CN1759201A - 制造包含金属载体和阳极功能层的层系的方法 - Google Patents

制造包含金属载体和阳极功能层的层系的方法 Download PDF

Info

Publication number
CN1759201A
CN1759201A CNA2004800062267A CN200480006226A CN1759201A CN 1759201 A CN1759201 A CN 1759201A CN A2004800062267 A CNA2004800062267 A CN A2004800062267A CN 200480006226 A CN200480006226 A CN 200480006226A CN 1759201 A CN1759201 A CN 1759201A
Authority
CN
China
Prior art keywords
layer
aforementioned
described method
deposit
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800062267A
Other languages
English (en)
Other versions
CN1759201B (zh
Inventor
R·瓦森
D·哈蒂拉马尼
H·P·布赫克雷默
F·蒂茨
J·-E·德林
R·西格尔特
F·特雷格尔
D·施特弗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of CN1759201A publication Critical patent/CN1759201A/zh
Application granted granted Critical
Publication of CN1759201B publication Critical patent/CN1759201B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • C23C4/185Separation of the coating from the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Fuel Cell (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Inert Electrodes (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electroluminescent Light Sources (AREA)
  • Catalysts (AREA)

Abstract

本发明的目标是经热喷镀过程(例如大气等离子体喷镀、真空等离子体喷镀、高速火焰喷镀)制造完整的高温燃料电池。在此,通过同样借助热喷镀方法在基底上制造载体衬底来简化制造方法并使其更廉价。该基底或其上淀积的中间层可以有利地被溶解或被分解掉,以致具有其上淀积的层的载体衬底以极其简单的方式可与然后不再必需的基底分离。上述方法有利地使得只借助热喷镀方法制造高温燃料电池的所有层成为可能。

Description

制造包含金属载体和阳极功能层 的层系的方法
本发明涉及一种用于制造层系、尤其是用于制造包含至少一个金属载体和阳极功能层的层系的方法。这种层系总是在高温燃料电池中被采用。
现有技术
为了制造针对高温燃料电池的单个成分,各种不同的方法已证实是合适的。其中,大气等离子体喷镀、真空等离子体喷镀和高速火焰喷镀属于这些方法。等离子体喷镀是现代技术,以便尤其是为构件的表面配备具有特殊特性的层。比较多的材料可被用作层的载体(衬底)。在制造层的情况下,粉末状粒子在热的等离子体束内熔化、加速并由此被喷镀到衬底表面上。该粒子在那里固化,并且保持粘着。通过粒子的重复的淀积也可以制成大厚度的层。
在为了制造单个燃料电池成分应用热喷镀过程时的问题是:必须将衬底形式的载体用于涂层。为此,目前通常应用由金属纤维或金属毡构成的骨架或多孔粉末冶金制造的平板。随后在该结构(载体)上淀积第一功能层、例如阳极。
在这里针对该衬底的高成本和高花费的制造技术应被列为缺点。
经粉末工艺的成型方法由复合材料、如Ni/YSZ(氧化钇稳定的氧化锆)或NiO/YSZ制造的衬底具有的缺点为:该衬底在机械上不再是稳定的。在经热喷射法制造针对高温燃料电池的这种层系时,经常产生大的温度波动,这种温度波动可在衬底内产生不利的巨大的热应力并导致该衬底断裂。
在至今为止常用的载体衬底中出现的另外的问题通过通常利用等离子体喷镀调节的相当粗的孔隙率引起。这不利地导致燃料电池不充分的电化学特性数据。
任务和解决方法
本发明的任务是提出一种合适的载体衬底、尤其是用于制造燃料电池成分的载体衬底。本发明的另一任务是使得一种廉价的和简单的用于制造这种载体衬底的方法可供使用。
本发明的任务通过带有所有根据主权利要求的特征的方法来解决。本方法的有利的改进方案在回引该主权利要求的从属权利要求内找到。
本发明的主题
本发明所基于的思想基于以下假设:不仅高温燃料电池的单个功能层可有利地借助等离子体喷镀来制造,而且为此必需的载体衬底也可借助等离子体喷镀来制造。
在这里描述的本发明的方法中,真正的衬底(以下称为载体结构)有利地直接经热喷镀过程来制造。为了制造这个载体结构,合适的金属粉末经热喷镀方法被喷镀到基体上。该基体优选地配备有可容易去除的涂层(分离层)。这种可分解的分离层能以简单的方式在涂层过程之后脱离载体衬底。该分离层可以例如被安排为通过浸渍过程或喷射过程淀积的塑料覆层。在这种情况下随后将可能实现热去除。但是分离层也可以是例如通过干燥溶液或者通过热喷镀方法沉积的盐层。在这种情况下,分离层将可能通过合适的溶剂(例如,水)来被去除。可替换地,载体结构也可以通过机械加工(锯或刨)来与衬底分离。
载体结构本身经过金属粉末的喷镀来制造,该金属粉末尤其是针对制造燃料电池成分而具有以下特性。该金属粉末应当有利地具有与其余的燃料电池成分匹配的膨胀系数、也就是约10-13*10-6/K。此外,在表面上应当在高温氧化的条件下构造能导电的氧化皮。针对这种应用优选地构造氧化铬或氧化镁保护层的铁素体钢。可替换地,例如在CrFeY基底上也应用铬基合金。载体结构应当具有高的、开口孔隙率(尤其是大于15%),以便气体传输不再受到大的阻力。相应的孔隙率可以容易地经热涂层来调节。在此,优选地应用粗粉末(粒度>50μm),该粉末以前利用冷喷镀条件、也就是只部分熔化金属粒子来沉积。附加的提高孔隙率在热喷镀期间通过引入有机成分(例如聚酯)或碳或其它合适的位置夹具是可能的。这种有机成分或位置夹具事后通过热处理很容易去除。针对载体结构的有利的层厚尤其是位于0.3和3mm之间。
在基底上淀积载体结构之后,借助于热喷镀方法给载体结构涂层有例如由带有镍或氧化镍附加物的完全稳定的氧化锆(YSZ)构成的阳极功能层。YSZ和镍或氧化镍的重量比应当有利地处于约50%/50%。在此,特别细的孔隙率可以通过应用悬浮液作为热喷镀的起动材料来实现(热悬浮液喷镀)。以这种方式,要淀积的材料(例如8YSZ/NiO)作为相当小(<1μm)的粉末被输送给喷镀过程。优选的层厚处于5和50μm之间。
此后,阳极功能层可选地经热喷镀方法配备有浓电解质。针对合适的电解质的优选的材料在这里也是完全稳定的氧化锆(例如YSZ)。电解质的密度通过合适的喷镀参数来调节。在这种情况下,高衬底温度(T>200℃)、尽可能热的喷镀参数、也就是尽可能完全熔化粒子以及每个结的高的层厚(>5μm)是重要的,因为这些参数对避免微裂缝有利,并因此实现密的层沉积。但是,如此来选择该参数,以致阻止分段裂缝、如通常在过高的层厚的情况下出现的分段裂缝那样。这种金属的载体衬底相对传统的NiO/YSZ基上的阳极衬底并通常也相对陶瓷材料提供决定性的优点,即该金属的载体衬底可以承受强热负载并因而必要的热喷镀条件是可调节的。如果电解质的孔隙率还应被进一步降低,则层的热后处理是可能的。可替换地,在这里也可以采用热悬浮液喷镀,因为所应用的细粒子在合适的过程引导时可实现密的层沉积。层厚位于5和100μm之间的范围中。
作为其他的、可选的层,经热喷镀沉积阴极功能层、例如由钙钛矿粉(例如La0.65Sr0.3MnO3或La/Sr/Fe/Co基钙钛矿)与YSZ构成的混合物。在这种情况下,在5和50μm之间的厚度称作典型的层厚。这里也有目的地经热悬浮液喷镀调节细的多孔结构。
由钙钛矿(例如La0.65Sr0.3MnO3)构成的阴极也可选地通过热喷镀方法被淀积为针对高温燃料电池的最后一层。这里与在载体衬底制造时相类似地,最初粗粉末(>50μm)在冷的喷镀参数的情况下被加工。这里为了提高孔隙率也可能应用有机成分。
具体说明部分
随后,本发明的主题根据三幅附图和实施例详细加以说明,而本发明的主题并不由此来限制。
其中:
图1示出通过等离子体喷镀制造的、由具有约22%的孔隙率的铁素体钢构成的载体层的图像。
图2示出通过大气等离子体喷镀在附加聚酯的情况下制造的、由具有约33%的孔隙率的氧化锆构成的载体层的图像。
图3示出通过悬浮液等离子体喷镀制造的、由完全稳定的氧化锆(YSZ)构成的细的多孔层的图像。
实施例:
经利用F4喷灯的大气等离子体喷镀,在利用聚合物涂层的、由ST37构成的钢衬底上沉积Cr5FeY合金。聚酯被用作在喷镀时的有机附加成分。与聚酯引入结合应用冷的过程参数(功率约40kW,喷镀间距120mm),在燃烧聚酯之后,孔隙率的调节允许显著超过30%。层厚约为1mm。
经大气悬浮液等离子体喷镀,由55%的NiO/45%的YSZ构成的细多孔层(孔隙率>25%)在该层上被沉积。悬浮液的固体含量处于25个重量百分比。在F4喷灯的功率为47kW时,喷镀间距为70mm。
电解质沉积借助大气等离子体喷镀在应用细粒的、熔化的破碎的YSZ粉末的情况下实现。在此,衬底温度约为350℃。喷灯功率为50kW,喷镀间距为80mm。所调节的层厚为50μm。
此后,通过大气悬浮液等离子体喷镀将阴极功能层沉积为细多孔层(孔隙率>25%)。所应用的悬浮液由固体含量约为25个重量百分比的La0.65Sr0.3MnO3/YSZ构成。层厚为30μm。在F4喷灯的功率为47kW时,喷镀间距为70mm。
最后一层再次利用为聚酯粉末的附加物经过大气等离子体喷镀来制造。冷喷镀参数与要燃烧的聚酯一起导致>30%的孔隙率。聚酯粉末经独立的喷射器被导入等离子体火焰的相对冷的区域,以便避免在等离子体中燃烧。层厚为50μm。
作为最后的处理步骤,为了与基底分离和为了去除聚酯将层系在空气中保持在600℃,可替换地,也可以在燃料电池起动时实现燃烧。

Claims (28)

1、用于制造包含至少一个金属载体和阳极功能层的层系的方法,其包含以下步骤
-借助热喷镀方法,金属粉末被喷镀到基底上作为载体层,
-借助热喷镀方法,另一成分被淀积到载体层上作为阳极功能层,
-层系从基底脱离。
2、根据权利要求1所述的方法,其中,在基底上,在淀积载体层之前淀积中间层,并且通过去除或溶解中间层实现从基底脱离层系。
3、根据权利要求1至2所述的方法,其中,选择在温度高于300℃时热分解用于脱离层系的塑料层作为基底或中间层。
4、根据权利要求2所述的方法,其中,选择通过溶剂溶解用于溶解层系的盐层作为基底或作为中间层。
5、根据权利要求1所述的方法,其中,层系的脱离通过机械加工、例如锯或刨来实现。
6、根据权利要求1至5所述的方法,其中,金属粉末被用于热膨胀系数在10*10-6/K和13*10-6/K之间的载体层。
7、根据前述权利要求1至6之一所述的方法,其中,为了构造载体层采用包含铁素体钢或铬基合金的金属粉末。
8、根据前述权利要求1至7之一所述的方法,其中,构造孔隙率大于15%、尤其是大于20%的载体层。
9、根据前述权利要求1至8之一所述的方法,其中,除了金属粉末之外,至少另一有机成分被用于构造载体层。
10、根据前述权利要求9所述的方法,其中,除了金属粉末之外,采用聚酯或碳作为其它的有机成分。
11、根据前述权利要求9至10之一所述的方法,在构造载体层之后,至少最大范围地热去除其它有机成分。
12、根据前述权利要求1至11之一所述的方法,其中,采用完全稳定的氧化锆和镍或氧化镍作为用于构造第二层的其它成分。
13、根据权利要求12所述的方法,其中,采用粒度小于5μm、尤其是小于1μm的完全稳定的氧化锆和镍或氧化镍。
14、根据前述权利要求1至13之一所述的方法,其中,第二层借助于热悬浮液喷镀方法来淀积。
15、根据前述权利要求1至14所述的方法,其中,借助于热喷镀方法在阳极功能层上淀积电解质层作为第三层。
16、根据权利要求15所述的方法,其中,针对第三层采用完全稳定的氧化锆。
17、根据前述权利要求15至16之一所述的方法,其中,在淀积第三层期间,调节温度在180℃以上、尤其是在200℃以上。
18、根据前述权利要求15至17之一所述的方法,其中,淀积层厚为至少5μm、尤其是至少20μm的第三层。
19、根据前述权利要求15至18之一所述的方法,其中,借助于热悬浮液喷镀方法来淀积第三层。
20、根据前述权利要求15至19所述的方法,其中,借助于热喷镀方法在电介质层上淀积阴极功能层作为第四层。
21、根据权利要求20的方法,其中,针对第四层采用由钙钛矿和完全稳定的氧化锆构成的混合物。
22、根据前述权利要求20至21之一所述的方法,其中,淀积层厚为至少5μm、尤其是至少20μm的第四层。
23、根据前述权利要求20至22之一所述的方法,其中,借助于热悬浮液喷镀方法来淀积第四层。
24、根据前述权利要求20至23之一所述的方法,其中,借助于热喷镀方法在阴极功能层上淀积第五层。
25、根据权利要求24所述的方法,其中,针对第五层采用至少一个钙钛矿。
26、根据前述权利要求24至25之一所述的方法,其中,针对第五层采用粒度大于50μm的粉末。
27、根据前述权利要求24至26之一所述的方法,其中,除了钙钛矿粉末之外,为了构造第五层采用至少另一有机成分。
28、根据权利要求1至28之一所述的方法,其用于制造高温燃料电池,该高温燃料电池包含阳极功能层、布置在阳极功能层上的电解质层、布置在电解质层上的阴极功能层以及布置在阴极功能层上的另一层。
CN2004800062267A 2003-03-07 2004-02-06 制造包含金属载体和阳极功能层的层系的方法 Expired - Fee Related CN1759201B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10309968A DE10309968A1 (de) 2003-03-07 2003-03-07 Verfahren zur Herstellung eines Schichtsystems umfassend einen metallischen Träger und eine Anodenfunktionsschicht
DE10309968.9 2003-03-07
PCT/DE2004/000198 WO2004079033A1 (de) 2003-03-07 2004-02-06 Verfahren zur herstellung eines schichtsystems umfassend einen metallischen träger und eine anodenfunktionsshicht

Publications (2)

Publication Number Publication Date
CN1759201A true CN1759201A (zh) 2006-04-12
CN1759201B CN1759201B (zh) 2010-04-14

Family

ID=32891934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800062267A Expired - Fee Related CN1759201B (zh) 2003-03-07 2004-02-06 制造包含金属载体和阳极功能层的层系的方法

Country Status (10)

Country Link
US (1) US7582374B2 (zh)
EP (1) EP1601810B1 (zh)
JP (1) JP4988334B2 (zh)
CN (1) CN1759201B (zh)
AT (1) ATE503854T1 (zh)
AU (1) AU2004217835B2 (zh)
CA (1) CA2518170C (zh)
DE (2) DE10309968A1 (zh)
DK (1) DK1601810T3 (zh)
WO (1) WO2004079033A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020453A (zh) * 2019-12-12 2020-04-17 电子科技大学 一种获得独立的大气等离子喷涂涂层的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499895B2 (en) * 2003-06-16 2016-11-22 Surface Treatment Technologies, Inc. Reactive materials and thermal spray methods of making same
CA2569866C (en) 2004-06-10 2011-05-17 Risoe National Laboratory Solid oxide fuel cell
DE102004044597B3 (de) * 2004-09-13 2006-02-02 Forschungszentrum Jülich GmbH Verfahren zur Herstellung dünner, dichter Keramikschichten
US7601183B2 (en) 2005-02-02 2009-10-13 Technical University Of Denmark Method for producing a reversible solid oxide fuel cell
DK1760817T3 (da) 2005-08-31 2013-10-14 Univ Denmark Tech Dtu Reversibel fastoxidbrændselscellestak og fremgangsmåde til fremstilling af samme
EP2325931A1 (de) * 2009-11-18 2011-05-25 Plansee Se Anordnung für eine Brennstoffzelle sowie Verfahren zu deren Herstellungen
WO2015054096A1 (en) * 2013-10-08 2015-04-16 Phillips 66 Company Formation of solid oxide fuel cells by spraying
DE102016122888A1 (de) * 2016-11-28 2018-05-30 Technische Universität Clausthal Festoxidbrennstoffzelle, Brennstoffzellenstapel und Verfahren zur Herstellung einer Festoxidbrennstoffzelle

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2809709C3 (de) * 1978-03-07 1982-03-25 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Verfahren zur Herstellung eines mindestens eine Keramikschicht aufweisenden Schutzüberzugs für thermisch hochbelastete Bauteile, insbesondere Waffenkomponenten
PL114601B1 (en) * 1978-03-14 1981-02-28 Inst Szkla I Ceramiki Mould for manufacturing ceramic articles
US4490444A (en) * 1980-12-22 1984-12-25 Westinghouse Electric Corp. High temperature solid electrolyte fuel cell configurations and interconnections
US4759957A (en) * 1983-12-27 1988-07-26 United Technologies Corporation Porous metal structures made by thermal spraying fugitive material and metal
JPS63100167A (ja) * 1986-10-16 1988-05-02 Mitsubishi Heavy Ind Ltd 多孔質皮膜の形成方法
JPH02168544A (ja) * 1988-12-21 1990-06-28 Hitachi Ltd 補強型陰極線管
JPH02175854A (ja) * 1988-12-27 1990-07-09 Mitsubishi Heavy Ind Ltd 多孔質溶射皮膜の形成方法
DE4116734C1 (zh) * 1991-05-23 1992-10-15 Abb Patent Gmbh, 6800 Mannheim, De
JPH0693404A (ja) 1991-12-04 1994-04-05 Ngk Insulators Ltd ランタンクロマイト膜の製造方法およびランタンクロマイト膜
JPH05179416A (ja) * 1991-12-26 1993-07-20 Mitsubishi Electric Corp プラズマ溶射による膜の形成方法
DE4228779C2 (de) 1992-08-28 1994-08-25 Biotec Biolog Naturverpack Biologisch abbaubares Verbundmaterial auf der Basis von gehärtetem Stärkeschaum und Verfahren zu seiner Herstellung
US5766693A (en) * 1995-10-06 1998-06-16 Ford Global Technologies, Inc. Method of depositing composite metal coatings containing low friction oxides
JPH09161824A (ja) * 1995-12-05 1997-06-20 Fuji Electric Co Ltd 固体電解質型燃料電池およびその製造方法
DE19608719A1 (de) * 1996-03-06 1997-09-11 Deutsche Forsch Luft Raumfahrt Verfahren zur Herstellung von Formteilen
JPH09245812A (ja) * 1996-03-13 1997-09-19 Fujikura Ltd 平板固体電解質型燃料電池
JPH10231704A (ja) * 1997-02-18 1998-09-02 Ishikawajima Harima Heavy Ind Co Ltd しみ出し冷却タービンシュラウド
JP2000145406A (ja) * 1998-11-06 2000-05-26 Ishikawajima Harima Heavy Ind Co Ltd タービンシュラウド
JP3079268B2 (ja) * 1998-12-28 2000-08-21 工業技術院長 組立式円筒直列型固体電解質燃料電池
JP2000231880A (ja) * 1999-02-12 2000-08-22 Canon Inc 非蒸発型ゲッタの形成方法、該非蒸発型ゲッタを用いた画像形成装置およびその製造方法
US6605316B1 (en) * 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
DE60135100D1 (de) * 2000-03-24 2008-09-11 Cymbet Corp E mit ultradünnem elektrolyten
US6767662B2 (en) * 2000-10-10 2004-07-27 The Regents Of The University Of California Electrochemical device and process of making
JP3841149B2 (ja) * 2001-05-01 2006-11-01 日産自動車株式会社 固体電解質型燃料電池用単セル
US20020179887A1 (en) * 2001-05-01 2002-12-05 Yongxian Zeng Supported perovskite-type oxides and methods for preparation thereof
JP3858261B2 (ja) * 2001-05-22 2006-12-13 日産自動車株式会社 燃料電池用セル板、その製造方法および固体電解質型燃料電池
JP3812368B2 (ja) * 2001-06-06 2006-08-23 豊田合成株式会社 Iii族窒化物系化合物半導体素子及びその製造方法
JP3731650B2 (ja) * 2001-10-30 2006-01-05 日産自動車株式会社 燃料電池
US20040018409A1 (en) * 2002-02-28 2004-01-29 Shiqiang Hui Solid oxide fuel cell components and method of manufacture thereof
US6787264B2 (en) * 2002-05-28 2004-09-07 General Electric Company Method for manufacturing fuel cells, and articles made therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020453A (zh) * 2019-12-12 2020-04-17 电子科技大学 一种获得独立的大气等离子喷涂涂层的方法

Also Published As

Publication number Publication date
CN1759201B (zh) 2010-04-14
JP4988334B2 (ja) 2012-08-01
WO2004079033A1 (de) 2004-09-16
EP1601810B1 (de) 2011-03-30
DK1601810T3 (da) 2011-05-23
AU2004217835B2 (en) 2009-08-20
US20070042112A1 (en) 2007-02-22
EP1601810A1 (de) 2005-12-07
DE10309968A1 (de) 2004-09-23
ATE503854T1 (de) 2011-04-15
US7582374B2 (en) 2009-09-01
JP2006521666A (ja) 2006-09-21
AU2004217835A1 (en) 2004-09-16
CA2518170C (en) 2011-07-26
DE502004012353D1 (de) 2011-05-12
CA2518170A1 (en) 2004-09-16

Similar Documents

Publication Publication Date Title
Will et al. Fabrication of thin electrolytes for second-generation solid oxide fuel cells
CN1639895A (zh) 形成在金属薄片衬底上的用于固体氧化物燃料电池的防渗烧结陶瓷电解质层
US4861345A (en) Method of bonding a conductive layer on an electrode of an electrochemical cell
US20040265484A1 (en) High power density solid oxide fuel cells and methods of fabrication
CA2472778A1 (en) Hollow inorganic membranes produced by metal or composite electrodeposition
US20070180689A1 (en) Nonazeotropic terpineol-based spray suspensions for the deposition of electrolytes and electrodes and electrochemical cells including the same
CN1759201B (zh) 制造包含金属载体和阳极功能层的层系的方法
CN101484606A (zh) 导电层的制备方法
CN102691027B (zh) 用于制造离子传导膜的等离子体喷涂方法
US6787264B2 (en) Method for manufacturing fuel cells, and articles made therewith
CA2284075C (en) Nickel composite particle and production process therefor
KR101079248B1 (ko) 전도성 산화물과 비전도성 산화물을 포함하는 치밀한 구조의 복합 산화물의 박막, 이의 제조방법 및 그를 이용한금속 접속자
CN114231908A (zh) 复合涂层及其制备方法、热障涂层
US20040104519A1 (en) Method of manufacturing an electrolytic cell
EP3000149A1 (de) Mehrlagige schichtanordnung für einen festkörperelektrolyt
EP1563560B1 (de) Trägersubstrat für eine elektrodenschicht einer brennstoffzelle und herstellungsverfahren hierfür
WO2013013677A1 (en) A method for the densification of ceramic layers, especially ceramic layers within solid oxide cell (soc) technology, and products obtained by the method
CN112602215B (zh) 通过喷墨印刷对固体氧化物燃料电池的金属基板的保护
US6093297A (en) Method for depositing solid electrolyte layer
KR20170141408A (ko) 연료전지의 연료극용 금속-세라믹 복합체 및 이의 제조방법
US20050208367A1 (en) Carrier substrate for an electrode layer of a fuel cell and method for the production thereof
He Thin coating technologies and applications in high-temperature solid oxide fuel cells
White et al. Preparation of an SOFC LSM/YSZ composite cathode by air plasma spraying
Chen et al. Preparation of films for solid oxide fuel cells by center-injection low pressure plasma spraying
CN117987759A (zh) 一种基于双壳微结构复合陶瓷粉末的抗烧结热障涂层及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100414

Termination date: 20150206

EXPY Termination of patent right or utility model