的输出与Vb之间的关系的图形。
图9(a)的横坐标表示现有技术的控制信号Vb,图9(b)的纵坐标示出按照本发明获得的转换控制信号Va。
当存在作为模式的模式“I”和模式“II”时,在模式I中,Va<Vb,而在模式II中,Va=Vb。
(1)当Vb≤V3时,变成Va=Vb。
(2)当Vb<V3时,变成Va=(R32+R33)*Vb/R32-R33*V3/R32。
至于图9(b1),当像在图9(b1)中所表示的那样启动高频加热设备时,以这样的方式将电池组(图7的215)的电位和电池组(图7的21V5)的电位设置成V5,那就是,当控制信号形成电路21的输出电位Vb几乎等于电位V5时,控制信号Va变成等于0。结果,即使正好在启动操作被切换到正常操作之前的控制信号Va达到饱和变成0,控制信号形成电路21的输出电位Vb也几乎等于电位V5,和正好在启动操作切换到正常操作之后开关214的输出电位从电位V5开始。由于进行了上述电位设置操作,所以电位V5>>0。结果,可以避免过大的输入电流流过,以及过高的电压施加给磁控管11。还应该明白,控制信号转换电路211的输出电位Va降低暗示着施加给磁控管11的电压升高,或输入磁控管11的电流增大。
接着,应用图10(a)和10(b)描述从启动操作开始有关控制信号的瞬时变化。
图10(a)和10(b)是用曲线示出从启动操作开始有关控制信号的瞬时变化的图形。图10(a)用曲线示出了按照本发明获得的转换控制信号Vb,而图10(b)用曲线示出了现有技术的控制信号。
在图10(a)中,首先,正好在启动高频加热设备之后,磁控管11的阻抗是不稳定的,以不稳定的方式在有限阻抗值与无限阻抗值之间变化。为了避免这个不稳定的阻抗变化,在应用如图9(a)所示的模式II的Va2=Vb曲线时,控制信号像Va2所示的那样以和缓的倾斜度降低到V31。结果,输入电流受到抑制,以便施加给磁控管11的电压可以降低到较低电压,和不将过高电压施加给磁控管11。
随后,在控制信号变成低于电压V31的时刻,由于通过应用如图9(a)所示的模式I的Va<Vb曲线,控制信号像Va1所示那样迅速降低,施加给磁控管11的电压迅速升高,以便使控制信号可以迅速达到稳定电位V6。
当控制信号已经达到稳定电位V6,然后经过了预定时间间隔时,磁控管11的振荡至少可以达到稳定。
在磁控管11可以在稳定条件下振荡之后,这个稳定振荡由磁控管振荡感测装置212(图6)感测,因此,通过模式切换信号生成电路213使相应开关214和S61从启动操作侧切换到正常操作侧。
正好在进行上述切换操作之前,控制信号V6从控制信号转换电路211施加到开关214(图6)。但是,在进行了切换操作之后,控制信号V6从控制信号形成电路21施加到这个开关214。然后,控制信号Vb以和缓的方式降低,而在本发明的情况中这个控制信号Vb迅速达到稳定电位V6。结果,在进行切换操作的时刻,控制信号Vb仍然是“V41”(即,V41>V5,也就是说,符号V5是极限电位)。因而,如这个图所示,这个控制信号Vb与施加给磁控管11的目标电压“Vm2”之间的差值变成稍微小一点的“ΔV11”,当高频加热设备在控制信号Vb达到目标电压Vm2之前从启动操作切换到正常操作时,不会发生输入电流的过冲。
相反,从图10(b)中可以看出,在传统电路中,由于控制信号Vb以单调下降的方式和缓地过渡,控制信号Vb达到稳定电位V7需要较长的时间。此外,在当控制信号Vb已达到稳定电位V6,此后经过了预定时间时切换开关的情况下,控制信号Vb与目标电压Vm2之间的差值变成较大的电位差“ΔV12”,从而当进行切换操作时,输入电流可能过冲。
图11(a)和11(b)是用曲线示出在在图10中控制信号达到饱和的情况下有关控制信号的瞬时变化的图形。图11(a)用曲线表示了按照本发明获得的转换控制信号Va;和图11(b)用曲线表示了现有技术的控制信号。
在图11(a)中,由于控制信号以和缓的倾斜度下降到电压V31,输入电流受到抑制,从而施加给磁控管11的电压可以降低到较低电压,和不将过高电压施加给磁控管11。随后,在控制信号变成低于电压V31的时刻,通过应用如图9(a)所示的模式I的Va<Vb曲线,控制信号像Va1所示那样迅速降低到饱和电压,以便控制信号可以迅速达到稳定电位V7(即,饱和电压)。当控制信号已经达到饱和电位V7,然后经过了预定时间间隔时,磁控管11的振荡至少可以达到稳定,从而相应开关214和S61从启动操作侧切换到正常操作侧。按照本发明,将极限电压“V5”设置在控制电位Vb下降的中途上,控制电位Vb不会变成低于或等于这个极限电压V5。
因而,当在进行上述切换操作之前从控制信号转换电路211输出的控制信号V7瞬时改变成在进行了切换操作之后从控制信号形成电路21输出的控制信号Vb时,这个控制信号Vb等于极限电压V5.因此,控制信号Vb与目标电压Vm2之间的差值变成ΔV21,即,较小的电位差时,在控制信号V7已经改变成控制信号Vb之后,可能只出现少量的输入电流过冲.
相反,从图11(b)中可以看出,在传统电路中,由于控制信号Vb以单调下降的方式连续地过渡,控制信号Vb达到稳定电位V7需要较长的时间。此外,饱和电位V7与目标电压Vm2之间的差值变成较大的电位差“ΔV22”,从而当进行切换操作时,输入电流可能过冲。
如前所述,从图10(a)中可以看出,提供了这样的功能,通过这种功能,即使在当启动高频加热设备时控制信号转换电路211饱和在最小电位上和从控制信号形成电路21输出的控制信号Vb变成V7的条件下,下限电压也可以受电位V5限制(即,施加给磁控管11的电位保持在预定电位上)。结果,当在正常操作期间将控制信号切换到目标电压Vm2时,由于在目标电压Vm2与电压V5之间不存在大的电位差,控制信号V7可以直接切换到控制信号Vb,从而几乎不会发生过冲现象。换句话说,正好在启动操作已经切换到正常操作之后被送入调频信号形成电路22的信号的电平从电压V5开始。因而,与信号电平从已经饱和在最小电位上的电位Va开始的传统系统的过冲量相比,可以降低在输入电流Iin中产生的过冲量。
如前所述,按照本发明,控制信号转换电路211在控制信号Va达到预定电位V31之前输出与控制信号形成电路21的输出(控制信号)Vb相同的值,和在控制信号Va已超过预定电位V31之后切换输入Vb的倾斜度,以便使控制信号Va迅速指向较低稳定区。如果控制信号Va可以迅速达到稳定,那么,磁控管11的振荡可以迅速达到稳定,并且可以迅速地进行从启动操作到正常操作的切换操作。因而,可以将控制信号Va切换到控制信号Vb,除非这个控制信号Vb不降低,并且由于控制信号Vb与目标电压Vm2之间的差值可能变小,可以几乎不发生过冲现象。
在参照图10的上述说明中,电位V1是正的,控制信号Vb随着时间向指向零电位的方向下降,和转换控制信号Va进一步突然下降。这是因为,该说明是在正极性的控制系统下作出的。相反,在负极性的控制系统的情况下,控制信号Vb从负电位V1开始,控制信号Vb随着时间向指向零电位的方向升高,和转换控制信号Va进一步突然升高。
晶体管Q8和Q7的集电极电压VQ8C和VQ7C分别从停滞时间形成电路24传递到矩形波形成电路25(参见图5)。此外,振荡电路23的三角形波输出传递到矩形波形成电路25。
矩形波形成电路25拥有两组比较器251和252。晶体管Q8的集电极电压VQ8C施加给比较器251的反相输入端(-);晶体管Q7的集电极电压VQ7C施加给比较器251的非反相输入端(+);此外,振荡电路23的三角形波输出被施加给比较器252的非反相输入端(+)和比较器252的反相输入端(-)。
比较器251和252的每一个在非反相输入端(+)的电位低于反相输入端(-)的电位的情况下,不产生输出(即,零电位),此外,当非反相输入端(+)的电位超过反相输入端(-)的电位时,产生输出(即,高电位)。
可以将停滞时间“DT”分类成上述的三种类别:
(1)与开关频率无关,停滞时间DT是恒定(固定)的。
传统上应用这种固定(恒定)停滞时间DT。
与这种固定停滞时间不同,如下的停滞时间“DT”可以随开关频率而改变。
(2)当开关频率超过预定开关频率时,停滞时间DT随开关频率的升高以连续的方式增加。
(3)当开关频率超过预定开关频率时,停滞时间DT随开关频率的升高以步进的方式增加。
然后,根据本发明的控制信号转换电路211可以应用于上述停滞时间(1)到(3)的任何一种。
图12是说明形成在上述第(2)项所述的当开关频率超过预定开关频率时随开关频率的升高连续地增加的停滞时间的基本思想的图形;图12(a)是说明振荡电路23和停滞时间形成电路24的相应输出与矩形波形成电路25的输出之间的关系的图形;和12(b)是说明在低于或等于预定开关的频率上停滞时间DT不改变的基本思想的图形。
在图12中,在时刻“t1”之前的时间间隔内,在比较器252(参照图5)中,由于非反相输入端(+)的电位VQ7C超过反相输入端(-)的三角形波的电位,半导体开关元件被接通(输出1)。同时,在比较器251中,由于非反相输入端(+)的三角形波的电位低于反相输入端(-)的电位VQ8C,半导体开关元件被断开(输出0)。
(1)在时刻t1,由于非反相输入端(+)的电位VQ7C变成低于反相输入端(-)的三角形波的电位,比较器252产出输出0。
(2)在从t1到t4的时间间隔内,比较器252继续产生输出0。
(3)在时刻t2,由于非反相输入端(+)的三角形波的电位变成高于反相输入端(-)的电位VQ8C,比较器251产生输出1。
(4)在从时间t2到t3的时间间隔内,比较器251继续产生输出1。
(5)在时刻t3,由于非反相输入端(+)的三角形波的电位变成低于反相输入端(-)的电位VQ8C,比较器251产生输出0。
(6)在时刻t4,由于非反相输入端(+)的电位VQ7C变成高于反相输入端(-)的三角形波的电位,比较器252产出输出1。
(7)在从时刻t4到t5的时间间隔内,比较器252继续产生输出1。
(8)在时刻t5,由于非反相输入端(+)的电位VQ7C变成低于反相输入端(-)的三角形波的电位,比较器252产出输出0。
(9)在从时刻t3到t6的时间间隔内,比较器251继续产生输出0。
随后,这些比较器251和252将重复类似的操作。
比较器251和252的输出被施加给开关元件(IGBT)驱动电路26,和开关元件6和7此时被接通和断开。
如上所述,开关元件6和7同时断开的时间间隔t1到t2、t3到t4以及t5到t6被当作“停滞时间DT”获得。
在现有技术的系统中,停滞时间DT的时间间隔与频率无关,是恒定(即,固定)的。作为改进的技术思想,这个停滞时间DT可以随开关频率而改变。在这个实施例中,当开关频率低于预定开关频率“f1”时,将停滞时间DT设置成预选非改变值(要不然,轻微增加值),而当开关频率高于预定开关频率“f1”时,使停滞时间DT增加。
因而,将参照图12(b)对当开关频率低于预定开关频率f1时,停滞时间DT变成预定非改变值的基本思想加以描述。
在这个图形中,当开关频率高时(实线所示),正如前面在图12(a)中应用实线的电位VQ8C和VQ7C和三角形波说明的那样,可以保证时刻t1与时刻t2之间的时间间隔成为电位VQ8C和VQ7C与三角形波之间的停滞时间DT。在时刻t1,电位VQ7C变成低于三角形波的电位,和比较器输出变成0。在时刻t2,三角形波的电位变成高于电位VQ8C,和比较器输出变成1。
然后,当开关频率变低时,如实线所示的上述三角形波变成如虚线所示的三角形波,和这个三角形波的倾斜度变和缓了。因而,按照本发明,为了获得与上述停滞时间DT相同的停滞时间DT,相应偏移电压以这样的方式确定,那就是,三角形波的电位可能变成经过交点“C1”和“C2”的电位“VQ7C1”和“VQ8C1”,交点“C1”和“C2”是从时刻t1和时刻t2画到虚线所示的三角形波的垂直线与虚线所示的三角形波的交点。由于电阻R8和R7(参见图13)具有恒定电阻值,所以将可能产生这样偏移电压的电流“I8”和“I7”供应给相应电阻R8和R7。
由于进行了上述切换操作,所以即使开关频率发生变化,使三角形波从实线所示的三角形波变成虚线所示的三角形波,虚线所示的三角形波与两个电位VQ7C1和“VQ8C1相交的时刻t1和时刻t2也可以变成实线所示的上述三角形波的相同时刻。结果,这个停滞时间DT与上述停滞时间DT相同。
图13是示出有关停滞时间形成电路24的具体例子的电路图。
在这个图形中,符号Q01、Q02以及Q1到Q8示出了晶体管;和符号R1到R10表示电阻。假设流过晶体管Q1、Q2、Q3、Q4、Q5、Q6、Q7以及Q8的电流被分别定义成I1、I2、I3、I4、I5、I6、I7以及I8;晶体管Q5、Q6、Q7的发射极电位被分别定义成VQ5E、VQ6E、VQ7E;此外,晶体管Q7和Q8的集电极电位被分别定义成VQ7C和VQ8C。晶体管Q1和Q2构成电流镜像电路。类似地,晶体管Q1和Q04构成电流镜像电路;晶体管Q3和Q4构成电流镜像电路;和晶体管Q05和Q8构成电流镜像电路。晶体管Q04的输出供应给振荡电路23(图17)。
此外,晶体管Q1和Q3的发射极侧与Vcc连接,和它们的集电极侧分别与晶体管Q01和Q03的集电极侧连接;晶体管Q01和Q03的发射极侧分别与端点“MOD”和端点“DTADD”连接;和端点MOD和端点DTADD分别通过分压电阻接地。晶体管Q01和Q03的基极侧与晶体管Q02的发射极侧连接,和晶体管Q02的集电极侧接地。与调频信号形成电路22(参见图5)的输出相对应的振荡频率的控制电压施加给晶体管Q02的基极。
由电阻R10、电阻R8、电阻R7以及电阻R9组成的串联电路配备在电源电压VCC(在这个电路中,12V)与相对于Vcc侧的地之间。此外,晶体管Q8配备在电阻R10与电阻R8之间,而它的发射极侧与电阻R10连接和它的集电极侧与电阻R8连接。此外,晶体管Q7配备在电阻R9与电阻R7之间,而它的发射极侧与电阻R9连接和它的集电极侧与电阻R7连接。在电阻R8与电阻R7之间施加了1/2Vcc的电压(在这个电路中,6V)。当将这个6V电压设置成中心电压时,上侧电阻R8的电压降是I8×R8,和下侧电阻R7的电压降是I7×R7。电流I8和电流I7两者都随频率而改变。结果,电阻R7和R8的电压降随频率而改变,从而当将6V的电压设置成中心电压时,偏移电压VQ8C和VQ7C两者都发生改变。
构成电流镜像电路的晶体管Q05的基极电压施加给晶体管Q8的基极.如果晶体管Q05和Q8的相应特性彼此相同和它们的相应电阻值也彼此相同,那么,给出如下等式:
I6=I7=I8,I3=I4。
注意,本发明不只局限于I1=I2,I3=I4,I6=(I7=I8),而是可以修改它们。也就是说,这些电流可以存在直接关系。
应该注意到,I7=I8的条件是必需的。
接着,对停滞时间形成电路24的操作,即,当开关频率低于或等于预定开关频率时,停滞时间“DT”不改变,或稍有改变,而当开关频率高于或等于预定开关频率时,停滞时间“DT”增加加以描述。
1)下面给出在电流I3不流过的范围(即,振荡频率低的范围)内DT不改变(或稍有改变)的理由:
在电流I3不流过的范围中,可以建立起如下条件:
I1=I2=I5,
VQ5E=VQ6E=VQ7E,和
I5*R5=I6*R6=I7*R9=I1*R5。
下面给出流过晶体管Q8和Q7的电流I8和I7:
I8=I6=I1*(R5/R6),
I7=I1*(R5/R9)。
下面给出偏移电压VR8和VR7:
VR8=I8*R8={I1*(R5/R6)}*R8
=I1*R5*(R8/R6),
VR7=I1*R5*(R7/R9)。
由于晶体管8和7的集电极电压VQ8C和VQ7C是相对于6V加上/减去上述偏移电压VR8和VR7计算出来的,这些集电极电压用如下公式(1)表达:
VQ8C=6V+VR8=6V+I1*R5*(R8/R6),
VQ7C=6V-VR7=6V-I1*R5*(R7/R9)    ---(1)
如前所述,由于频率低的范围(可以使停滞时间恒定)内的电流I8和I7与三角形波的充电/放电电流I1成正比,可以将这些电流I8和I7用作将三角形波的充电/放电电流I1乘以几个值获得的电流值。这可以应用如图13所示的镜像电流实现。也就是说,当将电流I6和I8两者设置成与电流I5存在某种关系时,使电流I6等于电流I8。当将电流I7设置成与电流I5存在某种关系时,使电流I7等于电流I8。
图14用曲线示出了停滞时间形成电路24拥有的电流-频率特性。
在这个图形中,符号I1、I3、I5分别示出了流过图13的晶体管Q1、Q3、Q5的电流。电流I5等于I1+I3。
在振荡频率低于或等于预定开关频率f1的范围中,电流I1(I5)变成恒定(I51),或轻微增加(IT2)。在振荡频率高于或等于预定开关频率f1的范围中,当将预定开关频率f1用作拐点时,由于电流I3急剧地开始流过,所以总电流I5(=I1+I3)迅速增大。
从有关偏移电压VQ8C和VQ7C的上述公式(1),以及图14的电流-频率特性中可以看出,在振荡频率低的范围中,对于VQ8C和VQ7C,可以获得与振荡电路23的电容器的充电/放电电流I1成正比的偏移电压.因而,如图14所示,如果充电/放电电流I1变成恒定,那么,停滞时间DT变成恒定.此外,如果充电/放电电流I1轻微增加,那么,停滞时间DT也轻微增加.
2)相反,在电流I1流过的范围(即,振荡频率高的范围)中,停滞时间DT发生变化。在下面的说明中将说明这个理由。
在图13中,在振荡频率低的范围中,电流I3等于0,而在振荡频率高的范围中,电流I3可以以上述方式流过。换句话说,当振荡频率控制电压的晶体管Q02的发射极电位低于连接点DTADD上的电位时,与端点DTADD连接的晶体管Q3不接通(结果,电流I3不流过)。但是,当振荡频率控制电压的晶体管Q02的发射极电位高于连接点DTADD上的电位时,由于与端点DTADD连接的晶体管Q3接通,所以电流I3开始流过。在图14中,在振荡频率低于或等于预定开关频率f1的范围中,电流I51变成恒定,或电流I52轻微增加。在振荡频率高于或等于预定开关频率f1的范围中,已经是0的电流I3开始迅速流动。结果,电流I5等于I1+I3。
在电流I3流过的范围中,给出上述公式:
I5=I2+I4=I1+I3,
I5*R5=I6*R6=I7*R9=(I1+I3)*R5。
因而,通过如下公式(2)给出晶体管Q8和Q7的集电极电压VQ8C和VQ7C:
VQ8C=6V+VR8=6V+(I1+I3)*R5*(R8/R6),
VQ7C=6V-VR7=6V-(I1+I3)*R5*(R7/R9)        ---(2)
在通过将有关第一电容器41和第二电容器42的电容设置成适当电容值,从如图3(a)所示的电路中省略第三电容器5形成的电路中也可以取得类似的效果。
从有关集电极电压VQ8C和VQ7C的上述公式(2)和有关集电极电压VQ8C和VQ7C的图14的关系中可以看出,可以获得共同与电流I3成正比的偏移电压。如图14所示,当电流I3迅速增加时,由于晶体管Q8和Q7的集电极电位VQ8C和VQ7C变成电流I5(=I1+I3)的函数,所以电流I5增加了。随着这个电流I5的增加,晶体管Q8和Q7的集电极电位VQ8C和VQ7C也升高。然后,当相应集电极电位VQ8C和VQ7C升高时,集电极电位VQ8C上升到超过如图12所示的位置,和集电极电位VQ7C下降到低于如图12所示的位置,从而对应于停滞时间DT的起点的三角形波与集电极电位VQ7C之间的交点提前,和对应于停滞时间DT的终点的三角形波与集电极电位VQ8C之间的交点延迟。结果,使停滞时间DT的宽度比如图所示的宽度更宽。
图15表示了与上述第(2)项“当开关频率超过预定开关频率时,停滞时间DT随开关频率的升高连续地增加”有关的各种例子。图16表示了与上述第(3)项“当开关频率超过预定开关频率时,停滞时间DT随开关频率的升高以步进的方式增加”有关的例子。
在图15(a)中,在低于或等于预定开关频率“f1”的开关频率上使停滞时间DT恒定(要不然,轻微增加),而在高于或等于预定开关频率“f1”的开关频率上停滞时间DT迅速增加。
图15(b1)、15(b2)和15(b3)示出了图15(a)的例子。
图15(b1)表示了在低于或等于图15(a)的预定频率f1的开关频率上上述停滞时间的恒定值或轻微增加值像L11、L12、L13那样可变,此外,在高于或等于预定开关频率f1的开关频率上停滞时间DT的迅速增加值L2像L21、L22、L23那样可变的曲线图。
这个数值变化操作可以通过改变图13的端点“DTMULTI”的电阻R5与电阻R6的比值实现。换句话说,由于I5*R5=I6*R6,如果电阻R5与电阻R6的比值发生改变,那么,电流I5与电流I6的比值也发生改变。由于电流I6决定电流I7和I8的值,如果电流I5与电流I6的比值发生改变,那么,与电流I5有关的电流I7和I8的值也发生改变,从而相对于6V的偏移电压也发生改变。结果,停滞时间DT也发生改变。如果应用上述电路布置,那么,甚至在相同的频率下停滞时间DT也可能发生改变。
图15(b2)示出了在图15(a)的预定开关频率f1上停滞时间DT的倾斜度像L24、L25、L26那样可变的曲线图。
这个倾斜度根据位于触点DTADD的上/下位置上的电阻R31和电阻R32的总电阻值确定。当总电阻值大时,根据电源电压Vcc轻微地流入电流,使停滞时间DT的倾斜度变小(L26)。相反,当总电阻值小时,根据电源电压Vcc大量地流入电流,使停滞时间DT的倾斜度变大(L24)。换句话说,当电流I3大量流入时,电流I7和I8两者大量增加。结果,电阻R7和R8两端的电压降增加,因此,相对于6V的偏移电压也增加。因而,晶体管Q8和Q7的集电极电压按照上述公式(2)增加。
应该注意到,如果振荡频率变高,那么,沿着变窄的方式影响停滞时间DT。但是,可以沿着停滞时间DT可能进一步延长的方式影响偏移电压的增加。
图15(b3)示出了构成图15(a)的拐点的预定开关频率f1变化成“f0”和“f2”的曲线图。
这个拐点可以通过端点DTADD的上/下位置上的电阻R31和R32的电阻比来改变。换句话说,当施加给晶体管Q02的基极的振荡频率控制电压超过通过这个电阻比确定的电压时,电流I3开始流过。结果,这个电阻R31和R32的电阻比构成拐点。如果电阻R31>电阻R32,那么,通过电阻比确定的电压就低,从而电流I3在较早阶段开始流过。当电流I3流过时,电流I7和I8也流过,从而出现电阻R7和R8两端的电压降,和相对于6V的偏移电压增加。结果,晶体管Q8和Q7的集电极电压按照上述公式(2)增加,和停滞时间DT在较早阶段(f0)开始增加。相反,如果电阻R31<电阻R32,那么,通过电阻比确定的电压就高。结果,需要花费较长的时间才能让电流I3开始流过,和停滞时间DT的增加在较晚阶段(f2)开始。
图16是说明停滞时间DT可变的第二实施例的曲线图。
在图15(a)中,当将构成拐点的预定开关频率f1定义成边界点时,像表示成“L1”那样,在低于或等于开关频率f1的频率上,停滞时间DT变成恒定或轻微增加,而像表示成“L2”那样,在高于或等于开关频率f1的频率上,停滞时间DT迅速增加。在图16中,按照开关频率增加成f0、f1、f2、f3的条件,停滞时间DT分别像L3、L4、L5以及L6那样以步进的方式增加。
这个步进结构可以简单地通过应用像在15(b1)中说明的那样能够形成停滞时间L11、L12、L13的方式实现。换句话说,当如图13所示的端点DTMULTI的电阻R5和电阻R6由诸如晶体管之类的可变电阻元件构成时,电阻R5与电阻R6的电阻比可以在预定频率上发生改变,从而可以获得具有步进结构的布置。
图17是表示如图5所示的振荡电路的一个例子的电路图。
振荡电路23包含两组比较器231和232.分压电阻235的电压V1施加给比较器231的反相输入端“a(-)”;分压电阻236的电压V2(注意,V1>V2)施加给比较器232的非反相输入端“b(+)”;和电容器234的电压施加给比较器231的非反相输入端“b(+)”和比较器232的反相输入端“a(-)”.
当非反相输入端“b(+)”的电位低于反相输入端“a(-)”的电位时,比较器231和232的每一个输出“0”,和当非反相输入端“b(+)”的电位超过反相输入端“a(-)”的电位时,比较器231和232的每一个输出“1”。
相应运算放大器231和232的输出输入SR触发器233的S端和R端中。SR触发器233的非Q端的输出构成电容器234的充电/放电电路。
现在,如图17所示,如果已经形成电容器234的充电电路,那么,电容器234上的电位升高。输出这个电容器234的电位。随着这个电位升高,比较器231的非反相输入端“b(+)”上的电位也升高;当该电位超过反相输入端“a(-)的电位V1时,比较器231的输出“1”施加给触发器233的S端;和这个触发器233的非Q端的输出形成电容器234的放电电路。随后,电容器234的电位下降,和输出这个电容器234的电位。与这个电位相联系,比较器232的非反相输入端“b(+)”上的电位也下降,然后,当这个下降电位变成低于或等于反相输入端“a(-)”的电位V2时,这个比较器232的输出1施加给触发器233的R端。因此,触发器233的非Q端的输出形成电容器234的充电电路。
如上所述,当输出电容器234的充电/放电电位,就实现了三角形载波振荡电路23。此外,三角形波的倾斜度根据充电电路“Ir”的幅度确定。
还应该明白,作为根据本发明的由2-开关元件电桥驱动的高频加热设备的反相器电路,本发明不只局限于如图5所示的高频加热设备,也可应用于通过应用电桥电路的臂由两个开关元件构成的开关元件的共振型电路系统布置的所有反相器电路。
图18(a)-18(c)表示了这些反相器电路的3种类型。
在图18(a)中,DC电源1以全波整流方式整流商用电源的AC电压,以便获得DC电压VDC。DC电源1将这个DC电压VDC施加给由第一电容器41和第二电容器42组成的串联电路,并且,施加给由第一半导体开关元件6和第二半导体开关元件7构成的串联电路。由漏磁变压器2的初级绕组3和第三电容器5构成的串联电路连接在一个结点和另一个结点之间。前一个所述结点在第一电容器41和第二电容器42之间形成,而后一个所述结点在第一半导体开关元件6和第二半导体开关元件7之间形成。驱动单元8供应的控制信号施加给第一半导体开关元件6和第二半导体开关元件7的相应基极。然后,将停滞时间形成电路24组装在驱动单元8中。还应该注意到,图中省略了漏磁变压器2的次级绕组和磁控管。
然后,能够实现本发明目的的控制信号转换电路可以应用于与图5完全相同的那种电路.换句话说,在包含如下的高频加热设备中:根据AC电源的输入电流与参考电流之间的差值形成控制信号的控制信号形成电路;根据控制信号形成电路的控制信号,校正通过整流AC电源的AC电压/AC电流获得的整流电压/整流电流的调频信号形成电路;和接收调频信号形成电路的输出的停滞时间形成电路,在控制信号形成电路与调频信号形成电路之间配备具有能够进一步降低控制信号的值的功能的控制信号转换电路.具体地说,当这个控制信号转换电路配有比较器时,控制信号形成电路的输出被施加给比较器的一个输入端,而串联电路的两个电阻之间的结点上的电位施加给比较器的另一个输入端.串联电路由插在另一个DC电源的正电位与比较器的输出端之间的上述两个电阻和二极管构成.结果,在高频加热设备从启动操作变成正常操作的时刻,由于电压可以没有任何时间延迟地升高,所以可以抑制输入电流的过冲现象.因而,可以避免IGBT和磁控管损坏.
在图18(b)中,DC电源1以全波整流方式整流商用电源的AC电压,以便获得DC电压VDC。DC电源1将这个DC电压VDC施加给由漏磁变压器2的初级绕组3、第一电容器5和第二电容器43组成的串联电路,并且,施加给由第一半导体开关元件6和第二半导体开关元件7构成的串联电路。由第一电容器5和第二电容器43构成的结点与由第一半导体开关元件6和第二半导体开关元件7构成的另一个结点短路。驱动单元8供应的控制信号施加给第一半导体开关元件6和第二半导体开关元件7的相应基极。然后,将停滞时间形成电路24组装在驱动单元8中。还应该注意到,图中省略了漏磁变压器2的次级绕组和磁控管。
然后,能够实现本发明目的的控制信号转换电路可以应用于与图5完全相同的那种电路。换句话说,在包含如下的高频加热设备中:根据AC电源的输入电流与参考电流之间的差值形成控制信号的控制信号形成电路;根据控制信号形成电路的控制信号,校正通过整流AC电源的AC电压/AC电流获得的整流电压/整流电流的调频信号形成电路;和接收调频信号形成电路的输出的停滞时间形成电路,在控制信号形成电路与调频信号形成电路之间配备具有能够进一步降低控制信号的值的功能的控制信号转换电路。具体地说,当这个控制信号转换电路配有比较器时,控制信号形成电路的输出被施加给比较器的一个输入端,而串联电路的两个电阻之间的结点上的电位施加给比较器的另一个输入端。串联电路由插在另一个DC电源的正电位与比较器的输出端之间的上述两个电阻和二极管构成。结果,在高频加热设备从启动操作变成正常操作的时刻,由于电压可以没有任何时间延迟地升高,所以可以抑制输入电流的过冲现象。因而,可以避免IGBT和磁控管损坏。
图18(c)是示出全波电桥电路的电路图。
在图18(c)中,DC电源1以全波整流方式整流商用电源的AC电压,以便获得DC电压VDC。DC电源1将这个DC电压VDC施加给由第一半导体开关元件61和第二半导体开关元件71构成的串联电路,并且,施加给由第三半导体开关元件62和第四半导体开关元件72构成的串联电路。由漏磁变压器2的初级绕组3和第三电容器5构成的串联电路连接在一个结点和另一个结点之间。前一个所述结点在第一半导体开关元件61和第二半导体开关元件71之间形成,而后一个所述结点在第三半导体开关元件62和第四半导体开关元件72之间形成。可以省略第三电容器5。驱动单元8供应的控制信号施加给第一半导体开关元件61、第二半导体开关元件71、第三半导体开关元件62以及第四半导体开关元件72的相应基极。然后,将根据本发明的停滞时间形成电路24组装在驱动单元8中。还应该注意到,图中省略了漏磁变压器2的次级绕组和磁控管。
然后,能够实现本发明目的的控制信号转换电路可以应用于与图5完全相同的那种电路.换句话说,在包含如下的高频加热设备中:根据AC电源的输入电流与参考电流之间的差值形成控制信号的控制信号形成电路;根据控制信号形成电路的控制信号,校正通过整流AC电源的AC电压/AC电流获得的整流电压/整流电流的调频信号形成电路;和接收调频信号形成电路的输出的停滞时间形成电路,在控制信号形成电路与调频信号形成电路之间配备具有能够进一步降低控制信号的值的功能的控制信号转换电路.具体地说,当这个控制信号转换电路配有比较器时,控制信号形成电路的输出被施加给比较器的一个输入端,而串联电路的两个电阻之间的结点上的电位施加给比较器的另一个输入端.串联电路由插在另一个DC电源的正电位与比较器的输出端之间的上述两个电阻和二极管构成.结果,在高频加热设备从启动操作变成正常操作的时刻,由于电压可以没有任何时间延迟地升高,所以可以抑制输入电流的过冲现象.因而,可以避免IGBT和磁控管损坏.
图19是表示根据本发明的反相器电路的频率-相位特性的曲线图。在电压低的0°和180°附近的相位中,开关频率降低,而在90°和270°附近的相位中,开关频率升高。结果,由于开关频率在电压低的0°和180°附近的相位中降低,输出电流(电压)与图1的电流-使用频率相对应地变大。相反,由于开关频率在90°和270°附近的相位中足够高,开关频率达到最大,和输出电流(电压)与图1的电流-使用频率相对应地下降。结果,如图20所示,输出电压在从0°到180°(180°到360°)的相位上可能变得基本一致。
与上述条件相联系,在在图19的频率-相位特性中如虚线“F0”所示频率不随相位改变的情况下,由于甚至在电压低的0°和180°附近的相位中频率也很高,所以输出电流(电压)与图1的电流-使用频率相对应地保持很小。结果,如图20中的虚线“V1”所示,在0°和180°附近的相位中,不能获得足够高的电压。
此外,图19的实线“F1”示出了在使形成DC电源时CT转换AC电流获得的输入电流“Iin(参见图5)”等于参考电流“Ref”以便获得零误差的情况下的频率-相位图。另一条虚线“F2”表示了在输入电流Iin大于参考电流Ref而且开关频率升高以便减小图1的使用范围内的电流的情况下的频率-相位图。虚线“F3”示出了在输入电流Iin小于参考电流Ref而且开关频率降低以便增加图1的使用范围内的电流的情况下的频率-相位图。
在图20中,符号“Vin”表示商用电源的电压波形;位于电压波形“Vin”上面的虚线“V1”代表在在所有相位上以某个恒定频率进行切换操作的情况下的电压波形;和符号“V0”表示像在图19中说明的那样调频上述电压产生的电压(升压变压器的次级电压)的波形。尽管这些电压Vin、V1、V2的比值彼此大不相同,但为了易于观察起见,将这些电压表示在同一个图上。如图19的虚线“F0”所示,在不调制的恒定频率的情况下升压变压器的次级电压对应于虚线“V1”,这个电压波形与磁控管的非线性负载不匹配。相反,如图19的线图“F1”所示,由于在电压低的0°和180°附近的相位中,开关频率降低,而在90°和270°附近的相位中,开关频率升高,所以输出电流(电压)在电压低的0°和180°附近的相位中变大,相反,输出电流(电压)在90°和270°附近的相位中减小,如图20的符号“V0”所代表的那样,在定义成从0°到180°(180°到360°)的相位上甚至在任何相位中都可以在升压放大器的次级侧生成恒定电压。这种波形与磁控管的非线性负载匹配。
还应该注意到,在以忙闲度控制方式控制如图5所示的开关元件(IGBT)6和7的情况下,这个停滞时间形成电路24可以对停滞时间DT的控制操作起作用.下面给出其理由:也就是说,为了以连动方式升高/降低集电极电压VQ7C和VQ8C,以便控制停滞时间DT,可以只改变这个6V的中心电压.由于这个6V的中心电压发生改变,两个晶体管Q8和Q7的接通/断开比也可以发生改变(即,忙闲度控制操作).换句话说,当两个晶体管Q7和Q8的忙闲度等于50∶50时(由于两个晶体管Q7/Q8在12V的电源电压下工作,当在6V的电压下驱动两个晶体管Q7/Q8时),输出电压变成最高电压.当在低于或高于6V的电压下驱动两个晶体管Q7/Q8时,这两个晶体管Q7/Q8的集电极电压VQ8C和VQ7C以连动方式同时升高和降低,因此,两个晶体管Q8和Q7的接通/断开比发生了改变.结果,输出电压降低了.但是,在这种情况下,由于在电阻R8和R7中产生的偏移电压未改变,所以也可以保持恒定输出电压.因而,可以从上面的描述中明显看出,在忙闲度控制操作中,这个可变停滞时间形成电路24也可以起作用,以便改变停滞时间.
如前所述,按照本发明,在包含如下的高频加热设备中:根据AC电源的输入电流与参考电流之间的差值,或施加给磁控管的电压与参考电压之间的差值形成控制信号的控制信号形成电路;根据控制信号形成电路的控制信号,校正通过整流AC电源的AC电压/电流获得的整流电压/整流电流的调频信号形成电路;和接收调频信号形成电路的输出的停滞时间形成电路,在控制信号形成电路与调频信号形成电路之间配备了具有能够进一步降低(在正极性的情况下)控制信号的值的功能的控制信号转换电路。具体地说,当这个控制信号转换电路配有运算放大器时,控制信号形成电路的输出被施加给运算放大器的一个输入端,而串联电路的两个电阻之间的结点上的电位施加给运算放大器的另一个输入端。串联电路由插在另一个DC电源的正电位与运算放大器的输出端之间的上述两个电阻和二极管构成。结果,在高频加热设备从启动操作变成正常操作的时刻,由于电压可以没有任何时间延迟地升高,所以可以抑制输入电流的过冲现象。因而,可以避免IGBT和磁控管损坏。
虽然上面参照特定实施方式详细描述了本发明,但对于本领域的普通技术人员来说,显而易见,可以自由地对本发明作各种修改/改变,而不偏离本发明的技术范围和精神。本专利申请基于2004年4月28日提出的日本专利申请第2004-132640号,特此全文引用,以供参考。
工业可应用性
由于应用了上面布置,在将操作从启动操作切换到正常操作的瞬时,电压可以没有任何时间延迟地升高。因而,可以抑制输入电流的过冲,从而可以防止与IGBT和磁控管有关的损坏。

Claims (19)

1.一种驱动磁控管的高频加热设备,包含:
DC电源,由AC电源、整流所述AC电源的AC电压的整流电路以及平滑所述整流电路的输出电压的平滑电容器构成;
由两个半导体开关元件构成的串联电路;
漏磁变压器的初级绕组和电容器连接而成的共振电路,所述串联电路与所述DC电源并联,而所述共振电路的一端与所述串联电路的中心点连接和所述共振电路的另一端与AC等效电路中的所述DC电源的一端连接;
驱动装置,用于分别驱动所述半导体开关元件;
与所述漏磁变压器的次级绕组连接的整流装置;
与所述整流装置连接的磁控管;
控制信号形成电路,用于根据AC电源的输入电流与参考电流之间的差值,或施加给磁控管的电压与参考电压之间的差值形成控制信号;
调频信号形成电路,用于根据从控制信号形成电路或控制信号转换电路输出的控制信号,校正通过整流AC电源的AC电压/电流获得的整流电压/整流电流;
停滞时间形成电路,用于接收调频信号形成电路的输出,并形成停滞时间,该停滞时间是在所述两个半导体开关元件中的一个断开之后、不接通所述两个半导体开关元件两者,直到所述两个半导体开关元件中的另一个被接通为止的时间间隔;和
该控制信号转换电路,该控制信号转换电路被布置在所述控制信号形成电路和所述调频信号形成电路之间,并在正极性的情况下进一步降低所述控制信号的值,
其中,在磁控管的启动操作中,从该控制信号转换电路输出的控制信号被输入到该调频信号形成电路,而在磁控管的正常操作中,从该控制信号形成电路输出的控制信号被输入到该调频信号形成电路。
2.一种驱动磁控管的高频加热设备,包含:
DC电源,由AC电源、整流所述AC电源的AC电压的整流电路以及平滑所述整流电路的输出电压的平滑电容器构成;
两组串联电路,每组所述串联电路由两个半导体开关元件构成;
漏磁变压器的初级绕组和电容器连接而成的共振电路,所述两组串联电路分别与所述DC电源并联,而所述共振电路的一端与一个串联电路的中心点连接,且所述共振电路的另一端与另一个串联电路的中心点连接;
驱动装置,用于分别驱动所述半导体开关元件;
与所述漏磁变压器的次级绕组连接的整流装置;
与所述整流装置连接的磁控管;
控制信号形成电路,用于根据AC电源的输入电流与参考电流之间的差值,或施加给磁控管的电压与参考电压之间的差值形成控制信号;
调频信号形成电路,用于根据从控制信号形成电路或控制信号转换电路输出的控制信号,校正通过整流AC电源的AC电压/电流获得的整流电压/整流电流;
停滞时间形成电路,用于接收调频信号形成电路的输出,并形成停滞时间,该停滞时间是在所述两个半导体开关元件中的一个断开之后、不接通所述两个半导体开关元件两者,直到所述两个半导体开关元件中的另一个被接通为止的时间间隔;和
该控制信号转换电路,该控制信号转换电路被布置在所述控制信号形成电路和所述调频信号形成电路之间,并在正极性的情况下进一步降低所述控制信号的值,
其中,在磁控管的启动操作中,从该控制信号转换电路输出的控制信号被输入到该调频信号形成电路,而在磁控管的正常操作中,从该控制信号形成电路输出的控制信号被输入到该调频信号形成电路。
3.一种驱动磁控管的高频加热设备,包含:
DC电源,由AC电源、整流所述AC电源的AC电压的整流电路以及平滑所述整流电路的输出电压的平滑电容器构成;
由两个半导体开关元件构成的串联电路;
漏磁变压器的初级绕组和电容器连接而成的共振电路,所述串联电路与所述DC电源并联,而所述共振电路以并联的方式与所述半导体开关元件之一连接;
驱动装置,用于分别驱动所述半导体开关元件;
与所述漏磁变压器的次级绕组连接的整流装置;
与所述整流装置连接的磁控管;
控制信号形成电路,用于根据AC电源的输入电流与参考电流之间的差值,或施加给磁控管的电压与参考电压之间的差值形成控制信号;
调频信号形成电路,用于根据从控制信号形成电路或控制信号转换电路输出的控制信号,校正通过整流AC电源的AC电压/电流获得的整流电压/整流电流;
停滞时间形成电路,用于接收调频信号形成电路的输出,并形成停滞时间,该停滞时间是在所述两个半导体开关元件中的一个断开之后、不接通所述两个半导体开关元件两者,直到所述两个半导体开关元件中的另一个被接通为止的时间间隔;和
该控制信号转换电路,该控制信号转换电路被布置在所述控制信号形成电路和所述调频信号形成电路之间,并在正极性的情况下进一步降低所述控制信号的值,
其中,在磁控管的启动操作中,从该控制信号转换电路输出的控制信号被输入到该调频信号形成电路,而在磁控管的正常操作中,从该控制信号形成电路输出的控制信号被输入到该调频信号形成电路。
4.根据权利要求1到3的任何一项所述的高频加热设备,其中,所述控制信号转换电路包含运算放大器;所述控制信号形成电路的输出被施加给所述运算放大器的一个输入端,而又一串联电路的两个电阻之间的结点上的电位被施加给所述运算放大器的另一个输入端;并且,所述又一串联电路由所述两个电阻和二极管构成,并被插在另一DC电源的正电位与所述运算放大器的输出端之间。
5.根据权利要求1到3的任何一项所述的高频加热设备,其中,所述控制信号转换电路包含具有比较功能的放大器;
所述控制信号形成电路的输出被送入所述放大器的一个输入端,而另一DC电源的正电位被送入所述放大器的另一个输入端;和作为所述比较功能,通过导通/不导通二极管开关所述放大器的增益。
6.根据权利要求1到3的任何一项所述的高频加热设备,其中,所述控制信号转换电路包含具有比较功能的放大器;所述控制信号形成电路的输出被送入所述放大器的一个输入端,而所述放大器的另一个输入端拥有将另一DC电源的正电位与所述控制信号形成电路的输出相比较的比较器;和通过所述比较器开关所述放大器的增益.
7.根据权利要求1到3的任何一项所述的高频加热设备,其中,根据磁控管振荡感测装置的感测信号生成切换信号,并根据该切换信号来选择该控制信号形成电路或该控制信号转换电路输出的控制信号。
8.根据权利要求1到3的任何一项所述的高频加热设备,其中,该停滞时间形成电路与开关频率无关地使停滞时间恒定、或者轻微增加停滞时间。
9.根据权利要求1到3的任何一项所述的高频加热设备,其中,该停滞时间形成电路当开关频率高于预定开关频率时,增加停滞时间。
10.根据权利要求9所述的高频加热设备,其中,在低于或等于预定开关频率的开关频率上所述停滞时间形成电路使停滞时间恒定,或者轻微增加停滞时间。
11.根据权利要求9所述的高频加热设备,其中,在高于或等于预定开关频率的开关频率上,所述停滞时间形成电路随着开关频率的增加而迅速增加停滞时间。
12.根据权利要求10所述的高频加热设备,其中,在低于或等于所述预定开关频率的开关频率上与所述停滞时间有关的恒定值或轻微增加值是可变的。
13.根据权利要求10所述的高频加热设备,其中,所述预定开关频率是可变的。
14.根据权利要求1到3的任何一项所述的高频加热设备,其中,该停滞时间形成电路随开关频率的升高以步进的方式增加停滞时间。
15.根据权利要求1到3的任何一项所述的高频加热设备,其中,该停滞时间形成电路根据正偏移电压和负偏移电压形成停滞时间,所述正偏移电压和负偏移电压在所述预定开关频率以下以与开关频率的升高成正比的第一倾斜度改变,并且,从所述预定开关频率起以第二倾斜度改变,其中,第二倾斜度比第一倾斜度更陡峭。
16.根据权利要求1到3的任何一项所述的高频加热设备,其中,该停滞时间形成电路包含:
VCC电源;
负载控制电源;
与开关频率成正比变化的第一电流;
在开关频率高于或等于预定开关频率时流出、且与开关频率成正比地变化的第二电流;
通过将所述第一电流和所述第二电流叠加在一起并将叠加的电流乘以预定系数产生的第三电流;和
上/下电位形成装置,用于形成通过将与所述第三电流成正比的正偏移电压和负偏移电压分别与所述负载控制电源的电压相加而分别得出的上电位和下电位,并且
所述停滞时间形成电路根据所述上电位和所述下电位形成停滞时间。
17.根据权利要求16所述的高频加热设备,其中,通过改变所述负载控制电源的电压和所述开关频率中的至少一个进行输入功率控制操作或输入电流控制操作。
18.根据权利要求11所述的高频加热设备,其中,在高于或等于所述预定开关频率的开关频率上与所述停滞时间有关的迅速增加值是可变的。
19.根据权利要求11所述的高频加热设备,其中,所述预定频率是可变的。
CN2005800137520A 2004-04-28 2005-04-22 高频加热设备 Active CN1951151B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004132640A JP4503348B2 (ja) 2004-04-28 2004-04-28 高周波加熱装置
JP132640/2004 2004-04-28
PCT/JP2005/007697 WO2005107326A1 (ja) 2004-04-28 2005-04-22 高周波加熱装置

Publications (2)

Publication Number Publication Date
CN1951151A CN1951151A (zh) 2007-04-18
CN1951151B true CN1951151B (zh) 2010-05-12

Family

ID=35242075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800137520A Active CN1951151B (zh) 2004-04-28 2005-04-22 高频加热设备

Country Status (5)

Country Link
US (1) US8017893B2 (zh)
EP (1) EP1742512B1 (zh)
JP (1) JP4503348B2 (zh)
CN (1) CN1951151B (zh)
WO (1) WO2005107326A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1926349B1 (en) * 2005-08-26 2014-08-20 Panasonic Corporation High-frequency heating power supply device
JP2009224374A (ja) * 2008-03-13 2009-10-01 Oki Semiconductor Co Ltd Peb装置及びその制御方法
EP2230881B1 (en) * 2009-03-20 2018-11-28 Whirlpool Corporation Microwave heating device
GB201011789D0 (en) * 2010-07-13 2010-08-25 Ceravision Ltd Magnetron power supply
EP2638621B1 (en) * 2010-11-12 2017-01-11 ABB Research Ltd. A rotating electrical machine and corresponding method
CN102332812A (zh) * 2011-09-17 2012-01-25 深圳麦格米特电气股份有限公司 一种变频微波炉电源自适应起动方法
CN108377666B (zh) * 2015-11-06 2020-12-08 国立大学法人北海道大学 电力转换装置
RU168707U1 (ru) * 2016-08-26 2017-02-16 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт радиологии и агроэкологии" (ФГБНУ ВНИИРАЭ) Устройство для тепловой обработки объекта СВЧ-излучением
JP7124714B2 (ja) * 2017-01-10 2022-08-24 パナソニックホールディングス株式会社 電磁界分布調整装置、および、マイクロ波加熱装置
CN106849670B (zh) * 2017-03-10 2019-11-22 广州金升阳科技有限公司 一种反激式开关电源

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88102449A (zh) * 1987-04-30 1988-11-09 松下电器产业株式会社 磁控管供电装置及其控制方法
CN1311975A (zh) * 1998-08-06 2001-09-05 松下电器产业株式会社 高频加热装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU592262B2 (en) * 1987-04-30 1990-01-04 Matsushita Electric Industrial Co., Ltd. Magnetron feeding apparatus and method of controlling the same
KR910001986B1 (ko) 1987-04-30 1991-03-30 마쯔시다덴기산교 가부시기가이샤 마그네트론 급전장치
JPH04230988A (ja) * 1990-07-26 1992-08-19 Sharp Corp インバータ電子レンジの駆動回路
JPH07161464A (ja) * 1993-12-09 1995-06-23 Matsushita Electric Ind Co Ltd 高周波加熱装置
FR2738417B1 (fr) * 1995-08-30 1997-11-07 Gaia Converter Convertisseur de tension continue a commutation douce
JP3206498B2 (ja) * 1997-06-27 2001-09-10 松下電器産業株式会社 高周波加熱装置
JP3191773B2 (ja) 1998-08-06 2001-07-23 松下電器産業株式会社 高周波加熱装置
JP3480441B2 (ja) * 2000-06-16 2003-12-22 株式会社村田製作所 Dc−dcコンバータおよびそれを用いた電子装置
JP2002367768A (ja) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd マグネトロン駆動用電源
JP3977666B2 (ja) * 2002-02-28 2007-09-19 株式会社東芝 インバータ調理器
JP2003259643A (ja) * 2002-03-04 2003-09-12 Orc Mfg Co Ltd 電流共振型ソフトスイッチング電源回路
US7050310B2 (en) * 2004-02-10 2006-05-23 Niko Semiconductor Co., Ltd. Synchronous rectification circuit with dead time regulation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88102449A (zh) * 1987-04-30 1988-11-09 松下电器产业株式会社 磁控管供电装置及其控制方法
CN1311975A (zh) * 1998-08-06 2001-09-05 松下电器产业株式会社 高频加热装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开2003-259643A 2003.09.12
JP特开平11-26153A 1999.01.29
JP特开平7-161464A 1995.06.23

Also Published As

Publication number Publication date
EP1742512B1 (en) 2015-12-30
EP1742512A1 (en) 2007-01-10
CN1951151A (zh) 2007-04-18
JP4503348B2 (ja) 2010-07-14
EP1742512A4 (en) 2014-08-13
US8017893B2 (en) 2011-09-13
WO2005107326A1 (ja) 2005-11-10
EP1742512A8 (en) 2007-04-11
US20080272115A1 (en) 2008-11-06
JP2005317306A (ja) 2005-11-10

Similar Documents

Publication Publication Date Title
CN1951151B (zh) 高频加热设备
CN100553385C (zh) 高频加热装置
CN100584130C (zh) 高频加热装置
CN101695205B (zh) 高频电介质加热功率控制单元
CN101317499B (zh) 用于高频电介质加热的功率控制装置及其功率控制方法
JP4961258B2 (ja) 電力変換装置
KR101071291B1 (ko) 공진형 직류/직류 변환기에 사용되는 제어기
KR20020006436A (ko) 전압피드백에 의한 개선된 역율을 갖는 스위칭전원
KR20070037384A (ko) 스위칭 전원 회로
Tsai Analysis and implementation of a full-bridge constant-frequency LCC-type parallel resonant converter
US6909258B2 (en) Circuit device for driving an AC electric load
JP4765015B2 (ja) 電力変換装置
JP4142549B2 (ja) 高周波加熱装置
JP7492441B2 (ja) スイッチング電源装置、その制御装置及び制御方法
JP3429538B2 (ja) インバータ装置
Waghare et al. PWM controlled high power factor single phase Fan regulator
CN113133145B (zh) 烹饪器具、驱动控制电路和控制方法
KR100339539B1 (ko) 소프트스위칭역률제어용승압형컨버터의저손실스위칭구동회로
JP2004248441A (ja) 交流−直流変換装置
CN115987067A (zh) 图腾柱式功率因数校正转换器的驱动电路装置及驱动方法
EP0296859A2 (en) Power factor correction circuit
JP3501136B2 (ja) マグネトロン駆動用電源
Sha et al. Dual-Transformer-Based DAB Converter with Wide ZVS Range for Wide Voltage Gain Application
JP2007266013A (ja) 高周波加熱装置
JPH06292357A (ja) 電源装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant