CN1938832A - 金属硅酸盐膜的成膜方法及其装置、半导体装置的制造方法 - Google Patents

金属硅酸盐膜的成膜方法及其装置、半导体装置的制造方法 Download PDF

Info

Publication number
CN1938832A
CN1938832A CNA2005800099355A CN200580009935A CN1938832A CN 1938832 A CN1938832 A CN 1938832A CN A2005800099355 A CNA2005800099355 A CN A2005800099355A CN 200580009935 A CN200580009935 A CN 200580009935A CN 1938832 A CN1938832 A CN 1938832A
Authority
CN
China
Prior art keywords
gas
substrate
film
temperature
htb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800099355A
Other languages
English (en)
Other versions
CN100437937C (zh
Inventor
高桥毅
青山真太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN1938832A publication Critical patent/CN1938832A/zh
Application granted granted Critical
Publication of CN100437937C publication Critical patent/CN100437937C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/02148Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing hafnium, e.g. HfSiOx or HfSiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

将HTB气体和乙硅烷气体导入处理容器(1)内,通过CVD在硅基板(W)上形成硅酸铪膜。通过埋设在支撑基板的基座(2)上的加热器(5),控制基板温度,进行成膜。该成膜时的基板温度控制在HTB分解成氢氧化铪和异丁烯的温度以上、并且小于乙硅烷气体的自身分解温度,优选在350℃~450℃。

Description

金属硅酸盐膜的成膜方法及其装置、半导体装置的制造方法
技术领域
本发明涉及形成硅酸铪膜等金属硅酸盐膜的成膜方法和成膜装置,以及具有金属硅酸盐膜作为栅极绝缘膜的半导体装置的制造方法。
背景技术
近来,由于LSI的高集成化、高速化的要求,构成LSI的半导体元件的设计规则也日益微细化。伴随于此,在CMOS装置中,对栅极绝缘膜要求SiO2容量换算膜厚的EOT(Equivalent Oxide Thickness)为1.5nm左右以下的厚度。高介电常数材料即High-k材料,作为不增加栅极泄露电流而实现这种薄绝缘膜的材料而被关注。
将高介电常数材料作为栅极绝缘膜使用时,不发生与硅基板的相互扩散、热力学稳定是必需的,从这个观点出发,有望关注铪、锆或镧系元素的氧化物或其金属硅酸盐。
近年来,硅酸铪(HfSiOx)、硅酸锆(ZrSiOx)等金属硅酸盐膜的CMOS逻辑设计评价大大提高,由于其高的载流子迁移率,作为第二代栅极绝缘膜的候补,被寄予很大期望。
以往,已知有:通过CVD(化学气相沉积法),形成金属硅酸盐膜时,作为原料,除了金属醇盐原料以外,还使用TEOS(四乙氧基硅烷)和硅氧烷化合物作为硅源的方法(例如,日本特开2002-343790号公报和日本特开2003-82464号公报)。
此外,使用硅氢化物等无机化合物原料作为硅源的方法也是公知的。例如,将HTB(四叔丁醇铪)和乙硅烷(Si2H6)作为原料,使用分批式的立式炉的硅酸铪膜的成膜方法被半导体尖端技术(Semiconductor Leading Edge Technologies Inc.)发表(Aoyama et al.,International Workshop on Gate Insulator 2003,November 7,2003)。
这种分批式的立式炉中,如果气体导入口附近的温度升高,就有原料气体被活化、氧化物堆积、气体导入口被堵塞的危险,所以在280℃左右的较低温度下,进行硅酸铪的成膜。
可是,在这种低温下进行成膜时,作为铪原料而使用的HTB的分解变得不充分。含有大量碳的未分解物混入膜中,这给膜特性带来影响,存在无法得到充分的绝缘特性的危险。
以往,为了避免这些,在金属硅酸盐成膜后,增加使膜暴露于氧自由基和臭氧中的改性工序,使膜中的碳浓度减少。可是,利用该工序,引发作为金属硅酸盐膜基底的硅基板被氧化,使作为栅极绝缘膜的换算膜厚(EOT)增加的新的不良情况。
发明内容
本发明是鉴于这些问题而完成的,目的是提供一种能够形成优质的金属硅酸盐膜的成膜方法及其装置。本发明的另一目的是提供具有优质的金属硅酸盐膜作为栅极绝缘膜的半导体装置的制造方法。
本发明者们为了解决上述课题,反复研究,结果发现以下问题。
首先,发现使用金属醇盐气体和硅氢化物气体,通过CVD形成金属硅酸盐膜时,如果在金属醇盐分解成金属氢氧化物和一定的中间体的温度以上,则来源于原料的碳化物难以残存于膜中,绝缘性提高。并且,发现为了促进这种反应,过高升高温度时,硅氢化物本身分解,产生硅-硅键,绝缘性反而下降,膜的表面粗糙度也增大。另外,发现使用HTB作为金属醇盐气体,使用乙硅烷作为硅氢化物,通过CVD形成硅酸铪膜时,如果在350℃~450℃的范围,优选HTB发生分解,且乙硅烷自身不发生分解。
本发明是依据这些见解而完成的,在第一观点中,提供一种成膜方法,其特征在于,包括:准备基板的工序;和通过使用金属醇盐气体和硅氢化物气体的CVD,在上述基板上形成金属硅酸盐膜的工序,所述成膜工序,将所述基板的温度设定为所述金属醇盐分解成金属氢氧化物和一定的中间体的温度以上、并且小于所述硅氢化物的自身分解温度而进行。
从相同观点考虑,更具体而言,本发明提供一种成膜方法,其特征在于,包括:准备基板的工序;和通过使用HTB(四叔丁醇铪)气体和乙硅烷(Si2H6)气体的CVD,在上述基板上形成硅酸铪膜的工序。所述成膜工序,将所述基板的温度设定为350℃~450℃而进行。
本发明的第二观点提供一种成膜装置,用于使用金属醇盐气体和硅氢化物气体,通过CVD,在基板上形成金属硅酸盐膜,其特征在于,具有:收容基板的处理容器;对上述处理容器内的基板进行加热的加热器;具有使金属醇盐原料气化为金属醇盐气体的气化单元,将上述金属醇盐气体和上述硅氢化物气体互相独立地供给上述处理容器的气体供给系统;使由上述气体供给系统供给的上述金属醇盐气体和上述硅氢化物气体扩散到上述处理容器内的喷头;和控制器,控制上述加热器,使得成膜时上述处理容器内的基板温度为上述金属醇盐分解成金属氢氧化物和一定的中间体的温度以上、并且小于所述硅氢化物的自身分解温度。
从相同的观点考虑,具体而言,本发明提供一种成膜装置,用于使用HTB气体和乙硅烷气体,通过CVD,在基板上形成硅酸铪膜,其特征在于,具有:收容基板处理容器;对上述处理容器内的基板进行加热的加热器;具有使液体HTB气化为HTB气体的气化单元,将上述HTB气体和上述乙硅烷气体互相独立地供给上述处理容器的气体供给系统;使由上述气体供给系统供给的上述HTB气体和上述乙硅烷气体扩散到所述处理容器内的喷头;和控制器,控制上述加热器,使得成膜时上述处理容器内的基板温度为350℃~450℃。
本发明的第三观点提供一种半导体装置的制造方法,其特征在于,包括:准备硅基板的工序;在上述硅基板上,形成作为基底绝缘膜的硅氧化膜的工序;通过使用金属醇盐气体和硅氢化物气体的CVD,在上述硅氧化膜上形成作为栅极绝缘膜的金属硅酸盐膜的工序;和在上述金属硅酸盐膜上形成栅极电极的工序。形成上述金属硅酸盐膜的工序,将上述硅基板的温度设定为所述金属醇盐分解成金属氢氧化物和一定的中间体的温度以上、并且小于所述硅氢化物的自身分解温度而进行。
依据本发明,当使用HTB等金属醇盐气体和乙硅烷等硅氢化物气体,通过CVD,在基板上形成金属硅酸盐膜时,将成膜时的基板温度设定为所述金属醇盐分解成金属氢氧化物和一定的中间体的温度以上、并且小于所述硅氢化物的自身分解温度。因此,碳难以在金属硅酸盐膜中残存,并且同膜中的硅-硅键也难以形成。由此,能够形成绝缘性良好、且表面粗糙度小的优质的金属硅酸盐膜。
附图说明
图1是表示本发明的成膜装置的一个实施方式的截面图。
图2是表示HTB的热分解特性的红外吸收光谱图。
图3表示在使晶片温度变化时的晶片上HfO2膜厚的变化。
图4是各种晶片温度下的膜表面状态的SEM照片。
图5是表示使用图1的装置,在晶片温度360℃下,形成硅酸铪膜时的膜厚方向的各元素浓度图。
图6是使用现有的分批式立式炉,在晶片温度280℃下,形成硅酸铪膜时的膜厚方向的碳原子浓度图。
图7是表示将基板温度设定为(a)360℃、(b)495℃、(c)542℃,形成硅酸铪膜时的XPS光谱图。
图8是表示将基板温度设定为(a)360℃、(b)405℃、(c)450℃、(d)495℃、(e)542℃,使各自的乙硅烷气体流量变化时的硅酸铪膜组成变化的图。
图9是表示使晶片温度和乙硅烷气体流量变化时,在晶片上成膜的硅酸铪膜的表面粗糙度图。
具体实施方式
下面,参照附图,对本发明的实施方式进行说明。
图1是表示为了实施本发明成膜方法的一个实施方式的成膜装置的截面图。该成膜装置100具有气密地构成的大致呈圆筒状的处理容器1。在该处理容器1中,配置有用于支撑作为被处理体的Si基板(晶片)W的由AlN等陶瓷构成的基座2。该基座2被圆筒形的支撑部件3所支撑。并且,基座2上埋设有加热器5,在该加热器5上连接有加热器电源6。另一方面,基座2的上面附近设置有热电偶7,热电偶7的信号能够传送到控制器8。于是,控制器8对应热电偶7的信号,向加热器电源6传送指令,控制加热器5的加热,从而控制Si晶片W的温度。
此外,在处理容器1的内壁、基座2和支撑部件3的外周,设置有用于防止附着物堆积的石英衬套(liner)9。使吹扫气体(保护气体)在石英衬套9与处理容器1的壁部之间流动,由此防止附着物向壁部堆积,防止污染。
在处理容器1的顶棚1a上,形成有圆形的孔1b,其中嵌入向处理容器1内突出的喷头10。喷头10是用于使从后述的气体供给系统30供给的成膜用气体扩散到处理容器1内的部件。在该喷头10的上部,形成有导入作为金属原料气体的HTB气体的第一导入路径11、和导入作为硅氢化物气体的乙硅烷气体的第二导入路径12。在喷头10的内部,形成水平的圆盘状的上方空间13和下方空间14。第一导入路径11连接在上方空间13,第一气体吐出路径15从该空间13延伸到喷头10的底面。第二导入路径12连接在下方空间14,第二气体吐出路径16从该空间14延伸到喷头10的底面。即,喷头10为使从第一导入路径11导入的HTB气体与从第二导入路径12导入的乙硅烷气体相互(不混合)独立地从各自的气体吐出路15和16吐出的后混合型。
向下方突出的排气容器21连接在处理容器1的底壁1c上。排气管22连接在排气容器21的侧面,排气装置23连接在该排气管22上。并且,通过使该排气装置23工作,能够将处理容器1内减压至规定的真空度。在处理容器1的侧壁,设置有用于在与晶片搬送室(未图示)之间进行晶片W的搬入搬出的搬入搬出口24、和开闭该搬入搬出口24的闸阀25。
气体供给系统30具有:贮存液体HTB的HTB容器31、供给作为载气的N2气的N2气供给源37、和供给乙硅烷气体的乙硅烷气体供给源43。此外,气体供给系统30还具有使液体HTB气化为HTB气体(HTB蒸气)的气化单元。
由于将He气等的压送气体导入HTB容器31,使容器31内的液体HTB经由配管33导入气化单元35。N2气从N2供给源37经由配管39导入气化单元35。在气化单元35中被气化的HTB(HTB气体),由于导入的N2气,经由配管41,被搬送到喷头10的第一导入路径11。并且,在配管41和喷头10上,设置有用于将HTB气体加热至自身不分解程度的温度的未图示加热器。
配管44与乙硅烷气体供给源43连接。将乙硅烷气体从乙硅烷气体供给源43,经由配管44,向喷头10的第二导入路径12输送。
此外,输送气体的配管39、44上设置有各自的质量流量控制器(MFC)47、和夹着MFC47的2个阀门48。而且与各自的排气线路连接的预流动线路45、46从配管41、44分支。而且,配管41、44的喷头10附近,以及预流动线路45、46的分支点附近,各自设置有阀门50。并且,在输送液体的配管33上,设置有液体质量流量控制器(LMFC)49。
在如此构成的成膜装置中,向Si晶片W上形成硅酸铪膜按如下方式进行。
首先,将处理容器31内排气,使压力为400Pa左右,由加热器5将Si晶片W加热至规定的温度。
在这种状态下,使来自HTB容器31的液体HTB在气化单元35中气化,流入预流动线路45,使来自乙硅烷气体供给源43的乙硅烷气体流入预流动线路46,进行一定时间的预流动。然后,切换阀门50,使HTB气体(HTB蒸气)和乙硅烷气体分别向第一和第二导入路径11、12供给,从第一和第二气体吐出路径15、16向处理容器1内吐出,开始成膜。此时,通过未图示加热器,将配管41和喷头10加热至使HTB保持气化的状态但自身不分解的温度。并且,在处理容器1内的被加热的Si晶片W上,HTB气体与乙硅烷气体发生反应,在晶片W上形成硅酸铪膜。
HTB的分子结构是下述化学式所示的结构。即,位于分子中心的Hf原子与4个O原子结合,各O原子上结合有叔丁基。这样,因为HTB的分子中含有O原子,可以不使用氧化剂,通过与乙硅烷气体的反应,形成硅酸铪膜。
[化学式1]
Figure A20058000993500121
此时的气体流量例示为HTB:0.2~1L/min、N2气:0.5~2L/min、乙硅烷气体:40mL/min左右。此外,成膜时处理容器1内的压力例示为40~400Pa。
此时的成膜温度即晶片温度需要考虑HTB的热分解特性和乙硅烷气体的热分解特性而决定。
首先,说明HTB的分解特性。图2是表示HTB的热分解特性的红外吸收光谱图。如该图所示,成膜温度低时,叔丁基(t-C4H9)大量产生。因为t-C4H9的碳成分多,不易挥发,所以如果叔丁基多,认为它成为膜中的碳不纯物,给特性带来不好的影响。与此相对,随着成膜温度上升,t-C4H9缓缓下降,异丁烯增加。认为这是由于HTB通过下述反应分解成氢氧化铪和异丁烯。
[化学式2]
这样,如果生成氢氧化铪的反应占优势,则HfO2的生成量必然增加,能够生成碳不纯物少的硅酸铪膜。
图3是表示在使晶片温度变化的情况下、供给300秒钟HTB时的晶片上HfO2的膜厚变化图。并且,此时的压力为40Pa和200Pa。如该图所示,晶片温度(成膜温度)达到350℃左右,HfO2膜厚上升,至此饱和。由此认为通过在350℃以上进行成膜,充分发生上述反应,膜中碳不纯物减少。
此外,图4中表示在各种温度下,向带有SiO2膜的晶片上供给300秒钟HTB时的膜表面状态的SEM照片。如该图所示,可知如果温度超过350℃,表面粗糙度变小。由此,可以确认,通过发生上述反应,不仅膜中的碳不纯物减少,膜的表面粗糙度也变小。
图5为表示使用图1的装置,在晶片温度360℃下形成硅酸铪膜时的膜厚方向的各元素浓度图。图6为表示使用现有的分批式立式炉,在炉体温度即晶片温度280℃下,形成硅酸铪膜时的膜厚方向的碳原子浓度图。如这些图所示,使用现有的分批式立式炉,在280℃下形成硅酸铪膜时,刚成膜后的碳原子浓度为5×1020atoms/cm3。与此相对,使用图1的装置,在360℃下形成硅酸铪膜时,刚成膜后的碳原子浓度为1×1020atoms/cm3,确认减小至使用现有装置的280℃时的1/5。
下面,说明乙硅烷气体的分解特性。图7是表示基板温度为(a)360℃、(b)495℃、(c)542℃,乙硅烷气体的流量为40mL/min,形成硅酸铪膜时的XPS光谱(检出角度15度)图。并且,分别在上述温度条件下,膜厚为10.1nm、8.3nm、8.4nm。如该图所示,确认在495℃下在100eV左右存在与Si-Si键对应的峰,在542℃下该峰更为显著。可是在360℃下没有观察到该峰。由此,可以确认在495℃以上,在膜中产生Si-Si键。
图8是表示基板温度分别为(a)360℃、(b)405℃、(c)450℃、(d)495℃、(e)542℃,使乙硅烷气体流量变化时的硅酸铪膜组成变化的图。从该图可知,温度在495℃以上,伴随着乙硅烷气体流量的增加,氧的比例下降,而在450℃以下,则不发生这种现象。由此也可以推测在495℃以上,膜中产生Si-Si键。
该Si-Si键表示乙硅烷发生自身分解反应。由于发生这种自身分解反应、Si-Si键增加,硅酸铪膜的绝缘性下降。通过以上结果可以确认成膜时的基板温度优选为不发生乙硅烷自身分解的450℃以下。
图9表示在带有极薄SiO2的晶片上形成硅酸铪膜时的表面粗糙度(平均粗糙度Ra)。为了比较,也表示出在晶片上直接形成硅酸铪膜时(温度495℃、流量40mL/min)的表面粗糙度和晶片本身的粗糙度。成膜压力为40Pa。晶片上的极薄SiO2,假定为实际的栅极绝缘膜的基底绝缘膜(界面层),通过由紫外线激发O2自由基的硅基板氧化而形成,添加利用N2自由基的后氮化处理。如该图所示,在不发生乙硅烷自身分解反应的基板温度360℃的情况下,在流量40mL/min下,得到Ra为0.14nm的与Si晶片同样水平的极好表面粗糙度。与此相对,在发生乙硅烷自身分解反应的基板温度495℃的情况下,在同样的流量40mL/min下,表面粗糙度Ra为0.23nm,表明粗糙度变大。并且,通过将流量增加到200mL/min,Ra为1.4nm,观察到明显的表面粗糙。由此,确认通过抑制乙硅烷的自身分解反应,硅酸铪膜的表面粗糙度也变得优异。并且,在晶片上直接形成硅酸铪膜时,表面粗糙度以Ra计为0.43nm,比带有极薄SiO2的晶片的情况粗糙。
综上所述,在使用本实施方式的HTB和乙硅烷气体的硅酸铪膜的成膜中,成膜时的基板温度设定为作为铪醇盐的HTB分解成氢氧化铪和异丁烯的温度以上、并且小于作为硅氢化物的乙硅烷的自身分解温度。具体而言,优选为350℃~450℃。由此,能够形成碳不纯物少、绝缘性高、表面粗糙度小的优质硅酸铪膜,适宜用作栅极绝缘膜。
在现有的分批式立式炉中,在原料气体导入炉内的时刻被加热到炉体温度。因此,如果设定的炉体温度过高,存在原料气体到达晶片之前就发生成膜反应的不良情况。因此,不得不将炉体温度(即晶片温度)设定比280℃左右低的温度。对此,在本实施方式中,使用枚叶式成膜装置。因此,可以降低原料气体从供给系统到达晶片W的喷头10内等空间的温度,只将晶片W加热至成膜温度。所以,可以将晶片温度设定为350℃以上的更高温度。
此外,在这种枚叶式成膜装置中,配管41和喷头10的温度设定为低于作为金属醇盐的HTB自身分解温度。因此,可以防止HTB在到达Si晶片之前分解,使之能够在Si晶片W上确实地发生希望的反应。
并且,喷头10是后混合型,在喷头10内,HTB与乙硅烷气体不混合。因此,能够扩大用于抑制原料分解的喷头温度控制界限。
这样一来,形成规定膜厚的硅酸铪膜后,调整处理容器1内的压力,打开闸阀25,将Si晶片从搬入搬出口24搬出。以上,对1张晶片的成膜处理结束。
此外,本发明不限于上述实施方式,可以进行各种变形。例如,在上述实施方式中,使用HTB作为成膜原料,可是不限于此,可以使用其他铪醇盐原料,例如四异丙醇铪、四正丁醇铪。并且,在上述实施方式中表示了形成硅酸铪膜的情况,但是也适用于形成其他金属硅酸盐的情况,此时,使用含有该金属的醇盐原料即可。例如,可以适用于使硅酸锆成膜的情况,此时可以使用四叔丁醇锆(ZTB)。还适用于使镧系元素的金属硅酸盐成膜的情况。并且,在上述实施方式中,使用乙硅烷作为硅氢化物,但是也可以使用甲硅烷等其他的硅氢化物。
作为半导体装置的栅极绝缘膜,形成本发明的金属硅酸盐膜时,为了保持与硅基板的良好的界面状态,优选预先在基板上形成极薄(0.5nm以下)的基底绝缘膜(界面膜)。形成该基底绝缘膜时,优选使用适于形成数原子厚度的极薄SiO2膜的紫外线(UV)激发O2自由基氧化方法。此时,还可以通过N2自由基的后氮化处理,使极薄SiO2膜含有氮。

Claims (20)

1.一种成膜方法,其特征在于,
包括:准备基板的工序;和
通过使用金属醇盐气体和硅氢化物气体的CVD,在所述基板上形成金属硅酸盐膜的工序,
所述成膜工序,将所述基板的温度设定为所述金属醇盐分解成金属氢氧化物和一定的中间体的温度以上、并且小于所述硅氢化物的自身分解温度而进行。
2.如权利要求1所述的方法,其特征在于:
所述金属醇盐以叔丁氧基为配位基。
3.如权利要求2所述的方法,其特征在于:
所述中间体为异丁烯。
4.如权利要求2所述的方法,其特征在于:
所述金属醇盐为HTB。
5.如权利要求4所述的方法,其特征在于:
所述成膜工序中的所述基板温度为350℃以上。
6.如权利要求1所述的方法,其特征在于:
所述硅氢化物为乙硅烷。
7.如权利要求6所述的方法,其特征在于:
所述成膜工序中的所述基板温度为450℃以下。
8.一种成膜方法,其特征在于,
包括:准备基板的工序;和
通过使用HTB气体和乙硅烷气体的CVD,在该基板上形成硅酸铪膜的工序,
所述成膜工序将所述基板的温度设定为350℃~450℃而进行。
9.一种成膜装置,用于使用金属醇盐气体和硅氢化物气体,通过CVD,在基板上形成金属硅酸盐膜,其特征在于,具有:
收容基板的处理容器;
对所述处理容器内的基板进行加热的加热器;
具有使金属醇盐原料气化为金属醇盐气体的气化单元,将所述金属醇盐气体和所述硅氢化物气体互相独立地供给到所述处理容器的气体供给系统;
使由所述气体供给系统供给的所述金属醇盐气体和所述硅氢化物气体扩散到所述处理容器内的喷头;和
控制器,控制所述加热器,使得成膜时所述处理容器内的基板温度为所述金属醇盐分解成金属氢氧化物和一定的中间体的温度以上、并且小于所述硅氢化物的自身分解温度。
10.如权利要求9所述的装置,其特征在于:
所述金属醇盐以叔丁氧基为配位基。
11.如权利要求10所述的装置,其特征在于:
所述中间体为异丁烯。
12.如权利要求10所述的装置,其特征在于:
所述金属醇盐为HTB。
13.如权利要求12所述的装置,其特征在于:
所述温度控制单元将成膜时的所述基板温度控制在350℃以上。
14.如权利要求9所述的装置,其特征在于:
所述硅氢化物为乙硅烷。
15.如权利要求14所述的装置,其特征在于:
所述温度控制单元将成膜时的所述基板温度控制在450℃以下。
16.如权利要求9所述的装置,其特征在于:
所述喷头构成为将金属醇盐气体和硅氢化物气体互相独立地导入所述处理容器内。
17.一种成膜装置,用于使用HTB气体和乙硅烷气体,通过CVD,在基板上形成硅酸铪膜,其特征在于,具有:
收容基板的处理容器;
对所述处理容器内的基板进行加热的加热器;
具有使液体HTB气化为HTB气体的气化单元,将所述HTB气体和所述乙硅烷气体互相独立地供给到所述处理容器的气体供给系统;
使由所述气体供给系统供给的所述HTB气体和所述乙硅烷气体扩散到所述处理容器内的喷头;和
控制器,控制所述加热器,使得成膜时所述处理容器内的基板温度为350℃~450℃。
18.如权利要求17所述的装置,其特征在于:
所述喷头构成为将所述HTB气体和所述乙硅烷气体互相独立地导入所述处理容器内。
19.一种半导体装置的制造方法,其特征在于,
包括:准备硅基板的工序;
在所述硅基板上形成作为基底绝缘膜的硅氧化膜的工序;
通过使用金属醇盐气体和硅氢化物气体的CVD,在所述硅氧化膜上形成作为栅极绝缘膜的金属硅酸盐膜的工序;和
在所述金属硅酸盐膜上形成栅极电极的工序,
所述形成金属硅酸盐膜的工序,将所述硅基板的温度设定为所述金属醇盐分解成金属氢氧化物和一定的中间体的温度以上、并且小于所述硅氢化物的自身分解温度而进行。
20.如权利要求19所述的制造方法,其特征在于:
所述形成硅氧化膜的工序,通过利用被紫外线激发的氧自由基,使硅基板表面氧化而进行。
CNB2005800099355A 2004-03-31 2005-03-30 金属硅酸盐膜的成膜方法及其装置、半导体装置的制造方法 Expired - Fee Related CN100437937C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004105300A JP4542807B2 (ja) 2004-03-31 2004-03-31 成膜方法および成膜装置、ならびにゲート絶縁膜の形成方法
JP105300/2004 2004-03-31

Publications (2)

Publication Number Publication Date
CN1938832A true CN1938832A (zh) 2007-03-28
CN100437937C CN100437937C (zh) 2008-11-26

Family

ID=35064068

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800099355A Expired - Fee Related CN100437937C (zh) 2004-03-31 2005-03-30 金属硅酸盐膜的成膜方法及其装置、半导体装置的制造方法

Country Status (5)

Country Link
US (1) US20070141257A1 (zh)
JP (1) JP4542807B2 (zh)
KR (1) KR100832929B1 (zh)
CN (1) CN100437937C (zh)
WO (1) WO2005096362A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731164B1 (ko) * 2005-05-19 2007-06-20 주식회사 피에조닉스 샤워헤드를 구비한 화학기상 증착 방법 및 장치
CN101288162B (zh) * 2005-10-14 2010-06-09 日本电气株式会社 半导体装置的制造方法及其制造装置
JP5106769B2 (ja) * 2005-10-24 2012-12-26 東京エレクトロン株式会社 金属シリケート膜形成方法および半導体装置の製造方法、コンピュータ可読記録媒体
US20070264427A1 (en) * 2005-12-21 2007-11-15 Asm Japan K.K. Thin film formation by atomic layer growth and chemical vapor deposition
KR100744423B1 (ko) * 2006-08-28 2007-07-30 동부일렉트로닉스 주식회사 하프늄 실리케이트 산화막 형성 방법 및 이를 이용한반도체 소자의 제조 방법
KR101464227B1 (ko) 2007-01-12 2014-11-21 비코 인스트루먼츠 인코포레이티드 가스 처리 시스템
JP4968028B2 (ja) * 2007-12-04 2012-07-04 株式会社明電舎 レジスト除去装置
US8017469B2 (en) * 2009-01-21 2011-09-13 Freescale Semiconductor, Inc. Dual high-k oxides with sige channel
US9417515B2 (en) 2013-03-14 2016-08-16 Applied Materials, Inc. Ultra-smooth layer ultraviolet lithography mirrors and blanks, and manufacturing and lithography systems therefor
US9632411B2 (en) 2013-03-14 2017-04-25 Applied Materials, Inc. Vapor deposition deposited photoresist, and manufacturing and lithography systems therefor
US20140272684A1 (en) 2013-03-12 2014-09-18 Applied Materials, Inc. Extreme ultraviolet lithography mask blank manufacturing system and method of operation therefor
US9354508B2 (en) 2013-03-12 2016-05-31 Applied Materials, Inc. Planarized extreme ultraviolet lithography blank, and manufacturing and lithography systems therefor
US9612521B2 (en) 2013-03-12 2017-04-04 Applied Materials, Inc. Amorphous layer extreme ultraviolet lithography blank, and manufacturing and lithography systems therefor
KR101550775B1 (ko) * 2013-05-31 2015-09-08 백용구 다층복합막 형성장치 및 이를 이용한 다층복합막 형성방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3624476B2 (ja) * 1995-07-17 2005-03-02 セイコーエプソン株式会社 半導体レーザ装置の製造方法
US6161500A (en) * 1997-09-30 2000-12-19 Tokyo Electron Limited Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions
US6984591B1 (en) * 2000-04-20 2006-01-10 International Business Machines Corporation Precursor source mixtures
JP4731694B2 (ja) * 2000-07-21 2011-07-27 東京エレクトロン株式会社 半導体装置の製造方法および基板処理装置
JP4102072B2 (ja) * 2002-01-08 2008-06-18 株式会社東芝 半導体装置
JP4001498B2 (ja) * 2002-03-29 2007-10-31 東京エレクトロン株式会社 絶縁膜の形成方法及び絶縁膜の形成システム
JP2004079687A (ja) * 2002-08-13 2004-03-11 Tokyo Electron Ltd キャパシタ構造、成膜方法及び成膜装置
US7070833B2 (en) * 2003-03-05 2006-07-04 Restek Corporation Method for chemical vapor deposition of silicon on to substrates for use in corrosive and vacuum environments
JP2004311782A (ja) * 2003-04-08 2004-11-04 Tokyo Electron Ltd 成膜方法及び成膜装置

Also Published As

Publication number Publication date
US20070141257A1 (en) 2007-06-21
WO2005096362A1 (ja) 2005-10-13
JP2005294421A (ja) 2005-10-20
KR100832929B1 (ko) 2008-05-27
KR20060120282A (ko) 2006-11-24
JP4542807B2 (ja) 2010-09-15
CN100437937C (zh) 2008-11-26

Similar Documents

Publication Publication Date Title
CN100437937C (zh) 金属硅酸盐膜的成膜方法及其装置、半导体装置的制造方法
US8282992B2 (en) Methods for atomic layer deposition of hafnium-containing high-K dielectric materials
CN1926668B (zh) 在高介电常数的介电材料上的硅的氮氧化物层的形成
US7799680B2 (en) Surface preparation prior to deposition on germanium
US7476627B2 (en) Surface preparation prior to deposition
KR101639464B1 (ko) 유효 산화물 두께가 감소된 하이-k게이트 스택의 형성 방법
US7723245B2 (en) Method for manufacturing semiconductor device, and substrate processing apparatus
US7871926B2 (en) Methods and systems for forming at least one dielectric layer
US7026219B2 (en) Integration of high k gate dielectric
US9096928B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
US20060228888A1 (en) Atomic layer deposition of high k metal silicates
WO2007040749A2 (en) A method of forming a silicon oxynitride film with tensile stress
TW201403715A (zh) 用於形成含氧化矽之薄膜的方法
JP2006310801A (ja) 高誘電率膜上のシリコンオキサイドキャップ
TW201318065A (zh) 半導體裝置之製造方法、基板處理方法、基板處理裝置及記錄媒體
KR20060050712A (ko) 원격 플라즈마 활성 질화물 형성방법
CN114334605A (zh) 半导体装置的制造方法、基板处理方法、基板处理装置及存储介质
JP3915697B2 (ja) 成膜方法及び成膜装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081126

Termination date: 20150330

EXPY Termination of patent right or utility model