CN1681448A - 导管的导引控制及成像设备 - Google Patents
导管的导引控制及成像设备 Download PDFInfo
- Publication number
- CN1681448A CN1681448A CNA038215977A CN03821597A CN1681448A CN 1681448 A CN1681448 A CN 1681448A CN A038215977 A CNA038215977 A CN A038215977A CN 03821597 A CN03821597 A CN 03821597A CN 1681448 A CN1681448 A CN 1681448A
- Authority
- CN
- China
- Prior art keywords
- magnetic field
- far
- bunch
- controller
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 CCC(C)C(CC)*CC1CC(*)(CC)CC1 Chemical compound CCC(C)C(CC)*CC1CC(*)(CC)CC1 0.000 description 3
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/73—Manipulators for magnetic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/76—Manipulators having means for providing feel, e.g. force or tactile feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
- A61B5/061—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
- A61B5/062—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/7455—Details of notification to user or communication with user or patient ; user input means characterised by tactile indication, e.g. vibration or electrical stimulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00084—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00292—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
- A61B2017/003—Steerable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00681—Aspects not otherwise provided for
- A61B2017/00694—Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body
- A61B2017/00703—Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body correcting for movement of heart, e.g. ECG-triggered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/102—Modelling of surgical devices, implants or prosthesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/301—Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/73—Manipulators for magnetic surgery
- A61B2034/731—Arrangement of the coils or magnets
- A61B2034/732—Arrangement of the coils or magnets arranged around the patient, e.g. in a gantry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
- A61B2034/742—Joysticks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/364—Correlation of different images or relation of image positions in respect to the body
- A61B2090/365—Correlation of different images or relation of image positions in respect to the body augmented reality, i.e. correlating a live optical image with another image
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/376—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3954—Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
- A61M25/0158—Tip steering devices with magnetic or electrical means, e.g. by using piezo materials, electroactive polymers, magnetic materials or by heating of shape memory materials
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Robotics (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Vascular Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
- Manipulator (AREA)
- Endoscopes (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
一种系统,用于探测、显示和导引带磁性顶端之外科工具的位置,以快速、准确、简单而直观地实施诊断及治疗程序。所述外科工具包括导管、导向线,以及诸如激光器、气囊等二次工具及活组织检查针、内窥镜等类似器件。磁性顶端令使用者无需借助X射线只需分析磁场便可确定该顶端的位置及取向。磁性顶端还令使用者可通过在患者体外加给适宜磁场的方式推、拉、旋转该工具顶端,并将其可靠地固定在所需位置。一个“虚拟顶端”用为操作者控制手段。患者体内的磁性顶端运动情况与虚拟顶端的运动相应。若磁性顶端遇到阻碍,该控制手段向操作者的手发出适宜方向的触觉反馈。侍服系统根据该控制手段的输出连同感受到的磁性顶端位置及取向数据,以调制定位电磁体脉冲宽度的方式控制外磁场。根据如搏动之心脏等体内运动器官的动态位置数据等,以适宜的方式修正侍服系统,使磁性顶端,因而使二次工具与该体内运动器官一致地运动。根据顶端的位置、取向信息及体内运动器官的动态位置信息显示反映磁性顶端相对体内运动器官的相对位置、方向的三维视像。
Description
技术领域
本发明涉及一种引导、操纵和送进诸如导管及导管类器件等侵害性医疗器件所用的系统和技术。
背景技术
一般地说,导管插入术乃是通过切口或身体上的孔口将侵害性器件插入体内。诸如导向线、气囊等二次工具通常沿着主导管送进到待实施医疗程序的区域里。导管插入术依靠手工推、拉、旋转或操纵留在体外的近端部分,以送进这种侵害性器件。插入过程中,通用的方法是采用实时X射线成像来确定所述侵害性器件的远端的位置。在该器件的远端到达待进行诊断或治疗的目标区域之前,操作者要不断的进行上述操作。这项技术要求操作者具有很高的技艺,操作者只有在经过较长时期的训练及广泛的实践后才能够达到这样的水平。这项技术还要求操作者具有灵巧的手工操作能力。
例如,血管成形术包括将一气囊导管顺着一条预先放置的导向线送进到动脉狭窄段中。一旦该导管到达狭窄动脉段内的合适位置上,便可使气囊膨胀,从而使该段血管扩张。血管成形术遇到了和血管造影术相似的技术困难。如果待处理的动脉带有剧烈的扭曲,就可能难以将导向线送进到狭窄部位上。如果动脉严重狭窄或是完全堵塞,这就更难或是根本不可能将导向线定位到合适的位置上。另一方面,不管导向线是否成功地定位到抱紧的硬斑位置上,直径必须大于导向线的气囊导管可能会遇到足够大的阻力而使得被导引的导管和孔口分离,使其得不到使气囊顺利送进所需要的支承。这样的技术困难可能会使医疗程序进行不下去。
由于难以将导管插入到体内的要求位置上,许多诊断、治疗程序使用一种导向线。首先,将导向线送进到心脏或动脉内作为一条轨道来导引特定的导管。这种技术通常用来将一条导管送进到左心室内,这对主动脉狭窄的研究是特别重要的。对于操作者来说,如何通过狭窄的瓣膜口是一个挑战。同样,经常要操纵一个导向线进入阻塞的冠状动脉以及穿过有阻碍的斑块。一种比如带有气囊、激光器、支架等治疗手段的治疗导管要在该导向线上推进并布置到斑块位点上。然后通过气囊的膨胀、激光束的作用,或者支架的支承来打开狭窄位点。有时,动脉是弯曲的并严重狭窄的,并且斑块是不规则的,而且已经钙化,或者甚至使动脉完全闭塞。这种情况下,如何将导向线穿过狭窄位点便是非常困难而会经常失败的事情。
在有些医疗程序中,会用一条导管来割穿房中隔,以制作一条旁路(大血管错位)来处理左房室瓣(左房室瓣膜形成术),或是用来直接监护左心房的压强。
为了使心脏节律或传导紊乱的患者得以存活,经常必须植入心脏起搏器。这个医疗程序是将一个小型电极植入患者的心腔(心室或心房)壁内。电极的另一端与一个被植入在胸部皮肤下的电子器件相连,该电子器件发出刺激脉冲刺激心脏的节律。同样,当电极(例如可植入的自动心脏去纤颤器(AICD))检测到患者发生威胁生命的电紊乱时,可以以相似的电器件对患者施加电冲击。这些电极都可通过静脉在X射线照射下手工操作推入。许多情况下,由于解剖学上的差异,手工操作难以将电极安放到合适位置上,结果达不到最佳效果。
电生理学研究中,要测量并记录心肌(心脏肌肉)内发生的电信号,测量时,要将一个带有电极的导管送进到心脏中,在电极触及感兴趣的心内膜区域之前一直要手工操纵着该导管。这是一件繁重而费时的工作,因为,为了完成一项全面的研究常常需要进行许多这样的测量。另外,用手工操纵的方法使电极准确定位也是一个困难的过程。
在先前的电生理学研究中,曾经在心肌内发现过一些错误的电路径,这种错误路径会导致可能威胁生命的异常心律。为了消除心律困扰,为了消除这种可能威胁生命的异常心律,就要使这种错误的电路径消融。为了消融这种电路径,主要的方法是采用一种携带能量的导管向预定的特定区域输送热能或微波能量。这样的导管要和选定的心内膜区域良好接触,否则将不会发生消融作用。另外,为了不破坏正常的电路径,该导管必须准确定位。面临这样精确的要求,手工操纵的不准确性使得这种操作程序变得特别困难而费时。
左房室瓣膜形成术可以用来治疗左房室瓣狭窄,这种技术采用一个气囊来使狭窄的瓣膜扩大。现有的方法包括:通过静脉腔道将一导管送进到右心房中,并在房中隔上制作一个切口,并使导管强制穿过该切口进入左心房中。然后将一个气囊通过导管送入左房室瓣中,并使气囊膨胀以撑破狭窄组织。这种医疗程序的成功率不高,但瓣膜重新狭窄的可能性却不低,已知的难点是房中隔刺穿会导致中隔缺陷。尽管这种程序的侵害性大大小于外科手术,但与一般的导管插入术相比,这种程序的困难更大,时间更长,并要求操作者有特别熟练的技艺。
有些人考虑过用从主动脉直接进入左心房的左房室瓣膜形成术来替代从静脉腔道进入心脏的左房室瓣膜形成术,因为这种方法可以避免刺破房中隔,从而免除了可能存在的中隔缺陷。与现有的左房室瓣膜形成术不同的是,这种方法的导管是从主动脉送进到左心房及主动脉瓣而被定位在左心室中的。气囊通过导管送进到左房室瓣中,并膨胀而撑破狭窄组织。由于需要用相对较为刚硬的气囊来撑破导致左房室瓣狭窄的组织,因此,几乎不可能使气囊合适地对准主动脉和左心室,这是因为主动脉通道和要求的进入左房室瓣的路径之间呈一个尖锐的夹角。
心肌血管再建术是一种治疗程序,该程序通过在心肌中诱发形成新的小血管的途径来增加通向心肌的血液供应。该外科手术包括打开胸腔壁,并用激光器在心脏外表(心外膜)上“钻”上许多小通道。
经皮的心肌血管再建术是一种利用导管实施的治疗程序,用来促进血管新生。这种血管再建术包括将一个激光器导管送进到心脏内,并从心脏内表面(心脏内膜)一侧形成通道。这种治疗程序特别适合于那些构成高度外科手术危险因素的患者,以及不能经受常规的导管治疗的患者。由于这种程序在进行激光器导管的定位及固定时所要求的准确度,因此难以利用现有的导管技术予以实现。
上述各项医疗程序存在不少缺点和局限性。为了操纵导管使其合适地进入要求位置,通常要求操作者具有非常高的技艺水平。为了达到这种技艺水平,就要求对操作者进行广泛的培训。许多医疗程序是冗长而费时的,这使得患者和工作人员反复且长期地暴露在不利的X射线作用下。冗长的程序还使得患者需要蒙受由于接受更多的影像对比度增强剂(contrastmaterial)所带来的危险。通常,要求导管远端(亦称导管顶端)高精度定位的医疗程序都是难以实现,而且是不现实的。在二次工具的插入、取出以及其它操作过程中,导引导管的顶端经常会被迫偏离要求位置,从而需要费不少时间来重新进行操作,以对顶端进行重新定位。冠状动脉有时扭曲而带有剧烈的弯曲或阻塞,这使得导向线或气囊前进困难或甚至不可能前进。导管顶端的位置信息主要依靠X射线成像系统,这将带来不利的副作用。
针对上述缺点和局限性,本发明提供一种引导、操纵及送进侵害性的医疗器件并准确地控制其位置所用的设备及方法;该设备及方法可以提供三维图像;该设备及方法可以使X射线或其它电离型的辐射使用降至最少。
发明内容
本发明通过提供一种磁性导管的导引及控制设备,以解决上述问题和其它问题。与先前的技术系统相比,本发明提供的设备需要更少的人员培训及更低的人员技艺水平要求。所述磁性导管导引系统可以使导管快速地被送进并定位,因此,可以将X射线及影像对比度增强剂的使用剂量降至最低。另外,所述磁性导管导引系统中所用的磁性系统也可以探测出导管顶端的位置,并将该位置信息提供给操作者,并控制系统。
本发明的一种实施例包括:一个导管和一个导引及控制设备,所述导引及控制设备使外科医生/操作者能够准确并且较容易地将导管顶端布置在患者体内的适当位置处。所述导引及控制设备还能够将导管顶端保持在正确位置上。本发明的一种实施例包括:一个导管及导引控制设备,所述导管及导引控制设备能够操纵一个导向线或气囊穿过动脉,并有力地将其推进穿过斑块或其它阻碍物。本发明的一种实施例包括:一个导管导引控制设备,所述设备可以显示导管顶端的现有位置,同时又使患者和工作人员的X射线的辐照量降至最小。本发明的一种实施例包括一个导管导引控制设备,所述设备的使用更加直观而简单,该设备以三维的方式显示导管顶端的位置,该设备对导管顶端施加力,以按照要求拉、推、旋转或固定该导管顶端,该设备还能够使导管顶端产生频率及振幅都可调的振动及脉动,以帮助将导管顶端送过斑块或其它阻碍物。本发明的一种实施例包括一个操作者控制机构,该控制机构还向操作者提供反映导管顶端所遇到的阻碍的触觉反馈。
按照一种实施例,一个导管导引控制及成像(GCI)装置使外科医生能够对一个导管进行送进、定位及固定,并能够通过显示器上叠加的X射线图像观察该导管的三维位置。按照一种实施例,所述装置包括一个被称为“虚拟顶端”的操作者控制机构,该控制机构除了存在一个代表实际导管顶端在患者体内位置的模型以外,还具有一个相对于导管顶端的位置关系。
所述虚拟顶端包括一个有些象电脑游戏杆那样的可供外科医生操纵的实体组件。把这种组件设计成当实际的导管顶端遇到阻碍就会向操作者发出合适方向的触觉反馈。换句话说,该虚拟顶端包括一个游戏杆形式的器件,该器件使外科医生得以导引实际导管顶端穿入患者的身体。当实际导管顶端遇到阻碍物时,该虚拟顶端便向外科医生发出表明遇到阻碍的触觉力反馈。
按照一种实施例,所述实际导管顶端(亦即导管的远端)包括一个永久磁体,该永久磁体对外界作用在患者身上的磁场作出响应。外磁场将该顶端推、拉旋转并固定到要求的位置上。本专业的技术人员都知道可以用一个电磁体来替代或增强这种永久磁铁。
操作者控制机构向侍服系统发出位置及取向指令,该侍服系统调节作用在患者身上的外界磁性力,以控制实际顶端的位置及取向。该实施例包括一个二次装置,所述二次装置包括磁场传感器及温度传感器,该二次装置测量实际顶端的位置及取向,并将测量结果反馈给侍服系统及操作者界面。按照一种实施例,所述侍服系统包括一个修正量输入,该修正量对于比如心脏等身体部分或者器官的动态位置作出补偿,从而对实际顶端的响应进行修正,使得实际顶端的运动和搏动中的心脏协调一致。
本发明导管导引系统的工作过程如下:1)操作者调整虚拟导管顶端的实体位置;2)所述虚拟顶端的位置变化经编码而成为输入数据,被输送给控制系统;3)所述控制系统生成指令,并发送给侍服系统控制装置;4)所述侍服系统控制装置操纵侍服机械,对外界磁体的电磁场进行调整;5)所述外界电磁场的改变使得实际导管的磁性顶端在患者体内的位置发生变化;6)实际导管顶端的新位置被磁场传感器及温度传感器阵列感知;7)该传感器阵列将感知的新位置信息反馈给侍服系统控制装置及操作者界面中的监视系统,从而对所显示的图像中实际导管顶端相对于所叠加的X射线图像中的患者的相对位置进行更新。
于是,操作者可以进一步调整所述虚拟导管顶端位置,并且可以平滑而连续地重复步骤2)至7)。此外,整个过程中,每当实际导管顶端在其路径中遇到阻碍或阻力时,来自侍服系统控制装置的反馈便会生成指令逻辑,这种指令逻辑被用于控制一个步进电机,该步进电机和所述虚拟导管顶端实体相连。所述步进电机使得虚拟导管顶端产生一个适宜方向的阻力,这种阻力能被操作者所感知,从而成为发送给操作者的触觉反馈。
附图说明
以下将参照进一步的描述、权利要求和附图详细描述本发明的各种特点及实现所述特点的方法。各附图中以相同的标号表示相应参照项目。
图1A是一个外科程序系统的高级系统方块程序图,其中包括操作者界面、导管导引系统、外科设备(如待导引之导管)及患者;
图1B是图1所示导管导引系统一种实施例的方块程序图;
图1C是图1B所示导管导引系统的方块图,示出图1B未予表示的一些附加细节;
图2是图1B所示装置中使用的接地故障断路器、不间断电源、直流电源及监管单元的示意图;
图3是图1B所示装置中使用的系统控制器示意图;
图4是图1B所示装置中使用的虚拟顶端及校准附件控制器的示意图;
图5是图1B所示装置中使用的虚拟顶端的电路方框图;
图6是与图5所示电路方块图相连的虚拟顶端的透视图;
图7是图1B所示装置中使用的X轴控制器及放大器的示意图;
图8是图1B所示装置中使用的Y轴控制器及放大器的示意图;
图9是图1B所示装置中使用的Z轴控制器及放大器的示意图;
图10是图1B所示装置中使用的通信控制器的示意图;
图11是图1B所示装置中使用的校准附件示意图;
图12是图11校准附件(机械)的透视图。
图13是表示电磁体及相应磁场传感器极性配置的正视图;
图13A是表示作为由一C形臂形成磁路的一簇电磁体的可能极性配置;
图13B表示螺线管、臂和台面的几何布局;
图13C是表示电磁螺线管簇的电子学布置的方框图;
图13D是矢量的矩阵表示;
图13E表示特征矩阵;
图13F表示逆特征矩阵;
图13G表示特征矩阵和其逆矩阵的乘积;
图13H是图13G的逻辑流程图;
图14是表示图1B装置中使用的各种磁场传感器和温度传感器对;
图15和图15A是图1B装置中使用的导管组件和导向线组件的分解透视图;
图15B表示一个带有磁性顶端及两个压电环的导管;
图16表示图1B的装置与一个双平面X射线环的结合;
图16A表示图1B装置的俯视图;
图16B表示图1B装置的端部视图;
图16C表示图1B装置的侧视图;
图17表示图1B所示装置与电影血管造影设备一起使用的情况;
图17A表示与X射线荧光图像同步的基准点标记;
图17B表示在作起搏器电极植入(implementation)过程中使用基准点标记的情况;
图18是表示图13的电磁体加给的合力矢量的大小和方向的向量图;
图18A表示导管的磁性顶端相对于坐标系统虚拟原点的极性;
图18B表示由图20和图20A所示磁场传感器测得的合成矢量;
图18C表示图18B所示合成矢量的三维角度;
图19表示图1B装置中使用的两个对置电磁体之间的距离;
图19A表示图19中邻近的电磁场传感器之间的距离。
图20是表示由图19A的磁场传感器数据推演图18A所示顶端位置的过程;
图20A表示由图19A的磁场传感器信号进一步计算的结果;
图21是表示图18A所示磁性顶端在Z轴方向上的旋转(θ)。
图22是表示图18A所示磁性顶端在Z轴方向上的平移(ΔZ)。
图23是图1B装置的控制器形成部件的逻辑流程图,用以确定图18A的实际顶端响应新运动指令所处的位置。
具体实施例方式
图1A、1B及1C表示系统700,它包括一个导引、控制、成像(GCI)装置501。该系统700还包括一个操作者界面部分500和外科医疗设备502。图1A所示为GCI装置501的一个实施例,该实施例包括各种功能单元。图1A还表明这些功能单元以及操作者界面部分500、手术室中的辅助设备502以及患者390之间的总体关系。图1B所示为这些功能单元及它们中一些部件之间的内部关系。
图1C所示为GCI装置501、外科医疗设备502、操作者界面设备500以及患者390之间的关系。有关GCI装置501及诸如手术室中的外科医疗设备502等其它辅助设备的详细情况将在下面结合图16、16A、16B和16C予以描述。所述系统700被构造成用以将导管或类似器件的远端(本文亦称顶端)导引进入患者体内。
图2所示为GCI装置501的第一功能单元,即电源及控制器单元的方块图。该功能单元包括接地故障断路器1、不间断电源300、直流电源16、17、18和19,以及图1B所示系统700用的监管单元301。
GCI装置501的另一功能单元是如图3所示的系统控制器(SC)302。GCI装置501还包括一个功能单元,即图4所示的虚拟顶端及校准附件控制器(VT/CFC)303。GCI装置501还包括一个功能单元,即图5和图6所示的虚拟顶端组件304。GCI装置501的其它功能单元包括:X轴控制器及放大器(XCA)305、Y轴控制器及放大器(YCA)310,以及Z轴控制器及放大器(ZCA)315。这些功能单元将通过图7、8和9所示的功能方块图逐项予以详细描述。GCI装置501的其它功能单元还包括通信控制器(CC)320(详见图10)、校准附件(CF)321(详见图11、12)、磁场传感器(MFS)和温度传感器(TS)对374(见图14)。图1B所示的系统700中采用不同种类的磁场传感器和温度传感器对374。一个或多个磁场传感器可以是霍尔效应传感器、超导传感器或其它传感器,只要该传感器能够感受,比如由导管顶端的磁体(或电磁体)引起的磁场。在一个实施例中,这种磁场传感器是霍尔效应传感器。温度传感器可以是热敏电阻或其它能够对温度敏感的传感器。本文之所以描述温度传感器是由于比如霍尔效应传感器等许多磁场传感器都是温度依赖型的传感器。然而,温度传感器是备选的器件。当温度传感器对精度的贡献并非必要时,或者无需考虑磁场传感器的温度依赖性时,可以省略所述温度传感器。
参照图1B,电源及控制系统392包括:接地故障断路器(GFI)1;不间断电源(UPS)300;监管单元(SU)301;分别向X轴控制器和放大器(XCA)、Y轴控制器和放大器(YCA)、Z轴控制器和放大器(ZCA)单独供电的直流电源(XPS)16、(YPS)17及(ZPS)18;以及向GCI装置501的数字电路及模拟电路供给直流电的直流系统电源(SPS)19。图2对这些部件及它们之间的功能关系作了详细表述。
参照图2,接地故障断路器(GFI)1的作用是作为安全器件,用以监控相线和中性线内的交流输入电流。如果测得二者电流不平衡,便可以设想为对地之间存在一个杂散导电路径(操作者或患者具有触电危险),这个检测器便会使载荷从馈线上脱开。
不间断电源(UPS)300包括电池9、充电系统5、变流器13和电源开关回路。在电源发生故障期间,UPS 300自动地向系统700提供全部所需电能,直至电池耗尽。如果电源故障的持续时间超出电池容量以外,则监管单元(SU)301及系统控制器(SC)302便会将整个系统700适时地关掉。
再参照图2,放大器3及其变流器的作用是监测交流线路的电流。隔离放大器4的用途为监测接地故障断路器(GFI)1的交流电压输出。充电器5的用途是产生所需直流电能,给不间断电源300中的电池9充电。放大器8的用途是检测分流线路两端的电压降,以测定电池9的充电电流。放大器10的用途为监测电池9的输出电压。放大器12的用途是监测分流线路11两端的电压降,以测定电池9的负载电流。换流器13的用途为向GCI装置501的各个部件供给交流电能。隔离放大器14的用途为检测换流器13的交流输出电压。放大器15及其变流器的用途为监测换流器13的输出电流。
监管单元(SU)301监测来自下列部件的信号:交流馈线、接地故障断路器(GFI)1的输出端、不间断电源(UPS)300,以及直流电源16、17、18、19。监管单元(SU)301向系统控制器(SC)302报告下列情况:交流供电故障、接地故障断路器(GFI)脱落、不间断电源(UPS)故障或是直流电源16、17、18、19故障。
如图2所示,监管单元(SU)301包括模拟多路转换器20,该转换器20将待监测的给定信号连接到可编程增益放大器21上。解码逻辑单元26和地址锁存器24相连,从而使微控制器30能够设置所述模拟多路转换器20的输入通道。微控制器30执行存在于只读存储器28中的编码。解码逻辑单元26和地址锁存器25相连,这又使得微控制器30能够设定可编程增益放大器21的增益。于是,微控制器30通过解码逻辑单元26选通采样/保持电路22。因而,采样/保持电路22的输出便是待测量信号的一个“瞬象”。
模数变换器23接受微控制器30经解码逻辑单元26发来的变换指令。完成变换时,模数变换器23通过解码逻辑单元26遮断微控制器30,而通过微控制器30输出代表待测量信号的数字数据。随机存取存储器29的用途为在SU 301工作过程中储存采样数据。非易失性存储器27的用途为在供电终止时储存数据。监管单元301通过这样的方式监测各种电压及电流。微控制器30通过缓冲器31与系统控制器302沟通。控制逻辑单元32使得系统控制器302能够根据系统的状态来配位“供电-掉电”数列。
参照图1C和3可见,系统控制器(SC)302以排序的方式控制供电-掉电次序,并通过通信控制器(CC)320、计算机324及监视器325提醒操作者注意系统状态,并采取任何所需的纠正措施。此外,系统控制器(SC)302还对X轴控制器和放大器(XCA)305、Y轴控制器和放大器(YCA)310及Z轴控制器和放大器(ZCA)315的工作进行配位,还经系统总线328与虚拟顶端/校准附件控制器(VT/CFC)321及通信控制器(CC)320沟通。
如图1C所示,侍服电源(XPS)16向X轴控制器和放大器(XCA)305供给直流电。X轴控制器和放大器(XCA)305向位于患者体外的电磁体132X及138X供电。X轴控制器和放大器(XCA)305还对温度传感器(TS)阵列306、309和磁场传感器阵列307、308以及电磁体(EM)132X、138X进行监测。磁场传感器阵列307、308测量X轴方向的磁通量。温度传感器(TS)306、309测量磁场传感器阵列307、308的温度,因此,X轴控制器和放大器(XCA)305能够通过温度补偿系数对磁场传感器的输出进行修正。
这些传感器阵列306、307、308、309测得的实际导管顶端377在X轴方向上的位置作为反馈被输出给X轴控制器放大器(XCA)305。通过下面的叙述可以看到两个电磁体132X及138X对实际导管顶端377在患者身体390内的X方向位置的影响。
侍服电源(YPS)17向Y轴控制器和放大器(YCA)310供给直流功率。Y轴控制器和放大器(YCA)310向位于患者体外的电磁体(EM)132Y及138Y供电。Y轴控制器和放大器(YCA)310还对温度传感器(TS)阵列311、314和磁场传感器阵列312、313进行监测。磁场传感器阵列312、313测量Y轴方向的磁通量。温度传感器(TS)311、314测量磁场传感器阵列312、313的温度,因此,所述Y轴控制器和放大器(YCA)310能够通过温度补偿系数对磁场传感器的输出进行修正。这些传感器阵列311、312、313、314测得的实际导管顶端377在Y轴方向上的位置作为反馈,输出给所述Y轴控制器和放大器(YCA)310。通过下面的叙述,将可看到这两个电磁体132Y及138Y对实际导管顶端377在患者身体390内的Y方向上位置的影响。
Z轴电源(ZPS)18向Z轴控制器和放大器(ZCA)315供给直流功率。Z轴控制器和放大器(ZCA)315向位于患者体外的电磁体(EM)132Z及138Z供电。Z轴控制器和放大器(ZCA)315还对温度传感器(TS)阵列316、318和磁场传感器阵列317、319进行监测。磁场传感器阵列317、319测量Z轴方向的磁通量。温度传感器(TS)316、318测量磁场传感器阵列317、319的温度,因此,所述Z轴控制器和放大器(ZCA)315能够通过温度补偿系数对磁场传感器的输出进行修正。这些传感器阵列316、317、318、319所测量到的实际导管顶端377在Z轴方向上的位置作为反馈,输出给Z轴控制器和放大器(ZCA)315。通过下面的叙述,将可看到这两个电磁体132Z及138Z对实际导管顶端377在患者身体390内的Z方向上的位置的影响。
通信控制器(CC)320将主机系统323、辅助设备322及计算机324连接到系统总线328上。外科及医疗设备502可以包括比如主机系统323及辅助设备322。所述主机系统323中含有关于患者和现行医疗程序的资料,还包含GCI装置501产生的档案资料。所述辅助设备322可以包括X射线成像系统及其它患者检测设备。
操作者界面500包括,如计算机324、监视器325、键盘326及鼠标327。计算机324使操作者能够调整系统参数,并执行校准及诊断等例行程序。监视器325显示实际导管顶端377的位置资料和重叠显示X射线图像,以及对操作者的提示。键盘326和鼠标327用于操作者录入数据。
虚拟顶端/校准附件控制器(VT/CFC)303接受来自虚拟顶端组件304的编码器位置、限止开关以及操作者开关等输入数据,这些数据是XCA395、YCA 310及ZCA 315在对电磁体132X、138X、132Y、138Y、132Z、138Z进行控制时需要使用的。所述虚拟顶端/校准附件控制器(VT/CFC)303还将触觉反馈(TF)响应及发光二极管(LED)数据输出给虚拟顶端(VT)304,这两项输出将由操作者作为实际导管顶端377遇到的阻碍或阻力被感知的。
图3所示为系统控制器(SC)302的一个实施例的多个部件。后面将结合附图详细描述这些部件的功能。SC 302的特征在于它有不同的工作模式:1)供电/掉电模式、2)侍服系统控制器模式、3)触觉反馈响应模式,以及4)校准模式。
在供电/掉电模式时,所述SC 302对GCI装置501的各个部件的供电/掉电次序进行配位,实施内置的系统诊断功能,还将诊断过程中测得的任何差错资料发送到通信控制器(CC)320,并储存在存储器41中。通过微控制器33完成这些任务。当系统正在工作时,这些差错数据储存在随机存取存储器(RAM)41中,当系统掉电时,这些数据则储存在非易失性存储器(NVM)39中。微控制器33通过系统总线328和其它系统部件进行通信。通信时可以向解码逻辑单元38设置适宜的地址及控制码位,以启动地址缓冲器34及数据缓冲器35。类似地,经控制逻辑单元32,所述数据锁存器36及数据缓冲器37使微控制器33与不间断电源(UPS)300及监管单元(SU)301相连接。
在侍服系统控制器模式下,有如下面还要结合图23详细描述的那样,系统控制器(SC)302计算实际顶端(AT)的位置。然后,根据来自虚拟顶端(VT)405的数据确定现存的位置误差,也就是实际顶端的位置和虚拟顶端指示位置,即操作者要求的顶端位置之间的差异。该位置误差值将会通过系统总线328被发送给X轴控制器和放大器(XCA)305、Y轴控制器和放大器(YCA)310,以及Z轴控制器和放大器(ZCA)315。
在触觉反馈响应模式下,所述系统控制器(SC)302经系统总线328向虚拟顶端(VT)304提供反馈数据,以引发触觉反馈响应。下面还将结合图23进行详细描述。
在校准模式下,所述系统控制器(SC)302经虚拟顶端/校准附件控制器(VT/CFC)303对校准附件(CF)312产生影响,并将来自X轴控制器和放大器(XCA)305、Y轴控制器和放大器(YCA)310及Z轴控制器和放大器(ZCA)315的位置数据与校准附件(CF)321、编码器64C、66C、68C、70C及72C相关。
图4表示虚拟顶端/校准附件控制器(VT/CFC)303。当系统正在工作时,数据被储存在随机存取存储器(RAM)50中;当系统掉电时,这些数据被储存在非易失性存储器(NVM)48中。微控制器42经系统总线328与系统控制器(SC)302(见图3)进行通信联系。通信联系时,可以向解码逻辑单元47设置适宜的地址及控制码位,以启动地址缓冲器43及数据缓冲器44。如下所述,类似地,数据锁存器45及数据缓冲器46使微控制器42与虚拟顶端(VT)405或校准附件(CF)321相连。
虚拟顶端/校准附件控制器(VT/CFC)303接受来自VT 304或CF 321的有关编码器位置,限止“开关”关闭,并且操作者输入开关位置等数据输入。虚拟顶端/校准附件控制器(VT/CFC)303还向虚拟顶端(VT)304输出数据,使其产生触觉反馈并亮起发光二极管指示器,以向操作者提示各种系统状况。
参照图5,VT组件304的电子电路功能如下。解码逻辑单元101响应来自虚拟顶端/校准附件控制器(VT/CFC)303(图3)的地址及控制码位启动数据缓冲器51,并设定它对于数据传输的方向。当解码逻辑单元101选通步进锁存器52、53时,所述锁存器52、53储存来自VT/CFC 303并且是待提供给步进驱动器54、56、58、60和62的数据。所述步进电机55、57、59、61和63响应步进驱动器的输出,向操作者发出触觉反馈。所述步进电机55、57、59、61和63按如下配位产生适宜方向或角度的阻力:步进电机55沿着X轴方向;步进电机57沿着Y轴方向;步进电机59沿着Z轴方向;步进电机61沿着角度θ方向;步进电机63沿着角度EL方向。
再参照图5,绝对编码器64、66、68、70和72与相应的步进电机55、57、59、61和63机械地耦接,并当存在触觉反馈(TF)时向VT/CFC 303提供位置反馈信息,而当操作者对VT 405进行手工调整时向VT/CFC 303提供虚拟顶端(VT)的位置信息。编码器的输出受到缓冲器65、67、69、71和73缓冲,以暂时储存并将轴向及角向位置信息传输给VC/CFC 303。限止“开关”74、75、76、77、78和79给三个轴线作上终端标记,以限止虚拟顶端405的机械运动,并可使虚拟顶端组件304的机械部分与图5的电子仪器同步工作。当角度θ及EL为0时,“开关”80及81发出指示,使虚拟顶端组件304的机械部分与图5的电子仪器同步工作。当被解码逻辑101选通时,锁存器82便储存这些给位置边界下定义的数据。由于操作者开关83、84、85、86、87、88、89和90都是瞬时性的开关(亦即瞬时接触而非稳定接触的开关),锁存器91读取并锁存这些开关,以储存它们的指令。由LED锁存器100驱动发光二极管92、93、94、95、96、97、98和99。
图7表示X轴控制器和放大器(XCA)305。XCA 305接受来自X轴磁场传感器阵列307、308及温度传感器阵列306、309测得的数据信号,并对其进行放大。微控制器102X根据这些测得的数据执行一个程序,以产生位置反馈信号,该位置反馈信号经系统总线328被输送给VT/CFC 303及其它系统部件。微控制器102X还通过系统总线328接受来自VT/CFC 303及其它系统部件的数据,并根据这些数据生成指令,该指令控制外电磁体132X、138X的励磁,对实际导管顶端在X轴方向上的位置产生影响。XCA305还生成误差信号及修正信号,这些信号将用在校准过程和系统正常工作过程中。下面对这些功能进行描述。
首先说明XCA 305对来自MFS阵列307、308及温度传感器阵列306、309测得的数据的监测方法。磁场传感器阵列307包括传感器113X、114X、115X、116X。磁场传感器阵列308包括传感器117X、118X、119X、120X。温度传感器阵列306包括传感器122X、123X、124X、125X。温度传感器阵列309包括传感器126X、127X、128X、129X。图13示出这些传感器的实体位置以及相互的位置关系。可以结合图18、18A、18B和18C描述微控制器102X执行的数学程序,该数学程序根据来自传感器阵列307及308的输入数据计算输出的位置数据。在系统运行过程中,这种输入及输出数据都储存在随机存取存储器(RAM)103X中。诸如温度补偿系数等数据则储存在非易失性存储器(NVM)105X,该补偿系数和温度传感器阵列306、309测得的温度数据一起用于对来自磁场传感器113X、114X、115X、116X、117X、118X、119X、120X的数据进行必要的修正。
由解码逻辑单元106X连同地址锁存器111X触发检测数据的收集,该锁存器111X使微控制器102X能够设置模拟多路转换器112X的输入通道。同样,解码逻辑单元106X连同地址锁存器109X使微控制器102X能够设置可编程放大器110X的增益,以补偿来自传感器阵列307、308、306和309信号的强度变化。微控制器102X通过解码逻辑单元106X选通采样/保持电路108X,因此,所述微控制器能够在执行其它功能的同时,周期性地采集暂存在采样/保持电路108X中的数据。因此,采样/保持电路108X的输出便是待测量信号的一个“瞬象”。
微控制器102X通过解码逻辑单元106X向模数变换器(ADC)107X发出“变换”指令,将来自位置传感器307、308的模拟信号变换成数字数据,使数码系统能够判读该信号。完成变换时,模数变换器107X通过解码逻辑单元106X阻断微控制器102X,而由微控制器102X输入测量信号的数码表示。本发明就是用这样的方法对磁场传感器113X、114X、115X、116X、117X、118X、119X和120X以及温度传感器122X、123X、124X、125X、126X、127X、128X和129X进行监测的。与此相似,还对分流线路131X、137X两端的电压降进行测量,以确定通过电磁体132X、138X的电流。
再参照图7,电流源121X的用途是提供控制电流,以偏置磁场传感器113X、114X、115X、116X、117X、118X、119X和120X。这是因为这些传感器最好在恒定电流模式下工作,因此,要求电流稳定,以可靠地工作。温度传感器的偏置电源130X的用途是向温度传感器122X、123X、124X、125X、126X、127X、128X和129X提供偏置电压。
以下说明XCA 305生成指令以控制实际导管顶端277在X轴方向上运动的方法。微控制器102X经系统总线328接受来自VT/CFC 303及其它系统部件的数据,并根据这些数据生成控制实际导管顶端277在X轴方向上运动的指令。微控制器102X连同解码逻辑单元106X控制调制器144X及146X产生适宜的运动信号及指令。前置放大器143X及145X将调制器的输出放大,并驱动末级放大器135X、136X、141X和142X。二极管133X、134X、139X和140X的用途为保护末级放大器免受反电动势浪涌的冲击,该反电动势浪涌是由电磁体线圈132X、138X的电感特性所引起的。
电磁线圈132X、138X产生磁场,对实际导管顶端在X轴方向上的位置产生影响。
微控制器102X经系统总线328与VT/CFC 303及其它系统部件进行通信联系的方式是:微控制器102X对解码逻辑单元106X设置适宜的地址及控制码位,所述解码逻辑单元106X启动地址缓冲器148X及数据缓冲器147X。
非易失性存储器(NVM)105X也储存校准数据,这些数据将用在校准附件321连同VT/CFC 303一起进行的校准操作中。后面还将结合图23描述校准操作和校准数据源。另外,非易失性存储器(NVM)105X还储存错误编码,该错误编码用在由系统控制器(SC)302控制的掉电操作中。
图8表示Y轴控制器和放大器(YCA)310,它以与图7中XCA 305相同的方式工作。YCA 310接受来自Y轴磁场传感器阵列312、313及温度传感器阵列311、314测得的数据信号并对其进行放大。微控制器102Y根据这些测得的数据执行一个程序,以产生位置反馈,所述位置反馈经系统总线328被输送给VT/CFC 303及其它系统部件。微控制器102Y还经系统总线328接受来自VT/CFC 303及其它系统部件的数据,并根据这些数据生成指令,所述指令控制外电磁体132Y、138Y的励磁,以对实际导管顶端在Y轴方向上的位置产生影响。YCA 310还生成误差信号及修正信号,这些信号将用在校准过程和系统正常工作过程中。下面对这些功能进行描述。
首先说明YCA 310对来自MFS阵列312、313及温度传感器阵列311、314的测量数据的监测方法。磁场传感器阵列312包括传感器113Y、114Y、115Y、116Y。磁场传感器阵列313包括传感器117Y、118Y、119Y、120Y。温度传感器阵列311包括传感器122Y、123Y、124Y、125Y。温度传感器阵列314包括传感器126Y、127Y、128Y、129Y。图13示出这些传感器的实体位置以及相互的位置关系。
微控制器102Y所执行的数学程序可以结合图18、18A、18B和18C予以描述。所述数学程序根据来自传感器阵列312及313的输入数据计算输出的位置数据。在系统运行过程中,该输入及输出数据都储存在随机存取存储器(RAM)103Y中。诸如温度补偿系数等数据则储存在非易失性存储器(NVM)105Y。该补偿系数于温度传感器阵列311、314测得的温度数据一起用于对来自磁场传感器113Y、114Y、115Y、116Y、117Y、118Y、119Y、120Y的数据进行必要的修正。
由解码逻辑106Y连同地址锁存器111Y触发所述测量数据的收集,所述锁存器111Y使微控制器102Y能够设置模拟多路转换器112Y的输入通道。同样,解码逻辑106Y连同地址锁存器109Y使微控制器102Y能够设置可编程放大器110Y的增益,以补偿来自传感器阵列311、312、313和314的信号的强度变化。微控制器102Y通过解码逻辑单元106Y选通采样/保持电路108Y,因此微控制器能够在执行其它功能的同时周期性地采集暂存在采样/保持电路108Y中的数据。因此,采样/保持电路108Y的输出便是待测量信号的一个“瞬象”。
微控制器102Y通过解码逻辑单元106Y向模数变换器(ADC)107Y发出变换指令,将来自位置传感器312、313的模拟信号变换成数字数据,使数码系统能够判读该信号。完成变换时,模数变换器107Y通过解码逻辑单元106Y阻断微控制器102Y,而由微控制器102Y输入测量信号的数码表示。本发明就是以这样的方式对磁场传感器113Y、114Y、115Y、116Y、117Y、118Y、119Y和120Y以及温度传感器122Y、123Y、124Y、125Y、126Y、127Y、128Y和129Y进行监测的。与此相似,还测量分流线路131Y、137Y两端的电压降,以确定通过电磁体132Y、138Y的电流。
再参照图8,电流电源121Y用于提供控制电流,以偏置磁场传感器113Y、114Y、115Y、116Y、117Y、118Y、119Y和120Y。这是因为这些传感器在恒定电流模式下工作情况最好,因此要求电流稳定以可靠地工作。温度传感器的偏置电源130Y用于向温度传感器122Y、123Y、124Y、125Y、126Y、127Y、128Y和129Y提供偏置电压。
以下描述YCA 310生成指令以控制实际导管顶端沿Y轴方向运动的方法。微控制器102Y经系统总线328接受来自VT/CFC 303其它系统部件的数据,并根据这些数据生成控制实际导管顶端沿Y轴方向运动的指令。微控制器102Y连同解码逻辑106Y控制调制器144Y及146Y,产生适宜的运动信号及指令。前置放大器143Y及145Y放大调制器的输出,并驱动末级放大器135Y、136Y、141Y和142Y。二极管133Y、134Y、139Y和140Y的用途为保护末级放大器免受反向电动势浪涌的冲击。所述电动势浪涌是由电磁体线圈132Y、138Y的电感特性引起的。电磁体线圈132Y、138Y产生一个磁场,该磁场对实际导管顶端377在Y轴方向上的位置产生影响。
微控制器102Y经系统总线328和VT/CFC 303及其它系统部件进行通信联系的方式在于:微控制器102Y对解码逻辑106Y设置适宜的地址及控制码位,所述解码逻辑106Y启动地址缓冲器148Y及数据缓冲器147Y。
非易失性存储器(NVM)105Y还储存校准数据,这些数据将用在校准附件321连同VT/CFC 303一起进行的校准操作中。后面还将结合图23描述校准操作和校准数据源。另外,非易失性存储器(NVM)105Y还储存错误编码,所述错误编码用在由系统控制器(SC)302控制的掉电操作中。
图9示出Z轴控制器和放大器(ZCA)315,该控制器和放大器(ZCA)315按与图7的XCA 305相似的方式工作。ZCA 315接受来自Z轴磁场传感器阵列312、313及温度传感器阵列311、314的测得的数据信号,并对其进行放大。微控制器102Z根据这些测得的数据执行一个程序,产生位置反馈,这一位置反馈经系统总线328被输送给VT/CFC 303及其它系统部件。微控制器102X还经系统总线328接受来自VT/CFC 303及其它系统部件的数据,并根据这些数据生成指令,控制对外电磁体132Z、138Z的励磁,以对实际导管顶端337在Z轴方向上的位置产生影响。所述ZCA 315还生成误差信号及修正信号,这些信号将用在校准过程和系统正常工作过程中。下面对这些功能进行描述。
首先说明ZCA 315对来自MFS阵列317、318及温度传感器阵列316、319测得的数据的监测方法。磁场传感器阵列317包括传感器113Z、114Z、115Z、116Z。磁场传感器阵列318包括传感器117Z、118Z、119Z、120Z。温度传感器阵列316包括传感器122Z、123Z、124Z、125X。温度传感器阵列319包括传感器126Z、127Z、128Z、129Z。图13中示出这些传感器的实体位置以及相互位置关系。
可以结合图18、18A、18B和18C描述微控制器102Z所执行的数学程序。所述数学程序根据来自传感器阵列317及318的输入数据计算输出的位置数据。在所述系统运行的过程中,该输入及输出数据都储存在随机存取存储器(RAM)103Z中。诸如温度补偿系数等数据则储存在非易失性存储器(NVM)105Z,该补偿系数和温度传感器阵列316、319测得的温度数据一起用于对来自磁场传感器113Z、114Z、115Z、116Z、117Z、118Z、119Z、120Z的数据进行必要的修正。
由解码逻辑106Z连同地址锁存器111Z触发检测数据的收集,该锁存器111Z使微控制器102Z能够设置模拟多路转换器112Z的输入通道。同样,解码逻辑106Z连同地址锁存器109Z使微控制器102Z能够设置可编程放大器110Z的增益,以补偿来自传感器阵列317、318、316和319信号强度的变化。
微控制器102Z通过解码逻辑106Z选通采样/保持电路108Z,因此,微控制器能够在执行其它功能的同时周期性地采集暂存在采样/保持电路108Z中的数据。因而,采样/保持电路108Z的输出便是待测量信号的一个“瞬象”。微控制器102Z通过解码逻辑单元106Z向模数变换器(ADC)107Z发出变换指令,将来自位置传感器317、318的模拟信号变换为数字数据,使数码系统能够判读该信号。完成变换时,模数变换器107Z经解码逻辑单元106Z阻断微控制器102Z,而由微控制器102Z输入测量信号的数码表示。本发明就是按这样的方式监测磁场传感器113Z、114Z、115Z、116Z、117Z、118Z、119Z和120Z以及温度传感器122Z、123Z、124Z、125Z、126Z、127Z、128Z和129Z的。与此相似,还对分流线路131Z、137Z两端的电压降进行测量,以确定通过电磁体132Z、138Z的电流。
参照图9,电流源121Z的用途是提供控制电流,以偏置磁场传感器113Z、114Z、115Z、116Z、117Z、118Z、119Z和120Z。这是因为这些传感器在恒定电流模式下工作情况最好,因此要求电流稳定以可靠地工作。温度传感器的偏置电源130Z的用途是向温度传感器112Z、123Z、124Z、125Z、126Z、127Z、128Z和129Z提供偏置电压。
以下描述ZCA 315生成指令以控制实际导管顶端沿Z轴方向的运动的方法。微控制器102Z经系统总线328接受来自VT/CFC 303及其它系统部件的数据,并根据这些数据生成控制实际导管顶端沿Z轴方向运动的指令。微控制器102Z连同解码逻辑106Z控制调制器144Z及146Z,产生适宜的运动信号及指令。前置放大器143Z及145Z放大调制器的输出,并驱动末级放大器135Z、136Z、141Z和142Z。二极管133Z、134Z、139Z和140Z的用途为保护末级放大器免受反向电动势浪涌的冲击,所述电动势浪涌是由电磁体线圈132Z、138Z的电感特性引起的。电磁体线圈132Z、138Z产生一个磁场,该磁场对实际导管顶端在Z轴方向上的位置产生影响。
微控制器102Z经系统总线328和VT/CFC 303及其它系统部件进行通信联系的方式在于:微控制器102Z对解码逻辑单元106Z设置适宜的地址及控制码位,该解码逻辑单元106Z启动地址缓冲器148Z及数据缓冲器147Z。
非易失性存储器(NVM)105Z还储存校准数据,这些数据将用在校准附件321连同VT/CFC 303一起进行的校准操作中。后面还将结合图23描述校准操作和校准数据源。另外,非易失性存储器(NVM)105Z也储存错误编码,该错误编码用在由系统控制器(SC)302控制的掉电操作中。
图10示出通信控制器(CC)320,其主要功能为通过系统总线328与系统的其它部件通信联系。为了保持实际导管顶端在患者体内的位置,当系统正在工作时,将来自XCA 305、YCA 310及ZCA 315的位置数据储存在随机存取存储器(RAM)156中;当系统掉电时,将这些位置数据储存在非易失性存储器(NVM)154中。微控制器149经系统总线328和其它系统部件进行通信联系。通信联系时可以向解码逻辑单元153设置适宜的地址及控制码位,以启动地址缓冲器150及数据缓冲器151。与此相似,微控制器149通过通信I/O接口152和PC324、辅助设备322及主机系统323进行通信联系。通信联系时可以向解码逻辑153设置适宜的地址及控制码位,或响应来自接口152的阻断信号。这样做有许多原因,比如需要将实际过程及手术程序显示在CRT显示器上。
图11表示校准附件(CF)321的电路图。图12表示校准附件(CF)321的机械部分。所述CF 321的用途是确定虚拟顶端405沿各个可能方向的运动步骤及界限。将这种运动步骤及界限信息传输给VT/CFC 303,用以在GCI装置501正常工作期间使电路和实体操作能够同步地工作。
可以沿着5个可能的轴线操纵校准磁体411,这些轴线定义为X轴406、Y轴407、Z轴408、θ轴409及EL轴410。这些轴准确地对应于虚拟顶端405的5个可能运动方向,这也是实际顶端377的可能自由度的最大值。由如图11所示校准附件321的电路实现对校准磁体411的操纵。
图11所示电路的工作情况如下:解码逻辑单元101C响应来自VT/CFC303的地址及控制码位,启动数据缓冲器51C并设定它的方向。在被解码逻辑101C选通时,步进锁存器52C、53C储存这些数据,这些数据准备发送给步进驱动器54C、56C、58C、60C和62C。步进电机55C、57C、59C、61C和63C响应该步进驱动器的输出,并在5个轴线上驱动磁性校准顶端。绝对编码器64C、66C、68C、70C和72C与相应的步进电机机械地相耦接,并向VT/CFC 303提供位置反馈信息。编码器64C、66C、68C、70C和72C的输出受到数据缓冲器65C、67C、69C、71C和73C的缓冲,以暂时储存并传输这些数据。限止“开关”74C、75C、76C、77C、78C和79C给三个轴线X、Y及Z作上终端标记。当角度θ及EL为0时,“开关”80C及81C发出指示。当被解码逻辑101C选通时,锁存器82C便储存这些数据。
图13示出电磁体132X、132Y、132Z、138X、138Y、138Z、磁场传感器和温度传感器对350、351、352、353、354、355、356、357、358、359、360、361、362、363、364、365、366、367、368、369、370、371、372及373的极性配置结构374。电磁体132X、132Y、132Z排列在三个取向轴X、Y、Z上,或者如图13A、13B所示。
图13A及图13B表示成簇构造的磁性体,其中,近似地示出工作台389和电磁体901、902、903及904、905、906的相对关系,并示出将这些部件安装在C形臂结构的支承组件391上,构成封闭磁路,并且互相让开的情况。还可以将极性配置结构374表达为一个非对称的极性分布,其中电磁体901和它的相对置的电磁体903转过一定角度,形成呈瓣形的电磁场。这样的排列方式进一步优化了磁路,并使医生和患者得以自由的接近,同时Z轴的电磁体905及906也不会妨碍有效接近空间,如图13及图16所近似地表示的那样。另外,可以用图16及图16A、16B、16C所示的双平面环构造替代图13及图13A、13B中的互相让开的构造。对于诸如X射线、Cat-Scan、Pet-Scan、超声等各种不同成像程式来说,这两种构造代表能够适应这些成像程式的可能途径,尽管图16在双平面构造上向GCI装置501设置了用于荧光成像的固有进入通道。如图13、13A及13B的几何关系具有一个约25英寸的空间,可使该空间与一个计算机层断装置和/或上面所述的各种成像程式相结合。更多的利用这种几何布局的实施例展示在图13A、13B中,并在下面对图13C、13D、13E、13F、13G及13H的描述中予以解释。图16、16A、16B、16C和图13A、13B所示的两种互相竞争的结构形式在安装操作界面设备500、外科医疗设备502及GCI装置501方面各有其优点及缺点。图13A及13B还示出一个关于螺旋线圈在C形臂及工作台389上安装的替代构造。按照这种构造,线圈901至906被集束成簇。这种几何布局是从线圈的一种直观的正交构造演变来的,这种线圈构造被普遍应用在以电磁线圈来生成矢量或矢量梯度的场合下。图13B中的6个线圈901至906排列成花瓣形或是排列成一束。其中三个线圈被安装在C形臂的顶部,另外三个被安装在底部。顶部的三个线圈和底部的三个线圈同样都是相互夹120°角。另外,顶部的三个线圈稍稍向下倾斜约15°到20°角,而底部的三个线圈稍稍向上倾斜约15°到20°度角,如图13B所示那样。另外,顶部的三个线圈相对于底部的三个线圈偏转60°角。
图13B中位于C形臂391顶部的三个线圈的标号按顺时针次序为901、902、903;而位于底部的线圈标号按逆时针次序为904、905、906。线圈901及903成对工作,被称为X轴线圈对,线圈902和904是另两个成对工作的线圈,被称为Y轴线圈对,而线圈905、906是第三对成对工作的线圈,被称为Z轴线圈对。
图13C、13D、13E、13F、13G和13H示出GCI装置501的一种可供选择的替代构造,从而,使图16、16A、16B及16C所示的极性配置结构被选择为适应图13A及13B所示的电磁线路的集束构造。图13C表示该系统各个部件的简单方块图。该系统包括电源910、游戏杆(joystick)900、三个送进通道X、Y、Z。本文所取三个信号一起组成矩阵V 923。图13D中表示,所述矩阵V 923包含元素Vjx、Vjy、Vjz。这种构造在图13D、13E、13F、13G及13H中另有描述。在图13C中,X轴通道包括运算放大器(Op-Amp)911、电流放大器910、一对线圈901、903;Y轴通道包括运算放大器(Op-Amp)913、电流放大器912、一对线圈902、904;Z轴通道包括运算放大器(Op-Amp)915、电流放大器914、一对线圈905、906。由图可见,每一对线圈都串联连接后再分别连到X、Y、Z轴的功率放大器910、912及914的输出端。图13C所示的用来替代图1的构造接受来自游戏杆900的输入指令信号。当操作者通过游戏杆900发出沿着一个或多个轴线运动的指令时,游戏杆900便将该信号发送到分别对应于X、Y、Z轴的运算放大器911、913、915阵列。运算放大器911、913、915将来自游戏杆900的信号进行转换,并对该三个轴的三个信号的矩阵实行逆运算。运算放大器阵列932将以矢量V 923表示的来自游戏杆900的信号乘上另一个矩阵M-inverse,该矩阵M在图13F及13G中的标号为927。这样,运算放大器阵列932的输出是M-inverse乘V,这里M是6个线圈901至906的成簇构造的特征矩阵925。于是,得到包括运算放大器911、913、915的运算放大器阵列932的输出。将该输出发送到功率放大器910、912、914,以驱动6个线圈901至906,结果,产生所需方向的运动。这样,GCI装置501便能够将操作者或是临床医生对于导管顶端377运动的要求转换成该导管顶端377在患者390体腔内的运动。图13D、13E、13F及13G所示的示意图可使图13H被进一步简化,这里,将来自游戏杆900的输入信号V 931发送给一个Mchar-inverse的运算放大器阵列932。阵列932的最终输出是Mchar-inverse乘矢量V的矩阵乘积。将该输出信号发送到电流放大器928,以矢量B 933表示该放大器的输出信号,代表分别输送给各个线圈901至906的电流。这样,该装置便将临床医生的手的动作转换成适宜的信号,并使导管顶端运动到所需的位置。
总的来说,上述替可供选择的结构向GCI装置501提供一种方法,其中采用一种备选构造可以替代图1所示的构造,这里,通过使用图13H所示原理,使各线圈的非对称布置线性化,从而产生所需的结果。图13E中示出这一点。
图14表示传感器阵列306、307、308、309、311、312、313、314、316、317、318和319中的磁场传感器和温度传感器对的排列情况。每个正交轴上同轴地布置了第一、第二两个电磁体,从而被分成两个磁极。例如,电磁体132X和138X同轴,电磁体132Y和138Y同轴,电磁体132Z和138Z同轴。由于由θ和EL定义的虚拟顶端405的旋转运动分别发生在X-Y和X-Z平面上,如图6所示,因此沿着X、Y、Z三个轴的各个电磁体的磁极足以促使实际导管顶端377准确地在相应的5个轴方向上运动。这5个轴便是前面结合图6所述的虚拟顶端405运动的5个轴。
在一个实施例中,MFS阵列307、308、312、313、317和319中包含的每一个磁场传感器都和温度传感器阵列306、309、311、314、316和318中的每一个温度传感器(TS)配成对。这些配对结合在图14及下面的表格中都有详细描述。这些磁场传感器-温度传感器对(MFS/TS)排列在电磁体132X、132Y、132Z、138X、138Y、138Z的极面上的各象限内。
如图13所示,MFS/TS对350、351、352和353排列在电磁体132X极面上的各象限内。磁场传感器和温度传感器(TS)对354、355、356和357排列在电磁体138X极面上的各象限内。磁场传感器和温度传感器(TS)对358、359、360和361排列在电磁体132Y极面上的各象限内。磁场传感器和温度传感器(TS)对362、363、364和365排列在电磁体138Y极面上的过象限内。磁场传感器和温度传感器(TS)对366、367、368和369排列在电磁体132Z极面上的过象限内。磁场传感器和温度传感器(TS)对370、371、372和373排列在电磁体138Z极面上的过象限内。
图14所示为如图13那样安装的磁场传感器及温度传感器的配对情况。图中,磁场传感器和温度传感器都被安排为等温的对,各个对互相联合发挥作用。磁场传感器的功能是测量实际顶端377在选定测量时段中的位置。该选定测量时段分别由XCA 305、YCA 310、ZCA 315中的微控制器102X、102Y、102Z来控制。在该选定时段中,电磁体132X、132Y、132Z和138X、138Y、138Z都没有励磁。之所以选定这样的时段来进行测量,是为了使电磁场传感器阵列307、308、312、313、317、318能够进行准确而灵敏的测量。反之,如果测量时段选在进行励磁的时候,这些传感器将被电磁体的磁通量所饱和。温度传感器阵列306、309、311、314、316和319的功能是对环境温度进行监测,以探测出可能使患者不舒适和可能损害周围组织的温升,并且给出根据磁场传感器数据进行位置计算所用的修正数据。这些等温对如下:
磁场传感器113X和温度传感器(TS)122X构成对350。磁场传感器114X和温度传感器(TS)123X构成对351。磁场传感器115X和温度传感器(TS)124X构成对352。磁场传感器116X和温度传感器(TS)125X构成对353。磁场传感器117X和温度传感器(TS)126X构成对354。磁场传感器118X和温度传感器(TS)127X构成对355。磁场传感器119X和温度传感器(TS)128X构成对356。磁场传感器120X和温度传感器(TS)129X构成对357。磁场传感器113Y和温度传感器(TS)122Y构成对358。磁场传感器114Y和温度传感器(TS)123Y构成对359。磁场传感器115Y和温度传感器(TS)124Y构成对360。磁场传感器116Y和温度传感器(TS)125Y构成对361。磁场传感器117Y和温度传感器(TS)126Y构成对362。磁场传感器118Y和温度传感器(TS)127Y构成对363。磁场传感器119Y和温度传感器(TS)128Y构成对364。磁场传感器120Y和温度传感器(TS)129Y构成对365。磁场传感器113Z和温度传感器(TS)122Z构成对366。磁场传感器114Z和温度传感器(TS)123Z构成对367。磁场传感器115Z和温度传感器(TS)124Z构成对368。磁场传感器116Z和温度传感器(TS)125Z构成对369。磁场传感器117Z和温度传感器126Z构成对370。磁场传感器118Z和温度传感器(TS)127Z构成对371。磁场传感器119Z和温度传感器(TS)128Z构成对372。磁场传感器120ZX和温度传感器(TS)129Z构成对373。
图15及15A表示一种与GCI装置501一起使用的改进型导管组件375及导向线组件379。导管组件375是一管形工具,该导管组件375包括导管体376,导管体376延伸到一个柔软段378,该柔软段378具有较大的柔性,使得具有较大刚性,并且能够响应外界控制的顶端377得以准确地被引导通过曲折的路径。
该磁性的导管组件375和GCI装置501结合在一起能够减少甚至免除诊断或治疗程序通常需要的过多形状的导管工具。这是由于在传统的插管程序中,因为整个过程都是手工操作的并主要依赖手工技巧来操纵导管通过诸如心血管系统那样的曲折路径,因此,外科医生经常难以将常规的导管导引到所需位置上。由于一个患者体内或不同患者之间的解剖学构造的多样性,因此在不同的情况下需要用许多不同的弯管来应付,于是,便制造出过多的各种各样尺寸及形状的导管提供给外科医生,以帮助他们。
通过使用GCI装置501,由于是在一套机电系统的帮助下完成插管过程的,于是,对于大多数患者,如果不是所有患者的话,只需要单独一个导管。所述机电系统使外科医生能够通过对一个虚拟顶端405的操作,来操纵导引磁性导管及导向线组件375、379进入到患者390体内的所需位置,而不需要医生盲目地将导管推入患者体内。由于医生在通过手工将实际导管顶端377推进通过患者体腔过程中所可能遇到的困难中的大多数困难都可以借助于GCI装置501来克服(即该磁性顶端能够被电磁体132X、132Y、132Z吸引或排斥),因此说,磁性导管和导向线组件375、379具有很大的适应性来通过各种曲折路径。
导向线组件379是一种包括导向线本体380及一个柔性段382的工具,该柔性段382具有足够的柔性,使得刚性相对较大地响应顶端381,得以准确地绕过剧烈弯曲段而被导引通过曲折的路径。所述响应顶端377、381分别属于导管组件375和导向线组件379,这两个顶端377、381都包括一个诸如永久磁体那样的磁性元件,该永久磁体响应电磁体132X、132Y、132Z以及138X、138Y、138Z所产生的外部磁通量。
导管组件375的响应顶端377是管形的,而导向线组件379的响应顶端381则是实心的圆柱体。导管组件375的响应顶端377是一个二极磁体,由纵向取向的磁性元件的两端形成。导向线组件379响应顶端381是一个由纵向取向的磁性元件的两端所形成的的二极磁体。由于电磁体132X、132Y、132Z以及138X、138Y、138Z所产生的磁通量将会作用在该顶端377、381上,并在操作者的操纵下将它们均匀地“拖”到所需位置处,因此,这两个纵向二极磁体377及381使得GCI装置501能够对它们进行操纵。
图15B所示为另一个用以与GCI装置501一起使用的改进型导管组件375及导向线组件379。其中导管组件950上附着了一个另加的如图所示位置的压电环951及952。超声检测器可以和GCI装置501一起作为这种导管顶端的另一种检测方式。该检测方式通过发射一种超声信号刺激两个压电环,以测量导管顶端相对于磁体377的北极轴线的转动。在计算机324的帮助下,GCI装置501便能够确定顶端377的转动角。根据本专业公知的更为复杂的电路,如图17及17A所示,压电环951、952能够提供更多的位置信息,以确定导管顶端377相对于立体框架的位置、取向和转动数据。
图16所示为一种与图1所示装置结合的双平面X射线环。图16A、16B及16C是比图16更精细的图,图中示出图16所不能显示的更多细节及元件,或者为了清楚起见,而省略了一些图16中已经显示的内容。图16A、16B和16C分别是相对于电磁体及成像组件391及支承组件385的俯视图、端向视图和侧视图。
图16进一步示出:工作台389、患者390、T-轴编码器394、耳轴388、支承组件385、极面支承391、G-轴编码器393、X射线源383、图像增强器384、电磁体132X、132Y、132Z;电磁体138X、138Y、138Z、电源及控制系统392、辅助设备322、主机系统323、PC机324、虚拟顶端组件304、校准附件321、鼠标327、键盘326、监视器325之间的总体关系。其中电磁体132X、132Y、132Z、138X、138Y、138Z的总体排列如极性配置结构374。为了便于观看,这些部件在图中的位置是近似的。这些部件的功能,凡是至今尚未描述的,将在下面的篇幅中结合图16、16A、16B和16C解释。
T-轴编码器394及G-轴编码器393向系统提供龙门架的位置信息,用来在电磁体励磁之前计算要求的坐标旋转角。耳轴388的作用是作为支承组件385的一个支托。极面支承391绕着支承组件385的G-轴旋转。极面组件391支托着X射线源383及X射线图像增强器384,这两个部件产生的图像将和实际导管位置叠加在一起显示在操作者界面500的监视器325上。极面支承391作为一个安装面用来将电磁体132X、132Y、132Z、138X、138Y、138Z保持在如图13所示的合适的同轴排列位置上。
耳轴388和图16A中的T-轴重合。图中的T-轴编码器394和耳轴388机械相连以对位于T-轴上的支承组件385的位置数据进行编码。图16A中的万向轴(G-轴)和T-轴387在极面支承391的中心点处相交。该中心点准确地和X射线视野的中心点重合。图中的G-轴编码器393和沿着G-轴386转动的支承组件385机械相连。这些部件的功能将在下面篇幅中加以描述。
图16所示的X射线支承组件385和391被设计成在前后投射方向上有20°的尾部成角(caudal angulation-AP尾)。图17所示为GCI装置501和电影血管造影设备502的总的连接情况。电影血管造影设备502通过操作者界面500和GCI装置501相连。视频监视器325上显示的是一个树枝状动脉的电影血管造影图像和所叠加的显示导管顶端377位置的X射线图像。这两个图像由GCI装置501通过通信控制器320来使其同步地显示在操作者界面500的监视器325上。
图17A中示出一个立体的框架,以定义导管顶端相对于该框架的位置。这种方法利用一个近似的立方体来形成基准标记。
下面提供的方法用来截获X射线装置和/或超声成像技术生成的透视图像,以产生参考标记,这种参考标记用于对GCI装置生成的导管顶端或导向线的图像进行同步。所述方法将所截获的图像重叠并动态链接到一个以数字代表的基准标记上,产生一个和体内所感兴趣部位一致运动的图像。例如,搏动的心脏及其心电图输出、肺的膨胀及收缩、或患者的抽搐等都可以动态地截获并与其链接起来以使导管的顶端和体内所讨论的器官一致运动。
图17A还示出所述图像截获技术。这种技术将如图17所示生成的基准标记700A1、700A2、700A3、700A4、700B1、700B2、700B3及700B4叠加到X射线/超声透视图像上。所提出的方法使操作者可以参照X射线/超声图像识别导管顶端377的动态位置。可以由基准标记700Ax形成的参考框解释导管顶端相对立体框架的位置。另外,通过使用一种几何投影技术,该方法提供了和导管顶端377同步的图像截获技术,该技术能够将X射线/超声图像和基准标记及导管顶端三者动态地叠加在一起,从而可以以一个参考框架来定义位置。
图17B所示系将一带有电极的心脏起搏器801植入到相对于S.A.节点802、A.V.节点803和房室束804区域的情况。从该图还可以见到左、右束支805。植入起搏器是使心脏节律或传导紊乱的患者得以存活的重要手段。这个医疗程序是将一个小型电极植入患者的心腔(心室或心房)壁内。电极的另一端和植入在胸部皮肤下的一个电子器件相连,该电子器件发出刺激脉冲来刺激心脏的节律。同样,当电极(例如一个可植入的自动心脏去纤颤器(AICD))检测到患者发生威胁生命的电紊乱时,可以相似的电器件对患者施加电冲击。这些电极都可通过静脉在X射线照射下手工操作推入。使用本发明所建议的GCI装置501及附有磁性顶端381的导向线379,可以通过本发明描述的方法及装置将起搏器801的电极送进并放置到合适的位置上。通过基准标记700A1、700A2、700A3、700A4、700B1、700B2、700B3及700B4,医生可以将导向线379导引通过心脏内腔,同时伴随有一个如图17及17A所示的连续而动态地识别导向线顶端381位置的参考框。许多情况下,由于解剖学上的差异,手工操作难以将电极安放到合适位置上,结果达不到最佳效果。本发明的GCI装置501能够简单地实施如此复杂的操作,并使医生能够将起搏器801的电极送进、并放置到准确的解剖学位置上,而不会由于导航、导引、控制及对导向线及起搏器电极的运动进行准确成像等方面的困难而被迫采取退让措施。
前面已经描述了GCI装置501的各个部件。现在将结合图18至23描述实际导管顶端377的位置控制、虚拟顶端405的位置调整,以及实际导管顶端377的新位置的计算这三者之间的数学关系及GCI装置501的总的工作过程。
电源接通后,装在监管单元(SU)301、系统控制器(SC)302、X轴控制器和放大器(XCA)305、Y轴控制器和放大器(YCA)310、Z轴控制器和放大器(ZCA)315、通信控制器(CC)320、计算机324,以及虚拟顶端/校准附件控制器(VT/CFC)303内的机内测试程序执行一系列自我诊断测试。另外,一些测试项目将在背景里连续进行,所述背景测试项目比如包括:直流电源的电压及电流监测,交流电压及电流监测,以及通信联系测试。这些背景测试以对于操作者透明的方式和系统的正常功能交叉进行。
测试程序的执行结果报告给系统控制器(SC)302。系统控制器(SC)302将这些结果与储存在非易失性存储器(NVM)39(图3)中的相应期望值进行比较。当测试到存在故障或任何不正常现象时,系统控制器(SC)302对情况的严重程度进行判断。如果存在不可纠正的状况,系统控制器(SC)302便以合适的方式来断开电源。如果所存在的问题有可能得到缓和或消除,系统控制器(SC)302便指令计算机324发出报警声音信号并指令监视器325显示出差错提示符。任何检测到的故障还作为一个故障编码储存到非易失性存储器(NVM)39中以供日后回顾及故障检修用。
在一个实施例中,虚拟顶端405及校准附件(CF)321(图5、6、11和12)在X、Y、Z轴方向上各有8英寸的冲程。这相当于极性配置图374(图13)上的8英寸×8英寸×8英寸控制区域。虚拟顶端405和校准附件321还在θ轴和仰角(EL)轴上可以旋转360°。
一旦校准附件(CF)321及虚拟顶端405在X、Y、或Z轴上作8英寸的偏移,步进电机55C、57C、59C、61C和63C和所带的编码器64C、66C、68C、70C和72C便旋转。步进电机55C、57C、59C、61C和63C的分辨率比如为约,每转400个半步,相当于位置分辨率0.022英寸(≈0.56毫米)。另外,编码器的分辨率可以为约每转512比特,这相当于测量分辨率0.015625英寸(≈0.397毫米)。在θ及EL轴上,步进电机的分辨率可以为约0.9°而编码器的分辨率可以为约0.703125°。
校准过程中,将校准附件(CF)321置于极性配置结构374,并与虚拟顶端/校准附件控制器(VT/CFC)303相连。然后,虚拟顶端/校准附件控制器(VT/CFC)303发出编码,以驱动步进电机55C、57C、59C、61C和63C,带动校准附件(CF)321。然后,校准附件(CF)321读取编码器64C、66C、68C、70C和72C,确定磁体411的现有位置及取向。然后将自编码器读取的位置数据以及从磁场传感器307、308、312、313、317和318(图1、7、8、9)推导所得的位置数据进行比较。这时,磁场传感器307、308、312、313、317和318的响应所代表的是磁体411,也是磁性导管顶端377的满行程位置及满行程取向。
正常工作期间,虚拟顶端405和虚拟顶端/校准附件控制器(VT/CFC)303相连。操纵虚拟顶端405时,虚拟顶端/校准附件控制器(VT/CFC)303读取编码器64、66、68、70和72。所读得的位置数据被系统控制器302用来当作实际顶端(AT)的要求位置(DP),并按图23所述定义,控制实际顶端(AT)的运动。
图13中的电磁体132X、132Y、132Z、138X、138Y、138Z将在实际导管顶端377及导向线组件顶端381(图15及15A)上产生一个合力。可以用给定大小及方向的矢量B 600表示该合力。图18所示为该合力矢量B及其各个组成矢量。矢量B是当XCA305、YCA310、ZCA315发出运动指令时的6个电磁体132X、132Y、132Z、138X、138Y、138Z所发出的力的矢量的合力矢量。矢量Bx 601是矢量B600在X轴上的投影,矢量By 602是矢量B600在Y轴上的投影,矢量Bz 603是矢量B600在Z轴上的投影。而α角604、β角605、δ角606则分别是矢量B600和矢量Bx 601、矢量B600和矢量By 602和矢量B600和矢量Bz 603之间的夹角。
如前面所述,图18中电磁场产生的合力矢量B600的大小为
它的方向由下述三个角度给出:
α=cos-1Bx,β=cos-1By,δ=cos-1Bz
合力矢量B是通过系统控制器102根据下列因素发出指令而产生的:1)来自磁场传感器阵列307、308、312、313、317和318并且经过XCA301、YCA310、ZCA315处理的关于实际导管顶端37在患者390体内的位置的输入参数;以及2)由虚拟顶端405的位置表示的实际导管顶端377的所需位置,这个所需的位置来自VT/CFC303的输出。微控制器33对一个储存在系统控制器302的ROM 40(图3)中的编码进行处理,产生矢量B 600的各个组成矢量Bx 601、By 602和Bz 603。各个组成矢量的大小都将转发给合适的XCA 305、YCA310和ZCA315,以改变调制器的输出,并转而改变电磁体132X、132Y、132Z、138X、138Y、138Z产生的电磁场。这样,便分别由X轴、Y轴及Z轴方向上的磁通量来实现所述组成矢量Bx、By和Bz,并且,由此而在实际导管顶端377上产生一个合力B 600,这个合力B 600有效地将实际导管顶端377拉曳到所需的位置处。
然后,确定实际导管顶端377的新位置,以证实该顶端377是否确实位于所需的位置上,或是是否需要作进一步的调整,或是该顶端377遇到了阻碍。下面结合图18A至图22说明系统控制器302来确定实际导管顶端377新位置的方法。
图18A、19和19A以及下面的讨论中,各个变量将以下列记号表示,其中:
aN——实际导管顶端的磁性元件的远端,图18A中表示为北极(North dipole)。
aS——实际导管顶端的磁性元件377的近端,图18A中表示为南极(sorth dipole)。
aD——实际导管顶端磁体377的长度,等于aS和aN之间的距离(见图18A)。
XD——同轴的相对两极沿着X轴方向的距离,亦即电磁体132X及138X的极面之间的距离(参见图19中的标号616)。
-x1、-x2、-x3、-x4——分别表示MFS和TS对354、355、356、357(见图13及19A)。
d——各个相邻MFS/TS对之间的距离,亦即MFS/TS对354和MFS/TS对355之间的距离,以及MFS/TS对355和MFS/TS对356之间的距离等(参见图19A)。。
x1、x2、x3、x4——分别表示MFS和TS对350、351、352、353(参见图13及19A)。
ROT——X-Y平面上的旋转角θ(图21中的参考标号625)。
ELEV——X-Z平面上的仰角EL(图22中的参考标号626)。
由图13中的电磁体132X、132Y、132Z、138X、138Y、138Z所引起的电磁场在实际导管顶端377及导向线顶端381上产生一个合力。可以用一个给定大小和方向的力矢量表示该合力,并和它的组成矢量一起被示于图18中。矢量B 600是当XCA301、YCA310、ZCA315发出运动指令时6个电磁体132X、132Y、132Z、138X、138Y、138Z一起发出的力矢量的合成矢量。矢量Bx 601是矢量B 600在Z轴上的投影,矢量By 602是矢量B 600在Y轴上的投影,矢量Bz 603是矢量B 600在Z轴上的投影。角度α604、β605和δ606相应为矢量B和Bx、B和By、B和Bz之间的夹角。
图18A表示磁性导管顶端607的一个实施例。该磁性顶端607相当于导管组件375的响应顶端377和导向线组件379的响应顶端381的组合(图15及15A)。由与一个虚拟环608相连的两个磁极aN 607A及as 607B表示磁性顶端607。由虚拟顶端(VT)405在X轴400、Y轴401及Z轴402(图6)上的行程中心点确定虚拟环608。进行校准时,虚拟环608也和校准磁体411在X轴406、Y轴407及Z轴408(图12)上的行程中心点重合。假定所述虚拟环608位于X射线视野的中心,磁场传感器(MFS)检测电磁体(EM)控制体积(control volume)的体积及中心。进行校准时,所述虚拟环608也和校准附件(CF)在X轴、Y轴及Z轴上的行程的中心点重合。
图18B表示定义导管顶端607的位置的合成位置矢量An 609,由磁场传感器307、308、312、313、317、318检测并由XCA 305、YCA 310、ZCA 315的微控制器102x、102y、102z计算得到该位置矢量An 609。组成矢量Xn、Yn、Zn分别是位置矢量An 609在X轴、Y轴、Z轴上的投影。角度α609A、β609B和δ609C相应为矢量An 609在X轴、Y轴、Z轴上的投影角。这样的正交表示方法相应于图16那样的极性配置374。
图18C所示为导管顶端607的合成位置矢量的三维角度表示。在图18C中,图18B中的位置矢量An 609确定北极aN 607A的位置,这是磁性顶端607的两个磁极中的一个极在X-Y平面上的投影。投影矢量θxy615可以按它相对于X轴的角度θx613及其相对于Y轴的角度θy614得以被确定。为了简单起见,图中未予表示该位置矢量An在X-Z及Y-Z平面上的投影,因此,也未示出该矢量An和Z轴612之间的角度关系。位置矢量An的这些角度关系,例如θx613及θy614,可以在计算中用来根据磁场传感器阵列307、308、312、313、317、318的检测数据确定实际导管顶端377的位置aN。下面将说明这种计算。
图19表示电磁体的相对两个磁极和极面间的距离XD 616。在系统工作过程中,可将这个距离XD用于所作的计算中。下面将说明这样的计算。
图19A表示两个邻近的X轴磁场传感器之间,亦就是磁场传感器-X1618和-X2 619之间的距离d 617。图中还示出两个另外的磁场传感器-X3及-X4。磁场传感器-X1、-X2、-X3及-X4分别对应于MFS和温度传感器对354、355、356和357,而磁场传感器X1、X2、X3及X4分别对应于MFS和温度传感器对350、351、352和353。
图20表示所述系统根据磁场传感器X1、X2、X3及X4测得的数据推得磁性顶端607实际位置所用的几何学过程。合成矢量A 620被系统进一步的变换,生成顶端607的位置坐标621及622,从而求出实际顶端377的位置。在下面的讨论中,这种几何学过程将显得更为清楚。
图20A进一步示出根据来自磁场传感器X1、X2、X3及X4的信号,用另外的数学变换及计算,所得出的位置矢量622、621的各个分量。由位置坐标621及622确定所述实际顶端377的位置。图中的位置623是由磁场传感器X1、X2、X3及X4测定实际导管顶端377的测量位置,而位置624是系统控制器302确定的计算位置。在理想情况下,位置623和位置624是互相相等的。
图21表示顶端607绕着Z轴(θ)的旋转625。这一旋转实际上是发生在X-Y平面上的一种弧形运动或摆动。图22所示为顶端607在Z轴上的平移626。
系统控制器(SC)302根据磁场传感器阵列307、308、312、313、317、318所生成的信号推得实际导管顶端377的位置。下面说明这种推得的过程。
图18A、19和19A中,各个变量将以下列记号表示,其中:
aN——北极方向。
aS——南极方向。
aD——顶端磁体的长度。
XD——相对两极132X及138X之间的距离。
-x1、-x2、-x3、-x4——分别表示MFS和TS对354、355、356、357。
d——磁场传感器和温度传感器354和355等之间的距离。
x1、x2、x3、x4——分别表示MFS和TS对350、351、352、353。
ROT——θ轴。
ELEV——E轴。
根据图18A、28B和18C,可由正交矢量aN、AN和as、As确定实际顶端377的位置。这些正交矢量是它们的组成分量x、y和z的合成矢量:
AN=(Xn,Yn,Zn),
其中,Xn,Yn,Zn是正交矢量AN在X,Y,Z轴上的投影(参见图18B),
而
As=(Xs,Ys,Zs),
其中,Xs,Ys,Zs分别是正交矢量As在X,Y,Z轴上的投影。
可由下列角度确定正交矢量AN及AS的方向(参见图18B):
α是关于X轴的角度;
β是关于Y轴的角度;
γ是关于Z轴的角度。
同样,图18中还示出矢量B,可由三个角度α、β、γ确定该矢量B。
矢量AN的大小,亦即虚拟坐标原点到点a607A(见图18C)的距离可以下式计算:
而且,确定矢量AN方向的各个角度则由下式计算:
位置矢量AN投影在如图18C所示的三个正交平面X-Y、X-Z、Y-Z上产生的各个平面上的组成矢量及其对应的角度如下:
在X-Y平面上,所投影的矢量θxy关于X轴和Y轴之间的角度(参见图18C)可表示为:
其中,投影矢量θxy在X-Y平面上的大小为:
同样,投影矢量θxy关于X轴和Z轴之间的角度可表示为:
并且,投影矢量θxy在X-Z平面上的大小为:
同样,投影矢量θxy关于Y轴和Z轴之间的角度可表示为:
并且,投影矢量θyz在Y-Z平面上的大小为:
应予指出,解出AN=(Xn,Yn,Zn)的数学解之后,再解出As=(Xs,Ys,Zs)的数学解。
如图18A所示,如果aN和as之间的距离D 607已知,那么:
为了说明系统控制器302如何确定实际导管顶端的位置,现在描述XCA 305的微处理器102x所用关于X轴及虚拟原点608的计算。应予指出,YCA 310及ZCA 315的对应微处理器102y及102z将对生成的关于X轴及Y轴各个位置的数据进行相似的计算。
从校准程序(fx1,fx2,fx3,fx4)可以知道,共面磁场传感器(x1,x2,x3,x4)的传递函数,有如图20所示者,它们是:
-X1=-(V-x1(f-x1)) +X1=-(V-x1(f-x1))
-X2=-(V-x2(f-x2)) +X2=-(V-x2(f-x2))
-X3=-(V-x3(f-x3)) +X3=-(V-x3(f-x3))
-X4=-(V-x4(f-x4)) +X4=-(V-x4(f-x4))
按装在电磁体138X极面上的各MFS/TS对354、355、356、357都将给XCA 305的处理器102X提供位置数据。从比如MFS/TS对354到aN607A的测量距离将称为(-x1);MFS/TS对355的测量距离将称为(-x2);MFS/TS对356的测量距离将称为(-x3);MFS/TS对357的测量距离将称为(-x4)。
同样,按装在电磁体132X极面上的各个MFS/TS对350、351、352、353都将给XCA 305的处理器102X提供位置数据。从MFS/TS对350到aN607A的测量距离将称为(+x1);MFS/TS对351的测量距离将称为(+x2);MFS/TS对352的测量距离将称为(+x3);MFS/TS对353的测量距离将称为(+x4)。
由于MFS/TS对围绕着X轴线均匀地排列在一个象限内,MFS/TS中每个传感器单独测量到的距离可以经过数学综合用来确定aN607A到X轴本身的距离。该数学综合方法是确定位置矢量Ax1x2,Ax2x3,Ax3x4,Ax1x4。由图20可见,比如,位置矢量Ax2x3可由下式给出:
位置矢量Ax1x2,Ax3x4及Ax1x4的大小可按同样方式算出。
另外,如图20A所示,角度θx1x2,它是比如Ax1x2和x1以及Ax1x2和x2之间夹角之和。因此可以给出Ax1x2的方向如下:
图示于图20A中的数字解可用下面所述的正则形式得出。应当指出,这个数字解仅是作为例子在XCA 305的微处理器102x的背景模式下实施的;对于Y轴和Z轴也是相似的。
以同样的方式计算角度θx2x3,θx3x4和θx1x4。
根据从极面138x到点aN的距离Ax1x2,Ax2x3,Ax3x4,Ax1x4,可以确定平均距离(-xn)如下:
同样,从极面132x到点aN的距离可确定如下:
按照一种实施例,进行校准时,采用更多的精确的传感器作加权平均,以得到更好的结果,从而得到加权平均值。
由于虚拟原点608是VT组件304和校准附件(CF)321之间的公共参考点,因此,可以确定aN和虚拟原点608之间的距离。由下面一组公式给出三个轴的这些距离,这里的XD616是两个同轴电磁体132x及138x(见图19)之间的距离,YD是两个同轴电磁体132y及138y之间的距离,ZD是两个同轴电磁体132z及138z之间的距离:
其中:
可对y轴及z轴的位置做同样的计算。已知这三个轴的位置后,即可得出绝对位置。所以,相对于虚拟原点有:
系统控制器302进行下列计算,以推得确定实际导管顶端的磁性元件的中心点:
于是,GCI装置501如下驱动实施X-Y平面中的旋转:
以及如下驱动实施X-Z平面中的旋转:
利用这些结果,系统控制器302可以将实际导管顶端377的位置和要求的顶端位置进行比较。图23所示为系统控制器(SC)302为了确定实际顶端377的位置利用下列数学关系所作的逻辑计算:
1.系统控制器(SC)302阻断X轴控制器和放大器(XCA)305、Y轴控制器和放大器(YCA)310和Z轴控制器和放大器(ZCA)315的调制器输出。
2.X轴控制器和放大器(XCA)305、Y轴控制器和放大器(YCA)310以及Z轴控制器和放大器(ZCA)315读取磁场传感器阵列307、308、312、313、317、318的输出。
3.X轴控制器和放大器(XCA)305、Y轴控制器和放大器(YCA)310以及Z轴控制器和放大器(ZCA)315读取温度传感器(TS)阵列306、309、311、314、316和319的输出。
4.X轴控制器和放大器(XCA)305、Y轴控制器和放大器(YCA)310以及Z轴控制器和放大器(ZCA)315通过修正数据(通常存储在非易失性存储器105x、105y和105z中),对磁场传感器阵列307、308、312、313、317、318的输出进行数字温度补偿。
5.系统控制器(SC)302接受来自X轴控制器和放大器(XCA)305、Y轴控制器和放大器(YCA)310以及Z轴控制器和放大器(ZCA)315的经过修正的磁场传感器数据输入,并插入来自实际顶端生成的磁场的三个正交分量(Bx、By、Bz)的5轴数据集。并按下两个式子计算实际顶端的位置,其中
a)力矢量B 600的大小由下式给出:
b)力矢量B的方向则由下面三个角度给出:
6.系统控制器(SC)302通过通信控制器(CC)320输入心脏位置数据,该心脏位置(CP)数据来自辅助设备(X射线设备、超声设备等)。由于心脏的搏动,该心脏位置(CP)数据是动态的数据。
7.系统控制器根据心脏位置(CP)以及HP数据集计算出实际位置(AP)。
8.系统控制器(SC)302输入来自虚拟顶端/校准附件控制器(VT/CFC)303的虚拟顶端405位置数据。
9.系统控制器(SC)302将心脏位置(CP)数据和虚拟顶端(VT)位置结合在一起并计算出所需位置DP。
10.系统控制器(SC)302比较DP和AP,并确定位置误差(PE)。
11.如果位置误差PE小于误差阈值,系统控制器(SC)302使得X轴控制器和放大器(XCA)305、Y轴控制器和放大器(YCA)310以及Z轴控制器和放大器(ZCA)315继续以相同的调制参数及极性工作。
12.如果位置误差PE超出误差阈值,系统控制器(SC)302改变工作循环和/或改变输入给相应XCA305、YCA310、ZCA315的调制参数及极性。
如果任何轴上的位置误差(PE)在一个预定的时间内超过预定值,系统控制器(SC)302便通过虚拟顶端/校准附件控制器(VT/CFC)303,以控制步进电机55、57、59、61和63,产生触觉反馈,以此提醒操作者导管顶端遇到了一个阻碍。这是因为如下的假设,如果在GCI装置501正常工作条件下经过预期一段时间或是经过包括上述步骤1至12的预期个数的循环的矫正仍不能消除该位置误差,那么,实际导管顶端可能是遇到了一个阻碍。这个能够被操作者感觉到的触觉反馈是由于步进电机55、57、59、61和63产生了作用在虚拟顶端405上的阻力造成的。
对于操作者或外科医生来说,虚拟顶端405的操作是相对较为简单且直观的。外科医生只要在要求方向上推、拉,或者转动虚拟顶端405,便可使实际导管顶端377在体内作相对应的运动。如果实际导管顶端377遇到了阻碍,虚拟顶端405就会在适宜的轴线方向上对运动产生阻力,对操作者发出触觉反馈。于是,外科医生在送进实际顶端时便能感觉到阻力。当操作者的手从虚拟顶端405上松开时,实际导管顶端377便可靠地保持在现时位置上。系统控制器(SC)302使实际顶端位置AT和CP数据相关联,所述的CP数据来自辅助设备322并通过CC 320传送给PC 324,以与复合的顶端图像及X射线/超声图像一起显示在监视器325上。根据HP数据实时地进行连续更新所述AT位置的三维显示图像。所述CP数据显示上叠加了帧数相对比较少X射线图像。之所以能够将AT数据和CP数据相关,是因为X射线图像和MFS阵列具有公共参考点(亦即二者相对于搏动中的心脏是稳态的)。本发明的设备及方法不但提供一种对心脏和导管顶端377的优越的观测方法,同时还显著地减小了X射线对患者和工作人员的辐照量。
因此,可以见到,本发明的导管导引控制设备及方法给出一种装置,这种装置比较容易有效使用;对使用者需要最少的训练;能够快速地将导管顶端送进到准确的位置;需要更少种类的导管;能够有力地将导管顶端固定在要求位置上;能够操纵导向线通过曲折的路径;能够使导向线或气囊有力地穿过硬斑部位;能够三维地显示导管顶端的位置;显著降低患者的影像对比度增强剂使用剂量;显著降低X射线对患者和医疗人员的辐照量;使用直观;而且,当导管顶端遇到阻碍时,能够对操作者发出触觉反馈。
尽管上面已经详细描述了本发明的几种实施例,但这些内容不构成本发明的范围,而是仅仅用以说明本发明的实施例。在本发明的范围内还可以作出许多其它的变型或修改。例如,对电磁体的调制可以控制为使其能够使顶端产生一种振动或脉冲运动,以帮助它通过硬斑部位;响应顶端可以是电磁体而不是永久磁体;可由一个或多个永久磁体生成作用在患者身上的磁场;可以通过对产生磁场的器件进行手工调整完成外磁场的控制;可以通过在顶端上缠绕一个或多个线圈的方式,使该顶端可以响应所施加的时变磁场,从而使得该装置能够利用交流感应磁体产生作用磁场;居里温度处于体温以下几度的材料可以用作为磁通量开关,通过以合适温度的流体对该开关进行激发的方式,实施对顶端的可选择性控制;静电现象可以用来增强磁效;人工智能可以用来替代操作者发出操作指令;专家系统也可以用来替代或帮助操作者进行操作;本装置也可以用来孕育(incubate)心脏以外的各种体腔及器官;本装置也可用在人类及动物的比如卵子获取及胚胎植入等程序中;也可以将响应顶端附着在一个密合的光学纤维束上,以观看内部构造并使该光学纤维束具有前所未有的灵活性;可以用导引导管将一个集装的放射源直接递送到肿瘤上,以准确地实施内部放射性同位素治疗;可以用本装置进行内部组织取样,而不必作大的外科手术;可将本发明的响应顶端附着在光纤/光导装置上,以将激光准确地照射到体内的特定位置,而不必进行大的外科手术;先前困难的脂肪吸除及其它的皮下外科医疗程序都可以用本发明装置来准确地实施,如此等等。于是,本发明的范围仅由所附的权利要求书来界定。
Claims (66)
1.一种用于控制待插入患者体内之导管状工具运动的装置,它包括:
用于生成体外磁场的磁场源;
一个工具,该工具具有一个远端,该远端对所述磁场作出响应;
一个或多个磁传感器,所述磁传感器用于检测所述远端产生的磁场;以及
系统控制器,该控制器用于控制所述磁场源,以提供位置数据和指令输入,控制所述工具远端的位置。
2.如权利要求1所述的装置,其中,所述系统控制器包括一个闭环反馈侍服系统。
3.如权利要求1所述的装置,其中,所述远端包括一个或多个磁场传感器和一个或多个温度传感器。
4.如权利要求1所述的装置,其中,所述远端包括一个或多个磁场传感器,以对所述系统控制器提供检测数据。
5.如权利要求1所述的装置,其中,还包括操作者界面装置。
6.如权利要求1所述的装置,其中,所述侍服系统包括一个修正输入,该修正输入用以补偿器官的动态位置,从而对所述远端对所述磁场的响应作出修正,使该远端得以与所述器官的运动实质上一致。
7.如权利要求6所述的装置,其中,由一辅助器件生成所述修正输入,所述器件提供关于所述器官的动态位置修正数据;所述修正数据与由所述传感器提供的测量数据相复合,以对所述侍服系统的响应进行修正,使所述远端的运动实质上与所述器官一致。
8.如权利要求7所述的装置,其中,所述辅助器件为X射线器件、超声器件、雷达器件中的至少一种。
9.如权利要求1所述的装置,其中,所述系统控制器包括可由操作者控制输入的虚拟顶端控制器件。
10.如权利要求1所述的装置,其中,还包括
虚拟顶端及校准附件控制器;以及
虚拟顶端组件。
11.如权利要求1所述的装置,其中,还包括:
X轴控制器和放大器;
Y轴控制器和放大器;以及
Z轴控制器和放大器。
12.如权利要求1所述的装置,其中,还包括:
通信控制器;
校准附件;以及
一个或多个温度传感器。
13.如权利要求12所述的装置,其中,所述温度传感器与所述磁场传感器配成对。
14.如权利要求1所述的装置,其中,所述系统控制器使X轴控制器、Y轴控制器、Z轴控制器的工作一致;并且,所述系统控制器根据来自虚拟顶端的输入数据工作。
15.如权利要求14所述的装置,其中,所述虚拟顶端向操作者提供触觉反馈。
16.如权利要求14所述的装置,其中,所述虚拟顶端根据所述远端的实际位置和所述远端的所需位置之间的位置误差,向操作者提供触觉反馈。
17.如权利要求14所述的装置,其中,所述系统控制器使所述远端跟随所述虚拟顶端的运动而运动。
18.如权利要求14所述的装置,其中,还包括一个虚拟顶端/校准附件控制器,该控制器接受来自所述虚拟顶端的编码器位置、限止开关、以及操作者开关数据;并且,
所述虚拟顶端/校准附件控制器向所述虚拟顶端输出触觉反馈响应控制信号。
19.如权利要求1所述的装置,其中,所述系统控制器被构造成根据来自所述磁场传感器的至少一部分数据计算出所述远端的位置误差,并控制所述磁场源,以修正所述位置误差。
20.如权利要求1所述的装置,其中,所述系统控制器通过向操作者控制器提供反馈数据,生成触觉反馈响应。
21.一种用于控制具有待插入体内之远端的工具运动的方法,包括如下步骤:
通过生成外磁场对所述远端施加作用力;
调节所述作用力,使所述远端按所需方向运动;以及
通过测量所述远端的磁场确定所述远端的位置。
22.如权利要求21所述的方法,其中,还包括随着所述远端移过人体,实质上实时地更改所述远端的影像资料的步骤。
23.如权利要求21所述的方法,其中,还包括控制一个或多个电磁体以生成所述外磁场的步骤。
24.如权利要求21所述的方法,其中,还包括测量一个或多个磁场传感器的温度的步骤,所述磁场传感器测量所述远端的磁场。
25.如权利要求21所述的方法,其中,还包括确定所述远端的现有位置,并与所需位置比较的步骤。
26.如权利要求25所述的方法,其中,所述确定远端现有位置的步骤包括:
阻断系统控制器的调制器输出;
通过通信控制器输入心脏的动态位置;以及
计算所述远端的现有位置,该位置是所述心脏位置的函数。
27.如权利要求21所述的方法,其中,还包括计算所述远端位置误差的步骤。
28.如权利要求27所述的方法,其中,还包括步骤:当所述位置误差大于一定的最小值时,改变输入给所述X轴控制器、Y轴控制器、Z轴控制器中至少一个的调制工作周期及调制极性中的至少一项。
29.如权利要求27所述的方法,其中,还包括一旦沿至少一个轴的位置误差超过预定值便产生触觉反馈的步骤。
30.如权利要求21所述的方法,其中,所述系统控制器使所述工具的远端运动到与来自虚拟顶端的位置数据相应的位置。
31.一种用于控制具有待插入患者体内之远端的工具的运动的装置,它包括:
在C形臂上被布置成簇状的磁场源,所述C形臂形成闭合磁路,并产生磁场;
一个工具,它具有对所述磁场作出响应的远端;
一个或多个被置于所述远端附近的压电环;以及
系统控制器,用以调节所述磁场,以提供位置及指令输入信号,以控制所述工具的远端位置。
32.如权利要求31所述的装置,其中,还包括闭环侍服系统,它接受自所述系统控制器输入的所述位置和指令,以调节磁力。
33.如权利要求32所述的装置,其中,所述远端包括一个或多个磁场传感器和一个或多个温度传感器。
34.如权利要求33所述的装置,其中,所述控制系统被构造成计算所述磁场源内的转矩及相关电流,使所述磁场推动所述远端进入所需位置。
35.如权利要求34所述的装置,其中,所述闭环侍服电路包括一个修正数据输入,该数据输入用于补偿患者器官的动态位置及所述工具的取向,从而对所述远端关于所述磁场的响应作出修正,使所述远端得以与所述器官的运动实质上一致。
36.如权利要求35所述的装置,其中,由一个辅助器件生成所述修正数据输入,该辅助器件提供对应于所述器官的动态位置修正数据;所述修正数据与形成所述立体框架的一套基准标记以及来自检测装置测定的位置数据相复合,以修正所述侍服系统的响应,从而使所述远端的运动实质上与所述器官一致。
37.如权利要求36所述的装置,其中,所述辅助器件为X射线、超声、雷达设备中的任何一种或多种;所述设备形成与用于表示参考位置数据结合的立体框架,该立体框架与诸如心脏输出、心电图和肺的膨胀收缩等身体器官动态地一致运动。
38.如权利要求31所述的装置,其中,所述系统控制器包括一个虚拟顶端,至少一部分所述虚拟顶端的运动使该系统控制器对电磁体进行控制,以使所述远端相应地运动。
39.一种用于控制待插入患者体内之导管状工具的装置,它包括:
可控的磁场源,该磁场源具有第一极簇和第二极簇,所述第一极簇实际上与所述第二极簇相对;
一个工具,它具有远端,该远端对所述磁场作出响应;以及
一个或多个磁传感器,该磁传感器用于检测所述远端产生的磁场。
40.如权利要求39所述的装置,其中,所述远端包括一个或多个磁场传感器和一个或多个温度传感器。
41.如权利要求39所述的装置,其中,所述远端包括一个或多个磁场传感器,该磁场传感器用于向系统控制器提供检测数据。
42.如权利要求39所述的装置,其中,还包括操作者界面部分。
43.如权利要求39所述的装置,其中,所述第一极簇以磁性材料与所述第二极簇相连。
44.如权利要求39所述的装置,其中,还包括一个可由操作者控制输入的虚拟顶端控制器件。
45.如权利要求39所述的装置,其中,还包括:
一个虚拟顶端及修正附件控制器;以及
一个虚拟顶端组件。
46.如权利要求39所述的装置,其中,还包括:
通信控制器;
校准附件;以及
一个或多个温度传感器。
47.如权利要求39所述的装置,其中,所述温度传感器与所述磁场传感器配成对。
48.如权利要求39所述的装置,其中,还包括一个向操作者提供触觉反馈的虚拟顶端。
49.如权利要求48所述的装置,其中,所述虚拟顶端根据所述远端的实际位置和所述远端的所需位置之间的位置误差,向操作者提供触觉反馈。
50.如权利要求39所述的装置,其中,还包括系统控制器,它控制由所述三维磁场源产生的磁场,使所述远端跟随虚拟顶端的运动而运动。
51.一种产生磁场的装置,它包括:
第一电磁极的第一极簇,该第一极簇包含大量磁性材料;
第一电磁线圈簇,它被设置于所述第一电磁极簇上,该第一电磁线圈簇可由一个实质独立的装置来控制;
第二电磁极的第二极簇,该第二极簇也包括大量磁性材料,使所述第二电磁极的第二极簇实质上与第一电磁极的第一极簇相对,所述大量磁性材料实现由所述第一极簇和所述第二极簇形成的磁路;以及
第二电磁线圈簇,它被设置于所述第二电磁极簇上,该第二电磁线圈簇可由一个实质独立的装置来控制,使所述第一极簇与第二极簇之间区域内的磁场取向是多维可控的。
52.如权利要求51所述的装置,其中,所述第一电磁极的第一极簇包括三个电磁极。
53.如权利要求51所述的装置,其中,所述第一电磁极的极面实质上为球面。
54.如权利要求51所述的装置,其中,所述第一电磁极的极面实质上为球面,而所述第二电磁极的极面实质上位于所述球面上。
55.如权利要求51所述的装置,其中,还包括系统控制器,它控制所述第一电磁线圈簇和第二电磁线圈簇中的电流,以控制所述电磁场的取向。
56.如权利要求51所述的装置,其中,还包括:
一个具有远端的工具,该远端响应所述磁场的取向;以及
一个或多个磁场传感器,该磁场传感器用于检测所述远端产生的磁场。
57.如权利要求56所述的装置,其中,所述远端包括一个或多个磁场传感器和一个或多个温度传感器。
58.如权利要求56所述的装置,其中,还包括一个可由操作者控制输入的虚拟顶端控制器件。
59.如权利要求56所述的装置,其中,还包括一个向操作者提供触觉反馈的虚拟顶端。
60.如权利要求59所述的装置,其中,所述虚拟顶端根据所述远端的实际位置和所述远端的所需位置之间的位置误差向操作者提供触觉反馈。
61.如权利要求56所述的装置,其中,还包括系统控制器,它控制所述第一电磁线圈簇和第二电磁线圈簇中的电流,以控制所述电磁场的取向,从而对所述远端施加磁力。
62.一种导管顶端组件,它包括:
永久磁体,以及
一个或多个压电环。
63.一种控制具有待插入体内之远端的工具的运动的方法,包括如下步骤:
计算所述远端所需的运动方向;
计算产生所述运动所需的磁场;
控制多个电磁线圈中的电流,产生所述磁场;以及
测量所述远端的磁场,以定位所述远端。
64.如权利要求21所述的方法,其中,所述计算磁场的步骤包括:
确定所述远端关于一个或多个磁极的现有位置;以及
利用查表,找出产生所述运动所需的磁场。
65.如权利要求63所述的方法,其中,还包括控制一个或多个电磁体产生所述外磁场的步骤。
66.如权利要求63所述的方法,其中,还包括测量一个或多个磁场传感器的温度的步骤,所述传感器用于测量所述远端的磁场。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39630202P | 2002-07-16 | 2002-07-16 | |
US60/396,302 | 2002-07-16 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101748796A Division CN101444424B (zh) | 2002-07-16 | 2003-07-16 | 导管的导引控制及成像设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1681448A true CN1681448A (zh) | 2005-10-12 |
CN100438826C CN100438826C (zh) | 2008-12-03 |
Family
ID=30116005
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101748796A Expired - Fee Related CN101444424B (zh) | 2002-07-16 | 2003-07-16 | 导管的导引控制及成像设备 |
CNB038215977A Expired - Fee Related CN100438826C (zh) | 2002-07-16 | 2003-07-16 | 导管的导引控制及成像设备 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101748796A Expired - Fee Related CN101444424B (zh) | 2002-07-16 | 2003-07-16 | 导管的导引控制及成像设备 |
Country Status (9)
Country | Link |
---|---|
US (4) | US7769427B2 (zh) |
EP (2) | EP1521555B1 (zh) |
JP (2) | JP4511351B2 (zh) |
CN (2) | CN101444424B (zh) |
AT (1) | ATE440560T1 (zh) |
AU (1) | AU2003249273A1 (zh) |
CA (1) | CA2493869C (zh) |
DE (1) | DE60328990D1 (zh) |
WO (1) | WO2004006795A1 (zh) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101256873B (zh) * | 2007-12-26 | 2011-02-09 | 中国科学院电工研究所 | 一种空间旋转磁场发生装置及其控制方法 |
CN101129264B (zh) * | 2006-08-21 | 2012-02-08 | 韦伯斯特生物官能公司 | 利用频率外推的抗失真位置跟踪 |
CN104188725A (zh) * | 2014-08-26 | 2014-12-10 | 中国科学院电工研究所 | 一种心脏磁导航手术系统的磁场发生装置 |
CN104490476A (zh) * | 2014-12-24 | 2015-04-08 | 天津理工大学 | 用于血管介入手术辅助系统的多维信息监控系统及显示方法 |
CN104605855A (zh) * | 2008-02-29 | 2015-05-13 | 韦伯斯特生物官能公司 | 具有虚拟触摸屏的定位系统 |
CN105813560A (zh) * | 2013-11-06 | 2016-07-27 | 圣犹达医疗用品国际控股有限公司 | 在c摇臂x射线环境中具有极小图像遮挡和对尺寸的极小影响的磁场生成器 |
CN106999094A (zh) * | 2014-12-01 | 2017-08-01 | 皇家飞利浦有限公司 | 用于基于导管的导航的虚拟定向的电磁跟踪线圈 |
JP2019526930A (ja) * | 2016-08-10 | 2019-09-19 | 漢陽大学校産学協力団Industry−University Cooperation Foundation Hanyang University | 磁場制御システム |
CN110301883A (zh) * | 2018-03-27 | 2019-10-08 | 美国西门子医疗系统股份有限公司 | 用于导航管状网络的基于图像的向导 |
CN111920395A (zh) * | 2020-07-22 | 2020-11-13 | 上海掌门科技有限公司 | 一种脉搏采集装置 |
CN112133515A (zh) * | 2020-10-21 | 2020-12-25 | 重庆大学 | 一种超导线圈绝缘支架及超导线圈与绕制方法 |
WO2021000424A1 (en) * | 2019-07-03 | 2021-01-07 | Orion Biotech Inc. | Positioning and navigation system for surgery and operating method thereof |
CN112826569A (zh) * | 2021-01-05 | 2021-05-25 | 西安交通大学医学院第一附属医院 | 一种心血管支架的清洗装置及其清洗方法 |
US11617511B2 (en) | 2016-11-21 | 2023-04-04 | St Jude Medical International Holdings Sarl | Fluorolucent magnetic field generator |
CN116407289A (zh) * | 2023-03-09 | 2023-07-11 | 极限人工智能有限公司 | 一种用于血管介入手术的导管弯曲控制系统及手术装置 |
Families Citing this family (773)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6703418B2 (en) * | 1991-02-26 | 2004-03-09 | Unimed Pharmaceuticals, Inc. | Appetite stimulation and induction of weight gain in patients suffering from symptomatic HIV infection |
US7066924B1 (en) * | 1997-11-12 | 2006-06-27 | Stereotaxis, Inc. | Method of and apparatus for navigating medical devices in body lumens by a guide wire with a magnetic tip |
US6505062B1 (en) * | 1998-02-09 | 2003-01-07 | Stereotaxis, Inc. | Method for locating magnetic implant by source field |
US20040030244A1 (en) * | 1999-08-06 | 2004-02-12 | Garibaldi Jeffrey M. | Method and apparatus for magnetically controlling catheters in body lumens and cavities |
US6902528B1 (en) * | 1999-04-14 | 2005-06-07 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling endoscopes in body lumens and cavities |
US7313429B2 (en) * | 2002-01-23 | 2007-12-25 | Stereotaxis, Inc. | Rotating and pivoting magnet for magnetic navigation |
US6702804B1 (en) * | 1999-10-04 | 2004-03-09 | Stereotaxis, Inc. | Method for safely and efficiently navigating magnetic devices in the body |
US6401723B1 (en) * | 2000-02-16 | 2002-06-11 | Stereotaxis, Inc. | Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments |
US6940379B2 (en) * | 2000-04-11 | 2005-09-06 | Stereotaxis, Inc. | Magnets with varying magnetization direction and method of making such magnets |
US6856006B2 (en) * | 2002-03-28 | 2005-02-15 | Siliconix Taiwan Ltd | Encapsulation method and leadframe for leadless semiconductor packages |
US7766856B2 (en) * | 2001-05-06 | 2010-08-03 | Stereotaxis, Inc. | System and methods for advancing a catheter |
EP1389958B1 (en) * | 2001-05-06 | 2008-10-29 | Stereotaxis, Inc. | System for advancing a catheter |
US7635342B2 (en) * | 2001-05-06 | 2009-12-22 | Stereotaxis, Inc. | System and methods for medical device advancement and rotation |
FR2831823B1 (fr) * | 2001-11-07 | 2004-07-23 | Saphir Medical | Appareil de liposuccion a jet de liquide sous pression et procede de liposuccion utilisant cet appareil |
US7161453B2 (en) * | 2002-01-23 | 2007-01-09 | Stereotaxis, Inc. | Rotating and pivoting magnet for magnetic navigation |
US7248914B2 (en) * | 2002-06-28 | 2007-07-24 | Stereotaxis, Inc. | Method of navigating medical devices in the presence of radiopaque material |
US7769427B2 (en) * | 2002-07-16 | 2010-08-03 | Magnetics, Inc. | Apparatus and method for catheter guidance control and imaging |
AU2003295741A1 (en) | 2002-11-18 | 2004-06-15 | Stereotaxis, Inc. | Magnetically navigable balloon catheters |
US10413211B2 (en) | 2003-02-21 | 2019-09-17 | 3Dt Holdings, Llc | Systems, devices, and methods for mapping organ profiles |
US8078274B2 (en) | 2003-02-21 | 2011-12-13 | Dtherapeutics, Llc | Device, system and method for measuring cross-sectional areas in luminal organs |
US10172538B2 (en) | 2003-02-21 | 2019-01-08 | 3Dt Holdings, Llc | Body lumen junction localization |
US7818053B2 (en) | 2003-02-21 | 2010-10-19 | Dtherapeutics, Llc | Devices, systems and methods for plaque type determination |
WO2008091609A2 (en) * | 2007-01-23 | 2008-07-31 | Dtherapeutics, Llc | Devices, systems, and methods for mapping organ profiles |
US8862203B2 (en) * | 2003-03-27 | 2014-10-14 | Boston Scientific Scimed Inc. | Medical device with temperature modulator for use in magnetic resonance imaging |
US7389778B2 (en) * | 2003-05-02 | 2008-06-24 | Stereotaxis, Inc. | Variable magnetic moment MR navigation |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US6980843B2 (en) * | 2003-05-21 | 2005-12-27 | Stereotaxis, Inc. | Electrophysiology catheter |
US20050261591A1 (en) * | 2003-07-21 | 2005-11-24 | The Johns Hopkins University | Image guided interventions with interstitial or transmission ultrasound |
US8150495B2 (en) | 2003-08-11 | 2012-04-03 | Veran Medical Technologies, Inc. | Bodily sealants and methods and apparatus for image-guided delivery of same |
US7398116B2 (en) | 2003-08-11 | 2008-07-08 | Veran Medical Technologies, Inc. | Methods, apparatuses, and systems useful in conducting image guided interventions |
DE202004021949U1 (de) | 2003-09-12 | 2013-05-27 | Vessix Vascular, Inc. | Auswählbare exzentrische Remodellierung und/oder Ablation von atherosklerotischem Material |
WO2005029258A2 (en) * | 2003-09-16 | 2005-03-31 | Stereotaxis, Inc. | User interface for remote control of medical devices |
US7280863B2 (en) * | 2003-10-20 | 2007-10-09 | Magnetecs, Inc. | System and method for radar-assisted catheter guidance and control |
US20050096538A1 (en) | 2003-10-29 | 2005-05-05 | Siemens Medical Solutions Usa, Inc. | Image plane stabilization for medical imaging |
US20050154284A1 (en) * | 2003-12-31 | 2005-07-14 | Wright J. N. | Method and system for calibration of a marker localization sensing array |
JP4980728B2 (ja) * | 2004-02-18 | 2012-07-18 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 脈管系における精細なナビゲーションに対するカテーテル装置 |
WO2005098556A2 (en) * | 2004-04-01 | 2005-10-20 | Systems, Machines, Automation Components, Corporation | Programmable control system for automated actuator operation |
US20060041181A1 (en) | 2004-06-04 | 2006-02-23 | Viswanathan Raju R | User interface for remote control of medical devices |
US20060036163A1 (en) * | 2004-07-19 | 2006-02-16 | Viswanathan Raju R | Method of, and apparatus for, controlling medical navigation systems |
US20060144407A1 (en) * | 2004-07-20 | 2006-07-06 | Anthony Aliberto | Magnetic navigation manipulation apparatus |
US20080006280A1 (en) * | 2004-07-20 | 2008-01-10 | Anthony Aliberto | Magnetic navigation maneuvering sheath |
US20060144408A1 (en) * | 2004-07-23 | 2006-07-06 | Ferry Steven J | Micro-catheter device and method of using same |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
JP4709594B2 (ja) * | 2004-08-03 | 2011-06-22 | オリンパス株式会社 | 磁気誘導医療システム |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
US7831294B2 (en) * | 2004-10-07 | 2010-11-09 | Stereotaxis, Inc. | System and method of surgical imagining with anatomical overlay for navigation of surgical devices |
EP1846894A4 (en) | 2004-12-20 | 2009-10-21 | Stereotaxis Inc | EXAGER CONTACT TIGHTENING COMPRISING THREE DIMENSIONAL ANATOMICAL DATA |
WO2006076394A2 (en) * | 2005-01-11 | 2006-07-20 | Stereotaxis, Inc. | Navigation using sensed physiological data as feedback |
US20100312129A1 (en) | 2005-01-26 | 2010-12-09 | Schecter Stuart O | Cardiovascular haptic handle system |
US7756308B2 (en) * | 2005-02-07 | 2010-07-13 | Stereotaxis, Inc. | Registration of three dimensional image data to 2D-image-derived data |
US20060228121A1 (en) * | 2005-03-29 | 2006-10-12 | General Electric Company | Remote monitoring system and method |
DE102005014854A1 (de) * | 2005-03-30 | 2006-10-12 | Siemens Ag | Verfahren zum Bereitstellen von Messdaten für die zielgenaue örtliche Positionierung eines Katheters |
WO2006121974A2 (en) * | 2005-05-06 | 2006-11-16 | Stereotaxis, Inc. | User interfaces and navigation methods for vascular navigation |
US7742803B2 (en) * | 2005-05-06 | 2010-06-22 | Stereotaxis, Inc. | Voice controlled user interface for remote navigation systems |
EP1896114B1 (en) * | 2005-05-10 | 2017-07-12 | Corindus Inc. | User interface for remote control catheterization |
US8027714B2 (en) * | 2005-05-27 | 2011-09-27 | Magnetecs, Inc. | Apparatus and method for shaped magnetic field control for catheter, guidance, control, and imaging |
US20070060992A1 (en) * | 2005-06-02 | 2007-03-15 | Carlo Pappone | Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery |
US20070062546A1 (en) * | 2005-06-02 | 2007-03-22 | Viswanathan Raju R | Electrophysiology catheter and system for gentle and firm wall contact |
DE102005028226A1 (de) | 2005-06-17 | 2006-12-28 | Siemens Ag | Vorrichtung zur Steuerung eines magnetischen Elements im Körper eines Patienten |
DE102005028744A1 (de) * | 2005-06-21 | 2006-12-28 | Siemens Ag | Verfahren zum Führen eines chirurgischen Instruments |
US20070001905A1 (en) * | 2005-06-30 | 2007-01-04 | Esa Eronen | Detecting the position of X-ray detector |
US20070038065A1 (en) * | 2005-07-07 | 2007-02-15 | Creighton Francis M Iv | Operation of a remote medical navigation system using ultrasound image |
US20070021744A1 (en) * | 2005-07-07 | 2007-01-25 | Creighton Francis M Iv | Apparatus and method for performing ablation with imaging feedback |
US9314222B2 (en) * | 2005-07-07 | 2016-04-19 | Stereotaxis, Inc. | Operation of a remote medical navigation system using ultrasound image |
US7603905B2 (en) * | 2005-07-08 | 2009-10-20 | Stereotaxis, Inc. | Magnetic navigation and imaging system |
US7769444B2 (en) | 2005-07-11 | 2010-08-03 | Stereotaxis, Inc. | Method of treating cardiac arrhythmias |
US7690619B2 (en) * | 2005-07-12 | 2010-04-06 | Stereotaxis, Inc. | Apparatus for pivotally orienting a projection device |
US20070016131A1 (en) * | 2005-07-12 | 2007-01-18 | Munger Gareth T | Flexible magnets for navigable medical devices |
US7416335B2 (en) * | 2005-07-15 | 2008-08-26 | Sterotaxis, Inc. | Magnetically shielded x-ray tube |
US8192374B2 (en) * | 2005-07-18 | 2012-06-05 | Stereotaxis, Inc. | Estimation of contact force by a medical device |
US20070062547A1 (en) * | 2005-07-21 | 2007-03-22 | Carlo Pappone | Systems for and methods of tissue ablation |
US20070060829A1 (en) * | 2005-07-21 | 2007-03-15 | Carlo Pappone | Method of finding the source of and treating cardiac arrhythmias |
US7818076B2 (en) | 2005-07-26 | 2010-10-19 | Stereotaxis, Inc. | Method and apparatus for multi-system remote surgical navigation from a single control center |
US20070060962A1 (en) * | 2005-07-26 | 2007-03-15 | Carlo Pappone | Apparatus and methods for cardiac resynchronization therapy and cardiac contractility modulation |
US20070043455A1 (en) * | 2005-07-26 | 2007-02-22 | Viswanathan Raju R | Apparatus and methods for automated sequential movement control for operation of a remote navigation system |
US7495537B2 (en) * | 2005-08-10 | 2009-02-24 | Stereotaxis, Inc. | Method and apparatus for dynamic magnetic field control using multiple magnets |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US7673781B2 (en) | 2005-08-31 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with staple driver that supports multiple wire diameter staples |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US20070055124A1 (en) * | 2005-09-01 | 2007-03-08 | Viswanathan Raju R | Method and system for optimizing left-heart lead placement |
DE102005042326B4 (de) * | 2005-09-06 | 2008-01-31 | Siemens Ag | Katheterisierungseinrichtung mit einem steuerbaren Katheter |
US20070066881A1 (en) | 2005-09-13 | 2007-03-22 | Edwards Jerome R | Apparatus and method for image guided accuracy verification |
WO2007033206A2 (en) | 2005-09-13 | 2007-03-22 | Veran Medical Technologies, Inc. | Apparatus and method for image guided accuracy verification |
CA2520942C (en) * | 2005-09-23 | 2013-03-19 | Queen's University At Kingston | Tactile amplification instrument and method of use |
FR2891153B1 (fr) * | 2005-09-28 | 2008-08-22 | Centre Nat Rech Scient | Dispositif de traitement thermique de tissus biologiques en mouvement |
WO2007037380A1 (ja) * | 2005-09-30 | 2007-04-05 | Hitachi Metals, Ltd. | 磁界制御方法および磁界発生装置 |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US20070167720A1 (en) * | 2005-12-06 | 2007-07-19 | Viswanathan Raju R | Smart card control of medical devices |
US20070149946A1 (en) * | 2005-12-07 | 2007-06-28 | Viswanathan Raju R | Advancer system for coaxial medical devices |
JP4671287B2 (ja) * | 2005-12-22 | 2011-04-13 | 独立行政法人国立がん研究センター | 磁気発生装置 |
DE102006000709A1 (de) * | 2006-01-03 | 2007-07-12 | Siemens Ag | Navigationseinrichtung umfassend eine Magnetfelderzeugungseinrichtung zum Erzeugen eines Magnetfelds zum Bewegen eines medizinischen Instruments, insbesondere eines Katheters |
US20070161882A1 (en) * | 2006-01-06 | 2007-07-12 | Carlo Pappone | Electrophysiology catheter and system for gentle and firm wall contact |
US9717468B2 (en) * | 2006-01-10 | 2017-08-01 | Mediguide Ltd. | System and method for positioning an artificial heart valve at the position of a malfunctioning valve of a heart through a percutaneous route |
US20080015670A1 (en) * | 2006-01-17 | 2008-01-17 | Carlo Pappone | Methods and devices for cardiac ablation |
US20070197899A1 (en) * | 2006-01-17 | 2007-08-23 | Ritter Rogers C | Apparatus and method for magnetic navigation using boost magnets |
US20070197906A1 (en) * | 2006-01-24 | 2007-08-23 | Ritter Rogers C | Magnetic field shape-adjustable medical device and method of using the same |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US7869854B2 (en) * | 2006-02-23 | 2011-01-11 | Magnetecs, Inc. | Apparatus for magnetically deployable catheter with MOSFET sensor and method for mapping and ablation |
US8236010B2 (en) | 2006-03-23 | 2012-08-07 | Ethicon Endo-Surgery, Inc. | Surgical fastener and cutter with mimicking end effector |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US20070250041A1 (en) * | 2006-04-19 | 2007-10-25 | Werp Peter R | Extendable Interventional Medical Devices |
DE102006029455B4 (de) * | 2006-06-27 | 2009-06-25 | Erbe Elektromedizin Gmbh | Vorrichtung zur Behandlung von menschlichem oder tierischem Gewebe |
US8019435B2 (en) | 2006-05-02 | 2011-09-13 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US7734341B2 (en) | 2006-06-06 | 2010-06-08 | Cardiac Pacemakers, Inc. | Method and apparatus for gastrointestinal stimulation via the lymphatic system |
US7894906B2 (en) | 2006-06-06 | 2011-02-22 | Cardiac Pacemakers, Inc. | Amelioration of chronic pain by endolymphatic stimulation |
US20070282376A1 (en) | 2006-06-06 | 2007-12-06 | Shuros Allan C | Method and apparatus for neural stimulation via the lymphatic system |
US8126538B2 (en) * | 2006-06-06 | 2012-02-28 | Cardiac Pacemakers, Inc. | Method and apparatus for introducing endolymphatic instrumentation |
US7526337B2 (en) | 2006-06-06 | 2009-04-28 | Cardiac Pacemakers, Inc. | Method and device for lymphatic system monitoring |
US20080009712A1 (en) * | 2006-06-16 | 2008-01-10 | Adams Mark L | Apparatus and Methods for Maneuvering a Therapeutic Tool Within a Body Lumen |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US20080015427A1 (en) * | 2006-06-30 | 2008-01-17 | Nathan Kastelein | System and network for remote medical procedures |
WO2008022148A2 (en) * | 2006-08-14 | 2008-02-21 | Stereotaxis, Inc. | Method and apparatus for ablative recanalization of blocked vasculature |
US7961924B2 (en) | 2006-08-21 | 2011-06-14 | Stereotaxis, Inc. | Method of three-dimensional device localization using single-plane imaging |
US20080114335A1 (en) * | 2006-08-23 | 2008-05-15 | William Flickinger | Medical Device Guide |
FR2905277B1 (fr) * | 2006-08-29 | 2009-04-17 | Centre Nat Rech Scient | Dispositif de traitement volumique de tissus biologiques |
US8905999B2 (en) | 2006-09-01 | 2014-12-09 | Cardiac Pacemakers, Inc. | Method and apparatus for endolymphatic drug delivery |
US7747960B2 (en) | 2006-09-06 | 2010-06-29 | Stereotaxis, Inc. | Control for, and method of, operating at least two medical systems |
US8244824B2 (en) * | 2006-09-06 | 2012-08-14 | Stereotaxis, Inc. | Coordinated control for multiple computer-controlled medical systems |
AU2006347875B2 (en) * | 2006-09-06 | 2010-10-28 | Olympus Corporation | Medical device control system |
US8242972B2 (en) | 2006-09-06 | 2012-08-14 | Stereotaxis, Inc. | System state driven display for medical procedures |
US7567233B2 (en) * | 2006-09-06 | 2009-07-28 | Stereotaxis, Inc. | Global input device for multiple computer-controlled medical systems |
US8273081B2 (en) * | 2006-09-08 | 2012-09-25 | Stereotaxis, Inc. | Impedance-based cardiac therapy planning method with a remote surgical navigation system |
WO2008033829A2 (en) * | 2006-09-11 | 2008-03-20 | Stereotaxis, Inc. | Automated mapping of anatomical features of heart chambers |
DE102006045175A1 (de) * | 2006-09-25 | 2008-04-03 | Siemens Ag | Medizinische Untersuchungs- und/oder Behandlungseinrichtung |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US20080078802A1 (en) | 2006-09-29 | 2008-04-03 | Hess Christopher J | Surgical staples and stapling instruments |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US8694077B2 (en) | 2006-10-06 | 2014-04-08 | The Cleveland Clinic Foundation | Apparatus and method for targeting a body tissue |
WO2008070262A2 (en) * | 2006-10-06 | 2008-06-12 | The Cleveland Clinic Foundation | Apparatus and method for targeting a body tissue |
JP5312337B2 (ja) | 2006-10-18 | 2013-10-09 | べシックス・バスキュラー・インコーポレイテッド | 標的組織の選択的な処置のための調節されたrfエネルギーおよび電気的な組織の特徴付け |
WO2008049082A2 (en) | 2006-10-18 | 2008-04-24 | Minnow Medical, Inc. | Inducing desirable temperature effects on body tissue |
EP2076194B1 (en) | 2006-10-18 | 2013-04-24 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US8135185B2 (en) * | 2006-10-20 | 2012-03-13 | Stereotaxis, Inc. | Location and display of occluded portions of vessels on 3-D angiographic images |
DE102006051978A1 (de) * | 2006-11-03 | 2008-05-08 | Smiths Medical Deutschland Gmbh | Katheter |
US20080132910A1 (en) * | 2006-11-07 | 2008-06-05 | Carlo Pappone | Control for a Remote Navigation System |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8827133B2 (en) | 2007-01-11 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling device having supports for a flexible drive mechanism |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
WO2008091610A2 (en) * | 2007-01-23 | 2008-07-31 | Cvdevices, Llc | Systems and methods for epicardial navigation |
US20080200913A1 (en) * | 2007-02-07 | 2008-08-21 | Viswanathan Raju R | Single Catheter Navigation for Diagnosis and Treatment of Arrhythmias |
WO2008100974A2 (en) | 2007-02-13 | 2008-08-21 | Sharma Virender K | Method and apparatus for electrical stimulation of the pancreatico-biliary system |
US20080208912A1 (en) * | 2007-02-26 | 2008-08-28 | Garibaldi Jeffrey M | System and method for providing contextually relevant medical information |
US20080228065A1 (en) * | 2007-03-13 | 2008-09-18 | Viswanathan Raju R | System and Method for Registration of Localization and Imaging Systems for Navigational Control of Medical Devices |
US20080228068A1 (en) * | 2007-03-13 | 2008-09-18 | Viswanathan Raju R | Automated Surgical Navigation with Electro-Anatomical and Pre-Operative Image Data |
US8590762B2 (en) | 2007-03-15 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Staple cartridge cavity configurations |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US8979837B2 (en) | 2007-04-04 | 2015-03-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Flexible tip catheter with extended fluid lumen |
US8517999B2 (en) | 2007-04-04 | 2013-08-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated catheter with improved fluid flow |
US8764742B2 (en) | 2007-04-04 | 2014-07-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated catheter |
US8187267B2 (en) | 2007-05-23 | 2012-05-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation catheter with flexible tip and methods of making the same |
US20080249395A1 (en) * | 2007-04-06 | 2008-10-09 | Yehoshua Shachar | Method and apparatus for controlling catheter positioning and orientation |
US8715195B2 (en) * | 2007-04-11 | 2014-05-06 | Elcam Medical Agricultural Cooperative | System and method for accurate placement of a catheter tip in a patient |
US8382706B2 (en) * | 2007-04-13 | 2013-02-26 | General Electric Company | User interface for configuring an invasive cardiology digital signal amplifier and method of use |
JP4908299B2 (ja) * | 2007-04-19 | 2012-04-04 | 株式会社東芝 | 超電導マグネット装置 |
US20080287909A1 (en) * | 2007-05-17 | 2008-11-20 | Viswanathan Raju R | Method and apparatus for intra-chamber needle injection treatment |
US20080294232A1 (en) * | 2007-05-22 | 2008-11-27 | Viswanathan Raju R | Magnetic cell delivery |
US8974454B2 (en) | 2009-12-31 | 2015-03-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Kit for non-invasive electrophysiology procedures and method of its use |
US8734440B2 (en) * | 2007-07-03 | 2014-05-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheter |
WO2009023385A1 (en) | 2007-07-03 | 2009-02-19 | Irvine Biomedical, Inc. | Magnetically guided catheter with flexible tip |
CN101311284A (zh) * | 2007-05-24 | 2008-11-26 | 鸿富锦精密工业(深圳)有限公司 | 镁合金及镁合金薄材 |
US11672531B2 (en) | 2007-06-04 | 2023-06-13 | Cilag Gmbh International | Rotary drive systems for surgical instruments |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US20080312673A1 (en) * | 2007-06-05 | 2008-12-18 | Viswanathan Raju R | Method and apparatus for CTO crossing |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US8024024B2 (en) * | 2007-06-27 | 2011-09-20 | Stereotaxis, Inc. | Remote control of medical devices using real time location data |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
EP2205145A4 (en) * | 2007-07-06 | 2013-06-19 | Stereotaxis Inc | MANAGEMENT OF A MEDICAL LIVE REMOTE DISPLAY |
US20110046659A1 (en) * | 2007-07-09 | 2011-02-24 | Immersion Corporation | Minimally Invasive Surgical Tools With Haptic Feedback |
US20090082722A1 (en) * | 2007-08-21 | 2009-03-26 | Munger Gareth T | Remote navigation advancer devices and methods of use |
EP2192885B1 (en) * | 2007-08-30 | 2013-02-20 | Syncro Medical Innovations, Inc. | Guided catheter with removable magnetic guide |
KR100871886B1 (ko) * | 2007-09-03 | 2008-12-05 | 한국전자통신연구원 | 라우터 시스템의 전송경로 결정방법 |
US20090105579A1 (en) * | 2007-10-19 | 2009-04-23 | Garibaldi Jeffrey M | Method and apparatus for remotely controlled navigation using diagnostically enhanced intra-operative three-dimensional image data |
US8231618B2 (en) | 2007-11-05 | 2012-07-31 | Stereotaxis, Inc. | Magnetically guided energy delivery apparatus |
US20090131798A1 (en) * | 2007-11-19 | 2009-05-21 | Minar Christopher D | Method and apparatus for intravascular imaging and occlusion crossing |
US20090131927A1 (en) * | 2007-11-20 | 2009-05-21 | Nathan Kastelein | Method and apparatus for remote detection of rf ablation |
AU2008329676B2 (en) | 2007-11-26 | 2015-03-05 | Attractive Surgical, Llc | Magnaretractor system and method |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
RU2493788C2 (ru) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US9585657B2 (en) | 2008-02-15 | 2017-03-07 | Ethicon Endo-Surgery, Llc | Actuator for releasing a layer of material from a surgical end effector |
US20090306643A1 (en) * | 2008-02-25 | 2009-12-10 | Carlo Pappone | Method and apparatus for delivery and detection of transmural cardiac ablation lesions |
US20090275828A1 (en) * | 2008-05-01 | 2009-11-05 | Magnetecs, Inc. | Method and apparatus for creating a high resolution map of the electrical and mechanical properties of the heart |
EP2821094B1 (en) | 2008-05-06 | 2018-07-04 | Corindus Inc. | Catheter system |
US9002435B2 (en) * | 2008-06-30 | 2015-04-07 | General Electric Company | System and method for integrating electromagnetic microsensors in guidewires |
US8489177B2 (en) * | 2008-07-16 | 2013-07-16 | Dilon Technologies, Inc. | Fiducial marker and method for gamma guided stereotactic localization |
EP2320990B2 (en) | 2008-08-29 | 2023-05-31 | Corindus, Inc. | Catheter control system and graphical user interface |
EP2331182A1 (en) * | 2008-09-02 | 2011-06-15 | Syncro Medical Innovations, Inc. | Magnetic device for guiding catheter and method of use therefor |
US20100069733A1 (en) * | 2008-09-05 | 2010-03-18 | Nathan Kastelein | Electrophysiology catheter with electrode loop |
US9679499B2 (en) * | 2008-09-15 | 2017-06-13 | Immersion Medical, Inc. | Systems and methods for sensing hand motion by measuring remote displacement |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US9079028B2 (en) | 2008-10-09 | 2015-07-14 | Virender K. Sharma | Method and apparatus for stimulating the vascular system |
US10603489B2 (en) | 2008-10-09 | 2020-03-31 | Virender K. Sharma | Methods and apparatuses for stimulating blood vessels in order to control, treat, and/or prevent a hemorrhage |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US11298568B2 (en) * | 2008-10-30 | 2022-04-12 | Auris Health, Inc. | System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion |
CN102271603A (zh) | 2008-11-17 | 2011-12-07 | 明诺医学股份有限公司 | 得知或未得知组织形态的选择性能量积累 |
US8457714B2 (en) * | 2008-11-25 | 2013-06-04 | Magnetecs, Inc. | System and method for a catheter impedance seeking device |
US9370664B2 (en) | 2009-01-15 | 2016-06-21 | Boston Scientific Neuromodulation Corporation | Signaling error conditions in an implantable medical device system using simple charging coil telemetry |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
CL2009000279A1 (es) | 2009-02-06 | 2009-08-14 | Biotech Innovations Ltda | Sistema de guia y traccion remota para cirugia mini-invasiva, que comprende: al menos una endopinza quirurgica y desprendible con medios de enganches y una porcion de material ferro magnaetico, una guia de introduccion de forma cilindrica, un mecanismo de desprendimiento, y al menos un medio de traccion remota con iman. |
JP2012517287A (ja) | 2009-02-06 | 2012-08-02 | エシコン・エンド−サージェリィ・インコーポレイテッド | 被駆動式手術用ステープラの改良 |
EP4252820A3 (en) | 2009-03-18 | 2023-11-29 | Corindus, Inc. | Remote catheter system with steerable catheter |
JP2012527966A (ja) * | 2009-05-25 | 2012-11-12 | ステレオタクシス インコーポレーテッド | 遠隔マニピュレータ装置 |
US10537713B2 (en) * | 2009-05-25 | 2020-01-21 | Stereotaxis, Inc. | Remote manipulator device |
US8986214B2 (en) * | 2009-05-29 | 2015-03-24 | Magnetecs Inc. | System and method for using tissue contact information in an automated mapping of cardiac chambers employing magnetically shaped fields |
US20100305402A1 (en) * | 2009-05-29 | 2010-12-02 | Magnetecs,Inc. | Method and apparatus for magnetic waveguide forming a shaped field employing a magnetic aperture for guiding and controlling a medical device |
WO2010144419A2 (en) | 2009-06-08 | 2010-12-16 | Surgivision, Inc. | Mri-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time |
WO2010148088A2 (en) | 2009-06-16 | 2010-12-23 | Surgivision, Inc. | Mri-guided devices and mri-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
US20110046618A1 (en) * | 2009-08-04 | 2011-02-24 | Minar Christopher D | Methods and systems for treating occluded blood vessels and other body cannula |
WO2011046874A1 (en) | 2009-10-12 | 2011-04-21 | Corindus Inc. | Catheter system with percutaneous device movement algorithm |
US9962229B2 (en) | 2009-10-12 | 2018-05-08 | Corindus, Inc. | System and method for navigating a guide wire |
US20110092808A1 (en) * | 2009-10-20 | 2011-04-21 | Magnetecs, Inc. | Method for acquiring high density mapping data with a catheter guidance system |
US20110091853A1 (en) * | 2009-10-20 | 2011-04-21 | Magnetecs, Inc. | Method for simulating a catheter guidance system for control, development and training applications |
US20110112396A1 (en) | 2009-11-09 | 2011-05-12 | Magnetecs, Inc. | System and method for targeting catheter electrodes |
EP2509492A4 (en) | 2009-12-08 | 2015-04-15 | Yehoshua Shachar | THERAPEUTIC AND DIAGNOSTIC MAGNETIC PROPULSION CAPSULE, AND METHOD OF USE THEREOF |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
JP2013523318A (ja) | 2010-04-09 | 2013-06-17 | べシックス・バスキュラー・インコーポレイテッド | 組織の治療のための発電および制御の装置 |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US8781186B2 (en) | 2010-05-04 | 2014-07-15 | Pathfinder Therapeutics, Inc. | System and method for abdominal surface matching using pseudo-features |
US8473067B2 (en) | 2010-06-11 | 2013-06-25 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US8601185B2 (en) * | 2010-07-16 | 2013-12-03 | St. Jude Medical, Atrial Fibrillation Divison, Inc. | System and methods for avoiding data collisions over a data bus |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9023033B2 (en) | 2010-08-04 | 2015-05-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheters |
US8945118B2 (en) | 2010-08-04 | 2015-02-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter with flexible tether and introducer for a catheter |
US8715280B2 (en) | 2010-08-04 | 2014-05-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheters |
US9307927B2 (en) | 2010-08-05 | 2016-04-12 | Biosense Webster (Israel) Ltd. | Catheter entanglement indication |
EP2417925B1 (en) | 2010-08-12 | 2016-12-07 | Immersion Corporation | Electrosurgical tool having tactile feedback |
US20130303887A1 (en) | 2010-08-20 | 2013-11-14 | Veran Medical Technologies, Inc. | Apparatus and method for four dimensional soft tissue navigation |
US9833293B2 (en) | 2010-09-17 | 2017-12-05 | Corindus, Inc. | Robotic catheter system |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9480476B2 (en) | 2010-09-30 | 2016-11-01 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising resilient members |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US9241714B2 (en) | 2011-04-29 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator and method for making the same |
BR112013007717B1 (pt) | 2010-09-30 | 2020-09-24 | Ethicon Endo-Surgery, Inc. | Sistema de grampeamento cirúrgico |
US9055941B2 (en) | 2011-09-23 | 2015-06-16 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck |
US9320523B2 (en) | 2012-03-28 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising tissue ingrowth features |
US9204880B2 (en) | 2012-03-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising capsules defining a low pressure environment |
US9220501B2 (en) | 2010-09-30 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensators |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US8740038B2 (en) | 2010-09-30 | 2014-06-03 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising a releasable portion |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9788834B2 (en) | 2010-09-30 | 2017-10-17 | Ethicon Llc | Layer comprising deployable attachment members |
US9232941B2 (en) | 2010-09-30 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a reservoir |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US8523043B2 (en) | 2010-12-07 | 2013-09-03 | Immersion Corporation | Surgical stapler having haptic feedback |
US8801710B2 (en) | 2010-12-07 | 2014-08-12 | Immersion Corporation | Electrosurgical sealing tool having haptic feedback |
US20120157993A1 (en) | 2010-12-15 | 2012-06-21 | Jenson Mark L | Bipolar Off-Wall Electrode Device for Renal Nerve Ablation |
US9095262B2 (en) | 2011-01-05 | 2015-08-04 | Mehdi Razavi | Guided ablation devices, systems, and methods |
WO2012100095A1 (en) | 2011-01-19 | 2012-07-26 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
CN103607946A (zh) * | 2011-01-20 | 2014-02-26 | 埃纳威医疗有限公司 | 估计物体的位置和取向的系统和方法 |
WO2012106580A2 (en) * | 2011-02-04 | 2012-08-09 | The Regents Of The University Of California | Methods and apparatus for computer-aided radiological detection and imaging |
EP2688632B1 (en) | 2011-03-22 | 2016-05-18 | Corindus Inc. | Robotic catheter system including imaging system control |
US8942828B1 (en) | 2011-04-13 | 2015-01-27 | Stuart Schecter, LLC | Minimally invasive cardiovascular support system with true haptic coupling |
CA2834649C (en) | 2011-04-29 | 2021-02-16 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising staples positioned within a compressible portion thereof |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US8845667B2 (en) | 2011-07-18 | 2014-09-30 | Immersion Corporation | Surgical tool having a programmable rotary module for providing haptic feedback |
US9579030B2 (en) | 2011-07-20 | 2017-02-28 | Boston Scientific Scimed, Inc. | Percutaneous devices and methods to visualize, target and ablate nerves |
US9186209B2 (en) | 2011-07-22 | 2015-11-17 | Boston Scientific Scimed, Inc. | Nerve modulation system having helical guide |
DE102011109069B4 (de) * | 2011-07-30 | 2014-07-24 | Richard Wolf Gmbh | Kathetersystem |
PL2939601T3 (pl) | 2011-09-06 | 2019-04-30 | Ezono Ag | Magnetyczny wyrób medyczny |
US9050084B2 (en) | 2011-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck arrangement |
WO2013055826A1 (en) | 2011-10-10 | 2013-04-18 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
EP2765940B1 (en) | 2011-10-11 | 2015-08-26 | Boston Scientific Scimed, Inc. | Off-wall electrode device for nerve modulation |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
US9162046B2 (en) | 2011-10-18 | 2015-10-20 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
EP3366250A1 (en) | 2011-11-08 | 2018-08-29 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
EP2779929A1 (en) | 2011-11-15 | 2014-09-24 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US10118020B2 (en) | 2011-12-07 | 2018-11-06 | Traumatek Solutions B.V. | Devices and methods for endovascular access and therapy |
US9439653B2 (en) | 2011-12-07 | 2016-09-13 | Traumatek Solutions B.V. | Devices and methods for endovascular access and therapy |
US8876726B2 (en) | 2011-12-08 | 2014-11-04 | Biosense Webster (Israel) Ltd. | Prevention of incorrect catheter rotation |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
US9037259B2 (en) | 2011-12-23 | 2015-05-19 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US9433760B2 (en) | 2011-12-28 | 2016-09-06 | Boston Scientific Scimed, Inc. | Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US20130197297A1 (en) * | 2012-01-27 | 2013-08-01 | Kurt J. Tekulve | Magnetic clot disrupter |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
US9138165B2 (en) | 2012-02-22 | 2015-09-22 | Veran Medical Technologies, Inc. | Systems, methods and devices for forming respiratory-gated point cloud for four dimensional soft tissue navigation |
CN104379068B (zh) | 2012-03-28 | 2017-09-22 | 伊西康内外科公司 | 包括组织厚度补偿件的保持器组件 |
CN104334098B (zh) | 2012-03-28 | 2017-03-22 | 伊西康内外科公司 | 包括限定低压强环境的胶囊剂的组织厚度补偿件 |
RU2014143258A (ru) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | Компенсатор толщины ткани, содержащий множество слоев |
US10159531B2 (en) | 2012-04-05 | 2018-12-25 | C. R. Bard, Inc. | Apparatus and methods relating to intravascular positioning of distal end of catheter |
EP3808259A1 (en) | 2012-04-05 | 2021-04-21 | Bard Access Systems, Inc. | Devices and systems for navigation and positioning a central venous catheter within a patient |
US11759268B2 (en) | 2012-04-05 | 2023-09-19 | C. R. Bard, Inc. | Apparatus and methods relating to intravascular positioning of distal end of catheter |
WO2013169927A1 (en) | 2012-05-08 | 2013-11-14 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
US10013082B2 (en) | 2012-06-05 | 2018-07-03 | Stuart Schecter, LLC | Operating system with haptic interface for minimally invasive, hand-held surgical instrument |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US20140001234A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Coupling arrangements for attaching surgical end effectors to drive systems therefor |
CN104487005B (zh) | 2012-06-28 | 2017-09-08 | 伊西康内外科公司 | 空夹仓闭锁件 |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
BR112014032776B1 (pt) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico |
KR101217767B1 (ko) * | 2012-07-10 | 2013-01-02 | 전남대학교산학협력단 | 카테터 기반을 가지는 의료 시술용 전자기 구동 수술장치 |
US9381063B2 (en) | 2012-07-13 | 2016-07-05 | Magnetecs Inc. | Method and apparatus for magnetically guided catheter for renal denervation employing MOSFET sensor array |
US9183354B2 (en) | 2012-08-15 | 2015-11-10 | Musc Foundation For Research Development | Systems and methods for image guided surgery |
CN104540465A (zh) | 2012-08-24 | 2015-04-22 | 波士顿科学西美德公司 | 带有含单独微孔隙区域的球囊的血管内导管 |
EP2895095A2 (en) | 2012-09-17 | 2015-07-22 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
WO2014047454A2 (en) | 2012-09-21 | 2014-03-27 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
WO2014047411A1 (en) | 2012-09-21 | 2014-03-27 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
JP6074051B2 (ja) | 2012-10-10 | 2017-02-01 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 血管内神経変調システム及び医療用デバイス |
EP2908743B1 (en) | 2012-10-22 | 2018-08-22 | The Cleveland Clinic Foundation | Apparatus for targeting a body tissue |
US9773496B2 (en) | 2012-12-06 | 2017-09-26 | White Eagle Sonic Technologies, Inc. | Apparatus and system for adaptively scheduling ultrasound system actions |
US10499884B2 (en) | 2012-12-06 | 2019-12-10 | White Eagle Sonic Technologies, Inc. | System and method for scanning for a second object within a first object using an adaptive scheduler |
US10076313B2 (en) | 2012-12-06 | 2018-09-18 | White Eagle Sonic Technologies, Inc. | System and method for automatically adjusting beams to scan an object in a body |
US9529080B2 (en) | 2012-12-06 | 2016-12-27 | White Eagle Sonic Technologies, Inc. | System and apparatus having an application programming interface for flexible control of execution ultrasound actions |
US9983905B2 (en) | 2012-12-06 | 2018-05-29 | White Eagle Sonic Technologies, Inc. | Apparatus and system for real-time execution of ultrasound system actions |
BR112015021082B1 (pt) | 2013-03-01 | 2022-05-10 | Ethicon Endo-Surgery, Inc | Instrumento cirúrgico |
MX368026B (es) | 2013-03-01 | 2019-09-12 | Ethicon Endo Surgery Inc | Instrumento quirúrgico articulable con vías conductoras para la comunicación de la señal. |
US9700309B2 (en) | 2013-03-01 | 2017-07-11 | Ethicon Llc | Articulatable surgical instruments with conductive pathways for signal communication |
US9257220B2 (en) | 2013-03-05 | 2016-02-09 | Ezono Ag | Magnetization device and method |
US9459087B2 (en) | 2013-03-05 | 2016-10-04 | Ezono Ag | Magnetic position detection system |
GB201303917D0 (en) | 2013-03-05 | 2013-04-17 | Ezono Ag | System for image guided procedure |
WO2014143571A1 (en) | 2013-03-11 | 2014-09-18 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9339285B2 (en) | 2013-03-12 | 2016-05-17 | Levita Magnetics International Corp. | Grasper with magnetically-controlled positioning |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
WO2014159023A1 (en) | 2013-03-14 | 2014-10-02 | Levita Magnetics International Corp. | Magnetic control assemblies and systems therefor |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9332987B2 (en) | 2013-03-14 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Control arrangements for a drive member of a surgical instrument |
EP2967734B1 (en) | 2013-03-15 | 2019-05-15 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
EP3932470B1 (en) | 2013-03-15 | 2023-07-12 | Medtronic Ardian Luxembourg S.à.r.l. | Controlled neuromodulation systems |
EP2967725B1 (en) | 2013-03-15 | 2019-12-11 | Boston Scientific Scimed, Inc. | Control unit for detecting electrical leakage between electrode pads and system comprising such a control unit |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
BR112015026109B1 (pt) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | Instrumento cirúrgico |
US10405857B2 (en) | 2013-04-16 | 2019-09-10 | Ethicon Llc | Powered linear surgical stapler |
US9574644B2 (en) | 2013-05-30 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Power module for use with a surgical instrument |
KR101415739B1 (ko) * | 2013-06-21 | 2014-07-04 | 재단법인 실감교류인체감응솔루션연구단 | 자기장을 이용하여 촉감을 생성하기 위한 장치 |
CN105473092B (zh) | 2013-06-21 | 2019-05-17 | 波士顿科学国际有限公司 | 具有可旋转轴的用于肾神经消融的医疗器械 |
EP3010437A1 (en) | 2013-06-21 | 2016-04-27 | Boston Scientific Scimed, Inc. | Renal denervation balloon catheter with ride along electrode support |
EP2818056A1 (en) | 2013-06-25 | 2014-12-31 | Biosearch S.A. | Probiotic bacteria comprising metals, metal nanoparticles and uses thereof |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
JP6366123B2 (ja) * | 2013-06-26 | 2018-08-01 | 国立大学法人東京農工大学 | 挿入体システム |
US10779775B2 (en) | 2013-06-26 | 2020-09-22 | Corindus, Inc. | X-ray marker guided automated guide wire or working catheter advancement |
US11229490B2 (en) | 2013-06-26 | 2022-01-25 | Corindus, Inc. | System and method for monitoring of guide catheter seating |
WO2015002787A1 (en) | 2013-07-01 | 2015-01-08 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
EP3019106A1 (en) | 2013-07-11 | 2016-05-18 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
EP3019105B1 (en) | 2013-07-11 | 2017-09-13 | Boston Scientific Scimed, Inc. | Devices for nerve modulation |
US9925001B2 (en) | 2013-07-19 | 2018-03-27 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
WO2015013205A1 (en) | 2013-07-22 | 2015-01-29 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
JP6122217B2 (ja) | 2013-07-22 | 2017-04-26 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 腎神経アブレーション用医療器具 |
EP3035879A1 (en) | 2013-08-22 | 2016-06-29 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
CN106028966B (zh) | 2013-08-23 | 2018-06-22 | 伊西康内外科有限责任公司 | 用于动力外科器械的击发构件回缩装置 |
US20150053737A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | End effector detection systems for surgical instruments |
EP3041425B1 (en) | 2013-09-04 | 2022-04-13 | Boston Scientific Scimed, Inc. | Radio frequency (rf) balloon catheter having flushing and cooling capability |
WO2015038947A1 (en) | 2013-09-13 | 2015-03-19 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
JP6015618B2 (ja) * | 2013-10-04 | 2016-10-26 | トヨタ自動車株式会社 | 車両 |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
US9687166B2 (en) | 2013-10-14 | 2017-06-27 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
AU2014334574B2 (en) | 2013-10-15 | 2017-07-06 | Boston Scientific Scimed, Inc. | Medical device balloon |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
JP6259099B2 (ja) | 2013-10-18 | 2018-01-10 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 可撓性を備える導電性ワイヤを備えるバルーン・カテーテル、並びに関連する使用および製造方法 |
US10271898B2 (en) | 2013-10-25 | 2019-04-30 | Boston Scientific Scimed, Inc. | Embedded thermocouple in denervation flex circuit |
US9740821B2 (en) | 2013-12-23 | 2017-08-22 | Biosense Webster (Israel) Ltd. | Real-time communication between medical devices over a DICOM network |
EP3091922B1 (en) | 2014-01-06 | 2018-10-17 | Boston Scientific Scimed, Inc. | Tear resistant flex circuit assembly |
WO2015112645A1 (en) | 2014-01-21 | 2015-07-30 | Levita Magnetics International Corp. | Laparoscopic graspers and systems therefor |
JP2014230737A (ja) * | 2014-02-01 | 2014-12-11 | 佐藤 洋 | 位置制御システム |
JP2015144693A (ja) * | 2014-02-01 | 2015-08-13 | 佐藤 洋 | 注入・吸引装置及び注入・吸引システム |
JP5886885B2 (ja) * | 2014-02-01 | 2016-03-16 | 佐藤 洋 | 位置制御システム |
WO2015119890A1 (en) | 2014-02-04 | 2015-08-13 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
JP6462004B2 (ja) | 2014-02-24 | 2019-01-30 | エシコン エルエルシー | 発射部材ロックアウトを備える締結システム |
US9693777B2 (en) | 2014-02-24 | 2017-07-04 | Ethicon Llc | Implantable layers comprising a pressed region |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
BR112016021943B1 (pt) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico |
US10028761B2 (en) | 2014-03-26 | 2018-07-24 | Ethicon Llc | Feedback algorithms for manual bailout systems for surgical instruments |
US9913642B2 (en) | 2014-03-26 | 2018-03-13 | Ethicon Llc | Surgical instrument comprising a sensor system |
US10013049B2 (en) | 2014-03-26 | 2018-07-03 | Ethicon Llc | Power management through sleep options of segmented circuit and wake up control |
BR112016023698B1 (pt) | 2014-04-16 | 2022-07-26 | Ethicon Endo-Surgery, Llc | Cartucho de prendedores para uso com um instrumento cirúrgico |
US20150297223A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
US10327764B2 (en) | 2014-09-26 | 2019-06-25 | Ethicon Llc | Method for creating a flexible staple line |
CN106456158B (zh) | 2014-04-16 | 2019-02-05 | 伊西康内外科有限责任公司 | 包括非一致紧固件的紧固件仓 |
CN106456159B (zh) | 2014-04-16 | 2019-03-08 | 伊西康内外科有限责任公司 | 紧固件仓组件和钉保持器盖布置结构 |
US20150305612A1 (en) | 2014-04-23 | 2015-10-29 | Mark Hunter | Apparatuses and methods for registering a real-time image feed from an imaging device to a steerable catheter |
US20150305650A1 (en) | 2014-04-23 | 2015-10-29 | Mark Hunter | Apparatuses and methods for endobronchial navigation to and confirmation of the location of a target tissue and percutaneous interception of the target tissue |
US10045781B2 (en) | 2014-06-13 | 2018-08-14 | Ethicon Llc | Closure lockout systems for surgical instruments |
CN104116484A (zh) * | 2014-07-03 | 2014-10-29 | 乐虹信息科技(上海)有限公司 | 可调整拍摄角度的内窥镜系统及方法 |
BR112017004361B1 (pt) | 2014-09-05 | 2023-04-11 | Ethicon Llc | Sistema eletrônico para um instrumento cirúrgico |
US9757128B2 (en) | 2014-09-05 | 2017-09-12 | Ethicon Llc | Multiple sensors with one sensor affecting a second sensor's output or interpretation |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
JP2015144803A (ja) * | 2014-09-16 | 2015-08-13 | 佐藤 洋 | 位置制御システム |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
CN107427300B (zh) | 2014-09-26 | 2020-12-04 | 伊西康有限责任公司 | 外科缝合支撑物和辅助材料 |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
EP3220828B1 (en) | 2014-11-18 | 2021-12-22 | C.R. Bard, Inc. | Ultrasound imaging system having automatic image presentation |
EP4011298A1 (en) | 2014-11-18 | 2022-06-15 | C. R. Bard, Inc. | Ultrasound imaging system having automatic image presentation |
EP3226800B1 (en) | 2014-12-05 | 2021-10-06 | Corindus, Inc. | System for navigating a guide wire |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
BR112017012996B1 (pt) | 2014-12-18 | 2022-11-08 | Ethicon Llc | Instrumento cirúrgico com uma bigorna que é seletivamente móvel sobre um eixo geométrico imóvel distinto em relação a um cartucho de grampos |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
US10159483B2 (en) | 2015-02-27 | 2018-12-25 | Ethicon Llc | Surgical apparatus configured to track an end-of-life parameter |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US9993258B2 (en) | 2015-02-27 | 2018-06-12 | Ethicon Llc | Adaptable surgical instrument handle |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
JP2020121162A (ja) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価 |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US9895148B2 (en) | 2015-03-06 | 2018-02-20 | Ethicon Endo-Surgery, Llc | Monitoring speed control and precision incrementing of motor for powered surgical instruments |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
WO2016161211A1 (en) | 2015-03-31 | 2016-10-06 | St. Jude Medical, Cardiology Division, Inc. | Methods and devices for delivering pulsed rf energy during catheter ablation |
US10390825B2 (en) | 2015-03-31 | 2019-08-27 | Ethicon Llc | Surgical instrument with progressive rotary drive systems |
EP3967244A1 (en) | 2015-04-13 | 2022-03-16 | Levita Magnetics International Corp. | Retractor devices |
ES2895900T3 (es) | 2015-04-13 | 2022-02-23 | Levita Magnetics Int Corp | Empuñadura con ubicación controlada magnéticamente |
JP2015144904A (ja) * | 2015-04-20 | 2015-08-13 | 佐藤 洋 | 位置制御システム |
US10368861B2 (en) | 2015-06-18 | 2019-08-06 | Ethicon Llc | Dual articulation drive system arrangements for articulatable surgical instruments |
US10987488B2 (en) | 2015-06-23 | 2021-04-27 | Traumatek Solutions, B.V. | Vessel cannulation device and method of use |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
US10166026B2 (en) | 2015-08-26 | 2019-01-01 | Ethicon Llc | Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10085751B2 (en) | 2015-09-23 | 2018-10-02 | Ethicon Llc | Surgical stapler having temperature-based motor control |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10076326B2 (en) | 2015-09-23 | 2018-09-18 | Ethicon Llc | Surgical stapler having current mirror-based motor control |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10433846B2 (en) | 2015-09-30 | 2019-10-08 | Ethicon Llc | Compressible adjunct with crossing spacer fibers |
US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
EP3181176A1 (en) * | 2015-12-14 | 2017-06-21 | Aeon Scientific AG | Magnetically guided medical device |
EP3785638A1 (en) * | 2015-12-15 | 2021-03-03 | Corindus, Inc. | System and method for controlling x-ray frame rate of an imaging system |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
JP2016073885A (ja) * | 2016-02-05 | 2016-05-12 | 佐藤 洋 | 位置制御システム |
BR112018016098B1 (pt) | 2016-02-09 | 2023-02-23 | Ethicon Llc | Instrumento cirúrgico |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10245030B2 (en) | 2016-02-09 | 2019-04-02 | Ethicon Llc | Surgical instruments with tensioning arrangements for cable driven articulation systems |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
GB2547916A (en) * | 2016-03-02 | 2017-09-06 | Cook Medical Technologies Llc | Magnetic guidance system particularly for neurological device |
US10314582B2 (en) | 2016-04-01 | 2019-06-11 | Ethicon Llc | Surgical instrument comprising a shifting mechanism |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10478181B2 (en) | 2016-04-18 | 2019-11-19 | Ethicon Llc | Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10702342B2 (en) | 2016-09-08 | 2020-07-07 | Medtronic, Inc. | Navigation guidance method for complex catheters |
WO2018067248A1 (en) | 2016-10-04 | 2018-04-12 | St. Jude Medical, Cardiology Division, Inc. | Ablation catheter tip |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US20180168618A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US10736629B2 (en) | 2016-12-21 | 2020-08-11 | Ethicon Llc | Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US10758230B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument with primary and safety processors |
US11090048B2 (en) | 2016-12-21 | 2021-08-17 | Cilag Gmbh International | Method for resetting a fuse of a surgical instrument shaft |
JP6983893B2 (ja) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成 |
JP7010956B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | 組織をステープル留めする方法 |
US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
US20180168609A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Firing assembly comprising a fuse |
US10682138B2 (en) | 2016-12-21 | 2020-06-16 | Ethicon Llc | Bilaterally asymmetric staple forming pocket pairs |
US10588632B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical end effectors and firing members thereof |
US10758229B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument comprising improved jaw control |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10568624B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
BR112019011947A2 (pt) | 2016-12-21 | 2019-10-29 | Ethicon Llc | sistemas de grampeamento cirúrgico |
US10667811B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Surgical stapling instruments and staple-forming anvils |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
MX2019007295A (es) | 2016-12-21 | 2019-10-15 | Ethicon Llc | Sistema de instrumento quirúrgico que comprende un bloqueo del efector de extremo y un bloqueo de la unidad de disparo. |
US10252030B2 (en) | 2017-01-17 | 2019-04-09 | Cook Medical Technologies Llc | Handheld magnetic gun for guide wire manipulation |
US11020137B2 (en) | 2017-03-20 | 2021-06-01 | Levita Magnetics International Corp. | Directable traction systems and methods |
EP3785626B8 (en) | 2017-04-27 | 2022-08-31 | Bard Access Systems, Inc. | Magnetizing system for needle assemblies |
CN107019513B (zh) * | 2017-05-18 | 2020-11-06 | 山东大学齐鲁医院 | 基于电磁定位复合导管的血管内虚拟内窥镜成像系统及其工作方法 |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
JP6256962B1 (ja) | 2017-06-21 | 2018-01-10 | 朝日インテック株式会社 | 磁気式の方位・位置測定装置 |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US20180368844A1 (en) | 2017-06-27 | 2018-12-27 | Ethicon Llc | Staple forming pocket arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
US11678880B2 (en) | 2017-06-28 | 2023-06-20 | Cilag Gmbh International | Surgical instrument comprising a shaft including a housing arrangement |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US11020114B2 (en) | 2017-06-28 | 2021-06-01 | Cilag Gmbh International | Surgical instruments with articulatable end effector with axially shortened articulation joint configurations |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US20190192147A1 (en) | 2017-12-21 | 2019-06-27 | Ethicon Llc | Surgical instrument comprising an articulatable distal head |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11253189B2 (en) | 2018-01-24 | 2022-02-22 | Medtronic Ardian Luxembourg S.A.R.L. | Systems, devices, and methods for evaluating neuromodulation therapy via detection of magnetic fields |
WO2019159053A1 (en) * | 2018-02-14 | 2019-08-22 | St. Jude Medical International Holding S.á r.l. | Localized magnetic field transmitter |
JP2018094449A (ja) * | 2018-03-16 | 2018-06-21 | 佐藤 洋 | 注入・吸引装置 |
US20210228298A1 (en) * | 2018-05-18 | 2021-07-29 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Magnetic field generator |
EP3583892A1 (en) * | 2018-06-20 | 2019-12-25 | Koninklijke Philips N.V. | Pressure sensing unit, system and method for remote pressure sensing |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
KR102254022B1 (ko) | 2018-09-06 | 2021-05-20 | 한국과학기술원 | 조향 가이드와이어 및 그 제조 방법, 조향 카테터 및 그 제조 방법 |
CA3118139A1 (en) | 2018-11-02 | 2020-05-07 | Grey Matter Medical Products | Rail tension extraction devices |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11241235B2 (en) | 2019-06-28 | 2022-02-08 | Cilag Gmbh International | Method of using multiple RFID chips with a surgical assembly |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US20220395162A1 (en) * | 2019-11-15 | 2022-12-15 | Bionaut Labs Ltd. | System and method for remotely maneuvering a magnetic miniature device |
US12011233B2 (en) | 2019-11-26 | 2024-06-18 | Arizona Board Of Regents On Behalf Of Arizona State University | System and method for determining position of a steerable assembly within tissue of an animal body |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
JP2020089763A (ja) * | 2020-03-09 | 2020-06-11 | 佐藤 洋 | 注入・吸引装置 |
DE102020204985A1 (de) | 2020-04-21 | 2021-10-21 | Siemens Healthcare Gmbh | Steuerung eines robotisch bewegten medizinischen Objekts |
US12089910B2 (en) * | 2020-05-28 | 2024-09-17 | The Chinese University Of Hong Kong | Mobile-electromagnetic coil-based magnetic actuation systems |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
US20220031350A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with double pivot articulation joint arrangements |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11911140B2 (en) | 2020-11-09 | 2024-02-27 | Bard Access Systems, Inc. | Medical device magnetizer |
CN216562658U (zh) | 2020-11-10 | 2022-05-17 | 巴德阿克塞斯系统股份有限公司 | 用于在使医疗装置磁化的同时保持所述医疗装置的无菌性的磁化器盖及磁化系统 |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11998201B2 (en) | 2021-05-28 | 2024-06-04 | Cilag CmbH International | Stapling instrument comprising a firing lockout |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
CN115413990B (zh) * | 2022-08-15 | 2024-08-30 | 天津大学 | 用于自然腔道柔性内镜检查的仿生触须传感器 |
Family Cites Families (179)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1414207A (en) * | 1920-07-06 | 1922-04-25 | Frank E Reed | Shaft coupling |
US2595902A (en) * | 1948-12-23 | 1952-05-06 | Standard Oil Dev Co | Spinner elevator for pipe |
US2582987A (en) * | 1950-01-26 | 1952-01-22 | Goodman Mfg Co | Power winch or hoist |
US3043309A (en) | 1959-09-29 | 1962-07-10 | Avco Corp | Method of performing intestinal intubation |
GB1035205A (en) | 1962-11-30 | 1966-07-06 | Yeda Res & Dev | Improvements in the remote controlled propulsion of a body |
US3191683A (en) * | 1963-01-28 | 1965-06-29 | Ford I Alexander | Control of well pipe rotation and advancement |
US3305021A (en) * | 1964-06-11 | 1967-02-21 | Schlumberger Technology Corp | Pressure-responsive anchor for well packing apparatus |
US3321018A (en) * | 1964-10-07 | 1967-05-23 | Schlumberger Technology Corp | Well tool retrieving apparatus |
US3622869A (en) | 1967-06-28 | 1971-11-23 | Marcel J E Golay | Homogenizing coils for nmr apparatus |
US3602528A (en) * | 1969-06-23 | 1971-08-31 | John L Kelly | Motorcycle stabilizing device |
US3628527A (en) | 1969-10-08 | 1971-12-21 | Microcom Corp | Biological electrode amplifier |
US3746937A (en) | 1971-07-12 | 1973-07-17 | H Koike | Electromagnetic linear motion device |
US3961632A (en) | 1974-12-13 | 1976-06-08 | Moossun Mohamed H | Stomach intubation and catheter placement system |
US3961399A (en) * | 1975-02-18 | 1976-06-08 | Varco International, Inc. | Power slip unit |
US4063561A (en) | 1975-08-25 | 1977-12-20 | The Signal Companies, Inc. | Direction control device for endotracheal tube |
US4096862A (en) | 1976-05-17 | 1978-06-27 | Deluca Salvatore A | Locating of tubes in the human body |
SE7610696L (sv) | 1976-09-28 | 1978-03-29 | Reenstierna Bertil | Sett och anordning for inleggning och fixering av "pacemaker - elektrod" i (mennisko-) hjerta |
US4173228A (en) | 1977-05-16 | 1979-11-06 | Applied Medical Devices | Catheter locating device |
US4270252A (en) | 1978-01-03 | 1981-06-02 | Allied Chemical Corporation | Apparatus to count and control crimps in a moving tow of yarn |
US4244362A (en) | 1978-11-29 | 1981-01-13 | Anderson Charles C | Endotracheal tube control device |
JPS5588732A (en) | 1978-12-26 | 1980-07-04 | Olympus Optical Co | Endoscope |
US4249536A (en) | 1979-05-14 | 1981-02-10 | Vega Roger E | Urological catheter |
US4354501A (en) * | 1979-08-28 | 1982-10-19 | Univ Washington | Esophageal catheter including ultrasonic transducer for use in detection of air emboli |
JPS56109968A (en) | 1980-02-04 | 1981-08-31 | Fuji Kinzoku Kosaku Kk | Solenoid valve |
US4401000A (en) * | 1980-05-02 | 1983-08-30 | Weatherford/Lamb, Inc. | Tong assembly |
US5090956A (en) | 1983-10-31 | 1992-02-25 | Catheter Research, Inc. | Catheter with memory element-controlled steering |
CA1276710C (en) | 1983-11-30 | 1990-11-20 | Kazuo Asakawa | Robot force controlling system |
US4671287A (en) | 1983-12-29 | 1987-06-09 | Fiddian Green Richard G | Apparatus and method for sustaining vitality of organs of the gastrointestinal tract |
EP0303054B1 (en) | 1984-04-04 | 1993-06-09 | Omron Tateisi Electronics Co. | Electromagnetic drive and polarized relay |
JPS61176326A (ja) * | 1985-02-01 | 1986-08-08 | 株式会社日立製作所 | 診断装置 |
US4943770A (en) | 1987-04-21 | 1990-07-24 | Mccormick Laboratories, Inc. | Device for accurately detecting the position of a ferromagnetic material inside biological tissue |
US5209234A (en) | 1987-10-02 | 1993-05-11 | Lara Consultants S.R.L. | Apparatus for the non-intrusive fragmentation of renal calculi, gallstones or the like |
US4809713A (en) | 1987-10-28 | 1989-03-07 | Joseph Grayzel | Catheter with magnetic fixation |
DE3875075D1 (de) | 1987-11-25 | 1992-11-05 | Siemens Ag | Dosiergeraet zum gesteuerten injizieren von fluessigkeiten aus einem vorratsbehaelter in einen organismus. |
US5083562A (en) | 1988-01-19 | 1992-01-28 | Telectronics Pacing Systems, Inc. | Method and apparatus for applying asymmetric biphasic truncated exponential countershocks |
US4869247A (en) | 1988-03-11 | 1989-09-26 | The University Of Virginia Alumni Patents Foundation | Video tumor fighting system |
US4984581A (en) | 1988-10-12 | 1991-01-15 | Flexmedics Corporation | Flexible guide having two-way shape memory alloy |
US5653713A (en) | 1989-04-24 | 1997-08-05 | Michelson; Gary Karlin | Surgical rongeur |
US5063935A (en) | 1989-04-27 | 1991-11-12 | C. R. Bard, Inc. | Catheter guidewire with varying radiopacity |
US5681260A (en) | 1989-09-22 | 1997-10-28 | Olympus Optical Co., Ltd. | Guiding apparatus for guiding an insertable body within an inspected object |
US5226847A (en) | 1989-12-15 | 1993-07-13 | General Electric Company | Apparatus and method for acquiring imaging signals with reduced number of interconnect wires |
US5125888A (en) | 1990-01-10 | 1992-06-30 | University Of Virginia Alumni Patents Foundation | Magnetic stereotactic system for treatment delivery |
US5167626A (en) | 1990-10-02 | 1992-12-01 | Glaxo Inc. | Medical capsule device actuated by radio-frequency (RF) signal |
US5257636A (en) | 1991-04-02 | 1993-11-02 | Steven J. White | Apparatus for determining position of an endothracheal tube |
EP0531081A1 (en) | 1991-09-03 | 1993-03-10 | General Electric Company | Tracking system to follow the position and orientation of a device with radiofrequency fields |
US5255680A (en) | 1991-09-03 | 1993-10-26 | General Electric Company | Automatic gantry positioning for imaging systems |
US5645065A (en) | 1991-09-04 | 1997-07-08 | Navion Biomedical Corporation | Catheter depth, position and orientation location system |
JP3583777B2 (ja) * | 1992-01-21 | 2004-11-04 | エス・アール・アイ・インターナシヨナル | テレオペレータシステムとテレプレゼンス法 |
WO1993016642A1 (en) | 1992-02-21 | 1993-09-02 | Boston Scientific Corporation | Ultrasound imaging guidewire |
US5207128A (en) * | 1992-03-23 | 1993-05-04 | Weatherford-Petco, Inc. | Tong with floating jaws |
WO1993020876A1 (en) | 1992-04-14 | 1993-10-28 | Du-Med B.V. | Electronic catheter displacement sensor |
US5249163A (en) | 1992-06-08 | 1993-09-28 | Erickson Jon W | Optical lever for acoustic and ultrasound sensor |
US5269759A (en) | 1992-07-28 | 1993-12-14 | Cordis Corporation | Magnetic guidewire coupling for vascular dilatation apparatus |
AT399647B (de) | 1992-07-31 | 1995-06-26 | Truppe Michael | Anordnung zur darstellung des inneren von körpern |
US5588442A (en) | 1992-08-12 | 1996-12-31 | Scimed Life Systems, Inc. | Shaft movement control apparatus and method |
US5353807A (en) | 1992-12-07 | 1994-10-11 | Demarco Thomas J | Magnetically guidable intubation device |
US5396902A (en) | 1993-02-03 | 1995-03-14 | Medtronic, Inc. | Steerable stylet and manipulative handle assembly |
JPH06289111A (ja) * | 1993-04-02 | 1994-10-18 | Stanley Electric Co Ltd | ホール素子の駆動回路 |
WO1995001757A1 (en) * | 1993-07-07 | 1995-01-19 | Cornelius Borst | Robotic system for close inspection and remote treatment of moving parts |
IL116699A (en) | 1996-01-08 | 2001-09-13 | Biosense Ltd | Method of building a heart map |
US5425382A (en) * | 1993-09-14 | 1995-06-20 | University Of Washington | Apparatus and method for locating a medical tube in the body of a patient |
US5625576A (en) | 1993-10-01 | 1997-04-29 | Massachusetts Institute Of Technology | Force reflecting haptic interface |
US5558091A (en) | 1993-10-06 | 1996-09-24 | Biosense, Inc. | Magnetic determination of position and orientation |
US5683384A (en) | 1993-11-08 | 1997-11-04 | Zomed | Multiple antenna ablation apparatus |
US5821920A (en) | 1994-07-14 | 1998-10-13 | Immersion Human Interface Corporation | Control input device for interfacing an elongated flexible object with a computer system |
US5654864A (en) | 1994-07-25 | 1997-08-05 | University Of Virginia Patent Foundation | Control method for magnetic stereotaxis system |
US5573012A (en) | 1994-08-09 | 1996-11-12 | The Regents Of The University Of California | Body monitoring and imaging apparatus and method |
CA2607769C (en) * | 1994-08-19 | 2012-04-24 | Biosense, Inc. | Medical diagnosis, treatment and imaging systems |
US5492131A (en) * | 1994-09-06 | 1996-02-20 | Guided Medical Systems, Inc. | Servo-catheter |
US5624430A (en) | 1994-11-28 | 1997-04-29 | Eton; Darwin | Magnetic device to assist transcorporeal guidewire placement |
US5656030A (en) | 1995-05-22 | 1997-08-12 | Boston Scientific Corporation | Bidirectional steerable catheter with deflectable distal tip |
US5702433A (en) | 1995-06-27 | 1997-12-30 | Arrow International Investment Corp. | Kink-resistant steerable catheter assembly for microwave ablation |
US5650725A (en) | 1995-09-01 | 1997-07-22 | Associated Universities, Inc. | Magnetic imager and method |
US5653728A (en) | 1995-11-13 | 1997-08-05 | Becton, Dickinson And Company | Disposable non-latex tourniquet |
US5711299A (en) | 1996-01-26 | 1998-01-27 | Manwaring; Kim H. | Surgical guidance method and system for approaching a target within a body |
US5971976A (en) * | 1996-02-20 | 1999-10-26 | Computer Motion, Inc. | Motion minimization and compensation system for use in surgical procedures |
US5769843A (en) | 1996-02-20 | 1998-06-23 | Cormedica | Percutaneous endomyocardial revascularization |
FR2746422B1 (fr) * | 1996-03-22 | 1998-06-12 | Dentelles Darquer Sa | Dispositif electromagnetique pour l'actionnement automatise des aiguilles d'une mecanique jacquard |
US5650864A (en) * | 1996-04-08 | 1997-07-22 | Scanvision | Full color single-sensor-array contact image sensor (CIS) using advanced signal processing techniques |
AU728802B2 (en) * | 1996-05-17 | 2001-01-18 | Biosense, Inc. | Self-aligning catheter |
US5806589A (en) * | 1996-05-20 | 1998-09-15 | Lang; Duane | Apparatus for stabbing and threading a drill pipe safety valve |
US5775322A (en) | 1996-06-27 | 1998-07-07 | Lucent Medical Systems, Inc. | Tracheal tube and methods related thereto |
US5844140A (en) | 1996-08-27 | 1998-12-01 | Seale; Joseph B. | Ultrasound beam alignment servo |
US5980535A (en) | 1996-09-30 | 1999-11-09 | Picker International, Inc. | Apparatus for anatomical tracking |
US6122538A (en) | 1997-01-16 | 2000-09-19 | Acuson Corporation | Motion--Monitoring method and system for medical devices |
ES2314989T3 (es) | 1997-02-14 | 2009-03-16 | Biosense Webster, Inc. | Sistema quirurgico de localizacion por radioscopica con volumen catografico ampliado. |
US6038488A (en) * | 1997-02-27 | 2000-03-14 | Bertec Corporation | Catheter simulation device |
US6129668A (en) * | 1997-05-08 | 2000-10-10 | Lucent Medical Systems, Inc. | System and method to determine the location and orientation of an indwelling medical device |
US5843153A (en) | 1997-07-15 | 1998-12-01 | Sulzer Intermedics Inc. | Steerable endocardial lead using magnetostrictive material and a magnetic field |
US5806665A (en) * | 1997-08-06 | 1998-09-15 | American Tack & Hardware Co., Inc. | Arcuate switch actuator |
DE19736030A1 (de) * | 1997-08-20 | 1999-02-25 | Philips Patentverwaltung | Verfahren zur Navigation eines magnetischen Objektes und MR-Anordung |
US6015414A (en) | 1997-08-29 | 2000-01-18 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter |
US6128174A (en) | 1997-08-29 | 2000-10-03 | Stereotaxis, Inc. | Method and apparatus for rapidly changing a magnetic field produced by electromagnets |
US6742596B2 (en) * | 2001-05-17 | 2004-06-01 | Weatherford/Lamb, Inc. | Apparatus and methods for tubular makeup interlock |
US6200312B1 (en) | 1997-09-11 | 2001-03-13 | Vnus Medical Technologies, Inc. | Expandable vein ligator catheter having multiple electrode leads |
US6014580A (en) * | 1997-11-12 | 2000-01-11 | Stereotaxis, Inc. | Device and method for specifying magnetic field for surgical applications |
US6157853A (en) | 1997-11-12 | 2000-12-05 | Stereotaxis, Inc. | Method and apparatus using shaped field of repositionable magnet to guide implant |
US6212419B1 (en) | 1997-11-12 | 2001-04-03 | Walter M. Blume | Method and apparatus using shaped field of repositionable magnet to guide implant |
AU6325798A (en) | 1997-11-12 | 1999-05-31 | Stereotaxis, Inc. | Intracranial bolt and method of placing and using an intracranial bolt to position a medical device |
US6311082B1 (en) | 1997-11-12 | 2001-10-30 | Stereotaxis, Inc. | Digital magnetic system for magnetic surgery |
EP1030589A2 (en) | 1997-11-12 | 2000-08-30 | Stereotaxis Inc. | Articulated magnetic guidance systems and devices and methods for using same for magnetically-assisted surgery |
US6104944A (en) | 1997-11-17 | 2000-08-15 | Martinelli; Michael A. | System and method for navigating a multiple electrode catheter |
US6505062B1 (en) | 1998-02-09 | 2003-01-07 | Stereotaxis, Inc. | Method for locating magnetic implant by source field |
IL123646A (en) * | 1998-03-11 | 2010-05-31 | Refael Beyar | Remote control catheterization |
US6390190B2 (en) * | 1998-05-11 | 2002-05-21 | Offshore Energy Services, Inc. | Tubular filling system |
US6381458B1 (en) * | 1998-05-15 | 2002-04-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and system for soft handoff control based on access network capacity |
AU3845099A (en) * | 1998-05-15 | 1999-12-06 | Robin Medical Inc. | Method and apparatus for generating controlled torques on objects particularly objects inside a living body |
DE19823019C2 (de) * | 1998-05-22 | 2002-04-04 | Siemens Ag | Trennvorrichtung für Feststoff und Verfahren zum Trennen von Feststoff |
WO2000007641A2 (en) * | 1998-08-07 | 2000-02-17 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling catheters in body lumens and cavities |
US6315709B1 (en) | 1998-08-07 | 2001-11-13 | Stereotaxis, Inc. | Magnetic vascular defect treatment system |
GB2340857A (en) * | 1998-08-24 | 2000-03-01 | Weatherford Lamb | An apparatus for facilitating the connection of tubulars and alignment with a top drive |
US6385472B1 (en) | 1999-09-10 | 2002-05-07 | Stereotaxis, Inc. | Magnetically navigable telescoping catheter and method of navigating telescoping catheter |
EP1119299A1 (en) | 1998-10-02 | 2001-08-01 | Stereotaxis, Inc. | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
US6428551B1 (en) | 1999-03-30 | 2002-08-06 | Stereotaxis, Inc. | Magnetically navigable and/or controllable device for removing material from body lumens and cavities |
US6704694B1 (en) | 1998-10-16 | 2004-03-09 | Massachusetts Institute Of Technology | Ray based interaction system |
US6241671B1 (en) | 1998-11-03 | 2001-06-05 | Stereotaxis, Inc. | Open field system for magnetic surgery |
US6459926B1 (en) * | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
GB2347441B (en) * | 1998-12-24 | 2003-03-05 | Weatherford Lamb | Apparatus and method for facilitating the connection of tubulars using a top drive |
GB2345074A (en) * | 1998-12-24 | 2000-06-28 | Weatherford Lamb | Floating joint to facilitate the connection of tubulars using a top drive |
AU2491300A (en) | 1999-01-06 | 2000-07-24 | Ball Semiconductor Inc. | Wireless ekg |
US6330467B1 (en) | 1999-02-04 | 2001-12-11 | Stereotaxis, Inc. | Efficient magnet system for magnetically-assisted surgery |
US7591304B2 (en) * | 1999-03-05 | 2009-09-22 | Varco I/P, Inc. | Pipe running tool having wireless telemetry |
US6501981B1 (en) | 1999-03-16 | 2002-12-31 | Accuray, Inc. | Apparatus and method for compensating for respiratory and patient motions during treatment |
US6375606B1 (en) | 1999-03-17 | 2002-04-23 | Stereotaxis, Inc. | Methods of and apparatus for treating vascular defects |
US6296604B1 (en) | 1999-03-17 | 2001-10-02 | Stereotaxis, Inc. | Methods of and compositions for treating vascular defects |
US6148823A (en) | 1999-03-17 | 2000-11-21 | Stereotaxis, Inc. | Method of and system for controlling magnetic elements in the body using a gapped toroid magnet |
DE19914455B4 (de) * | 1999-03-30 | 2005-07-14 | Siemens Ag | Verfahren zur Bestimmung der Bewegung eines Organs oder Therapiegebiets eines Patienten sowie hierfür geeignetes System |
US6565554B1 (en) * | 1999-04-07 | 2003-05-20 | Intuitive Surgical, Inc. | Friction compensation in a minimally invasive surgical apparatus |
US6431626B1 (en) * | 1999-04-09 | 2002-08-13 | Frankis Casing Crew And Rental Tools, Inc. | Tubular running tool |
US6902528B1 (en) | 1999-04-14 | 2005-06-07 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling endoscopes in body lumens and cavities |
US6292678B1 (en) | 1999-05-13 | 2001-09-18 | Stereotaxis, Inc. | Method of magnetically navigating medical devices with magnetic fields and gradients, and medical devices adapted therefor |
US6478793B1 (en) | 1999-06-11 | 2002-11-12 | Sherwood Services Ag | Ablation treatment of bone metastases |
JP3668865B2 (ja) | 1999-06-21 | 2005-07-06 | 株式会社日立製作所 | 手術装置 |
JP3293802B2 (ja) | 1999-07-07 | 2002-06-17 | エスエムシー株式会社 | 位置検出機能付きチャック |
AU3885801A (en) | 1999-09-20 | 2001-04-24 | Stereotaxis, Inc. | Magnetically guided myocardial treatment system |
US6298257B1 (en) * | 1999-09-22 | 2001-10-02 | Sterotaxis, Inc. | Cardiac methods and system |
US6702804B1 (en) | 1999-10-04 | 2004-03-09 | Stereotaxis, Inc. | Method for safely and efficiently navigating magnetic devices in the body |
US6544041B1 (en) * | 1999-10-06 | 2003-04-08 | Fonar Corporation | Simulator for surgical procedures |
US6381485B1 (en) | 1999-10-28 | 2002-04-30 | Surgical Navigation Technologies, Inc. | Registration of human anatomy integrated for electromagnetic localization |
US6449241B1 (en) * | 1999-11-03 | 2002-09-10 | Samsung Electronics Co., Ltd. | Optical disk |
GB0004354D0 (en) * | 2000-02-25 | 2000-04-12 | Wellserv Plc | Apparatus and method |
JP3830319B2 (ja) * | 1999-12-16 | 2006-10-04 | 株式会社デンソー | 回転角度検出センサの温度特性調整方法 |
US6401723B1 (en) | 2000-02-16 | 2002-06-11 | Stereotaxis, Inc. | Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments |
US7325610B2 (en) * | 2000-04-17 | 2008-02-05 | Weatherford/Lamb, Inc. | Methods and apparatus for handling and drilling with tubulars or casing |
JP4388203B2 (ja) | 2000-05-23 | 2009-12-24 | ミネベア株式会社 | 複合型電磁アクチュエータ装置 |
US6817364B2 (en) | 2000-07-24 | 2004-11-16 | Stereotaxis, Inc. | Magnetically navigated pacing leads, and methods for delivering medical devices |
DE10066032B4 (de) | 2000-07-28 | 2010-01-28 | Infineon Technologies Ag | Schaltungsanordnung zur Steuerung der Verstärkung einer Verstärkerschaltung |
US6524303B1 (en) | 2000-09-08 | 2003-02-25 | Stereotaxis, Inc. | Variable stiffness magnetic catheter |
US6537196B1 (en) | 2000-10-24 | 2003-03-25 | Stereotaxis, Inc. | Magnet assembly with variable field directions and methods of magnetically navigating medical objects |
US6662034B2 (en) | 2000-11-15 | 2003-12-09 | Stereotaxis, Inc. | Magnetically guidable electrophysiology catheter |
US6677752B1 (en) | 2000-11-20 | 2004-01-13 | Stereotaxis, Inc. | Close-in shielding system for magnetic medical treatment instruments |
US6352363B1 (en) | 2001-01-16 | 2002-03-05 | Stereotaxis, Inc. | Shielded x-ray source, method of shielding an x-ray source, and magnetic surgical system with shielded x-ray source |
US20020103430A1 (en) * | 2001-01-29 | 2002-08-01 | Hastings Roger N. | Catheter navigation within an MR imaging device |
DE10115341A1 (de) * | 2001-03-28 | 2002-10-02 | Philips Corp Intellectual Pty | Verfahren und bildgebendes Ultraschallsystem zur Besimmung der Position eines Katheters |
US6771996B2 (en) | 2001-05-24 | 2004-08-03 | Cardiac Pacemakers, Inc. | Ablation and high-resolution mapping catheter system for pulmonary vein foci elimination |
ES2336081T3 (es) | 2001-06-12 | 2010-04-08 | Pelikan Technologies Inc. | Dispositivo de puncion de auto-optimizacion con medios de adaptacion a variaciones temporales en las propiedades cutaneas. |
US6669693B2 (en) | 2001-11-13 | 2003-12-30 | Mayo Foundation For Medical Education And Research | Tissue ablation device and methods of using |
WO2003089997A2 (en) | 2002-03-15 | 2003-10-30 | C.R. Bard, Inc. | Method and apparatus for control of ablation energy and electrogram acquisition through multiple common electrodes in an electrophysiology catheter |
US7769427B2 (en) | 2002-07-16 | 2010-08-03 | Magnetics, Inc. | Apparatus and method for catheter guidance control and imaging |
US6776165B2 (en) | 2002-09-12 | 2004-08-17 | The Regents Of The University Of California | Magnetic navigation system for diagnosis, biopsy and drug delivery vehicles |
NO20032220L (no) * | 2003-05-15 | 2004-11-16 | Mechlift As | Lofteverktoy II og fremgangsmate for anvendelse av samme |
DE10322739B4 (de) | 2003-05-20 | 2006-10-26 | Siemens Ag | Verfahren zur markerlosen Navigation in präoperativen 3D-Bildern unter Verwendung eines intraoperativ gewonnenen 3D-C-Bogen-Bildes |
US6980843B2 (en) | 2003-05-21 | 2005-12-27 | Stereotaxis, Inc. | Electrophysiology catheter |
US6914552B1 (en) | 2003-06-25 | 2005-07-05 | The Regents Of The University Of California | Magneto-radar detector and method |
US7280863B2 (en) * | 2003-10-20 | 2007-10-09 | Magnetecs, Inc. | System and method for radar-assisted catheter guidance and control |
US20060041181A1 (en) | 2004-06-04 | 2006-02-23 | Viswanathan Raju R | User interface for remote control of medical devices |
US7188686B2 (en) * | 2004-06-07 | 2007-03-13 | Varco I/P, Inc. | Top drive systems |
NO329611B1 (no) * | 2004-07-20 | 2010-11-22 | Weatherford Lamb | Fôringsmater. |
CA2533115C (en) * | 2005-01-18 | 2010-06-08 | Weatherford/Lamb, Inc. | Top drive torque booster |
US7918848B2 (en) | 2005-03-25 | 2011-04-05 | Maquet Cardiovascular, Llc | Tissue welding and cutting apparatus and method |
US8027714B2 (en) | 2005-05-27 | 2011-09-27 | Magnetecs, Inc. | Apparatus and method for shaped magnetic field control for catheter, guidance, control, and imaging |
US20070062547A1 (en) | 2005-07-21 | 2007-03-22 | Carlo Pappone | Systems for and methods of tissue ablation |
US7495537B2 (en) | 2005-08-10 | 2009-02-24 | Stereotaxis, Inc. | Method and apparatus for dynamic magnetic field control using multiple magnets |
DE102005045073B4 (de) | 2005-09-21 | 2012-03-22 | Siemens Ag | Verfahren zum visuellen Unterstützen einer invasiven Untersuchung oder Behandlung des Herzens mit Hilfe eines invasiven Instruments |
US7869854B2 (en) | 2006-02-23 | 2011-01-11 | Magnetecs, Inc. | Apparatus for magnetically deployable catheter with MOSFET sensor and method for mapping and ablation |
US20080249395A1 (en) | 2007-04-06 | 2008-10-09 | Yehoshua Shachar | Method and apparatus for controlling catheter positioning and orientation |
US20080297287A1 (en) | 2007-05-30 | 2008-12-04 | Magnetecs, Inc. | Magnetic linear actuator for deployable catheter tools |
US20090253985A1 (en) | 2008-04-07 | 2009-10-08 | Magnetecs, Inc. | Apparatus and method for lorentz-active sheath display and control of surgical tools |
US20090275828A1 (en) | 2008-05-01 | 2009-11-05 | Magnetecs, Inc. | Method and apparatus for creating a high resolution map of the electrical and mechanical properties of the heart |
-
2003
- 2003-07-15 US US10/621,196 patent/US7769427B2/en not_active Expired - Fee Related
- 2003-07-16 CN CN2008101748796A patent/CN101444424B/zh not_active Expired - Fee Related
- 2003-07-16 JP JP2004521863A patent/JP4511351B2/ja not_active Expired - Fee Related
- 2003-07-16 DE DE60328990T patent/DE60328990D1/de not_active Expired - Lifetime
- 2003-07-16 AU AU2003249273A patent/AU2003249273A1/en not_active Abandoned
- 2003-07-16 WO PCT/US2003/022122 patent/WO2004006795A1/en active Application Filing
- 2003-07-16 AT AT03764695T patent/ATE440560T1/de not_active IP Right Cessation
- 2003-07-16 EP EP03764695A patent/EP1521555B1/en not_active Expired - Lifetime
- 2003-07-16 EP EP09162409.8A patent/EP2105154A3/en not_active Withdrawn
- 2003-07-16 CA CA2493869A patent/CA2493869C/en not_active Expired - Fee Related
- 2003-07-16 CN CNB038215977A patent/CN100438826C/zh not_active Expired - Fee Related
-
2006
- 2006-01-13 US US11/331,781 patent/US20060116634A1/en not_active Abandoned
- 2006-01-13 US US11/331,485 patent/US7873401B2/en not_active Expired - Fee Related
- 2006-01-13 US US11/331,944 patent/US20060114088A1/en not_active Abandoned
-
2010
- 2010-03-10 JP JP2010052932A patent/JP2010179116A/ja active Pending
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101129264B (zh) * | 2006-08-21 | 2012-02-08 | 韦伯斯特生物官能公司 | 利用频率外推的抗失真位置跟踪 |
CN101256873B (zh) * | 2007-12-26 | 2011-02-09 | 中国科学院电工研究所 | 一种空间旋转磁场发生装置及其控制方法 |
CN104605855A (zh) * | 2008-02-29 | 2015-05-13 | 韦伯斯特生物官能公司 | 具有虚拟触摸屏的定位系统 |
CN104605855B (zh) * | 2008-02-29 | 2017-09-08 | 韦伯斯特生物官能公司 | 具有虚拟触摸屏的定位系统 |
US11771337B2 (en) | 2013-11-06 | 2023-10-03 | St Jude Medical International Holding S.A.R.L. | Magnetic field generator with minimal image occlusion and minimal impact on dimensions in c-arm x-ray environments |
CN105813560A (zh) * | 2013-11-06 | 2016-07-27 | 圣犹达医疗用品国际控股有限公司 | 在c摇臂x射线环境中具有极小图像遮挡和对尺寸的极小影响的磁场生成器 |
US10321848B2 (en) | 2013-11-06 | 2019-06-18 | St. Jude Medical International Holding S.À R.L. | Magnetic field generator with minimal image occlusion and minimal impact on dimensions in C-arm x-ray environments |
CN104188725B (zh) * | 2014-08-26 | 2016-08-24 | 中国科学院电工研究所 | 一种心脏磁导航手术系统的磁场发生装置 |
CN104188725A (zh) * | 2014-08-26 | 2014-12-10 | 中国科学院电工研究所 | 一种心脏磁导航手术系统的磁场发生装置 |
CN106999094A (zh) * | 2014-12-01 | 2017-08-01 | 皇家飞利浦有限公司 | 用于基于导管的导航的虚拟定向的电磁跟踪线圈 |
CN106999094B (zh) * | 2014-12-01 | 2021-04-13 | 皇家飞利浦有限公司 | 用于基于导管的导航的虚拟定向的电磁跟踪线圈 |
CN104490476B (zh) * | 2014-12-24 | 2017-04-12 | 天津理工大学 | 用于血管介入手术辅助系统的多维信息监控系统及显示方法 |
CN104490476A (zh) * | 2014-12-24 | 2015-04-08 | 天津理工大学 | 用于血管介入手术辅助系统的多维信息监控系统及显示方法 |
JP2019526930A (ja) * | 2016-08-10 | 2019-09-19 | 漢陽大学校産学協力団Industry−University Cooperation Foundation Hanyang University | 磁場制御システム |
US11756716B2 (en) | 2016-08-10 | 2023-09-12 | Iucf-Hyu (Industry-University Cooperation | Magnetic field control system |
US11826123B2 (en) | 2016-11-21 | 2023-11-28 | St Jude Medical International Holding S.À R.L. | Fluorolucent magnetic field generator |
US11617511B2 (en) | 2016-11-21 | 2023-04-04 | St Jude Medical International Holdings Sarl | Fluorolucent magnetic field generator |
CN110301883A (zh) * | 2018-03-27 | 2019-10-08 | 美国西门子医疗系统股份有限公司 | 用于导航管状网络的基于图像的向导 |
CN110301883B (zh) * | 2018-03-27 | 2022-06-03 | 西门子医疗有限公司 | 用于导航管状网络的基于图像的向导 |
US11373330B2 (en) | 2018-03-27 | 2022-06-28 | Siemens Healthcare Gmbh | Image-based guidance for device path planning based on penalty function values and distances between ROI centerline and backprojected instrument centerline |
WO2021000424A1 (en) * | 2019-07-03 | 2021-01-07 | Orion Biotech Inc. | Positioning and navigation system for surgery and operating method thereof |
US12053243B2 (en) | 2019-07-03 | 2024-08-06 | Neucen Biomed Co., Ltd. | Positioning and navigation system for surgery and operating method thereof |
CN111920395A (zh) * | 2020-07-22 | 2020-11-13 | 上海掌门科技有限公司 | 一种脉搏采集装置 |
CN112133515A (zh) * | 2020-10-21 | 2020-12-25 | 重庆大学 | 一种超导线圈绝缘支架及超导线圈与绕制方法 |
CN112826569A (zh) * | 2021-01-05 | 2021-05-25 | 西安交通大学医学院第一附属医院 | 一种心血管支架的清洗装置及其清洗方法 |
CN116407289A (zh) * | 2023-03-09 | 2023-07-11 | 极限人工智能有限公司 | 一种用于血管介入手术的导管弯曲控制系统及手术装置 |
CN116407289B (zh) * | 2023-03-09 | 2024-06-04 | 极限人工智能有限公司 | 一种用于血管介入手术的导管弯曲控制系统及手术装置 |
Also Published As
Publication number | Publication date |
---|---|
CA2493869A1 (en) | 2004-01-22 |
US7769427B2 (en) | 2010-08-03 |
CN101444424A (zh) | 2009-06-03 |
US20060114088A1 (en) | 2006-06-01 |
WO2004006795A1 (en) | 2004-01-22 |
CN100438826C (zh) | 2008-12-03 |
CN101444424B (zh) | 2012-04-04 |
US20060116633A1 (en) | 2006-06-01 |
ATE440560T1 (de) | 2009-09-15 |
EP2105154A3 (en) | 2014-08-20 |
AU2003249273A1 (en) | 2004-02-02 |
US7873401B2 (en) | 2011-01-18 |
JP2010179116A (ja) | 2010-08-19 |
EP1521555A1 (en) | 2005-04-13 |
DE60328990D1 (de) | 2009-10-08 |
EP2105154A2 (en) | 2009-09-30 |
US20040019447A1 (en) | 2004-01-29 |
US20060116634A1 (en) | 2006-06-01 |
JP2005532878A (ja) | 2005-11-04 |
EP1521555B1 (en) | 2009-08-26 |
CA2493869C (en) | 2012-11-20 |
JP4511351B2 (ja) | 2010-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1681448A (zh) | 导管的导引控制及成像设备 | |
US9237930B2 (en) | Robotically controlled catheter and method of its calibration | |
CN110946653B (zh) | 一种手术导航系统 | |
EP3515353B1 (en) | Tracking and guidance arrangement for a surgical robot system and related method | |
JP2022502119A (ja) | 汎用マルチアームロボット外科用システム | |
CN1168625A (zh) | 医用诊断、治疗及成象系统 | |
CN101918073A (zh) | 远程控制的导管插入系统 | |
CA2542863A1 (en) | System and method for radar-assisted catheter guidance and control | |
Lafreniere et al. | Design of an MRI-compatible robot for image-guided needle insertion procedures using active tendon-driven needles | |
CN111491567A (zh) | 用于引导超声探头的系统和方法 | |
US20220175483A1 (en) | Hand-manipulated input device for robotic system | |
Finlay et al. | PathFinder image guided robot for neurosurgery | |
CN221617244U (zh) | 口腔磁定位装置、口腔磁导航系统和口腔手术装置 | |
Schreiber et al. | CRANE: A Redundant, Multi-Degree-of-Freedom Computed Tomography Robot for Heightened Needle Dexterity within a Medical Imaging Bore | |
Moon et al. | Robotic systems for minimally invasive diagnosis and therapy | |
Yang | Development of a Robotic System for Femoral Artery Puncture and Access | |
CN117679088A (zh) | 柔性系统中的器械存在和旋转偏移感测 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081203 Termination date: 20140716 |
|
EXPY | Termination of patent right or utility model |