CN1674946A - 来自角蛋白的矫形材料 - Google Patents

来自角蛋白的矫形材料 Download PDF

Info

Publication number
CN1674946A
CN1674946A CN03819328.0A CN03819328A CN1674946A CN 1674946 A CN1674946 A CN 1674946A CN 03819328 A CN03819328 A CN 03819328A CN 1674946 A CN1674946 A CN 1674946A
Authority
CN
China
Prior art keywords
keratin
bone
sulfonated
compacting
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03819328.0A
Other languages
English (en)
Other versions
CN100506294C (zh
Inventor
P·V·佩皮罗
S·N·G·P·J·迪亚斯
A·D·罗迪克-兰齐洛塔
R·J·凯利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keratec Ltd
Original Assignee
Keratec Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keratec Ltd filed Critical Keratec Ltd
Publication of CN1674946A publication Critical patent/CN1674946A/zh
Application granted granted Critical
Publication of CN100506294C publication Critical patent/CN100506294C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • C08H1/06Macromolecular products derived from proteins derived from horn, hoofs, hair, skin or leather
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • C08L89/04Products derived from waste materials, e.g. horn, hoof or hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提供了一种来自角蛋白的生物相容性材料,其被用于骨医学治疗的许多方面。所述角蛋白材料优选被S-磺化并富含高分子量的中间丝蛋白。所述角蛋白材料可以是多孔的,用作骨的置换和增大产品;还提供了致密角蛋白材料在骨治疗中的应用,它被用作骨折和骨再生治疗中的内部固定装置,以及所述用于骨的形态和功能的保存、修复和改善的角蛋白材料的制备方法。

Description

来自角蛋白的矫形材料
发明领域
本发明关于用动物来源的角蛋白制备医疗材料,所述角蛋白来源于如羊毛、毛发、角、蹄和鳞。所述角蛋白材料是生物相容的、生物可整合的、以及生物可降解的,所述材料主要用于骨外科领域,用于骨的置换和增大,以及用于骨断裂和骨碎片的固定和制动。
发明背景
角蛋白是一类结构蛋白,在生物学结构中具有广泛的代表性,特别是在高级脊椎动物的上皮组织中。角蛋白可分为两种主要类型,软角蛋白(存在于皮肤以及一些其他组织中)和硬角蛋白(形成指甲、爪子、毛发、角、羽毛和鳞)。
硬角蛋白的韧性和不溶性使它们能够在许多生物系统中扮演基础结构的角色,这是许多来自合成聚合体的工业和消费材料的必需特性。除了拥有极好的物理特性,角蛋白作为一种蛋白,是一种具有高度化学功能性的聚合体,因而展现出许多合成聚合体所没有的特性。因此,角蛋白非常适合于具有高价值、适于市场应用的医学产品的开发。在履行其功能后被身体组织吸收(再吸收)的药物材料是高价值产品领域的一个例子,而角蛋白的特定性能使之超过其它天然的和合成的竞争材料。
Yamauchi(K.Yamauchi,M.Maniwa和T.Mori.,Journal of Biomaterial Science,Polymer edition,3,259,1998)证实,角蛋白可以加工成模具,根据它们的体外和体内特性,可认为是生物相容性的。被用于制造这些材料的加工方法需要高浓度的还原剂,如硫醇,并且加工条件不适合于商业生产。
Kelly(WO 03/19673)表明,应用商业可实施的化学物质和加工条件,角蛋白可被加工成复合的形状。
Blanchard(US5,358,935和US2003/003582A1)证实,应用高浓度还原剂或强氧化剂(harsh oxidant)可从人头发中提取角蛋白,加工生产出在一些软组织应用中有用的材料。然而,抽提和重建方法是苛刻的,并且通过角蛋白氨基酸胱氨酸至磺丙氨酸的不可逆氧化,或将所述蛋白置于高的pH条件而引起肽水解,可导致角蛋白的降解。这就导致蛋白的许多有益特性消失了,尤其是硬组织应用所必需的韧性。
为了生产适于矫形应用的角蛋白生物材料,需要可保持角蛋白特性的加工方法,并且提供具有良好坚韧特性的材料。本发明描述了这种材料以及它们的制造方法。
US 6,432,435提出了一种组织工程支架,具有一种带亲水基团的角蛋白,所述角蛋白通过角蛋白-角蛋白二硫键结合。然而,该专利没有公开磺化的角蛋白如何掺入到硬组织(如骨)的内容。其提供的实施例都是关于它们在软组织或多孔结构中的应用。
本发明人已经发现,角蛋白可被掺入到硬组织中(如骨中),因而可用于骨损伤的治疗。
身体的许多组织,包括骨,是连续更新的。新的骨基质(其将发生矿化)主要通过特定的细胞来形成,所述细胞称为造骨细胞,并且骨的异常组分被破骨细胞移走。与那些可被体内其它机制(如化学降解)毁坏的材料相比,通过生物学方法移走和置换骨组织的植入的材料将具有更大的优势。需要将新的骨与植入材料的表面并置,从而将所述材料整合入组织,直至其完全被再吸收和置换。
骨可分为四种微结构成分:细胞、有机基质、无机基质和可溶性信号因子。造骨细胞是代谢活性分泌细胞,表达可溶性细胞因子和类骨质,所述类骨质是一种产物,其细胞外变体可生产有机不溶性基质,主要由I型胶原组成。在骨的维持(如重新塑造)和修复过程中,造骨细胞开始表达这些产物。在骨髓中的单核细胞-巨噬细胞前体进入到循环中,并通过非同时的融合,生成多核的细胞,直径最大达100微米,平均具有10-12个细胞核,称为破骨细胞。破骨细胞具有皱折的边缘,这构成破骨细胞的再吸收区域,其上发生骨表面的酶促毁坏。术语“重新塑造”用于描述与成熟个体内的骨修复和自体平衡相关的动力学活动。与自体平衡的重新塑造相关的过程的总和被称为活化-再吸收-形成。造骨细胞被信号因子活化,并腾出一个空缺的骨区域;破骨细胞被刺激,进入到造骨细胞-空缺的位点,附着,再吸收,并对一种至今未鉴定出的信号作出反应,停止再吸收并弃去附着物。破骨细胞再吸收的凹陷区域被一些表达类骨质的造骨细胞重新进入,其钙化、修复骨。在人体中,所述活化-再吸收-形成过程需要3至6个月。
在骨受损伤(如断裂或肿瘤的手术移除)后有大量的出血,并且在2至5天里,出血形成巨大的血凝块。在血凝块的外围开始发生新血管形成。在周围软组织中同时也发生标准的炎症应答,产生多形核白细胞、巨噬细胞以及单核细胞,聚集在血凝块的周围。到了第一周的最后,血凝块的大部分因血管和早期纤维化的扩张而有机化。最早的骨(编织骨)在7天后形成。因为骨形成需要良好的血液供应,所述编织骨的针状体在血凝块的外周开始形成,该位置是血管生成最多的。来自周围软组织以及骨髓内的多能间质细胞促进造骨细胞合成编织骨。往往也会形成软骨,并最后被软骨内硬化所取代。包含骨-软骨的肉芽组织称为胼胝(发炎阶段)。
在第一周后,下一阶段开始,并且根据移动和固定程度的不同持续数月。通过这个阶段,急性炎症细胞已经分散,并且修复过程开始,包括多能细胞向纤维原细胞和造骨细胞的分化。修复过程从外周进行到中心,并实现两个目标:一,其有机化和再吸收了血凝块;二,更重要地,通过新血管形成构建了胼胝,其最后桥接骨缺损位点。引起修复的活动如下。大量来自周围骨中的破骨细胞移动到治疗区域。新的血管协助这些细胞供应营养,并提供更多的多能细胞用于细胞更新。所述位点被破骨细胞重新塑造(修复阶段)。
在数周中,胼胝将骨末端封闭,并且开始重新塑造,其中,骨被再有机化以使原始皮质被修复(重新塑造阶段)。
发明目的
本发明的目的是提供一种包含角蛋白并且在协助骨形成中有用的材料,和/或为公众提供一种有效的选择。
发明概述
本发明提供了一种用于在骨骼系统中保存、修复和改善骨的形态和功能的含角蛋白的材料。
本发明还提供了一种用于骨的置换和增大的多孔角蛋白材料。
本发明还提供了一种用于骨的固定和制动的致密角蛋白材料。
所述角蛋白优选是S-磺化的,并且更优选富含中间丝蛋白。
所述致密角蛋白材料可以通过将固体角蛋白粉末压制或将角蛋白膜压制来制备。
所述材料可包含最高达60%的钙盐。
所述材料可通过压制和冷冻干燥固体角蛋白来制备。
或者,角蛋白溶液可被冷冻干燥。
本发明还提供了角蛋白材料在保存、修复和改善骨的形态和功能中的应用。
本发明还提供了一种形成富含S-磺化的角蛋白的多孔材料的方法,该方法包括:
a)在一种可溶性porogen存在时压制角蛋白;
b)除去porogen并加固所述材料;
c)洗涤所述蛋白材料;以及
d)冷冻干燥所述材料。
本发明还提供了一种将角蛋白材料制成矫形产品的方法。
本发明还提供了一种用于骨置换/增大治疗的富含中间丝蛋白的多孔角蛋白形式的生物相容性材料。
所述材料可通过将固体角蛋白粉末在porogen存在时进行压制来制备,并且压制后进行冷冻干燥。所述porogen可选自氯化钠或其它生物相容性盐,或甘油或其它生物相容性溶剂。控制Progen的量和性质以选择合适的孔径,使骨前体细胞可以渗入,从而便于植入时角蛋白材料的定居。
本发明还提供了一种将S-磺化的角蛋白材料的致密材料制成矫形产品的方法,该方法包括:
a)在加热和水存在的条件下压制角蛋白;
b)加固所述材料;
c)洗涤所述材料以除去残留的化物物质;以及
d)干燥所述材料。
本发明还提供了一种将S-磺化的角蛋白的致密材料制成矫形产品的方法,该方法包括:
a)加固所述的含角蛋白的起始材料;
b)洗涤所述材料以除去残留的化物物质;
c)干燥所述材料;以及
d)在加热和水存在的条件下,压制角蛋白。
本发明还提供了一种通过内部固定以及骨碎片的固定和制动来治疗骨折的用生物相容性角蛋白材料制造的矫形医疗材料,如骨板、骨钉和骨螺。
可加入水分和化学物质。适当的应用还原剂可从S-磺化的角蛋白中除去磺酸基团,并改造原先存在的二硫化物。
用于骨形成的角蛋白可通过WO 03/011894中描述的方法来制备,其提供了一种制备高分子量角蛋白衍生物的方法,该方法包括第一阶段的消化步骤,用氧化性亚硫酸盐解来磺化角蛋白;接着进行第二阶段的重复水抽提,包括溶液和不溶性角蛋白的分离以及重新抽提不溶性角蛋白,从而生产出高度S-磺化的角蛋白衍生物。
WO 03/018673提供了一种来自S-磺化的角蛋白的泡沫纤维粘附材料或膜。所述方法包括溶剂浇铸一种S-磺化的角蛋白溶液。
同时还提供了一种制备来自高度S-磺化的角蛋白中间丝蛋白的膜、纤维、泡沫或粘附材料的方法。
本发明提供了一种制备适合用在骨结构中的角蛋白材料的方法,并且还提供了应用在骨结构中的角蛋白材料,基于WO 03/018673和WO 03/011894的方法。
一种可降解的角蛋白装置具有足够的柔韧性,通过逐渐地转移功能性负载物进入痊愈中的骨头,刺激新骨的生长(与目前常用的一些坚硬的永久材料不同)。而且,后续治疗中不需要移走来自角蛋白的制动装置或部件。
将富含中间丝蛋白的S-磺化的角蛋白改造成坚韧的、致密的材料,以在骨断裂治疗中用作内部制动装置的方法可包括:在水分、化学物质存在时,在一些情况下同时进行加热,压制所述的生物相容性蛋白,形成所需的形状。材料中交联的形成确保了其在压制或随后的化学治疗过程中各种生物学条件下保持强度和韧性。
所述方法也涉及还原剂的调节应用,以从S-磺化的角蛋白中除去磺酸基团,并改造天然角蛋白中原先存在的二硫化物。这具有两个目的:首先,通过形成扩展的二硫键交联网络,有效地聚合角蛋白,提供了在生物条件下的强度和韧性;第二,调节由材料的酶消化而发生的生物降解的速度和程度。通过调节生物降解的速度,本发明使角蛋白产品可用于需要一定范围治疗时间的治疗。
在本专利说明书中,重新建立的角蛋白是完全生物相容的,不引起任何可见的异体免疫反应。所述角蛋白通过前面描述过的发生在骨中的普通过程降解。因此在骨置换和增大中,所述角蛋白具有与自体的骨质相似的特性。在断裂治疗情况下,用所述角蛋白制备的装置将具有必要的物理特性,以实现将骨碎片固定和制动的目的,并且一旦履行了所述功能,所述角蛋白将逐渐被再吸收,最后在组织中消失。在再吸收的初期,通过向骨头提供功能性负载物,逐渐弱化的角蛋白装置将刺激新骨的形成。这将防止在金属装置中存在的压力遮蔽效应。此外,与金属装置相比,角蛋白的降解和再吸收具有巨大的优势,金属装置要么永久地保留在体内,要么需要二次手术步骤来移除。
本发明可用于任何骨形成作用。下述过程可引起骨的形态和功能的破坏:
-骨生长过程中发育不规则,或异常生长;
-损伤引起断裂、断裂脱臼,骨发生或未发生损失;
-手术介入,如切除恶性或良性肿瘤/肿瘤类似病理,或切除在恶化状态下的骨;
-由一些病理状况如感染引起的骨坏死和毁坏。
这些状态的治疗疗法是尽量保存、修复或促进骨骼系统中受影响的骨头的正常形成和功能。
术语“中间丝蛋白”描述了来自中间丝蛋白种类的角蛋白。角蛋白中间纤维来自硬α角蛋白,本领域中通常认为其包含两个低硫多肽的家族,同时包含螺旋和非螺旋的片段,如在Marshall等,Structure and Biochemistry of Mammalian HardKeratin,Electron Microscopy Review,Vol 4,pp47-83,1991中所论述的。
“富含中间丝蛋白”是指与相应的天然角蛋白来源中的量相比,在产品中含有更多的中间丝蛋白。
本发明优选实施方案的描述
本发明将通过实施例的形式加以描述,以下优选的实施方案仅作为参考。
本发明特别地引用了一些基于来自羊毛的硬α-角蛋白的方法和应用,然而,所述原理可同样很好地适用于其它可选择的α-角蛋白,或任何来源的能够生产中间纤维(IF)型蛋白的α-角蛋白。
类似的制备方法已经被申请人用于其它角蛋白来源,如羽毛,以生产同样适合于以下描述的应用的材料。本发明的特征可扩展到覆盖限定区域的角蛋白的利用,不依赖于α-型蛋白(IF蛋白)存在的应用。这里包括基于β或羽毛角蛋白的应用,可与IF蛋白结合。
羊毛代表了一种便利来源的硬α-角蛋白,尽管任何其他的动物纤维或角或蹄同样可用作所需蛋白的来源。羊毛含有约95%的角蛋白,其能宽泛地分为三种蛋白类型。中间丝蛋白典型地具有高的分子量(45-60kD),具有部分纤丝状三维结构和约6%含量的半胱氨酸,其占据了羊毛纤维质量的约58%,尽管只有部分的所述质量在结构中是真正形成螺旋的。高硫或超高硫蛋白,约占羊毛纤维的26%,在结构上是球状的,分子量范围在10-40kD,可包含最高达30%摩尔百分数(mol%)的半胱氨酸水平。高-甘氨酸-酪氨酸蛋白是较少的类型,占羊毛纤维的6%,分子量在10kD左右,它们具有高含量的甘氨酸和酪氨酸残基。
来自不同类型的羊毛角蛋白的蛋白拥有不同的特性,这将在特定的应用中给予它们独特的优点。
本发明特别关于中间丝蛋白的应用,以及应用它们来生产材料,用于矫形手术。
但是,其它非纤维状蛋白在更多的限定领域中具有它们自身的作用。
动物来源(如前面所描述的)的高度S-磺化的角蛋白,当纯化以分离中间丝蛋白组分时,是一种生物相容/生物可降解的材料,非常适合用于矫形用途。所述角蛋白可通过如WO 03/011894中所论述的方法来制备。所述的S-磺化的角蛋白自身可根据WO 03/018673中的方法来制备。这些方法导致存在于原始角蛋白来源中的胱氨酸被改变成S-磺酰半胱氨酸。该基团是高度极化的,可使所述衍生的角蛋白在pH>4的条件下变得可溶。并且,S-磺化的材料对水分是敏感的,并适合于加工成对矫形治疗有用的模具。在一些情况下,保留S-磺化官能度是有用的,然而对于其它模具,作为重建过程的一部分,化学处理所述蛋白是有用的,以除去S-磺化官能度并改造角蛋白中原先存在的二硫键。高度极化和对水分敏感的同时,S-磺基衍生物的存在使重建的角蛋白材料易于被存在于体内的蛋白水解酶降解。将S-磺基基团改变为胱氨酸可使制备的角蛋白材料不溶,并使之具有一定程度的蛋白水解酶抗性。所述包含胱氨酸的材料在体内以低的速度降解,该特性在一些矫形应用中是重要的。
将S-磺酰半胱氨酸改变为胱氨酸可通过还原剂的应用来实现,通常用包含硫醇的溶液,如巯基乙酸铵,或通过如WO 03/018673中所描述的方法。
作为一种蛋白质材料,角蛋白非常适合作为材料用于建造矫形材料,它可结合生骨剂,如常见的成骨质羟基磷灰石,根据重建方法的不同,含量在0-60%水平。文献早已报导,包含在生物材料中的羟基磷灰石对痊愈具有有益的影响,也作为本发明的一部分得到证实。
在本发明的一个实施方案中,所述的S-磺化的角蛋白被重建成多孔的材料,用作骨的置换或增大。这通过在水和可溶性porogen存在时压制角蛋白来实现,所述porogen如氯化钠。通常,将S-磺化的角蛋白中间体磨成一定的粒度,使之利于粉末压制,优选为125-200微米,与水以1∶0.1至1∶10、优选1∶1的比率混合,并和氯化钠与1∶0.01至1∶10的比例混合。也将羟基磷灰石以质量水平1-60%、优选1-10%加入到混合物中。将所述混合物挤入一种模具中,施加10,000至50,000kPa范围的压力,时间范围为1-30分钟。在从模具中移出时,从颗粒状物上切下一个柱形体,将之浸泡在化学处理溶液中,以洗去porogen并留下多孔的材料,同时从角蛋白中除去磺酸盐官能度,并改变蛋白质的二硫交联。所述的化学处理可采取两种形式的一种。首先,将包含磷酸钠(优选浓度为0.1M)的巯基乙酸铵溶液(优选浓度为0.25M)缓冲至pH7.0,用于处理柱形体,持续2-48小时,优选18小时。将颗粒物在水中洗涤,除去残留的化学物质。在洗涤后,将柱形体冷冻干燥。可选择地,所述的柱形体可在含有巯基乙酸的溶液中化学处理,所述溶液优选0.1M,处理2-48小时,优选18小时。接着在水中短暂洗涤,通过将柱形体在缓冲溶液中洗涤48-96小时,除去残留的化学物质。所述溶液每24小时更新一次。进一步在水中洗涤后将柱形体冷冻干燥。
材料的孔径可通过改变制备过程中氯化钠的量来调节。比如,采用每克蛋白0.06g氯化钠,获得的孔一般为50-150微米,而采用每克蛋白0.14g氯化钠,形成的孔达到320微米。
用巯基乙酸方法获得的多孔角蛋白材料的生物特性已经在体外和体内进行了证实。在体外,所述材料并非是细胞溶解性的,支持人和羊纤维原细胞的生长。如ISO10993-5中所描述的,将多孔材料直接与细胞接触,如采用羊纤维原细胞产生如下所述的结果。在聚苯乙烯细胞培养板的孔中,加入多孔材料或不加材料作为对照,起始接种约10,000个细胞(0小时)。在接种后最初24小时中,培养经历了一段滞后期,有细胞数下降的迹象。该现象在所有进行的试验中均出现了,除了包含测试材料的孔以外,在对照孔中也观察到了下降。实验已经显示,该滞后时间持续少于12小时,指数生长期开始了。每约24-48小时细胞数发生增倍,细胞近乎汇合(约80%汇合)标志对数生长的结束。这相当于指数期过程(5天或120小时)的结束。接着的时间-过程实验显示出一个细胞生长稳定期,之后不久培养细胞完全铺满。在该点上,接触抑制和营养缺失在限制生长速度中起着关键作用,并且单层培养可显示细胞死亡信号(即膜完整性的丧失,细胞数量的降低,个体细胞的空泡化)。在该试验中,可见到细胞附着到盘的上部表面上。通过光学显微镜观察,与不含材料的对照相比,可认为所有底物上的这些细胞在形态学表现上是相似的。类似的对于人纤维原细胞的试验获得非常相似的结果,在多孔材料存在时显示典型的纤维原细胞生长曲线,在120小时后培养中达到约80%铺满。在这个时间,对照孔已经达到100%铺满。
体内研究包括将角蛋白材料用上述方法处理,同时,所述材料的复合物包含6%羟基磷灰石,制成直径3mm、长3mm的杆状,用γ射线(2.8Mrads)消毒,植入到成年羊的后肢长骨的中段(皮质骨)以及近侧和远侧末端(皮质松质骨)。组织对于植入材料的反应通过对活组织样品的组织学检测来研究,在第10天、3、6、8、12和24周进行检测。骨组织对于用巯基乙酸制备的材料的反应显示出最小的异体免疫反应,在植入的和周围的骨之间仅有一薄层的肉牙组织(导致纤维化)形成。在3-6周中,植入材料被类骨质组织利用,引起在由角蛋白植入材料再吸收所创建的空间中形成编织骨,并且,在约6-8周时新的骨被连接到周围的骨上。从6周起,编织骨重塑入皮质松质骨。所述过程延续到后来,植入材料的完全整合,被成熟的骨取代,所述的骨缺陷完全愈合。
此外,通过将其制成12mm长、4mm宽、3mm厚的板并植入到羊的皮下,检测所述多孔材料的物理特性。所述的板在Instron材料试验机上测试,获得的数据显示在3-6周阶段,拉伸特性减弱约10%。这与在该时间段干重损失约10%相一致。这些发现支持所述材料可刺激新骨形成和防止压力遮蔽效应的能力,并且所述材料逐渐被再吸收。
多孔角蛋白材料也可通过冷冻干燥S-磺化的角蛋白水溶液来制备,应用如WO03/018673中所描述的方法,所述材料适合用于骨移植用途。通过将不溶性羟基磷灰石悬浮在角蛋白中,从S-磺化的角蛋白水溶液(优选5%)中制备一种包含高比例羟基磷灰石的角蛋白材料,角蛋白与羟基磷灰石质量比率为1∶0.1至1∶2,优选1∶1。通过冷冻以及后续的冷冻干燥,获得角蛋白和羟基磷灰石的混合物,其是多孔海绵体材料,适合应用在骨移植产品中。
在本发明的另一个实施方案中,所述的S-磺化的角蛋白被重建为坚韧的、致密的材料,用作骨制动产品。这通过压制角蛋白来实现。通常,S-磺化的角蛋白磨成一定的粒度以利于粉末的压制,优选125-200微米,与水以1∶0.1至1∶10混合,优选1∶1。也将羟基磷灰石以质量百分数0-60%的水平加入到混合物中,优选0-10%。将所述混合物挤入一种模具中,施加压力10,000至50,000kPa,时间在1-30分钟。在从模具中移出时,从颗粒状物上切下一个柱形体,将之浸泡在化学处理溶液中,以洗去porogen并留下多孔材料,同时从角蛋白中除去磺酸盐官能度,并改变蛋白质的二硫交联。所述的化学处理可采取两种形式的一种。首先,将包含磷酸钠(优选浓度为0.1M)的巯基乙酸铵溶液(优选浓度为0.25M)中缓冲至pH7.0,用于处理柱形体,持续2-48小时,优选18小时。将颗粒物在水中洗涤,除去残留的化学物质。在洗涤后,将柱形体冷冻干燥。可选择地,所述的柱形体可在含有巯基乙酸的溶液中化学处理,所述溶液优选0.1M,处理2-48小时,优选18小时。接着在水中短暂洗涤,通过将柱形体在缓冲溶液中洗涤48-96小时,除去残留的化学物质。所述溶液每24小时更新一次。进一步在水中洗涤后将柱形体冷冻干燥。
致密角蛋白材料的生物学特性在体外进行了证实,生物物理特性在体内进行了检测。在体外,所述材料并非是细胞溶解性的,支持人和羊纤维原细胞的生长。在一个与前述多孔材料相似的方式中,如ISO 10993-5中所描述的,将多孔材料直接与细胞接触,如采用羊纤维原细胞可形成随后的结果。在聚苯乙烯细胞培养板的孔中加入多孔材料或不加材料作为对照,起始接种入约10,000个细胞(0小时)。在接种后最初24小时中,培养经历了一段滞后期,有细胞数下降的迹象。该现象在所有进行的试验中均出现了,除了包含测试材料的孔以外,在对照孔中也观察到了下降。实验已经显示,该滞后时间持续少于12小时,指数生长期开始了。约每24-48小时细胞数发生增倍,近乎汇合(约80%汇合)标志对数生长的结束。这相当于指数期过程(5天或120小时)的结束。接着的时间-过程实验显示出一个细胞生长稳定期,之后不久培养细胞完全铺满。在该点上,接触抑制和营养缺失在限制生长速度中起着关键作用,并且单层培养可显示细胞死亡信号(即膜完整性的丧失,细胞数量的降低,个体细胞的空泡化)。在该试验中,可见到细胞附着到盘的上部表面上。通过光学显微镜观察,与不含材料的对照相比,可认为所有底物上的这些细胞在形态学表现上是相似的。类似的对于人纤维原细胞的试验获得非常相似的结果,在多孔材料存在时具有典型的纤维原细胞生长曲线,在120小时后培养中达到约80%铺满。在这个时间,对照孔已经达到100%铺满。
将用巯基乙酸处理的材料制成12mm长、4mm宽、3mm厚的板,并植入到成年大鼠的皮下,检测所述材料的生物物理特性(弹性模数,破裂模数,拉伸强度)。在1、3、6和12周将所述的板移出大鼠,评价物理强度。在3-6周阶段,弹性模数显示下降40-70%。在该段时间上,干重的损失为5%至10%,与我们用多孔材料的板在羊中进行的研究相一致。
本发明的另一方面是一种坚韧的、致密角蛋白材料,用于骨的制动,构建自多层角蛋白膜的加热压制。角蛋白膜从S-磺化的角蛋白来制备,应用如WO 03/018673中所描述的方法。角蛋白膜也可应用S-磺化的角蛋白溶液来制备,其中包含羟基磷灰石悬浮物。应用该方法,可将羟基磷灰石掺入到角蛋白膜中,以角蛋白质量的0-50%的水平加入。形成的膜可堆叠为多层,施加10,000-100,000kPa的压力,温度范围为50-200℃,时间为1-60分钟。伴随着压制还在压制混合物中加入水,在相同条件下继续进行压制。结果获得的材料包含角蛋白和羟基磷灰石的混合物,以致密、坚韧的块状形式存在。然后进行化学处理,将S-磺化的基团改造为胱氨酸。应用巯基乙酸和巯基乙酸铵,处理和洗涤条件如前所述。一旦干燥,所述的结果材料可机械加工成一定的形状,作为矫形手术的装置,如骨螺或骨钉。
在一个可选择的方式中,包含0-60%水平的羟基磷灰石的角蛋白膜在堆叠成多层前,进行化学处理。通过将膜浸入到与前述相似成分的巯基乙酸铵溶液进行处理,持续20-60分钟。在水中多次洗涤所述的膜,除去残留的化学物质,干燥包含带有S-磺基基团、被改造为胱氨酸的角蛋白的结果材料。然后将所述的膜以前述相同的方式压制,结果材料包含角蛋白和羟基磷灰石的混合物,以致密、坚韧的块状形式存在。不再需要进一步的化学处理,所述材料可机械加工成一定的形状,作为矫形手术的装置,如骨螺或骨钉。
本发明的一个方面是应用还原剂,如前述的巯基乙酸铵或巯基乙酸,用于从蛋白中除去磺酸盐官能度,改造天然角蛋白中原先存在的二硫键。以磺酸盐形式的角蛋白在高于pH4时是可溶的,并在体内快速被再吸收。为了使材料在体内保留更长的时间,并调节材料的降解和再吸收速度,使用可除去磺酸盐官能度的还原剂。所述还原剂应用的广度、接触时间以及试剂浓度可影响材料中磺酸基团与二硫键的比率。这进而影响了材料在体内的强度和降解速度。其它交联剂,如那些用于改变其它生物材料特性的试剂,比如戊二醛和二甲胺基丙基碳二亚胺盐酸盐(EDC),它们可用于改变胶原质生物材料的特性,也可用于改变角蛋白生物材料的特性。
实施例
实施例1a:多孔角蛋白材料
将0.4g的S-磺化的角蛋白中间丝蛋白粉末磨成125-300微米大小的微粒,与0.5ml水以及0.024g氯化钠混合,静置5分钟。将所述混合物挤入直径12mm的模具中,施加15,000kPa的压力,进行2分钟。从模具中移出后,从该颗粒物上切下直径3mm的柱形体,浸入化学处理溶液中,以洗去porogen并留下多孔的材料,同时从角蛋白中除去磺酸盐官能度,并改变蛋白质的二硫交联。所述的化学处理可采取两种形式的一种。首先,将包含0.1M磷酸钠的0.25M巯基乙酸铵溶液缓冲至pH7.0,用于处理柱形体,持续18小时。将颗粒物在水中连续洗涤三次,分别是10、40和10分钟,除去残留的化学物质。在洗涤后,将柱形体冷冻干燥。可选择地,所述的柱形体可在含有0.1M巯基乙酸的溶液中化学处理18小时。接着在水中短暂洗涤,通过将柱形体在0.1M TRIS、11.25mM氯化钙溶液中洗涤72小时,除去残留的化学物质。所述溶液每24小时更新一次。进一步在水中洗涤后将柱形体冷冻干燥。
实施例1b:包含羟基磷灰石的多孔角蛋白材料
该材料的制备与实施例1a中描述的相同,但是在包含氯化钠同时还加入0.034g羟基磷灰石,以使最终产物含有6%质量水平的羟基磷灰石。
实施例1c:包含羟基磷灰石的多孔角蛋白材料
为了制备多孔角蛋白材料,通过在水中悬浮0.5g S-磺化的羊毛角蛋白来制备5%角蛋白溶液,接着在约2小时中,在剧烈搅拌的溶液中逐渐加入0.5ml的1M氢氧化钠。仔细监控溶液的pH值,观察到因碱的加入pH升高到约10,并逐渐降低,这是因为碱因蛋白溶解而被吸收。最终获得的pH为9.5。蛋白溶液在34,000g离心,除去任何不溶的物质,将0.5g羟基磷灰石全部混合入溶液。将所述混合物冷冻并冷冻干燥,获得多孔的材料。与实施例1a中所采用的方法相同,将所述材料浸入巯基乙酸铵溶液中,持续30分钟,最后在3批水中洗涤20分钟并冷冻干燥。
实施例2a:致密角蛋白材料
将0.5g角蛋白粉末磨成125-200微米大小的微粒,与0.5ml水混合并静置5分钟。将所述混合物挤入直径12mm的模具中,施加15,000kPa的压力,进行2分钟。从模具中移出后,从该颗粒物上切下所需的形状,如切下12mm×4mm的块状,将所述块状物浸入化学处理溶液中,以从角蛋白上除去磺酸盐官能度,并改变蛋白质的二硫交联。所述的化学处理可采取两种形式的一种。首先,将包含0.1M磷酸钠的0.25M巯基乙酸铵溶液缓冲至pH7.0,用于处理所述块状物,持续18小时。接着将块状物在水中逐次洗涤10、40、10分钟,除去残留的化学物质。洗涤后,于室温下将块状物在空气中干燥。可选择地,所述的块状物可在含有0.1M巯基乙酸的溶液中化学处理18小时。接着在水中短暂洗涤,通过将块状物在0.1M TRIS、11.25mM氯化钙溶液中洗涤48小时,除去残留的化学物质。所述溶液每24小时更新一次。接着在水中进一步洗涤所述块状物,常温下在空气中干燥。
实施例2b:包含羟基磷灰石的致密角蛋白材料
该材料的制备与实施例2a中描述的相同,但是在起始步骤中,在角蛋白粉末中还加入0.032g羟基磷灰石,以使最终产物含有6%质量水平的羟基磷灰石。
实施例2c:构建自角蛋白膜的致密角蛋白材料
S-磺化的角蛋白的膜,厚约0.3mm,用如WO 03/018673中所论述的方法来制备,并切割为4×50mm。在加热的内部尺寸5×50mm的刚模中,将总质量为1g的许多的膜(约50张膜)堆叠为多层,施加50,000kPa的压力,持续5分钟,加热刚模使温度保持在80-100℃。形成的角蛋白块状物浸入到巯基乙酸铵溶液中,如实施例1a中描述的,持续18小时,接着在水中洗涤10、40、10分钟。空气干燥。
在一种变更方式中,所用的膜包含50%的羟基磷灰石,如下方法制备:1.0g S-磺化的羊毛角蛋白悬浮在水中,在约2小时中,将0.2g甘油和1.0ml的1M氢氧化钠逐渐加入到剧烈搅拌的溶液中,仔细监控溶液的pH值,观察到因碱的加入pH升高到约10,并逐渐降低,这是因为碱因蛋白溶解而被吸收。最终获得的pH为9.5。蛋白溶液在27,000g离心,除去任何不溶物,将1.0g羟基磷灰石制成含有少量99%乙醇(约1ml)的糊状物,然后与5%溶液完全混合。将所述混合物置于100mm2的皮氏培养皿中,在常温下干燥。
实施例2d:构建自预处理的角蛋白膜的致密角蛋白材料
S-磺化的角蛋白膜,厚约0.3mm,用如WO 03/018673中所论述的方法来制备,在如实施例1a中所描述的巯基乙酸铵溶液中处理30分钟。接着将膜在水中洗涤并干燥,使膜包含二硫化物而非S-磺化官能度。将这些膜切割为4×50mm。在加热的内部尺寸5×50mm的刚模中,将总质量为1g的许多的膜(相当于70张膜)堆叠为多层,施加50,000kPa的压力,持续5分钟,加热刚模使温度保持在80-100℃。移走角蛋白块状物,在水中短暂浸泡,压入热模中,施加20,000kPa的压力,持续5分钟。在压力下加热刚模至80-100℃。施加30,000kPa的压力,持续30分钟。
在一种变更方式中,所用的膜含有50%的羟基磷灰石,如实施例2b中所描述的方法制备。含有羟基磷灰石的致密角蛋白材料以与2c相同的方法制备。
在前面的描述中,已经列举了已知等价的本发明的特定组分或整体的参考,所述等价形式引入在这里,具有如单独提出相同的效应。
工业适用性
本发明在医学领域,尤其在骨损伤领域是有用的。本发明的角蛋白材料是生物相容的,可用作骨置换和增大产品。比如,本产品可用于置换由各种临床状态造成损坏的骨头,如外伤或肿瘤,并作为新骨的支架,促进愈合。多孔角蛋白支架被新的编织骨再吸收和置换,最终重新塑造为松质骨和皮质骨。

Claims (43)

1.一种用于保存、修复和改善骨的形态和功能的含角蛋白的材料。
2.一种用于骨的置换和增大的含角蛋白的材料。
3.一种用于骨的固定和制动的致密角蛋白材料。
4.如权利要求1、2或3中任一项所述的材料,其特征在于,所述角蛋白是S-磺化的。
5.如权利要求1-4中任一项所述的材料,其特征在于,所述角蛋白富含中间丝蛋白。
6.如权利要求5所述的角蛋白,其通过压制固体角蛋白粉末来制备。
7.如权利要求3所述的致密材料,其通过压制角蛋白膜来制备。
8.如权利要求1-7中任一项所述材料,其包含最高达60%的钙盐。
9.如权利要求6或7所述的材料,其特征在于,压制之后进行固体角蛋白的冷冻干燥。
10.一种致密角蛋白材料在制造用于保存、修复和改善骨的形态和功能的医学支撑物或支架中的应用。
11.如权利要求10所述的应用,其特征在于,所述角蛋白材料是S-磺化的。
12.如权利要求10或11所述的应用,其特征在于,所述角蛋白富含中间丝蛋白。
13.一种将S-磺化的角蛋白材料的致密材料制成矫形产品的方法,所述方法包括:
a)在加热和水存在的条件下压制角蛋白;
b)加固所述材料;
c)洗涤所述材料以除去残留的化物物质;以及
d)干燥所述材料。
14.一种将S-磺化的角蛋白的致密材料制成矫形产品的方法,所述方法包括:
a)加固所述含角蛋白的起始材料;
b)洗涤所述材料以除去残留的化物物质;
c)干燥所述材料;以及
d)在加热和水存在的条件下压制角蛋白。
15.一种形成富含S-磺化的角蛋白的多孔材料的方法,所述方法包括:
a)在一种可溶性porogen存在时压制角蛋白;
b)除去porogen并加固所述材料;
c)洗涤所述蛋白材料;以及
d)冷冻干燥所述材料。
16.如权利要求15的方法,其特征在于,所述porogen选自氯化钠或其他生物相容性盐,或甘油或其他生物相容性溶剂。
17.如权利要求15或16所述的方法,其特征在于,porogen的量和性质被控制以选择孔径,使骨前体细胞可以渗入,从而便于植入时角蛋白材料的定居。
18.如权利要求13-17中任一项所述的方法,还包括在角蛋白起始材料中加入羟基磷灰石。
19.如权利要求13-18中任一项所述的方法,其特征在于,所述角蛋白富含中间丝蛋白。
20.用权利要求13-19中任一项所述的方法制备的角蛋白材料。
21.一种用于骨置换/增大治疗的富含中间丝蛋白的多孔角蛋白形式的生物相容性材料。
22.如权利要求21所述的生物相容性材料,其特征在于,所述角蛋白是S-磺化的。
23.如权利要求21或22所述的生物相容性材料,其包含最高达60%的钙盐。
24.如权利要求21-23中任一项所述的生物相容性材料,其特征在于,所述材料通过压制固体角蛋白粉末来制备。
25.如权利要求24所述的生物相容性材料,其特征在于,压制后进行冷冻干燥。
26.如权利要求21-25中任一项所述的生物相容性材料,其特征在于,所述材料从角蛋白溶液中制备。
27.如权利要求26所述的生物相容性材料,其特征在于,所述角蛋白溶液被冷冻干燥。
28.一种通过内部固定以及骨碎片的固定和制动来治疗骨折的用生物相容性角蛋白材料制造的矫形医疗材料。
29.如权利要求28所述的矫形医疗材料,其是用S-磺化的角蛋白材料制造的。
30.如权利要求28或29所述的矫形医疗材料,其特征在于,所述角蛋白富含中间丝蛋白。
31.如权利要求28-30中任一项所述的矫形医疗材料通过压制固体角蛋白粉末来制备。
32.如权利要求28-30中任一项所述的矫形医疗材料通过压制角蛋白膜来制备。
33.如权利要求28-30中任一项所述的矫形医疗材料从角蛋白溶液来制备。
34.如权利要求28-30中任一项所述的矫形医疗材料包含最高达60%的钙盐。
35.如权利要求31-33中任一项所述的矫形医疗材料,其特征在于,在压制后将角蛋白冷冻干燥。
36.如权利要求28-35中任一项所述的矫形材料通过权利要求13-19中任一项所述的方法来制备。
37.一种将富含中间丝蛋白的S-磺化的角蛋白改造为在骨折的治疗中用作内部固定装置的坚韧、致密的生物相容性材料的方法。
38.如权利要求36所述的方法,其特征在于,所述角蛋白富含中间丝蛋白。
39.如权利要求37所述的方法,包括在水分和化学物质存在时压制所述生物相容性蛋白。
40.如权利要求39所述的方法,其特征在于,在形成所需形状时也采用加热。
41.如权利要求37-40中任一项所述的方法,还包括控制还原剂的应用以从S-磺化的角蛋白中除去磺酸基团,并改造原先存在于天然角蛋白中的二硫化物。
42.一种用权利要求37-41中任一项所述方法制备的富含生物相容性角蛋白的材料。
43.如权利要求28所述的矫形材料,其特征在于,所述材料是骨板、骨钉或骨螺。
CNB038193280A 2002-06-10 2003-06-10 来自角蛋白的矫形材料 Expired - Lifetime CN100506294C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NZ519456 2002-06-10
NZ51945602 2002-06-10

Publications (2)

Publication Number Publication Date
CN1674946A true CN1674946A (zh) 2005-09-28
CN100506294C CN100506294C (zh) 2009-07-01

Family

ID=29728989

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038193280A Expired - Lifetime CN100506294C (zh) 2002-06-10 2003-06-10 来自角蛋白的矫形材料

Country Status (11)

Country Link
US (2) US7297342B2 (zh)
EP (1) EP1534353A4 (zh)
JP (1) JP4551761B2 (zh)
CN (1) CN100506294C (zh)
AU (1) AU2003238745B2 (zh)
BR (1) BR0311723A (zh)
CA (1) CA2488721A1 (zh)
MX (1) MXPA04012434A (zh)
NZ (1) NZ550755A (zh)
WO (1) WO2003103737A1 (zh)
ZA (1) ZA200409777B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827481A (zh) * 2012-09-25 2012-12-19 天津工业大学 一种角蛋白高弹柔性生物膜及其制备方法
CN102836461A (zh) * 2012-09-25 2012-12-26 天津工业大学 一种力学性能可调控的自体角蛋白矫形材料及其制备方法
CN109481726A (zh) * 2018-11-26 2019-03-19 广州新诚生物科技有限公司 一种可生物降解的止血骨蜡及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1694370T3 (da) * 2003-12-19 2012-12-10 Keratec Ltd Keratinholdige sårbehandlingsprodukter
US7579317B2 (en) 2005-03-11 2009-08-25 Keratec, Ltd. Nutraceutical composition comprising soluble keratin or derivative thereof
US8920827B2 (en) * 2005-10-21 2014-12-30 Wake Forest University Health Sciences Keratin bioceramic compositions
US20070207097A1 (en) * 2006-02-21 2007-09-06 Kelly Robert J Treating hair or nails with internal wool lipids
WO2008040357A1 (en) * 2006-10-02 2008-04-10 Coloplast A/S Cross-linking of foams of s-sulfonated keratin
ES2515118T3 (es) * 2006-12-06 2014-10-29 Keratec Limited Materiales de relleno para huecos óseos y procedimientos de fabricación de los mismos
WO2008073376A2 (en) * 2006-12-11 2008-06-19 Keratec, Ltd. Porous keratin construct and method of making the same
DE102008053114B4 (de) * 2008-10-26 2011-05-05 Technische Universität Braunschweig Pharmazeutischer Keratinschwamm
WO2010132673A1 (en) * 2009-05-13 2010-11-18 Keraplast Technologies, Ltd. Biopolymer materials
WO2012068376A2 (en) * 2010-11-17 2012-05-24 Wake Forest University Health Sciences Keratin compositions for treatment of bone deficiency or injury
EP3412683B1 (en) 2011-08-17 2022-02-09 KeraNetics, Inc. Methods for extracting keratin proteins
US9700631B2 (en) 2011-08-17 2017-07-11 KeraNetics, LLC Low protein percentage gelling compositions
AU2013298956B2 (en) * 2012-07-31 2016-06-16 Geistlich Pharma Ag Hydrophilic phosphate group containing dehydrated partially purified bone replacement material
US9827245B2 (en) 2013-03-15 2017-11-28 KeraNetics, LLC Keratin compositions comprising halofuginone
CN104818414B (zh) * 2015-03-19 2017-08-11 中国科学院金属研究所 一种具有多孔结构的金属植骨材料及其制备和应用
CN104941005B (zh) * 2015-05-18 2018-02-02 天津工业大学 一种羟基磷灰石增强角蛋白复合骨材的制备方法
WO2018075614A1 (en) 2016-10-18 2018-04-26 Marquette University Composite materials containing structural polymers and photoreactive nitric odide releasing agents and uses thereof for wound dressings

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2591945A (en) 1948-11-12 1952-04-08 Botany Mills Inc Process for the recovery of protein from wool and other keratinous materials
US3567363A (en) 1965-09-20 1971-03-02 Gillette Co Modification of keratin to the s-sulfo form
NO125657B (zh) 1965-09-20 1972-10-16 Gillette Co
US3644084A (en) 1968-11-25 1972-02-22 Gillette Co Treatment of keratin fibers
US3619116A (en) 1969-04-02 1971-11-09 Thomas Burnley & Sons Ltd Method for scouring wool
US3883647A (en) 1972-12-06 1975-05-13 Ives Lab Tablet formulation
JPS537760A (en) 1976-07-12 1978-01-24 Agency Of Ind Science & Technol Modified keratin membrane
US4172073A (en) 1976-11-09 1979-10-23 Chemetron Corporation Method for the preparation of water-soluble keratinaceous protein using saturated steam and water
JPS53119900A (en) 1977-03-23 1978-10-19 Agency Of Ind Science & Technol Preparation of aqueous solution of high viscosity and high molecular weight keratin
JPS609531B2 (ja) 1978-04-17 1985-03-11 積水化学工業株式会社 多孔質膜状物の製造方法
JPS57144213A (en) 1981-03-03 1982-09-06 Kao Corp Hair treatment
FR2521571B1 (fr) 1982-02-17 1986-07-18 Oreal Polymere keratinique a residus s-sulfocysteine, son procede de preparation et composition de traitement correspondante
US4407793A (en) 1982-05-26 1983-10-04 Akimova Alla Y Composition for temporary substitution of bone tissue defects
JP2723203B2 (ja) 1984-01-06 1998-03-09 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア サイトケラチン腫瘍マーカー及びそれらの検出のためのアッセイ
US4904602A (en) 1985-11-27 1990-02-27 Repligen Corporation Thioredoxin shufflease and use thereof
JPS63229058A (ja) 1987-03-17 1988-09-22 大鳥 泰雅 骨形成材料の製法
JPH0737480B2 (ja) 1987-06-01 1995-04-26 花王株式会社 水溶性ケラチンの製造方法
US5154916A (en) 1988-04-07 1992-10-13 L'oreal Eyelash make-up composition based on wax and keratin hydrolysate
US4973475A (en) 1988-10-07 1990-11-27 Revlon, Inc. Hair treatment and conditioning agents
US4969880A (en) 1989-04-03 1990-11-13 Zamierowski David S Wound dressing and treatment method
JP2777196B2 (ja) 1989-06-06 1998-07-16 株式会社成和化成 ケラチン加水分解物の製造方法
JP2907938B2 (ja) 1990-04-13 1999-06-21 株式会社成和化成 化粧品基剤
US5292362A (en) 1990-07-27 1994-03-08 The Trustees Of Columbia University In The City Of New York Tissue bonding and sealing composition and method of using the same
JPH05222100A (ja) 1992-02-14 1993-08-31 San Orient Kagaku Kk 還元型ケラチンペプタイドの製造方法
FR2687577B1 (fr) * 1992-02-26 1995-06-30 Icp Sa Biomateriau pour la realisation de produits applicables en medecine humaine particulierement en orthopedie et son procede de fabrication.
JPH05320358A (ja) 1992-05-22 1993-12-03 Ajinomoto Takara Corp:Kk ケラチン蛋白質高圧成型品
JP3283302B2 (ja) 1992-09-22 2002-05-20 株式会社成和化成 還元ケラチンの製造方法
US5358935A (en) * 1992-11-19 1994-10-25 Robert Allen Smith Nonantigenic keratinous protein material
JP2527120B2 (ja) 1992-12-24 1996-08-21 共栄社化学株式会社 硬ケラチン物質粉末の製造方法
JPH06220713A (ja) 1993-01-28 1994-08-09 Toray Ind Inc ポリビニルアルコール系繊維の製造方法
EP0628573A1 (en) 1993-05-24 1994-12-14 Kao Corporation Process for producing solubilized protein
US5316942A (en) 1993-06-16 1994-05-31 Battelle Memorial Institute Process for the production of low-cost soluble high-molecular weight collagen
US5602094A (en) 1994-03-29 1997-02-11 Goddard; David Treatment of tumors
FR2725130B1 (fr) 1994-09-29 1996-10-31 Oreal Compositions cosmetiques contenant un compose lipidique de type ceramide et un peptide a une chaine grasse, et leurs utilisations
GB9721585D0 (en) 1997-10-10 1997-12-10 Geistlich Soehne Ag Chemical product
US6013250A (en) 1995-06-28 2000-01-11 L'oreal S. A. Composition for treating hair against chemical and photo damage
FR2740036B1 (fr) 1995-10-20 1997-11-28 Oreal Nouvelle composition oxydante et nouveau procede pour la deformation permanente ou la decoloration des cheveux
ES2420106T3 (es) * 1995-12-18 2013-08-22 Angiodevice International Gmbh Composiciones de polímeros reticulados y métodos para su uso
US5866165A (en) 1997-01-15 1999-02-02 Orquest, Inc. Collagen-polysaccharide matrix for bone and cartilage repair
DE69828221T2 (de) 1997-05-30 2005-12-29 Kibun Food Chemifa Co., Ltd. Äusserliches Hauptpflegemittel enthaltend ein Sphingoglycolipid
FR2769499B1 (fr) 1997-10-10 2000-01-14 Oreal Procede de deformation permanente des matieres keratiniques sans rincage intermediaire
US5932552A (en) 1997-11-26 1999-08-03 Keraplast Technologies Ltd. Keratin-based hydrogel for biomedical applications and method of production
US6110487A (en) * 1997-11-26 2000-08-29 Keraplast Technologies Ltd. Method of making porous keratin scaffolds and products of same
JP3360810B2 (ja) 1998-04-14 2003-01-07 ペンタックス株式会社 骨補填材の製造方法
US6572845B2 (en) 1998-10-16 2003-06-03 Burt D. Ensley Recombinant hair treatment compositions
WO2000041739A1 (en) * 1999-01-15 2000-07-20 University Of Utah Research Foundation Attachment of acid moiety-containing biomolecules to activated polymeric surfaces
US6294187B1 (en) * 1999-02-23 2001-09-25 Osteotech, Inc. Load-bearing osteoimplant, method for its manufacture and method of repairing bone using same
US6696073B2 (en) 1999-02-23 2004-02-24 Osteotech, Inc. Shaped load-bearing osteoimplant and methods of making same
WO2000054821A1 (en) 1999-03-16 2000-09-21 Regeneration Technologies, Inc. Molded implants for orthopedic applications
EP1179066A2 (en) 1999-05-19 2002-02-13 Incyte Genomics, Inc. Extracellular signaling molecules
US6762158B2 (en) 1999-07-01 2004-07-13 Johnson & Johnson Consumer Companies, Inc. Personal care compositions comprising liquid ester mixtures
ES2157807B1 (es) 1999-07-09 2002-03-16 Consejo Superior Investigacion Composiciones y uso extracto de lipidos internos de la lana en la preparacion de productos para el tratamiento y cuidado de la piel.
US6783546B2 (en) 1999-09-13 2004-08-31 Keraplast Technologies, Ltd. Implantable prosthetic or tissue expanding device
US6544548B1 (en) 1999-09-13 2003-04-08 Keraplast Technologies, Ltd. Keratin-based powders and hydrogel for pharmaceutical applications
US20020004068A1 (en) 2000-01-28 2002-01-10 Isotta Di Drusco Composition
DE10036749A1 (de) 2000-07-28 2002-02-07 Schwarzkopf Gmbh Hans Dauerwellverfahren
US20020183858A1 (en) * 2001-06-05 2002-12-05 Contiliano Joseph H. Attachment of absorbable tissue scaffolds to scaffold fixation devices
EP1406951A1 (en) 2001-07-13 2004-04-14 Stichting Nederlands Instituut voor Zuivelonderzoek Keratin-based products and methods for their production
DE60222553T2 (de) 2001-07-17 2008-07-10 Keratec Ltd., Lincoln Herstellung löslicher keratinderivate
CN1158416C (zh) 2001-08-30 2004-07-21 陈福库 角蛋白复合纤维及其制造方法
KR100978348B1 (ko) 2001-08-31 2010-08-26 케라텍 리미티드 가용성 s-술폰화 케라틴 유도체로부터의 생체고분자 필름, 섬유, 발포체 및 접착제 재료의 제조
CN1425813A (zh) 2001-12-12 2003-06-25 中国科学院化学研究所 含动物蛋白质的合成纤维及其制备方法
US6846940B2 (en) 2002-01-22 2005-01-25 L'oreal Ceramides, compositions thereof and methods of use thereof
MXPA05005597A (es) 2002-11-28 2005-07-26 Keratec Ltd Formulaciones para el cuidado personal con queratina.
US7671012B2 (en) 2004-02-10 2010-03-02 Biosurface Engineering Technologies, Inc. Formulations and methods for delivery of growth factor analogs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827481A (zh) * 2012-09-25 2012-12-19 天津工业大学 一种角蛋白高弹柔性生物膜及其制备方法
CN102836461A (zh) * 2012-09-25 2012-12-26 天津工业大学 一种力学性能可调控的自体角蛋白矫形材料及其制备方法
CN109481726A (zh) * 2018-11-26 2019-03-19 广州新诚生物科技有限公司 一种可生物降解的止血骨蜡及其制备方法

Also Published As

Publication number Publication date
JP4551761B2 (ja) 2010-09-29
BR0311723A (pt) 2005-03-01
US7297342B2 (en) 2007-11-20
WO2003103737A1 (en) 2003-12-18
AU2003238745A1 (en) 2003-12-22
CN100506294C (zh) 2009-07-01
US20080039951A1 (en) 2008-02-14
CA2488721A1 (en) 2003-12-18
EP1534353A1 (en) 2005-06-01
JP2005536242A (ja) 2005-12-02
MXPA04012434A (es) 2005-10-19
US20050232963A1 (en) 2005-10-20
NZ550755A (en) 2009-06-26
US7892572B2 (en) 2011-02-22
ZA200409777B (en) 2006-08-30
AU2003238745B2 (en) 2008-12-11
EP1534353A4 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
CN100506294C (zh) 来自角蛋白的矫形材料
JP5399264B2 (ja) 骨成長粒子及びそれの骨誘導組成物
JP4628756B2 (ja) 組織修復インプラント、その製造方法および組織修復方法
JP5406915B2 (ja) 生体適合性インプラント
CN1158573A (zh) 骨成型用移植体
JP2009544400A (ja) 骨再生及び増大を促進するための複合埋植物ならびにそれらの製造及び使用方法。
WO2014147622A1 (en) Compositions comprising collagen and prp for tissue regeneration
JP2011525400A (ja) 骨の修復、補強、又は置換用移植材料、ならびにその調製方法
JP2012512684A (ja) 骨インプラント基材及びその調製方法
EP2222347B1 (en) Bioactive and resorbable soybean-based biomaterials
Hu et al. Carboxylated agarose (CA)-silk fibroin (SF) dual confluent matrices containing oriented hydroxyapatite (HA) crystals: biomimetic organic/inorganic composites for tibia repair
WO2000029484A1 (en) Process for preparing high density mechanically resistant insoluble collagen material in pure and combined forms
US10155069B2 (en) Bone graft with a tannin-hydroxyapatite scaffold and stem cells for bone engineering
WO2003070290A1 (fr) Biomateriau composite contenant de la phospholine
Ming Kuo et al. Evaluating chitosan/β‐tricalcium phosphate/poly (methyl methacrylate) cement composites as bone‐repairing materials
KR101176793B1 (ko) 실크 피브로인 가수분해물과 pmma를 함유하는 생체적합성 골 시멘트 조성물
JP3420634B2 (ja) コラーゲン製材および骨欠損部補綴材
CN109847100A (zh) 一种具有生物活性的骨水泥及其制备方法
CN110575565B (zh) 骨替代材料及其制备方法和应用
Abdelgawad et al. Biodegradable Polymers in Biomedical Applications: A Focus on Skin and Bone Regeneration
Santin Bone tissue engineering
Kuo et al. Effects of chitosan/β-TCP microspheres on rabbit cranial and condyle defects healing: A preliminary study
CN117618677A (zh) 具有提高成骨能力的微球-凝胶复合材料及其制备方法和用途
KR20050023298A (ko) 케라틴 유래의 정형외과 재료

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20090701

CX01 Expiry of patent term