CN1902129A - 太阳能电池的硅原料 - Google Patents

太阳能电池的硅原料 Download PDF

Info

Publication number
CN1902129A
CN1902129A CNA2004800394173A CN200480039417A CN1902129A CN 1902129 A CN1902129 A CN 1902129A CN A2004800394173 A CNA2004800394173 A CN A2004800394173A CN 200480039417 A CN200480039417 A CN 200480039417A CN 1902129 A CN1902129 A CN 1902129A
Authority
CN
China
Prior art keywords
silicon
raw material
ingot
type
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800394173A
Other languages
English (en)
Other versions
CN100457613C (zh
Inventor
E·埃内巴克
K·弗里斯塔德
R·特伦斯塔
C·扎赫迪
C·德特洛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norway Solar Energy Co
Original Assignee
Elkem ASA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem ASA filed Critical Elkem ASA
Publication of CN1902129A publication Critical patent/CN1902129A/zh
Application granted granted Critical
Publication of CN100457613C publication Critical patent/CN100457613C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及硅原料,所述硅原料用于制备生产PV太阳能电池用硅晶片的定向凝固直拉法区熔单晶硅或多晶硅锭、薄硅片或带,其含有分布在该材料中的0.2-10ppma硼和0.1-10ppma磷。本发明进一步涉及用于制备生产PV太阳能电池用硅晶片的定向凝固直拉法区熔单晶硅或多晶硅锭、薄硅片或带,其含有分布在锭中的0.2-10ppma硼和0.1-10ppma磷,所述硅锭在位于所述锭高度或者片或带的厚度的40%-99%之间的位置具有从p型变成n型或者从n型变成p型的类型转变,并具有起始值为0.4-10Ωcm而且电阻率值朝着类型转变点增加的电阻率曲线。最后,本发明涉及用于制备硅原料的方法,所述硅原料用于制备生产PV太阳能电池用硅晶片的定向凝固直拉法区熔单晶硅或多晶硅锭、薄硅片或带。

Description

太阳能电池的硅原料
技术领域
本发明涉及用于太阳能电池晶片的硅原料、太阳能电池晶片、太阳能电池和制备用于制备太阳能电池晶片的硅原料的方法。
背景技术
近年来,人们已经用来自电子芯片工业的合适碎片、切屑和不合格品所供应的超纯原生电子级多晶硅(EG-Si)制备光电太阳能电池。由于最近电子工业的低迷,所以人们将闲置的多晶硅生产能力用来获得了适于生产PV太阳能电池的较低成本等级的多晶硅。从而使市场上对太阳能电池级硅原料(SoG-Si)质量的迫切需求得到了暂时缓解。由于对电子器件的需求正在回归正常水平,所以预计大部分多晶硅生产能力将重新被用于供应电子工业,导致PV工业缺乏原料供应。目前,专用低成本SoG-Si来源的缺乏以及最终供应缺口的形成,被认为是PV工业进一步发展的最严重障碍之一。
近年来,人们进行了多种尝试来开发和电子工业产值链无关的SoG-Si新源。这些努力包括在现有多晶硅工艺路线中引入新技术以显著降低成本,以及开发冶金精炼工艺将丰富的、可得的冶金级硅(MG-Si)纯化到所需纯度。到目前为止,还没有人在显著降低生产成本并同时提供如下硅原料纯度上取得成功:预计该原料纯度是和由目前的常规质量硅原料制备的PV太阳能电池性能相匹配所需的。
在制备PV太阳能电池时,制备SoG-Si原料装料,在专用铸造炉中熔融并定向凝固成方形锭。在熔融前,用硼或者磷对含有SoG-Si原料的装料进行掺杂,分别获得p型或n型锭。目前生产的商业太阳能电池基于p型硅锭材料,几乎没有例外。对单一掺杂剂(例如,硼或磷)的添加进行了控制,以在材料中获得优选的电阻率,例如,为0.5-1.5Ωcm。当需要p型锭并且采用的是固有质量(实际上是纯硅,掺杂剂含量忽略不计)的SoG-Si原料时,这对应的硼添加量为0.02-0.2ppma。掺杂程序假定另一种掺杂剂(在此例中是磷)的含量可以忽略不计(P<1/10B)。
如果在装料中以各种添加水平采用电阻率一定的单掺杂SoG-Si原料,则掺杂剂的加入量要进行调整,以考虑到在预掺杂的原料材料中已经含有的掺杂剂的量。
也可以将n型和p型单掺杂原料在装料中混合,从而获得所谓的“补偿”锭。为了获得所需的锭性质,装料混合物的每种组分的类型和电阻率必需已知。
在铸造后,将凝固的锭切割成具有最终太阳能电池轨迹的块,例如,表面积为125mm×125mm。采用工业多线锯设备将这些块切成晶片。
按照多个工艺步骤由这些晶片制备PV太阳能电池,所述工艺步骤中最重要的是表面蚀刻、POCl3发射体扩散、PECVD SiN沉积、边缘隔离和形成前后触点。
发明内容
现在,根据本发明,发现利用专门为PV太阳能电池原料应用设计的冶金精炼工艺,可以由从冶金级硅制备的SoG-Si原料制备满足工业效率目标的PV太阳能电池。
因此,根据第一方面,本发明涉及硅原料,所述硅原料用于制备生产PV太阳能电池用硅晶片所需的定向凝固直拉法区熔单晶硅或者多晶硅锭、薄硅片或带,其中所述硅原料的特征在于它含有分布在材料中的0.2-10ppma的硼和0.1-10ppma的磷。
根据优选实施方案,硅原料含有0.3-0.5ppma的硼和0.5-3.5ppma的磷。
根据另一优选实施方案,硅原料(SoG-Si)含有小于150ppma的金属元素和优选小于50ppma的金属元素。
根据另一优选实施方案,硅原料含有小于150ppma的碳和更优选小于100ppma的碳。
本发明的硅原料和上述含有不同硼或磷的、含有硅原料质量的装料混合物显著不同,不同之处在于它含有高水平的硼以及磷。令人惊奇地发现,本发明的硅原料可用于制备效率和由电子级硅制备的商用太阳能电池一样好的太阳能电池。
本发明的硅原料可用于制备定向凝固直拉法区熔单晶硅或多晶硅锭,或者薄硅片或带,以制备用于高效率太阳能电池的晶片。从所述硅原料制备的硅锭、薄片或带含有0.2-10ppma的硼和0.1-10ppma的磷,并具有这种特征:在位于所述锭高度或者片或带的厚度的40%-99%之间的位置,从p型变成n型或者从n型变成p型。由本发明的原料制备的定向凝固锭的电阻率曲线,起始值为0.4-10Ωcm,其中电阻率值朝着类型转变点增加。
根据第二方面,本发明涉及定向凝固直拉法区熔单晶硅或多晶硅锭,或者薄硅片或带,以制备用于太阳能电池的晶片,其中所述硅锭、薄片或带含有0.2-10ppma的硼和0.1-10ppma的磷,所述硅锭在位于所述锭高度或者片或带的厚度的40%-99%之间的位置具有从p型变成n型或者从n型变成p型的类型转变,并具有起始值为0.4-10Ωcm而且电阻率值朝着类型转变点增加的电阻率曲线。
根据优选实施方案,硅锭、薄片或带的电阻率起始值为0.7-3Ωcm。
根据第三方面,本发明涉及制备硅原料的方法,所述硅原料用于制备生产PV太阳能电池用硅晶片的定向凝固直拉法区熔单晶硅或多晶硅锭、薄硅片或带,所述方法的特征在于在电弧炉中通过碳高温还原炉制备的、含有高达300ppma硼和高达100ppma磷的冶金级硅经受下列精炼步骤:
a)用硅酸钙炉渣处理所述冶金级硅,使所述硅中的硼含量降到0.2ppma-10ppma;
b)凝固来自步骤a)的经过炉渣处理的硅;
c)在至少一个浸提步骤中用酸浸提溶液浸提步骤b)的硅,以去除杂质;
d)熔融步骤c)的硅;
e)通过定向凝固使步骤d)的熔融硅凝固成锭形式;
f)去除步骤e)的凝固锭的上部分,以提供含有0.2-10ppma硼和0.1-10ppma磷的硅锭;
g)粉碎和/或筛分步骤f)的硅。
已经发现,根据该方法制备的硅原料非常适于制备用于生产效率和商业太阳能电池相当的太阳能电池的晶片的定向凝固锭、薄片和带。
附图说明
图1示出了本发明第一硅锭的电阻率和锭高度的关系曲线,和
图2示出了本发明第二锭的电阻率和锭高度的变化曲线。
具体实施方式
实施例1
制备硅原料
用硅酸钙炉渣处理在电弧炉中通过碳高温还原制备的商用冶金级硅,以主要去除硼。硼被从熔融硅中提取到熔渣相中。硅凝固成极纯的硅晶体,而杂质保留在熔体中,直到大多数硅都凝固为止。在凝固的硅中,杂质被束缚在晶界上。
对凝固的硅进行酸浸提处理,由此晶间相被腐蚀并和杂质一起溶解。剩余的未溶粒状硅经过熔融,进一步精炼以调整组成,随后粉碎和筛选,从而获得用于太阳能电池级硅的硅原料。
通过上述方法,制备了两种硅原料的装料。两种硅原料的试样的硼和磷含量如表1所示。
表1
试样号        硼ppma         磷ppma
1             3.3            3.2
2             1.2            1.1
实施例2
制备定向凝固的硅锭、晶片和太阳能电池
将根据实施例1所述方法制备的硅原料用于制备根据本发明的两种定向凝固硅锭。工业多晶硅晶片用作对比样。采用Crystalox DS250炉制备锭。采用了内径为25.5cm、高度为20cm的能够容纳约12kg原料的圆形石英坩锅。将生成的锭加工成100cm2和156cm2的方形块,然后用锯切成晶片。由这些块制备大量厚度为300-330μm的、用于电池加工的晶片。
两种锭的20%高度处的硼和磷含量如表2所示。
表2锭#1和2在20%高度处的化学分析
锭号        硼ppma          磷ppma
1           2.8             1.3
2           1.0             0.3
对全部锭块测量切成的晶片的体积电阻率,至少每隔4块晶片测量一块晶片,从底部到顶部用四点探头测试。图1和图2分别示出了锭1和2的体积电阻率曲线。图1和2表明,从锭底部直到锭高度的约3/4处(此时材料由p型变成n型)电阻率基本保持不变。
通过定量Seebeck系数测量确定硅块中的主要载流子类型。在从每块锭的顶部、中部和底部选定的晶片上,进行霍尔测量和电阻率测量(采用van der Paw几何学)以获得电阻率、载流子浓度和迁移率。
所有晶片用NaOH在80℃蚀刻9分钟以去除锯损部位,然后在去离子水、HCl、去离子水和2%HF中冲洗。
为了研究光陷阱效应,在选定的切割晶片上进行等变形处理(isotexturisation)代替NaOH蚀刻。本方法将去除切割晶片上的表面锯损部位和表面变形组合在一个步骤中。
通过POCl3发射体扩散、PECVD SiN沉积、和经由等离子蚀刻的边缘隔离,制备太阳能电池。前后触点通过丝网印刷以及随后的烧制制备。
表3列出了制备的太阳能电池的效率。效率达到了η=14.8%(锭#2),超过了对比材料的效率值。商业单晶Si晶片用作对比样进行比较。
表3
  锭#   面积[cm2]   电池的最佳效率[%]
  1   156   14.3
  2   156   14.8
  对比样   156   14.6
表3的结果表明效率和商业太阳能电池相当和甚至更高的太阳能电池可以通过本发明的硅原料以及定向凝固的硅锭获取。

Claims (9)

1.用于制备生产PV太阳能电池用晶片的定向凝固直拉法区熔单晶硅或多晶硅锭、薄片和带的硅原料,特征在于所述硅原料含有分布在该材料中的0.2-10ppma硼和0.1-10ppma磷。
2.权利要求1的硅原料,特征在于所述硅原料含有0.3-5.0ppma硼和0.5-3.5ppma磷。
3.权利要求1或2的硅原料,特征在于所述硅原料含有小于150ppma的金属元素。
4.权利要求3的硅原料,特征在于所述硅原料含有小于50ppma的金属元素。
5.权利要求1-3的硅原料,特征在于所述硅原料含有小于150ppma的碳。
6.权利要求1-3的硅原料,特征在于所述硅原料含有小于100ppma的碳。
7.用于制备太阳能电池用晶片的定向凝固直拉法区熔单晶硅或多晶硅锭或薄硅片或带,特征在于所述硅锭、薄片或带含有分布在所述锭中的0.2-10ppma的硼和0.1-10ppma的磷,所述硅锭在位于所述锭高度或者片或带的厚度的40%-99%之间的位置具有从p型变成n型或者从n型变成p型的类型转变,并具有起始值为0.4-10Ωcm而且电阻率值朝着类型转变点增加的电阻率曲线。
8.权利要求7的定向凝固硅锭、薄片或带,特征在于电阻率起始值为0.7-3Ωcm。
9.制备硅原料的方法,所述硅原料用于制备生产PV太阳能电池用硅晶片的定向凝固直拉法区熔单晶硅或多晶硅锭、薄硅片或带,特征在于在电弧炉中通过碳高温还原炉制备的、并含有高达300ppma硼和高达100ppma磷的冶金级硅经受下列精炼步骤:
a)用硅酸钙炉渣处理所述冶金级硅,使所述硅中的硼含量降到0.2-10ppma;
b)凝固来自步骤a)的经过炉渣处理的硅;
c)在至少一个浸提步骤中用酸浸提溶液浸提步骤b)的硅,以去除杂质;
d)熔融步骤c)的硅;
e)通过定向凝固使步骤d)的熔融硅凝固成锭形式;
f)去除步骤e)的凝固锭的上部分,以提供含有0.2-10ppma硼和0.1-10ppma磷的硅锭;
g)粉碎和/或筛分步骤f)的硅。
CNB2004800394173A 2003-12-29 2004-01-12 太阳能电池的硅原料 Expired - Lifetime CN100457613C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20035830 2003-12-29
NO20035830A NO333319B1 (no) 2003-12-29 2003-12-29 Silisiummateriale for fremstilling av solceller

Publications (2)

Publication Number Publication Date
CN1902129A true CN1902129A (zh) 2007-01-24
CN100457613C CN100457613C (zh) 2009-02-04

Family

ID=34738092

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800394173A Expired - Lifetime CN100457613C (zh) 2003-12-29 2004-01-12 太阳能电池的硅原料

Country Status (11)

Country Link
US (2) US7381392B2 (zh)
EP (2) EP2607308A1 (zh)
JP (1) JP4580939B2 (zh)
CN (1) CN100457613C (zh)
AU (1) AU2004308879B2 (zh)
BR (1) BRPI0417807B1 (zh)
CA (1) CA2548936C (zh)
EA (1) EA009791B1 (zh)
ES (1) ES2441725T3 (zh)
NO (1) NO333319B1 (zh)
WO (1) WO2005063621A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598272A (zh) * 2009-04-29 2012-07-18 卡利太阳能有限公司 升级冶金级硅原料的质量控制方法
CN105579623A (zh) * 2013-09-17 2016-05-11 原子能与替代能源委员会 制造具有均匀磷浓度的硅锭的方法
CN105723020A (zh) * 2013-09-09 2016-06-29 埃尔凯姆太阳能公司 多晶硅锭、硅母合金、用于提高太阳能电池的多晶硅锭的产率的方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO322246B1 (no) * 2004-12-27 2006-09-04 Elkem Solar As Fremgangsmate for fremstilling av rettet storknede silisiumingots
DE102005061690A1 (de) * 2005-12-21 2007-07-05 Solmic Gmbh Verfahren zur Herstellung solartauglichen Siliziums
EP2024285B1 (en) * 2006-04-04 2014-06-11 Silicor Materials Inc. Method for purifying silicon
US7682585B2 (en) * 2006-04-25 2010-03-23 The Arizona Board Of Regents On Behalf Of The University Of Arizona Silicon refining process
AU2007295860A1 (en) * 2006-09-14 2008-03-20 Silicium Becancour Inc. Process and apparatus for purifying low-grade silicon material
NO333757B1 (no) * 2006-12-04 2013-09-09 Elkem Solar As Solceller
US7651566B2 (en) * 2007-06-27 2010-01-26 Fritz Kirscht Method and system for controlling resistivity in ingots made of compensated feedstock silicon
US8968467B2 (en) * 2007-06-27 2015-03-03 Silicor Materials Inc. Method and system for controlling resistivity in ingots made of compensated feedstock silicon
UA97691C2 (ru) 2007-09-13 2012-03-12 Силисиум Беканкур Инк. Способ получения твердого поликристаллического кремния высокой чистоты
KR101247666B1 (ko) 2007-10-03 2013-04-01 실리코르 머티리얼즈 인코포레이티드 실리콘 결정을 얻기 위한 실리콘 분말의 가공 방법
WO2009062117A1 (en) * 2007-11-09 2009-05-14 Sunpreme, Inc. Low-cost solar cells and methods for their production
US8758507B2 (en) * 2008-06-16 2014-06-24 Silicor Materials Inc. Germanium enriched silicon material for making solar cells
US7887633B2 (en) * 2008-06-16 2011-02-15 Calisolar, Inc. Germanium-enriched silicon material for making solar cells
ITMI20081085A1 (it) * 2008-06-16 2009-12-17 N E D Silicon S P A Metodo per la preparazione di silicio di grado metallurgico di elevata purezza.
CN101676203B (zh) 2008-09-16 2015-06-10 储晞 生产高纯颗粒硅的方法
DE102009008371A1 (de) 2009-02-11 2010-08-12 Schott Solar Ag Integraler Prozeß von Waferherstellung bis Modulfertigung zur Herstellung von Wafern, Solarzellen und Solarmodulen
US20100213643A1 (en) * 2009-02-26 2010-08-26 Gadgil Prasad N Rapid synthesis of polycrystalline silicon sheets for photo-voltaic solar cell manufacturing
WO2010127184A1 (en) * 2009-04-29 2010-11-04 Calisolar, Inc. Quality control process for umg-si feedstock
US8547121B2 (en) * 2009-04-29 2013-10-01 Silicor Materials Inc. Quality control process for UMG-SI feedstock
US8562932B2 (en) 2009-08-21 2013-10-22 Silicor Materials Inc. Method of purifying silicon utilizing cascading process
KR101180353B1 (ko) * 2010-07-01 2012-09-06 연세대학교 산학협력단 태양전지용 실리콘제조를 위한 acid leaching을 이용한 MG-Si중 불순물의 정련방법
CN102021650B (zh) * 2010-12-31 2012-06-06 常州天合光能有限公司 一种大型多晶锭的生产方法
CN102191562B (zh) * 2011-04-25 2012-08-29 苏州阿特斯阳光电力科技有限公司 一种n型晶体硅太阳电池的硼扩散方法
FR2978549B1 (fr) * 2011-07-27 2014-03-28 Commissariat Energie Atomique Determination des teneurs en dopants dans un echantillon de silicium compense
NO335110B1 (no) * 2011-10-06 2014-09-15 Elkem Solar As Fremgangsmåte for fremstilling av silisiummonokrystall og multikrystalline silisiumingoter
CN103014839B (zh) * 2013-01-09 2016-07-27 英利集团有限公司 一种p型掺杂剂及其制备方法
CN103147118B (zh) * 2013-02-25 2016-03-30 天津市环欧半导体材料技术有限公司 一种利用直拉区熔法制备太阳能级硅单晶的方法
NO336720B1 (no) * 2013-09-09 2015-10-26 Elkem Solar As Fremgangsmåte for forbedring av effektiviteten av solceller.

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195067A (en) * 1977-11-21 1980-03-25 Union Carbide Corporation Process for the production of refined metallurgical silicon
JPS5913444B2 (ja) * 1977-11-21 1984-03-29 ユニオン・カ−バイド・コ−ポレ−シヨン 精製された金属シリコン製造方法
US4247528A (en) * 1979-04-11 1981-01-27 Dow Corning Corporation Method for producing solar-cell-grade silicon
DE2933164A1 (de) * 1979-08-16 1981-02-26 Consortium Elektrochem Ind Verfahren zum reinigen von rohsilicium
US4612179A (en) * 1985-03-13 1986-09-16 Sri International Process for purification of solid silicon
JPH07206420A (ja) * 1994-01-10 1995-08-08 Showa Alum Corp 高純度ケイ素の製造方法
NO180532C (no) * 1994-09-01 1997-05-07 Elkem Materials Fremgangsmåte for fjerning av forurensninger fra smeltet silisium
CN1083396C (zh) * 1995-07-14 2002-04-24 昭和电工株式会社 高纯度硅的制造方法
US5961944A (en) * 1996-10-14 1999-10-05 Kawasaki Steel Corporation Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
JPH10251010A (ja) * 1997-03-14 1998-09-22 Kawasaki Steel Corp 太陽電池用シリコン
US5972107A (en) * 1997-08-28 1999-10-26 Crystal Systems, Inc. Method for purifying silicon
CN1207192C (zh) * 1997-12-25 2005-06-22 新日本制铁株式会社 高纯硅的制造方法及装置
US6468886B2 (en) * 1999-06-15 2002-10-22 Midwest Research Institute Purification and deposition of silicon by an iodide disproportionation reaction
JP3446032B2 (ja) * 2000-02-25 2003-09-16 信州大学長 無転位シリコン単結晶の製造方法
AU2001285142A1 (en) * 2000-08-21 2002-03-04 Astropower Inc. Method and apparatus for purifying silicon
NO317073B1 (no) * 2001-06-05 2004-08-02 Sintef Elektrolytt samt fremgangsmate ved fremstilling eller raffinering av silisium
FR2827592B1 (fr) * 2001-07-23 2003-08-22 Invensil Silicium metallurgique de haute purete et procede d'elaboration
US8021483B2 (en) * 2002-02-20 2011-09-20 Hemlock Semiconductor Corporation Flowable chips and methods for the preparation and use of same, and apparatus for use in the methods
JP4142332B2 (ja) * 2002-04-19 2008-09-03 Sumco Techxiv株式会社 単結晶シリコンの製造方法、単結晶シリコンウェーハの製造方法、単結晶シリコン製造用種結晶、単結晶シリコンインゴットおよび単結晶シリコンウェーハ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598272A (zh) * 2009-04-29 2012-07-18 卡利太阳能有限公司 升级冶金级硅原料的质量控制方法
CN102598272B (zh) * 2009-04-29 2015-08-26 思利科材料有限公司 升级冶金级硅原料的质量控制方法
CN105723020A (zh) * 2013-09-09 2016-06-29 埃尔凯姆太阳能公司 多晶硅锭、硅母合金、用于提高太阳能电池的多晶硅锭的产率的方法
CN105723020B (zh) * 2013-09-09 2019-04-09 Rec太阳能挪威有限公司 多晶硅锭、硅母合金、用于提高太阳能电池的多晶硅锭的产率的方法
US10483428B2 (en) 2013-09-09 2019-11-19 Rec Solar Norway As Multicrystalline silicon ingots, silicon masteralloy, method for increasing the yield of multicrystalline silicon ingots for solar cells
US10693031B2 (en) 2013-09-09 2020-06-23 Rec Solar Norway As Multicrystalline silicon ingots, silicon masteralloy, method for increasing the yield of multicrystalline silicon ingots for solar cells
CN105579623A (zh) * 2013-09-17 2016-05-11 原子能与替代能源委员会 制造具有均匀磷浓度的硅锭的方法

Also Published As

Publication number Publication date
WO2005063621A1 (en) 2005-07-14
NO333319B1 (no) 2013-05-06
US7931883B2 (en) 2011-04-26
AU2004308879B2 (en) 2008-01-03
EP1699737A1 (en) 2006-09-13
BRPI0417807B1 (pt) 2014-09-23
ES2441725T3 (es) 2014-02-06
JP4580939B2 (ja) 2010-11-17
BRPI0417807A (pt) 2007-04-10
AU2004308879A1 (en) 2005-07-14
EP1699737B1 (en) 2014-01-01
EP2607308A1 (en) 2013-06-26
US20080206123A1 (en) 2008-08-28
CN100457613C (zh) 2009-02-04
US20070128099A1 (en) 2007-06-07
NO20035830L (no) 2005-06-30
EA009791B1 (ru) 2008-04-28
CA2548936A1 (en) 2005-07-14
JP2007516928A (ja) 2007-06-28
EA200601259A1 (ru) 2007-02-27
US7381392B2 (en) 2008-06-03
CA2548936C (en) 2009-08-18

Similar Documents

Publication Publication Date Title
CN1902129A (zh) 太阳能电池的硅原料
US20060249200A1 (en) Polycrystalline silicon material for solar power generation and silicon wafer for solar power generation
Seigneur et al. Manufacturing metrology for c-Si photovoltaic module reliability and durability, Part I: Feedstock, crystallization and wafering
US20080289150A1 (en) Method of Purifying Metal
CN101842508A (zh) 晶体织构化的金属衬底、晶体织构化的器件、包括这样的器件的电池和光伏模块以及薄层沉积方法
WO2008112598A2 (en) Method for utilizing heavily doped silicon feedstock to produce substrates for photovoltaic applications by dopant compensation during crystal growth
Meyer et al. Influence of the feedstock purity on the solar cell efficiency
US9352969B2 (en) Process for manufacturing silicon-based nanoparticles from metallurgical-grade silicon or refined metallurgical-grade silicon
KR20090048474A (ko) 금속 실리콘과 그 제조 방법
Margaria et al. UMG Silicon from the PHOTOSIL project–a status overview in 2011 on the way towards industrial production
Riepe et al. Silicon Material Technology and Evaluation Center (SIMTEC) at Fraunhofer ISE–Achievements and Visions
JP5194165B1 (ja) 金属精製塊の検査方法およびそれを含む高純度金属の製造方法
Ryningen et al. On the role of calcium in multicrystalline silicon
Degoulange et al. Dopant specifications for p-type UMG silicon: mono-c vs multi-c
Di Sabatino et al. Distribution of Al, B and P in multi-crystalline Si ingots
Di Sabatino et al. Impurities through the silicon solar cell value chain
Wan et al. Low-Cost Multicystalline Silicon Wafers by Purifying Metallurgical Grade Silicon with Tin Solution
NO320217B1 (no) Silisiumsubstratmateriale for epitaksibelegning for fremstilling av solceller
Boldt et al. Effect of Segregation During Crystallization of Highly Impure Upgraded Metallurgical Silicon
Bronsveld et al. SIN PRECIPITATE FORMATION RELATED TO METAL CONTAMINATION OF MULTICRYSTALLINE SILICON FOR SOLAR CELLS
Coletti et al. Impact of iron, nickel and chromium in feedstock on multicrystalline silicon solar cell properties
CN102227374A (zh) n型太阳能电池用硅及添加有磷的硅的制造方法
Beringov et al. NEW APPROACH TO SOG-SI PRE-TREATMENT TECHNOLOGY AND PARAMETERS OF SOLAR CELLS PRODUCED WITH APPLICATION THEREOF
Schumann et al. An experimental access to the coating influence on multicrystalline silicon materials
Rustioni et al. Solar silicon from directional solidification of MG silicon produced via the silicon carbide route

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180712

Address after: Kristiansand

Patentee after: Norway solar energy Co.

Address before: Oslo, Norway

Patentee before: ELKEM A/S

TR01 Transfer of patent right
CX01 Expiry of patent term

Granted publication date: 20090204

CX01 Expiry of patent term