CN1881671A - 有机电解液和采用它的锂电池 - Google Patents

有机电解液和采用它的锂电池 Download PDF

Info

Publication number
CN1881671A
CN1881671A CNA2006100936619A CN200610093661A CN1881671A CN 1881671 A CN1881671 A CN 1881671A CN A2006100936619 A CNA2006100936619 A CN A2006100936619A CN 200610093661 A CN200610093661 A CN 200610093661A CN 1881671 A CN1881671 A CN 1881671A
Authority
CN
China
Prior art keywords
replacement
unsubstituted
solvent
carbon atoms
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100936619A
Other languages
English (en)
Other versions
CN100438201C (zh
Inventor
李锡守
柳永钧
金翰秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN1881671A publication Critical patent/CN1881671A/zh
Application granted granted Critical
Publication of CN100438201C publication Critical patent/CN100438201C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种有机电解液和采用它的锂电池。该有机电解液包含:锂盐;含有高介电常数溶剂和低沸点溶剂的有机溶剂;及作为添加剂的包括两个或多个取代的甲硅烷基的乙酸酯衍生物。所述有机电解液和采用它的锂电池相对地抑制极性溶剂的还原分解,并降低第1次循环中的不可逆容量。因而能够改善电池的充电/放电效率、使用寿命和可靠性。

Description

有机电解液和采用它的锂电池
技术领域
本发明涉及一种锂电池,更具体地,本发明涉及一种能够改善电池循环的有机电解液和采用该有机电解液的锂电池。
背景技术
随着便携式电子器件如摄像机、便携式电话、笔记本式计算机等变得质量更轻,并具有日益改善的性能,对用作该便携式器件的电源的电池正在进行更多的研究。具体地,可充电的锂二次电池具有3倍于常规铅蓄电池、镍-镉电池、镍-氢电池、镍-锌电池等的每单位重量的能量密度,并且可以迅速充电,因而目前正在积极地研究。
在锂离子电池中,可以使用过渡金属化合物如LiNiO2,LiCoO2,LiMn2O4,LiFePO4,LiNixCox-1O2(x=1、2),Ni1-x-yCoxMnyO2(0≤x≤0.5,0≤y≤0.5)及其含锂的氧化物作为阴极活性材料,可以使用锂金属,锂合金,碳质材料,石墨材料等作为阳极活性材料。
电解液可以分为液体电解液和固体电解液。当使用液体电解液时,出现了许多安全问题,如由于电解液的泄漏而引起的着火危险和由于电解液的蒸发而引起的电池破裂。为了解决这些问题,提出了使用固体电解液代替液体电解液。固体电解液不会泄漏并且可以容易处理。对于固体电解液,如聚合物固体电解液已经进行了许多研究。目前已知的聚合物固体电解液可以分为不包含有机电解液的完全固体电解液和包含有机电解液的凝胶型电解液。
因为锂电池一般在高工作电压下驱动,所以不能采用常规的含水电解液。这是因为包含在阳极中的锂与水溶液彼此剧烈地反应。因而,在锂电池中,采用锂盐溶解在有机溶剂中的有机电解液。在这种情况下,可以使用具有高离子电导率、高介电常数和低粘度的有机溶剂。由于难于得到满足所有这些要求的单一有机溶剂,所以使用包含具有高介电常数的有机溶剂和具有低粘度的有机溶剂等的混合溶剂。
锂二次电池中阳极的碳和电解液在初始充电过程中彼此反应,使得在负极表面上形成钝化层如固体电解液界面(SEI)薄膜。该SEI薄膜能够使电池稳定地充电和放电,而不会使电解液进一步分解(J.Power Sources,51(1994),79-104)。所述SEI薄膜还充当仅有锂离子通过的离子通道,并且使锂离子溶剂化,以防止有机溶剂的共同嵌入(cointercalation),从而防止阳极结构破裂,所述共同嵌入是指有机溶剂使锂离子溶剂化并与锂离子一起进入碳阳极中。
然而,在初始充电过程中,当形成SEI薄膜时,由于碳酸酯-基有机溶剂的分解在电池内部产生气体,SEI薄膜的形成导致电池厚度增加(J.PowerSources,72(1998),66-70)。当锂电池充电后在高温下储存时,由于电化学能和热能随着时间增加,所以钝化层逐渐破裂,阳极表面暴露出来,产生的气体量增加。气体的产生导致电极板之间的附着力的局部变化,其导致内部电池的变形,因而产生过高的电压,从而降低电池的效率和稳定性。并且,因为溶剂分解,所以电解液的量减少,电池中的电解液出现损耗,不能传递足够的离子,从而降低电池的效率。
为了解决上述问题,US 5352548公开了一种抑制溶剂分解的方法,即向电解液中注入碳酸亚乙烯酯衍生物添加剂,及通过添加剂的还原/分解,在负极表面上形成薄膜。日本专利公开特许公报2002-313416也公开了包含三甲基甲硅烷基乙酸烷基酯的电解液。
然而,根据通过加入少量有机材料引起适当的薄膜形成在负极表面上的方法,在负极表面上所形成的SEI薄膜的特性取决于构成电解液的溶剂类型,或者取决于添加剂的电学和化学特性。因为通过上述添加剂形成的SEI薄膜是不稳定的,所以不能完全防止溶剂分解,导致电池的效率降低。
因此,仍然需要对能够通过形成更牢固的薄膜抑制与溶剂的反应并改善电池循环特性的添加剂开展大量的研究。
发明内容
本发明提供一种能够改善容量保持率,从而确保电池可靠性的有机电解液。
本发明还提供一种采用该有机电解液的锂电池。
根据本发明的一个方面,提供一种有机电解液,其包含:锂盐;含有高介电常数溶剂和低沸点溶剂的有机溶剂;及式1所示的化合物:
式中,R1和R2各自独立地为氢原子,卤原子,羟基,具有1~20个碳原子的取代或未取代的烷基,具有1~20个碳原子的取代或未取代的烷氧基,具有1~20个碳原子的取代或未取代的链烯基,具有6~30个碳原子的取代或未取代的芳基,具有6~30个碳原子的取代或未取代的芳氧基,具有2~30个碳原子的取代或未取代的杂芳基,或者具有2~30个碳原子的取代或未取代的杂芳氧基;
R3、R4、R5、R6、R7和R8各自独立地为氢原子,卤原子,羟基,具有1~20个碳原子的取代或未取代的烷基,具有1~20个碳原子的取代或未取代的烷氧基,具有1~20个碳原子的取代或未取代的链烯基,具有6~30个碳原子的取代或未取代的芳基,具有7~40个碳原子的取代或未取代的芳烷基,具有6~30个碳原子的取代或未取代的芳氧基,具有2~30个碳原子的取代或未取代的杂芳基,或者具有2~30个碳原子的取代或未取代的杂芳氧基;及
n为0~4的整数。
式1所示的化合物可以为式2所示的化合物:
式中,R1至R8如上面所定义。
式1所示的化合物可以为式3所示的化合物:
Figure A20061009366100081
式中,R3至R8如上面所定义。
式1所示的化合物可以为式4所示的化合物:
式1~4的化合物的量按有机溶剂的重量计可以为0.1~10%重量。
式1~4的化合物的量按有机溶剂的重量计还可以为3~5%重量。
锂盐的浓度可以为0.5~2.0M。
所述高介电常数溶剂可以包括碳酸亚乙酯,碳酸亚丙酯,碳酸亚丁酯,及γ-丁内酯中的至少一种溶剂。
所述低沸点溶剂可以包括碳酸二甲酯,碳酸乙甲酯,碳酸二乙酯,碳酸二丙酯,二甲氧基乙烷,二乙氧基乙烷,及脂肪酸酯衍生物中的至少一种溶剂。
根据本发明的另一个方面,提供一种锂电池,其包括:阴极;阳极;及上述有机电解液。
附图说明
通过参照附图详述其示例性实施方案,本发明的上述及其它特征和优点将变得更加显而易见,附图中:
图1是实施例6和7以及对比例5和6的锂电池的容量保持率相对于循环次数的曲线图。
具体实施方式
在下文中,将参照附图更全面地描述本发明,附图中图示了本发明的示例性实施方案。
根据本发明实施方案的有机电解液和采用该有机电解液的锂电池相对地抑制了极性溶剂的还原分解,改善了电池的容量保持性。因而,能够改善电池的充电/放电效率和使用寿命。
有机电解液包含锂盐,含有高介电常数溶剂和低沸点溶剂的混合有机溶剂,及式1所示的化合物:
Figure A20061009366100091
式中,R1和R2各自独立地为氢原子,卤原子,羟基,具有1~20个碳原子的取代或未取代的烷基,具有1~20个碳原子的取代或未取代的烷氧基,具有1~20个碳原子的取代或未取代的链烯基,具有6~30个碳原子的取代或未取代的芳基,具有6~30个碳原子的取代或未取代的芳氧基,具有2~30个碳原子的取代或未取代的杂芳基,或者具有2~30个碳原子的取代或未取代的杂芳氧基;R3、R4、R5、R6、R7和R8各自独立地为氢原子,卤原子,羟基,具有1~20个碳原子的取代或未取代的烷基,具有1~20个碳原子的取代或未取代的烷氧基,具有1~20个碳原子的取代或未取代的链烯基,具有6~30个碳原子的取代或未取代的芳基,具有7~40个碳原子的取代或未取代的芳烷基,具有6~30个碳原子的取代或未取代的芳氧基,具有2~30个碳原子的取代或未取代的杂芳基,或者具有2~30个碳原子的取代或未取代的杂芳氧基;及n为0~4的整数。
将更详细地描述电池中式1所示的化合物的反应,但是该描述仅是为了提供更充分的理解,而不是限制本发明的范围。
式1的化合物在直接接受来自阳极表面的电子后被还原或者与还原的极性溶剂反应,因而影响形成于阳极表面上的SEI薄膜的特性。式1的化合物可以比极性溶剂分子更容易接受来自电极的电子。该化合物可以在比极性溶剂低的电压下还原,因而所述化合物在溶剂被电极还原之前可以发生还原。
当式1的化合物被还原时,碳-氧键断开。烷基甲硅烷氧基变成自由基或阴离子,与锂离子结合并形成不溶性化合物。因而,该不溶性化合物在碳电极表面上沉淀。除了烷基甲硅烷氧基之外,酯基也可以形成羰基化合物,该羰基化合物能够溶解在溶剂中或者形成与溶剂反应的不溶性化合物。更具体地,不溶性化合物与碳阳极表面或者碳阳极内的各种官能团反应,由此形成共价键或吸附在电极的表面上。由于形成了与仅采用极性有机溶剂时的组成不同的SEI薄膜,该反应有助于在长期充电和放电之后仍保持牢固的SEI薄膜。所改变的牢固的SEI薄膜在锂离子的嵌入过程中有效地防止溶剂化锂离子的有机溶剂进入阳极,从而有效地防止有机溶剂与阳极接触。因此,能够提高电池充放电的可逆性和效率。
式1的化合物是包含两个或多个取代或未取代的甲硅烷基的酯衍生物。当n为0时,该化合物包括碳酸酯结构;当n为1时,该化合物包括乙酸酯结构。当n为2或更大时,可以设想,主链(central chain)延长,使该化合物的结构具有较高的柔性,从而使化合物紧密地和致密地粘附在阳极表面上。
式1所示的化合物可以为式2所示的化合物:
式中,R1至R8如上面所定义。
当式1的化合物中n为1时,得到式2的化合物。式2的化合物包括乙酸酯结构作为主要结构。式1所示的化合物可以为式3所示的化合物:
式中,R3至R8如上面所定义。
当乙酸酯的所有α位被氢取代时,得到式3的化合物。式1所示的化合物可以为下面式4所示的化合物。式4的化合物表示当一端被三甲基甲硅烷基取代时得到的化合物。
式1~4之一所示的化合物的量按有机溶剂的重量计可以为0.1~10%重量,例如为3~5%重量。当化合物的量超过10%重量时,充电和放电特性差,因为电池性能所依赖的有效材料的量不足。当化合物的量低于0.1%重量时,不能得到本发明所需要的效果。
对高介电常数溶剂没有具体的限制,只要其是本领域中常用的,例如其可以为环状碳酸酯,如碳酸亚乙酯、碳酸亚丙酯或碳酸亚丁酯中的一种,γ-丁内酯等。
此外,对低沸点溶剂也没有具体的限制,只要其是本领域中常用的,例如其可以为脂肪族碳酸酯,如碳酸二甲酯、碳酸乙甲酯、碳酸二乙酯或碳酸二丙酯,二甲氧基乙烷,二乙氧基乙烷,脂肪酸酯衍生物等中的一种。
高介电常数溶剂与低沸点溶剂的体积比可以为1∶1~1∶9。当该比例在该范围之外时,电池的放电容量和充电/放电循环寿命会降低。
锂盐为锂电池中常用的任何锂盐,可以包括LiClO4、LiCF3SO3、LiPF6、LiN(CF3SO2)、LiBF4、LiC(CF3SO2)3和LiN(C2F5SO2)2中的至少一种化合物。
有机电解液中的锂盐的浓度可以为0.5~2.0M。当锂盐的浓度低于0.5M时,电解液的电导率低,从而降低电解液的性能。当锂盐的浓度大于2.0M时,电解液的粘度高,因而锂离子的迁移率低。
现在将描述采用该有机电解液的锂电池及其制备方法。
根据本发明实施方案的锂电池包括阴极,阳极,及根据上述实施方案的有机电解液。
锂电池没有具体限制,可以为锂原电池或锂二次电池,如锂离子电池,锂离子聚合物电池,或者锂硫电池。
作为取代基的烷基可以包括具有1~20个碳原子的直链或支链基团和具有1~12个碳原子的直链或支链基团。例如,烷基可以为具有1~6个碳原子的低级烷基。该烷基可以为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、己基等中的一种。也可以采用具有1~3个碳原子的低级烷基。
作为取代基的烷氧基可以包括具有由1~20个碳原子构成的烷基部分和氧原子的直链或支链基团。例如,烷氧基可以为具有1~6个碳原子的低级烷氧基。该烷氧基可以为甲氧基、乙氧基、丙氧基、丁氧基和叔丁氧基中的一种。也可以采用具有1~3个碳原子的低级烷氧基。该烷氧基还可以被至少一种卤原子如氟、氯、溴等取代,得到卤代烷氧基。也可以采用具有1~3个碳原子的低级卤代烷氧基。该基团可以为氟甲氧基、氯甲氧基、三氟甲氧基、三氟乙氧基、氟乙氧基和氟丙氧基中的一种。
作为取代基的链烯基为具有2~30个碳原子和碳原子之间双键的直链或支链芳香烃基。该链烯基可以具有2~12个碳原子,例如具有2~6个碳原子。支链链烯基为加入至少一种低级烷基或低级链烯基的直链链烯基。所述链烯基可以是未取代的或者被至少一种基团取代,该基团包括卤素、羧基、羟基、甲酰、磺基、亚磺基、氨基甲酰、氨基和亚氨基,但不限于这些。这种链烯基可以为乙烯基、丙烯基、羧基乙烯基、羧基丙烯基、亚磺基乙烯基和磺基(sulfono)乙烯基中的一种。
作为取代基的芳基单独使用或者组合使用,其为具有6~20个碳原子以及一个或多个环的碳环芳香族体系。该环可以利用悬垂法(pendent method)连接或稠合到一起。术语“芳基”包括芳香族基团如苯基、萘基、四氢萘基、茚满和联苯基。例如,该芳基可以为苯基。芳基可以具有1~3个取代基如羟基、卤素、卤代烷基、硝基、氰基、烷氧基和低级烷基氨基。
芳烷基为其中芳基连接烷基的官能团。
作为取代基的芳氧基可以为芳基-O-。芳氧基中的术语芳基的定义如上所述。
作为取代基的杂芳基为一价单环或双环芳香族基团,其包括1、2或3个选自N、O或S的杂原子,并包括由6~20个碳原子构成的环。该杂芳基可以为一价单环或双环芳香族基团,其中杂原子中的至少一个被氧化或季化(quatemarized),形成例如N-氧化物或季盐。所述杂芳基的实例包括噻吩基,苯并噻吩基,吡啶基,吡嗪基,嘧啶基,哒嗪基,喹啉基,喹喔啉基,咪唑基,呋喃基,苯并呋喃基,噻唑基,异唑基,苯并异唑基,苯并咪唑基,三唑基,吡唑基,吡咯基(pyrolyl),吲哚基,2-吡啶酮基(pyridonyl),4-吡啶酮基,N-烷基-2-吡啶酮基,吡嗪酮基(pyrazinonyl),哒嗪酮基(pyridazynonyl),嘧啶酮基(pyrimidinonyl),唑酮基(oxazolonyl),其相应的N-氧化物(如吡啶基N-氧化物、喹啉基N-氧化物),及其季盐,但不限于这些。
作为取代基的杂芳氧基可以为杂芳基-O-,杂芳氧基的杂芳基的定义如上所述。
本发明实施方案的锂电池可以制备如下。
首先,混合阴极活性材料、导电剂、粘合剂和溶剂,制备阴极活性材料组合物。将该阴极活性材料组合物直接涂布在Al集电体上并干燥,制备阴极板。接着,将阴极活性材料组合物浇铸在单独的基板上,并将由此得到的薄膜层压在Al集电体上,制备阴极板。
阴极活性材料为现有技术中常用的任何含锂的金属氧化物,其实例包括LiCoO2、LiMnxO2x、LiNix-1MnxO2x(x=1、2)、Ni1-x-yCoxMnyO2(0≤x≤0.5,0≤y≤0.5)等。
使用炭黑作为导电剂。粘合剂可以为偏二氟乙烯/六氟丙烯共聚物,聚偏二氟乙烯,聚丙烯腈,聚甲基丙烯酸甲酯,聚四氟乙烯,其混合物,或者苯乙烯丁二烯橡胶-基聚合物。溶剂可以为N-甲基吡咯烷酮,丙酮,水等中的一种。阴极活性材料、导电剂、粘合剂和溶剂的量为锂电池中常用的量。
类似地,混合阳极活性材料、导电剂、粘合剂和溶剂,制备阳极活性材料组合物。将该阳极活性材料组合物直接涂布在Cu集电体上,或者浇铸在单独的基板上并将由此得到的阳极活性材料薄膜层压在Cu集电体上,得到阳极板。阳极活性材料、导电剂、粘合剂和溶剂的量为锂电池中常用的量。
使用硅金属、硅薄膜、锂金属、锂合金、碳质材料或石墨作为阳极活性材料。阳极活性材料组合物中的导电剂、粘合剂和溶剂与阴极活性材料组合物中的相同。如果需要,可以向阴极活性材料组合物和阳极活性材料组合物中加入增塑剂,以在电极板中产生孔隙。
隔板可以由锂电池中常用的任何材料构成。可以使用具有低的抗电解液的离子移动性和优异的吸收电解液的能力的材料。例如,该材料可以为选自玻璃纤维,聚酯,Teflon,聚乙烯,聚丙烯,聚四氟乙烯(PTFE)及其组合中的无纺织物或织物。更具体地,锂离子电池利用可卷绕的隔板,该隔板由聚乙烯,聚丙烯等中的一种构成,锂离子聚合物电池利用具有优异的浸渍有机电解液的能力的隔板。该隔板可以利用下列方法制备。
混合聚合物树脂、填料和溶剂,制备隔板组合物。将隔板组合物直接涂布在电极上并干燥,形成隔板薄膜。作为选择,将隔板组合物浇铸在基板上并干燥,然后将形成于基板上的隔板薄膜剥离并层压在电极上。
所述聚合物树脂没有具体限制并且可以为用于电极板的常规粘合剂的任何材料。聚合物树脂的实例包括偏二氟乙烯/六氟丙烯共聚物,聚偏二氟乙烯,聚丙烯腈,聚甲基丙烯酸甲酯及其混合物。具体地,可以使用包含8~25%重量的六氟丙烯的偏二氟乙烯/六氟丙烯共聚物。
将隔板插入阴极板和阳极板之间,形成电池组件。将该电池组件卷绕或折叠并放入圆柱形或长方形电池箱中。接着,将根据本发明实施方案的有机电解液注入到电池箱中,制得锂离子电池。
作为选择,电池组件以双池(bicell)的形状制备并将根据本发明实施方案的有机电解液浸渍其中。接着,将所得到的产物放入盒中并密封,制得锂离子聚合物电池。
现在将参照下面的实施例,更详细地描述本发明。这些实施例仅是为了说明性目的,而不是限制本发明的范围。
实施例1:电解液的制备
向有机溶剂的混合物中加入3%重量的式4所示的三甲基甲硅烷氧基乙酸三甲基甲硅烷基酯添加剂,所述有机溶剂的混合物包含30%体积的碳酸亚乙酯和70%体积的碳酸二乙酯,并使用1.3M LiPF6作为锂盐,制备有机电解液。
实施例2:电解液的制备
按照与实施例1相同的方法制备有机电解液,所不同的是,使用5%重量的式4所示的三甲基甲硅烷氧基乙酸三甲基甲硅烷基酯。
实施例3:电解液的制备
按照与实施例1相同的方法制备有机电解液,所不同的是,使用1%重量的式4所示的三甲基甲硅烷氧基乙酸三甲基甲硅烷基酯。
实施例4:电解液的制备
按照与实施例1相同的方法制备有机电解液,所不同的是,使用0.1%重量的式4所示的三甲基甲硅烷氧基乙酸三甲基甲硅烷基酯。
实施例5:电解液的制备
按照与实施例1相同的方法制备有机电解液,所不同的是,使用10%重量的式4所示的三甲基甲硅烷氧基乙酸三甲基甲硅烷基酯。
对比例1:电解液的制备
使用包含30%体积的碳酸亚乙酯和70%体积的碳酸二乙酯的有机溶剂混合物和作为锂盐的1.3M LiPF6,制备有机电解液,而不加入添加剂。
对比例2:电解液的制备
向包含30%体积的碳酸亚乙酯和70%体积的碳酸二乙酯的有机溶剂混合物中加入3%重量的三甲基甲硅烷基乙酸酯作为添加剂,并使用1.3MLiPF6作为锂盐,制备有机电解液。
对比例3:电解液的制备
按照与实施例1相同的方法制备有机电解液,所不同的是,使用20%重量的式4所示的三甲基甲硅烷氧基乙酸三甲基甲硅烷基酯。
对比例4:电解液的制备
按照与实施例1相同的方法制备有机电解液,所不同的是,使用0.01%重量的式4所示的三甲基甲硅烷氧基乙酸三甲基甲硅烷基酯。
实施例6~10:锂电池的制备
使用硅薄膜作为阳极。利用射频(RF)溅射在20μm厚的辊压的Cu箔表面上形成无定形硅薄膜。该薄膜电极的厚度为0.15μm。
使用锂形成反电极。在20μm厚的Cu箔上涂布100μm厚的锂并辊压,制得120μm厚的锂电极。
利用1×2cm2阳极、隔板、作为反电极的锂电极和分别在实施例1~5中制得的有机电解液,制备盒式电池(Pouch cells)。
对比例5~8:锂电池的制备
按照与实施例6相同的方法制备盒式电池,所不同的是,使用在对比例1~4制备的有机电解液。
实验例1:电池的循环特性
以每1g活性材料50mA的恒定电流对实施例6~10和对比例5~8中制备的盒式电池的锂电极进行充电,直到电池达到0.01V。接着,在0.01V电压下,以0.01V的恒定电压对它们进行充电,直到对流降至每1g活性材料5mA为止。在第1次至第3次循环中,充电和放电以0.2C的速率进行,容易地形成SEI薄膜。从第4循环开始,充电和放电以0.5C的速率进行。容量保持率是指给定循环的容量与第1次循环的容量的比率。结果示于表1中,实施例6和7及对比例5和6的结果示于图1中。
表1
第1次循环的放电容量 第100次循环的放电容量 第100次循环的容量保持率(%)
实施例6     2999     1909     63.6
实施例7     2917     1876     64.1
实施例8     2950     1850     62.7
实施例9     2932     1510     51.5
实施例10     2870     1650     57.5
对比例5     2932     1416     48.3
对比例6     2732     1574     57.6
对比例7     2532     1440     56.8
对比例8     2910     1400     48.1
如表1所示,在使用常规添加剂的对比例5~8中,100次循环后的容量保持率为48~57%。然而,根据本发明实施方案的实施例6~10的容量保持率为51~64%,表明充电和放电特性得到改善。实施例9和10的容量保持较低,但是仍然大于其中添加剂的浓度在上述根据本发明实施方案的范围之外的对比例7和8。可以认为,容量保持率之间的差异取决于充电和放电过程中的副反应受初始充电和放电时形成的SEI薄膜结构抑制的程度。当使用本发明的添加剂时,SEI薄膜牢固且致密,抑制了薄膜中的裂纹,即使在长期使用之后,也能有效地防止阳极和溶剂之间的反应,因而充电和放电的可逆性更好,从而提高了容量保持率。
本发明的有机电解液和采用它的锂电池相对地抑制了极性溶剂的还原分解并降低第1次循环中的不可逆容量。因而,能够改善电池的充电/放电效率、使用寿命和可靠性。
尽管已经参照其示例性实施方案具体地说明和描述了本发明,本领域的普通技术人员将会理解其中可以进行各种形式和细节上的变化,而不脱离由所附的权利要求书限定的本发明的构思和范围。

Claims (10)

1.一种有机电解液,其包含:
锂盐;
有机溶剂,其含有高介电常数溶剂和低沸点溶剂;及
式1所示的化合物:
Figure A2006100936610002C1
式中,R1和R2各自独立地选自氢原子,卤原子,羟基,具有1~20个碳原子的取代或未取代的烷基,具有1~20个碳原子的取代或未取代的烷氧基,具有1~20个碳原子的取代或未取代的链烯基,具有6~30个碳原子的取代或未取代的芳基,具有6~30个碳原子的取代或未取代的芳氧基,具有2~30个碳原子的取代或未取代的杂芳基,及具有2~30个碳原子的取代或未取代的杂芳氧基;
R3、R4、R5、R6、R7和R8各自独立地选自氢原子,卤原子,羟基,具有1~20个碳原子的取代或未取代的烷基,具有1~20个碳原子的取代或未取代的烷氧基,具有1~20个碳原子的取代或未取代的链烯基,具有6~30个碳原子的取代或未取代的芳基,具有7~40个碳原子的取代或未取代的芳烷基,具有6~30个碳原子的取代或未取代的芳氧基,具有2~30个碳原子的取代或未取代的杂芳基,及具有2~30个碳原子的取代或未取代的杂芳氧基;及
n为0~4的整数。
2.根据权利要求1的有机电解液,其中式1所示的化合物为下面式2所示的化合物:
式中,R1至R8如权利要求1中所定义。
3.根据权利要求1的有机电解液,其中式1所示的化合物为下面式3所示的化合物:
式中,R3至R8如权利要求1中所定义。
4.根据权利要求1的有机电解液,其中式1所示的化合物为下面式4所示的化合物:
Figure A2006100936610003C3
5.根据权利要求1的有机电解液,其中式1所示的化合物的量按有机溶剂的重量计为0.1~10%重量。
6.根据权利要求1的有机电解液,其中式1所示的化合物的量按有机溶剂的重量计为3~5%重量。
7.根据权利要求1的有机电解液,其中所述锂盐的浓度为0.5~2.0M。
8.根据权利要求1的有机电解液,其中所述高介电常数溶剂包括至少一种选自碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯和γ-丁内酯中的溶剂。
9.根据权利要求1的有机电解液,其中所述低沸点溶剂包括至少一种选自碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸二丙酯、二甲氧基乙烷、二乙氧基乙烷和脂肪酸酯衍生物中的溶剂。
10.一种锂电池,包括:
阴极;
阳极;及
权利要求1~9中任一项的有机电解液。
CNB2006100936619A 2005-06-14 2006-06-14 有机电解液和采用它的锂电池 Active CN100438201C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR51121/05 2005-06-14
KR1020050051121A KR100803190B1 (ko) 2005-06-14 2005-06-14 유기 전해액 및 이를 채용한 리튬 전지

Publications (2)

Publication Number Publication Date
CN1881671A true CN1881671A (zh) 2006-12-20
CN100438201C CN100438201C (zh) 2008-11-26

Family

ID=37519745

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100936619A Active CN100438201C (zh) 2005-06-14 2006-06-14 有机电解液和采用它的锂电池

Country Status (4)

Country Link
US (1) US7781105B2 (zh)
JP (1) JP4527690B2 (zh)
KR (1) KR100803190B1 (zh)
CN (1) CN100438201C (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105144460A (zh) * 2013-12-06 2015-12-09 Sk新技术株式会社 锂二次电池用电解液及包括该电解液的锂二次电池
CN106252727A (zh) * 2016-11-03 2016-12-21 深圳市沃特玛电池有限公司 一种锂离子电池电解液、锂离子电池
CN108140887A (zh) * 2015-09-17 2018-06-08 株式会社艾迪科 非水电解液及非水电解液二次电池
CN108172901A (zh) * 2017-12-21 2018-06-15 江苏理工学院 一种高压锂离子电池电解液的添加剂
CN113140794A (zh) * 2021-03-30 2021-07-20 山东海容电源材料股份有限公司 一种电解液成膜添加剂及含该添加剂的锂离子电池电解液

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100789718B1 (ko) * 2006-07-12 2008-01-02 테크노세미켐 주식회사 2차전지용 비수전해액
KR100804696B1 (ko) * 2006-11-20 2008-02-18 삼성에스디아이 주식회사 리튬 이차 전지용 전해질, 및 이를 포함하는 리튬 이차전지
EP2908376A1 (en) 2009-09-15 2015-08-19 Ube Industries, Ltd. Nonaqueous electrolyte solution and electrochemical element using same
WO2015040709A1 (ja) * 2013-09-18 2015-03-26 株式会社 東芝 非水電解質電池及び電池パック
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR102368303B1 (ko) 2019-01-03 2022-02-28 삼성에스디아이 주식회사 리튬 이차전지용 전해액 첨가제 및 이를 포함하는 리튬 이차전지
CN115332637B (zh) * 2022-09-06 2024-03-26 香河昆仑新能源材料股份有限公司 一种高锂盐浓度电解液及其在锂离子电池中的使用方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059832B2 (ja) 1992-07-27 2000-07-04 三洋電機株式会社 リチウム二次電池
US5714281A (en) * 1994-07-29 1998-02-03 Sony Corporation Non-aqueous liquid electrolyte secondary cell
US6770572B1 (en) * 1999-01-26 2004-08-03 Alliedsignal Inc. Use of multifunctional si-based oligomer/polymer for the surface modification of nanoporous silica films
CN1249840C (zh) * 2001-01-24 2006-04-05 宇部兴产株式会社 非水电解液和锂二次电池
JP2002260729A (ja) 2001-03-02 2002-09-13 Tokuyama Corp 非水電解液用電解質
JP2002313416A (ja) 2001-04-13 2002-10-25 Japan Storage Battery Co Ltd 非水電解質二次電池
JP4448275B2 (ja) 2001-05-11 2010-04-07 三星エスディアイ株式会社 リチウム二次電池用電解液及びこれを含むリチウム二次電池
JP2003257480A (ja) 2002-02-27 2003-09-12 Fuji Photo Film Co Ltd 電解質組成物及び非水二次電池
JP4079681B2 (ja) 2002-04-26 2008-04-23 株式会社デンソー 非水電解液および該電解液を用いた非水電解液二次電池
CN1195338C (zh) * 2002-12-05 2005-03-30 复旦大学 锂电池电解液及其制备方法
KR100553776B1 (ko) * 2003-09-05 2006-02-20 삼성에스디아이 주식회사 유기 전해액 및 이를 포함한 리튬 설퍼 전지
CN1301565C (zh) * 2003-09-28 2007-02-21 张家港市国泰华荣化工新材料有限公司 锂离子电池凝胶电解液及该电解液的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105144460A (zh) * 2013-12-06 2015-12-09 Sk新技术株式会社 锂二次电池用电解液及包括该电解液的锂二次电池
CN105144460B (zh) * 2013-12-06 2017-09-29 Sk新技术株式会社 锂二次电池用电解液及包括该电解液的锂二次电池
CN108140887A (zh) * 2015-09-17 2018-06-08 株式会社艾迪科 非水电解液及非水电解液二次电池
CN108140887B (zh) * 2015-09-17 2021-03-12 株式会社艾迪科 非水电解液及非水电解液二次电池
CN106252727A (zh) * 2016-11-03 2016-12-21 深圳市沃特玛电池有限公司 一种锂离子电池电解液、锂离子电池
CN108172901A (zh) * 2017-12-21 2018-06-15 江苏理工学院 一种高压锂离子电池电解液的添加剂
CN113140794A (zh) * 2021-03-30 2021-07-20 山东海容电源材料股份有限公司 一种电解液成膜添加剂及含该添加剂的锂离子电池电解液

Also Published As

Publication number Publication date
JP2006351535A (ja) 2006-12-28
KR20060130441A (ko) 2006-12-19
US20060281010A1 (en) 2006-12-14
KR100803190B1 (ko) 2008-02-14
JP4527690B2 (ja) 2010-08-18
US7781105B2 (en) 2010-08-24
CN100438201C (zh) 2008-11-26

Similar Documents

Publication Publication Date Title
CN1881671A (zh) 有机电解液和采用它的锂电池
CN1885611A (zh) 有机电解液和采用它的锂电池
CN1278444C (zh) 锂二次电池的无水电解液及包含它的锂二次电池的制备方法
CN1264243C (zh) 无水电解液及采用它的锂电池
CN101803099B (zh) 非水性电解质锂二次电池
CN1180505C (zh) 锂蓄电池
CN1286907C (zh) 聚合物溶胶电解质和使用它的锂电池
CN1832243A (zh) 有机电解质溶液和使用它的锂电池
CN1260849C (zh) 有机电解液及使用它的锂电池
CN1921210A (zh) 有机电解液及采用它的锂电池
CN1241284C (zh) 有机电解液及使用它的锂电池
CN1181592C (zh) 非水系电解液蓄电池
CN1716681A (zh) 锂二次电池
CN1146065C (zh) 用于电化学体系的非水溶液电解质以及含有该电解质的锂蓄电池
CN1393954A (zh) 锂聚合物电池
CN1961451A (zh) 锂二次电池用添加剂
CN101079503A (zh) 有机电解液和利用它的锂电池
CN1961450A (zh) 充电截止电压超过4.35v的锂二次电池
CN1495961A (zh) 一种用于锂电池的电解液及包含它的锂电池
CN101057355A (zh) 非水电解质和包括该非水电解质的非水电解质电池
CN1767255A (zh) 锂二次电池
CN1674348A (zh) 有机电解液和使用该电解液的锂电池
CN1881670A (zh) 有机电解液和采用它的锂电池
CN1797836A (zh) 有机电解液及使用它的锂电池
CN1320688C (zh) 非水电解质二次电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant