CN1632945A - 非挥发性存储器结构及其制造方法 - Google Patents

非挥发性存储器结构及其制造方法 Download PDF

Info

Publication number
CN1632945A
CN1632945A CN 200410096588 CN200410096588A CN1632945A CN 1632945 A CN1632945 A CN 1632945A CN 200410096588 CN200410096588 CN 200410096588 CN 200410096588 A CN200410096588 A CN 200410096588A CN 1632945 A CN1632945 A CN 1632945A
Authority
CN
China
Prior art keywords
layer
silicon
memory
memory array
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410096588
Other languages
English (en)
Other versions
CN100390960C (zh
Inventor
段行迪
李立钧
汤姆斯·东隆·张
梁仲伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maode Science and Technology Co., Ltd.
Original Assignee
MAOXI ELECTRONIC CO Ltd TAIWAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAOXI ELECTRONIC CO Ltd TAIWAN filed Critical MAOXI ELECTRONIC CO Ltd TAIWAN
Publication of CN1632945A publication Critical patent/CN1632945A/zh
Application granted granted Critical
Publication of CN100390960C publication Critical patent/CN100390960C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

在本发明的非挥发性存储器中,选择闸是形成于浮动/控制闸堆叠的侧壁上方的自对准间壁,利用同一个掩膜(1710)可以进行从源极线(144)上方移除选择闸层、蚀刻在源极线区域内的沟槽绝缘层、掺杂源极线等步骤,这种存储器可以形成于独立的基板区域内部或上方,在蚀刻沟槽绝缘层之前可以至少部分掺杂源极线,借此隔离基板区域与下方结构,以避免短路;这种存储器可以区块(sector)抹除;或是执行晶片抹除操作以并联抹除所有的胞元;周边电晶体栅极和选择闸可以由同一层形成,选择闸间壁有延伸物,可以自上方金属线作成低电阻接触;至于在机械或化学机械研磨上方绝缘层时,利用相邻的虚置结构可以保护半导体基板上方的电路元件。

Description

非挥发性存储器结构及其制造方法
本申请为申请号为01145049.5申请日为2001年12月31日发明名称为非挥发性存储器结构及其制造方法的分案申请
技术领域
本发明是有关于一种半导体技术,尤指一种非挥发性存储器结构及其制造方法。
背景技术
以前在制造非挥发性快闪存储器时,常会用到一种很典型的制程-局部矽氧化(local oxidation of Silicon,LOCOS)制程,以隔离并排在晶片上的各元件(如位元线),但是局部矽氧化的制程往往会生成鸟嘴形状的氧化层,我们必须预留空间给这个凸出的结构,但是这个凸出结构的尺寸在位元线间距中占了相当大的比例,使得元件间的距离无法更进一步的缩小,未对准步骤成为限制元件尺寸的主要因素。有鉴于此,一种所谓的浅沟槽隔离(shallow trench isolation,STI)技术因应而生,以自对准的方式有效改善这种情况。
图1到图8说明J.Chen等人在2000年1月11日公告的美国专利号6,013,551,内容描述的传统非挥发性堆叠闸快闪存储器的制造方法。在P掺杂矽基板150上方成长二氧化矽层108(亦可称为穿隧氧化层(tunnel oxide layer),在以下的叙述中会简称为氧化层),在氧化层108顶面再沉积一掺杂复晶矽层124,此复晶矽层124将会形成记忆胞元电晶体的浮动闸(floating gate)。
接着,在结构的表面形成掩膜106,经由掩膜开口向下蚀刻复晶矽层124、氧化层108、以及基板150,致使在基板150内形成多个沟槽910(如图2所示)。
如图3所示,将介电材料填入沟槽910中并覆盖整个结构,其细节步骤为:先以热气化法成长二氧化矽层90,然后以电浆增强化学气相沉积法(plasma enhanced chemical vapor deposion,PECVD)沉积一二氧化矽层94,再以次大气压化学气相沉积法(subatomspheric chemicalvapor deposition,SACVD)沉积一层厚度较厚的二氧化矽层96。
接着对结构进行化学机械研磨(chemical mechanical polishing,CMP)步骤,如图4所示,以曝露出复晶矽层124。
关于化学机械研磨,我们在此特别稍加说明。在图案化绝缘层或将沉积下一层之前,需要平坦化绝缘层的上表面,因为这么做可以放宽对用于图案化绝缘层或上方层的微影设备聚焦深度的要求,如果绝缘层的上表面是平坦的,则我们可以接受聚焦深度有较大的变异性,这对以微影设备制造小尺寸物品是特别重要的。
而化学机械研磨法广泛使用于平坦化制程,因为化学机械研磨法十分快速,也不需要在高温下进行。
以化学机械研磨法处理绝缘层通常是停止于绝缘层下方较坚硬的一层,举个例子,以化学机械研磨法处理二氧化矽层时,可以在形成二氧化矽层前先沉积一层氧化矽层,做为停止层,请参阅于1999年6月1日公告的美国专利号5,909,628《REDUCING NON-UNIFORMITY IN A REFILLLAYER THICKNESS FOR A SEMICONDUCTOR DEVICE》。
接着如图5所示,在结构上形成一ONO(氧化矽、氮化矽、氧化矽)层98,然后在上方沉积一矽层99,接着沉积一矽化钨层100。
然后形成掩膜(没有画出),并图案化上述100、99、98、124各层(如图6所示),此时复晶矽层124将会成为浮动闸,而矽层99和矽化钨层100将会分别成为控制闸(control gate)和字元线(wordline)。
如图8所示,接着在结构上形成掩膜101,利用掩膜101蚀刻移除部分的氧化层90、94、96(如图7所示),蚀刻之后,保留掩膜101,用于植入掺杂物以形成源极线103。
然后执行其他的植入步骤以适当的掺杂源极区域和漏极区域。
虽然上述方法可以缩小存储器的尺寸,但随着制程的演进及线宽的限制,还是需要再缩小存储器的尺寸。
发明内容
因此,本发明的目的在于提供一种制造包含非挥发性存储器的集成电路的方法,利用多次的自对准步骤形成多晶矽层(浮动闸、控制闸、选择闸),借由三者闸的自对准及相互排列方式,可以更进一步减少位元线闸距,更大幅地缩小存储器的尺寸。
依照上述的目的,本发明实施例提供了一种制造包含非挥发性存储器的集成电路的方法,这种方法包括以下步骤:
(a)在半导体区域S1上形成一第一层,其中集成电路包含多个非挥发性记忆胞元,每一个记忆胞元有一个由部分第一层所形成的浮动闸;
(b)经由上述第一层的开口在区域S1内形成沟槽,并以绝缘材料填充沟槽;
(C)在区域S1上形成一第一层,其中每一个胞元有一个由部分第二层所形成的导电闸,其中导电闸(conductive gate)与胞元的浮动闸隔离;
(d)图案化上述第二层,以形成伸向特定方向的长条(strip),每一长条会横跨多个沟槽;
(e)移除未被第二层覆盖的区域S1上的部分第一层,以形成多个第一结构,每一个第一结构包含一条从第二层形成的长条,并包含长条下方的部分第一层,每一个第一结构还有一个第一侧壁;
(f)在第一层和第二层之上形成一第三层,并利用非等向蚀刻步骤移除部分的第三层,在每一第一结构的至少一部分第一侧壁上形成间壁,每一间壁会与第一结构上的第一层和第二层隔离;
(g)移除部分区域S1上方的部分第三层,不完全移除间壁,其中每一个胞元包含一个由第一结构第一侧壁上方的部分间壁所形成的导电闸;
(h)在至少一部分的区域S1中掺入掺杂物;
其中步骤(g)和(h)是利用单一微影掩膜技术进行。
本发明的其他特征和优点会在实施例说明中有详细的介绍,当然本发明真正的权利范围是由所附申请专利范围所定义。
附图说明
图1至图7为习知快闪存储器的制程剖面图;
图8为图1至图7存储器的俯视图;
图9A为根据本发明存储器实施例的俯视图;
图9B和图9C为图9A存储器的剖面图;
图10A为图9A存储器的电路图;
图10B为图9A存储器的俯视图;
图11和图12A为图9A存储器的制程剖面图;
图12B为图12A结构的俯视图;
图13至图15为图9A存储器的制程剖面图;
图16为图9A存储器于制程中的透视图;
图17A至图22B为图9A存储器的制程剖面图;
图22C为图22A和图22B结构的俯视图;
图23A至图24C为本发明存储器实施例于制程中的剖面图;
图25至图26C为本发明存储器实施例的剖面图;
图27至图29为本发明存储器实施例的俯视图;
图30A和图30B为本发明存储器实施例的剖面图;
图30C显示本发明存储器实施例的掩膜布局;
图31A至图33B为本发明存储器实施例的剖面图;
图34为本发明存储器实施例的俯视图;
图35和图36为图34存储器的制程剖面图;
图37和图38为图34存储器于制程中的俯视图
图39至图41为图34存储器的制程剖面图;
图42为本发明存储器实施例于制程中的俯视图;
图43为用于本发明存储器实施例的电压产生器的方块图;
图44至图61为本发明存储器实施例的制程剖面图。
图号说明:
98、1010、1810、2901、2903、3003:绝缘层
98.1、98.3、1510、1810、2710、4408、4410:二氧化矽层
98.2、720、903、1203、2607:氮化矽层
103:源极线
108:穿隧氧化层(可为二氧化矽层)
110:半导体结构
113:介电层
120:记忆胞元
120S:选择电晶体
120F:浮动闸电晶体
124:浮动闸(由复晶矽形成,为配合图示说明,在某些时候会称为复晶矽层,或是浮动闸线)
128:控制闸(为配合图示说明,在某些时候称为控制闸线)
128.1:复晶矽层
128.2:矽化钨层
128A:部分
130:位元线
133:源极/漏极区域
134、312:位元线区域
138:位元线接触区域
141:虚置结构
144:源极线
144C、29003C:接触开口
150:基板区域
520:字元线(由复晶矽形成,为配合图示说明,在某些时候会称为复晶矽层,或是选择闸)
520E:横向凸起
710:包含浮动闸与控制闸的堆叠结构(或称为列结构)
901:记忆阵列
904、1014、1710、2501、2810、4501、4601、4801:光阻掩膜
905:基板
910:隔离沟槽
1103、1105:N-区域
1107、2709:区域
1603:周边区域
1810:栅极氧化层
2110、2401:植入
2605:导电材料
2701、3010:间隙
2703.1、2703.2:记忆阵列区段
2903:金属带
3301:矽化层
4201:电压产生器
4402、4404、4406、4404D:主动区域
具体实施方式
有关较佳实施例的叙述是说明而非限制之用,除非文中有特别的指明,不然本发明并不受限于任何的特殊尺寸、材料、程序步骤、掺杂物、掺杂浓度、结晶位向、各层厚度、布局、或其他元件特征。
图9A是自对准三闸记忆胞元120的快闪记忆陈列的俯视图,图9B为沿着图9A的线9B-9B切开的剖面图,图9C为沿着图9A的线9C-9C切开的剖面图,图10A是阵列的电路图,图10B是说明其他新增特征的俯视图。
图中的位元线(bit lines)130是横向延伸的,位元线130是由位于记忆胞元120上方的导电层(如铝或钨,没有画出)所形成,位元线130与记忆胞元120的位元线区域134在位元线接触区域138中接触,源极线(source lines)144是纵向延伸于相邻的列结构710间,每一个列结构710包含一条纵向的控制闸线(control gate Line)128,做为每一列记忆胞元的控制闸,在本实施例中的控制闸线128是由复晶矽层128.1和矽化钨层128.2所组成,复晶矽浮动闸124位于控制闸128的下方,每一个浮动闸位于相邻的隔离沟槽910闸,沟槽910则是横向位于位元线130间。
每一个列结构710都是自对准堆叠。
字元线520(如掺杂复晶矽层)与位元线130垂直(或呈一特别的角度),每一条字元线520可做为一列记忆胞元的选择闸,每一字元线520是在对应堆叠结构710的侧壁上形成的自对准间壁,字元线520借由氧化矽间壁903及二氧化矽层1510与相邻的控制闸128和浮动闸124分开,而903和1510层只不需要掩膜即可生成。
如图10A所示,每一列的记忆胞元在相邻的两个位元线130间有两个胞元120,其中每一记忆列有一条控制闸线128和一条字元线520,两个相邻的记忆列共享一条源极线144,在每一个记忆胞元120中,一个NMOS选择电晶体120s和一个浮动闸电晶体120F串连,选择电晶体120s的栅极由字元线520提供,而浮动闸电晶体120F的控制闸则由控制闸线128所提供。
我们可以借由从浮动闸124经二氧化矽层108到源极线144或基板区域150的Fowler-Nordheim电子穿隧以抹除每一个胞元(区域150包括记忆胞元的通道区域),而借由源极端的热电子注入可使胞元程式化,这个名词“源极端热电子注入”是假设胞元的位元线区域134是“源极”,在另一情况下,如果这个区域是漏极,则源极线区域144就是源极,区域134和144可被称为源极/漏极区域,我们不用特别的术语来限定本发明。
存储器是形成于矽基板905的独立P型区域150的内部及上方(如图11所示),矽基板905是由单晶矽或其他半导体材料所形成,在某些实施例中,基板905的顶面有一晶向<100>,这个基板以硼掺杂,浓度为2E15到2E16atom/cm3
上述区域150的生成方法如下:在基板905内以离子植入法经由掩膜开口植入N型掺杂物,以形成N-区域1103,可以隔离区域150与下方结构,举个例子,以1.5MeV的能量及1.0E13atom/cm2的剂量植入磷。
在一个单独的离子植入步骤或一连串的离子植入步骤中,使用另外的掩膜(没有画出)植入N型掺杂物以形成N-区域1105,N-区域1105将区域150完全包围起来,在某些实施例中,这个步骤可以同时制造出N井(没有画出),在其内将会形成周边电路的周边PMOS电晶体,这类电路有感测放大器、输入/输出驱动器、解码器、电压产生器等等,在CMOS技术中,制造出这类N井是已知的技术。
当存储器运作时,N-区域1103和1105的电压与基板区域150的电压相同或更高,下表1显示区域150的参考电压,基板905的区域1107的电压则与区域1103和1105的电压相同或更低,在某些实施例中,使区域150、1103、1105接在一起形成短路,另外使区域1107接地。
本发明没有特别限定区域150的隔离技术,也不限定是具有独立基板区域的存储器。
如图12A所示,在基板区域150的顶面以热氧化法生成二氧化矽层(或称为穿隧氧化层,以下有时简称为氧化层)108,在某些实施例中,是约800℃的干式氧化法成长厚9um的氧化层。
接着,在氧化层108顶面形成复晶矽层124,在某些实施例中,是以低压化学气相沉积法(low pressure chemical vapor deposition,LPCVD)沉积一层厚120um的复晶矽层124,在沉积当时或之后进行轻度掺杂(N型),上述复晶矽层124将可做为浮动闸,或者可以做为周边电路的其他电路元件,这类元件有内连线、电晶体栅极、电阻器、电容板等等。
在复晶矽层124的顶面继续沉积一氮化矽层1203,在某些实施例中,是以低压化学气相沉积法沉积一层厚120nm的氮化物,如果需要的话,也可以在沉积氮化物之前先在复晶矽层124上方形成一层二氧化矽层(没有画出)如此可减低应力。
然后在氮化矽层1203上方以微影技术形成光阻掩膜904,并从掩膜开口蚀刻氮化矽层1203和复晶矽层124,借此形成与位元线同方向穿过记忆阵列的长条(strip),在图12B的俯视图中,“BL”轴指向位元线的方向,而“WL”轴指向字元线的方向,在某些实施例中,是以反应性离子蚀刻法(reactive ion etching process,RIE)蚀刻复晶矽层124和氮化矽层1203。
就算光阻掩膜904没有对准也不会影响胞元几何形状,即使需要调整,也只需要调整在阵列边缘和周边区域(周边电路所在的区域)的部分。
蚀刻复晶矽层124之后,从光阻掩膜904的开口蚀刻氧化层108和基板区域150,以形成隔离沟槽910(如图13所示),周边电路(没有画出)的隔离沟槽也是在此步骤形成,蚀刻方式则可选择反应性离子蚀刻法,沟槽深度约为0.25nm。
然后移除光阻掩膜904。
在这里只要提到利用掩膜蚀刻两层或多层结构,除非特别提到,不然就是利用这个掩膜只会蚀刻最上层,当最上层被蚀刻掉之后,移除掩膜,然后再以保留下的最上层做为掩膜,蚀刻剩下的层,或者是根本不需要掩膜,举例来说,蚀刻氮化矽层1203后,移除先阻掩膜904,然后以氮化矽层1203当作掩膜,蚀刻底下的复晶矽层124、氧化层108、基板150,可能有部分的氮化矽层1203同时被蚀刻,但不是完全移除。
以沟槽绝缘材料填充沟槽910以形成一绝缘层1010并覆盖晶圆(如图13所示),在某些实施例中,绝缘层1010可由下列方法生成:在沟槽910的裸露表面上方以已知的快速热氧化法(rapid termal oxide,RTO)生成一层厚13.5um的一氧化矽层,然后再使用高密度电浆(highdensity plasma,HDP)化学气相沉积法(chemical vapor deposition,CVD)沉积一层厚480nm的二氧化矽层。
接着利用化学机械研磨法(CMP)及/或一些全面性蚀刻制程(blanketetch process)蚀刻去除部分绝缘层1010,直到裸露出氮化矽层1203为止(如图14所示),其中氮化矽层1203在这个步骤中是做为蚀刻停止层。然后移除氮化矽层1203(如以湿蚀刻方式),或者是把绝缘层1010也蚀刻掉,这可以利用定时湿蚀刻(timed wet etch),最后的结构会如图15所示,有一平坦的上部结构,又或者是蚀刻绝缘层1010可以露出复晶矽层124的侧壁,这会改善记忆胞元的效率,我们将于后文说明。
接着,形成绝缘层98(如图9B与图9C所示)在某些实施例中,绝缘层98是氧氮氧化物(oxide-nitride-oxide,ONO)结构,其形成方法为:首先,在复晶矽层124上方以干式氧化法于800℃或较低温度下加热形成二氧化矽层98.1(如图1 6所示),二氧化矽层98.1的参考厚度为6um,然后以低压化学气相沉积法沉积一层厚4um的氮化矽层98.2,接着以湿式氧化法在低于850℃的温度下加热形成氧化矽层98.3。
在图16中,二氧化矽层98.3同时做为周边电晶体的栅极绝缘层,在形成二氧化矽层98.3之前,先在记忆阵列上形成光阻掩膜(没有画出),掩膜没有覆盖周边区域1603,蚀刻掉周边区域1603的98.2、98.1、124、108各层以裸露出基板905,然后移除掩膜,氧化晶圆以生成二氧化矽层98.3,在周边区域1603的二氧化矽层98.3的参考厚度为24nm,而在存储器区域氮化矽层98.2上方的一氧化矽层98.3则为1nm厚,在氮化矽层98.2上面的一氧化矽层98.3比较薄,这是因为二氧化矽在氮化物上面的成长速率比在矽基板905上面要慢。
在绝缘层98上方形成复晶矽层128.1,在某些实施例中,以低压化学气相沉积法沉积一层厚80um的复晶矽层128.1,在沉积当时或之后以N+或P+掺杂,然后沉积矽化钨层128.2,其参考厚度为50nm,矽化钨层128.2可以化学气相沉积法形成,接着在晶圆上方沉积氨化矽层720,氮化层720可以由低压化学气相沉积法形成,厚度约为160um。
在某些实施例中,复晶矽层128.1和矽化钨层128.2的其中一层可以省略,或由其他材料取代。
接着,在氮化矽层720表面形成光阻,微影图案化光阻形成长条,其与记忆阵列上的字元线同向,此光阻掩膜1014将用来形成堆叠结构710,光阻掩膜1014也可以图案化周边区域1603的周边电晶体栅极128.1、128.2、氮化矽层720,光阻掩膜1014的没有对准并不会改变记忆胞元的几何结构,只需调整记忆阵列的边界及周边区域即可。
蚀刻720、128(即128.1和128.2)、98各层以定义堆叠结构710,可利用的蚀刻方式有非等向反应性离子蚀刻法,然后去除先阻掩膜1014,在周边区域1603上方再形成另一个光阻掩膜(没有画出),以氮化矽层720为掩膜蚀刻底下的的复晶矽层124和氧化层108,光阻会保护周边主动区域的矽基板905,然后剥除光阻,图17A和图17B显示生成的记忆阵列剖面图,其剖面与位元线平行,这些剖面分别沿着图16的箭头17A和17B取得,图17B中的剖面是沿着沟槽910切下,图17A的剖面则是沿着相邻沟槽间的位置切下。
同样地,图18A、图19A、图20A、图21A、图22A、图23A、图24A、图31A、图32A、图33A的剖面是沿着相邻沟槽间的位置切下,而图18B、图19B、图20B、图21B、图22B、图23B、图24B、图31B、图32B、图33B的剖面则是沿着沟槽910切下。
在某些实施例中,并没有用复晶矽层128.1及矽化钨层128.2来形成周边电晶体栅极,周边电晶体栅极是由之后沉积的复晶矽层所形成,字元线也是由复晶矽层所形成的。这个实施例省略了在形成二氧化矽层98.3前先蚀刻98.2、98.1、124、108各层的步骤,而在蚀刻时以掩膜保护记忆阵列的步骤也省略了,当形成光阻掩膜1014时,周边主动区域上方已有108、124、98、128、720各层,就是盖住记忆阵列主动区域的那些层,同时蚀刻在周边区域及记忆阵列区域的这些层,如此蚀刻完二氧化矽层98.3之后不需要剥除光阻掩膜1014,而上述在蚀刻复晶矽层124时用于保护周边主动区域的掩膜则可以省略。
氧化结构(如在1080℃的氧气氛围下以快速热氧化法进行),如此,会在基板区域150的裸露表面形成厚5um的二氧化矽层1510(如图18A和图18B所示),这个步骤会同时让氧化露出的复晶矽层124和128.1,在复晶矽侧壁的一氧化矽层1510有8nm的水平厚度。
以低压化学气相沉积法沉积一层厚20um的薄氮化矽层903(如图19A和图19B所示),不需掩膜,非等向性蚀刻上述氮化矽层903即可以在堆叠结构710的侧壁上形成间壁。
这个蚀刻步骤同时会移除暴露在外的二氧化矽层1510,以干式氧化法在低于800℃的温度下重新在基板区域150上方成长一二氧化矽层1810,这个在图19A中标为1810的二氧化矽层将提供选择电晶体的栅极绝缘层,此二氧化矽层1810的参考厚度为5nm。
在某些实施例中,可以省略形成氮化矽层903或二氧化矽层1510的步骤。
接着,形成复晶矽层520(如图20A、图20B、图21A、图21B所示),在某些实施例中,以低压化学气相沉积法沉积一层厚300um的复晶矽层520,沉积当时或之后进行重度掺杂(N+或P+),对上述复晶矽层520进行全面性非等向性蚀刻(如反应性离子蚀刻法),好在堆叠结构710的侧壁上形成间壁,我们可以借由调整氮化矽层720及复晶矽层520的垂直厚度来控制所形成的复晶矽间壁的宽度。
实施例中的堆叠结构710两端侧壁上都有复晶矽间壁520,在某些实施例中,源极线144很窄,以致于复晶矽层520会填满源极线上方堆叠结构710间的间隙,而不会在靠近源极线那一端的堆叠侧壁上形成间壁。
除了可做为选择栅极之外,复晶矽层520还可以做为内连线、电晶体栅极等其他周边电路的电路元件,为了这个目的,在蚀刻复晶矽层520之前可以先在周边区域形成掩膜,而在记忆胞元上方则不需要这种掩膜。
在部分复晶矽层520的上方利用微影形成光阻掩膜1710(图21A和图21B所示),这部分的复晶矽层520将形成字元线,光阻掩膜1710也可以覆盖部分或全部的周边区域,形成字元线方向的长条,每一长条与相邻源极线144间的两个相邻堆叠结构710重叠,并盖住位元线区域134,而源极线144则没有被光阻掩膜1710盖住。
光阻掩膜1710的纵向边缘可以位在堆叠结构710上的任一位置,因此只要掩膜对准的误差小于堆叠结构710宽度的一半即可,我们对于位置的要求并不那么严格。在某些实施例中,最小的特征尺寸是0.14mm,掩膜对准的容许误差是0.07mm,每一个堆叠结构710的宽度是0.14mm,即两倍的对准公差。
蚀刻每一堆叠结构710靠近源极线那一侧的复晶矽层520(如图22A和图22B所示),保留每一堆叠结构710靠近位元线那一侧的复晶矽间壁520。
蚀刻掉复晶矽层520之后,保留光阻掩膜1710,做为N型掺杂物(如磷)植入晶圆之用,如图22A中箭头2110所比的方向,重度掺杂(N+)源极线144,这是让源极线带有高电压供抹除及/或程式化操作电压的“深”植入,当掺杂物向侧边扩散,深植入可在已掺杂源极线及浮动闸124间形成适当的重叠。
在某些实施例中,掺杂物不会穿透绝缘层1010,所以这个步骤不会有掺杂沟槽910的底部的情形发生(如图22B所示),这个步骤掺杂的源极线区域在图22C中被标示成“144.0”,不管掺杂物是否会穿透绝缘层1010,绝缘层1010都会避免掺杂物接近或到达N-区域1103(如图11所示),因此可避免在源极线144和N-区域1103间有高漏电流或短路的情形发生。在某些实施例中,在制程结束后(即加热步骤后),N-区域1103的上表面离区域150的基板905上表面大约为1mm,沟槽910深度是0.25mm。
植入之后,留下光阻掩膜1710,而露出的绝缘层1010已经完全或部分自位于源极线144的沟槽910移除(如图23B所示),氮化矽层903和二氧化层1510会保护124和128两层的侧壁不致露出,蚀刻方式可以是非等向性蚀刻,如反应性离子蚀刻。在此步骤中一同时蚀刻去除位于源极线144顶面的二氧化矽层1810(如图23A所示)。
然后移除掩膜1710,并进行全面性N+植入2401以掺杂位元线区域134及源极线144(如图24A、图24B、图9B、图9C所示),堆叠结构710和复晶矽层520在进行植入时遮住基板。在某些实施例中,植入程序步骤包括在垂直轴(垂直晶圆的轴)的非零角度方向进行离子植入,以掺杂沟槽侧壁,在某些实施例中,角度为7°、8°或30°,掺杂物可以是砷。
上述这种植入并不会穿透靠近位元线区域134的绝缘层1010,所以位元线区域不会形成短路。
接下来可以利用已知的技术完成存储器的制造,像是可以沉积绝缘层(没有画出)、形成接触开口138(如图9A所示)、沉积并图案化导电材料以形成位元线和其他必须部分。
如前面有关图15的说明,在研磨绝缘层1010之后,可以将其蚀刻以曝露出复晶矽层124的侧壁,图24C说明此实施例,此图为存储器沿着字元线穿过控制闸128的记忆阵列剖面图,控制闸128包括靠近浮动闸124侧壁的部分128A,如此可改善控制闸128和浮动闸124间的电容耦合。在某些实施例中。复晶矽层124厚120nm、宽140nm,如果复晶矽层124的上表面大约在绝缘层1010上表面的上方60um,那麽就可大为改善控制闸128和浮动闸124间的耦合情况。
特别需要注意的是,本发明中位元线方向的浮动闸124自对准主动区域,字元线方向的控制闸128则自对准浮动闸124,然后选择闸(字元线)520则自对准控制闸128。其实施方法就是利用浅沟槽隔离技术,以浮动开124定义主动区域(或是直接以主动区域掩膜同时定义浮动闸124与主动区域),如此浮动闸124即自对准主动区域;接着利用浮动闸124上方的控制闸128定义浮动闸124(或是定义控制闸128上方的厚绝缘层时也跟着同时定义浮动闸124与控制闸128),如此控制闸128且自对准浮动闸124;最后生成选择闸520(间壁),因为选择闸520会沿着控制闸128上方的厚绝缘层生成,亦即字元线方向的选择闸520同时也自对准厚绝缘层下方的控制闸128。
利用多次的自对准步骤,不仅可以有效减少存储器的尺寸,还可以确保各胞元的导电度,虽然选择闸520与控制闸128间的未对准并不会改变记忆胞元的导电度,但是因为选择闸520与浮动闸124间的通道长度决定了记忆胞元的导电度,所以选择闸520与浮动闸124间的未对准是会影响到记忆胞元的导电度,跟着改变设计元件的电性,利用本发明的制程即可有效改善这类偏差。
在某些实施例中,周边电晶体的栅极是由复晶矽层520所形成,而不是由128层所形成,前面有关图16的部分已提过,如此就不需要在沉积控制闸层128之前先遮住记忆阵列,并从周边区域1603移除复晶矽层124和98.2、98.1、108各层。在以复晶矽层520形成周边电晶体栅极的实施例中,光阻掩膜1014并不会覆盖周边区域1603,或是至少不会覆盖周边电晶体栅极将形成的区域,因此,当定义堆叠结构710时,会蚀刻掉周边区域或至少周边电晶体栅极区域的108、124、98、128、720各层,露出周边主动区域的基板905。
然后如上述方式处理晶圆(如图17A至图19B所示),二氧化矽层1810将形成周边电晶体的栅极绝缘层。
如上所述沉积复晶矽层520,出来的结构如图25所示,在非等向性蚀刻复晶矽层520之前,先在要形成周边电晶体栅极及其他元件(如内连线、电阻器等等)的周边区域上方形成光阻掩膜2501,然后非等向性蚀刻复晶矽520,接着移除光阻掩膜2501,移除光阻掩膜2501之后的周边区域剖面图如图26A所示,记忆阵列的剖面图则如图20A和图20B所示
在某些实施例中,由下列步骤可以降低周边电晶体栅极的电阻,当沉积复晶矽层520之后(如图25所示),在复晶矽层520上方形成一层矽化钨或其他低电阻材料层(没有画出),然后在周边区域上方形成光阻掩膜2501,蚀刻去除复晶矽层520上未被光阻掩膜2501覆盖的矽化钨或其他材料层,接着对复晶矽层520进行非等向性蚀刻,以形成间壁(如图20A和图20B所示),并定义周边电晶体栅极和其他周边元件,然后移除光阻掩膜2501,如此矽化钨或其他导电材料2605就会覆盖周边区域的复晶矽层520(如图26B所示),如果导电材料2605和复晶矽层被同时蚀刻,则记忆阵列的复晶矽层520上方也可能留下一些导电材料2605。
从源极线移除复晶矽层520的当时,光阻掩膜1710(如图11A所示)会保护周边主动区域。
在某些实施例中,于形成光阻掩膜2501之前,先在复晶矽层520上方沉积一层氮化矽层2607(如图26C所示),如果导电材料2605是用于降低周边电晶体栅极的电阻,则将氮化矽层2607沉积在导电材料2605上方,然后如上所述在周边电晶体栅极的上方形成光阻掩膜2501,蚀刻未被覆盖区域的氮化矽层,根据图25、图26A、图26B的方式处理晶圆,图26C是周边区域具有导电材料2605的实施例的剖面图。在稍后对结构进行化学机械研磨时,氮化矽层720和2607会做为蚀刻停止层,在图24A和图24B的阶段时(即掺杂源极线和位元线之后),当结构被绝缘材料(如气相沉积氧化物(vapor deposited oxide(vapox),没有画出)覆盖后,进行化学机械研磨可以平坦化晶圆。在某些实施例中,绝缘层是做为晶圆切割或封装前的最后一层保护层,而在某些实施例中,绝缘层的材料可以是掺杂或未掺杂二氧化矽层,如硼磷矽玻璃(borophosphosilicate glass,BPSG),还可以使用其他的材料。
在某些实施例中,一些周边电晶体栅极或其他元件是由128层所形成,其他的周边栅极或元件则是由复晶矽层520所形成,后面将根据图44至图50说明一个这种实施例。
要降低复晶矽层(字元线)520的电阻,可以利用金属带,每一条金属带位于一条字元线上,并以一定的周期间隔与字元线接触(如每128行),因为字元线520是窄的间壁,即使有小凸起与金属带接触仍具有低电阻,光阻掩膜2501可以用来形成这种凸起。图27为这个实施例的俯视图,显示利用非等向性蚀刻复晶矽层520形成间壁之后,记忆阵列被截断而有一间隙2701,间隙2701与位元线同向,如此制造出将形成字元线凸起的空间,间隙2701可以供沟槽910使用,记忆阵列区段2703.1位于间隙的一侧(图27看来是位于间隙上方),而记忆阵列区段2703.2则依于间隙下方,字元线520和堆叠结构710不间断的跨过区段2703.1和2703.2和间隙,在进行蚀刻形成间壁之前所形成的掩膜2501覆盖间隙2701内的部分复晶矽层520,图28显示移除光阻掩膜2501及形成光阻掩膜1710后间隙2701区域的俯视图。
一个记忆阵列的间隙2701数目可以任意选定,举个例子,在一个记忆阵列中可以每隔128行(位元线)就有一个间隙,当然,一条存储器也可以有任意数目的记忆阵列。
在图27中,光阻掩膜2501包括沿着间隙延伸的长条,光阻掩膜2501在相邻字元线520间的区域2709被截断,如此可蚀刻字元线闸的复晶矽层520,因此可避免相邻字元线间形成短路,光阻掩膜2501在源极线144上方一可断可不断,在源极线上方的光阻掩膜不需中断,这是困为蚀刻源极线区域的复晶矽层520是利用光阻掩膜1710(如图28所示)。
光阻掩膜2501也可以覆盖周边电晶体栅极及其他周边元件,如同上面有关图25的叙述。
光阻掩膜1710(如图28所示)可以与上面有关图21A到图23B所叙述的光阻掩膜有相同的几何外型,也可以有上述同样的用途,即蚀刻源极线144的复晶矽层520、对源极线进行深植入2110、蚀刻沟槽的绝缘层1010,图29显示已蚀刻源极线的复晶矽层520,每一复晶矽(字元线)520在间隙2701内有横向凸起520E。
然后参考先前的图22A至图26C处理晶圆,如果绝缘层1010是参考图23B的方式进行蚀刻,则完全或部分移除位于源极线144的间隙2701内的绝缘层1010,同时掺杂记忆阵列中间隙内的沟槽底部及侧壁,如此,源极线144会穿过间隙而不间断。
图30A显示位于较后段制程的存储器间隙2701内部的剖面图,在记忆胞元上方已形成绝缘层2901,每一金属带2903位于对应字元线520的上方,并在闸隙2701内经由绝缘层2901的开口2903C与字元线520接触。在图30A中,复晶矽层520的上表面与控控闸128上方氮化矽层720的上表面同高,这是因为复晶矽层520已经过化学机械研磨法处理,碰到氮化矽层时停止。具体而言,绝缘层2901由复数层所组成的,有些层是在图24A和图24B的步骤后沉积,再经过化学机械研磨处理,接着形成其他层以完成一完整的绝缘层2901。在其他实施例中复晶矽层520与氮化矽层重叠。
在某些实施例中,隔离沟槽910并没有用掉整个间隙2701的宽度(即图28和图29的重直尺寸),复合层隔离沟槽可以位于间隙内,或是间隙内也可以没有任何沟槽。
图30B和图30C分别是另一实施例的存储器剖面与掩膜布局图,图30c显示光阻掩膜904、1014、2501(请同时参考图12A、图12B、图16、图27),位元线接触138可以与复晶矽层520的接触开口290C同时蚀刻,也可以不同时,源极线144的接触开口144C也可以与位元线接触138或复晶矽接触2903C同时蚀刻。在某些实施例中,接触开口138、2903C、144C和控制闸128的接触开口(没有画出)是使用同样的光阻掩膜同步进行蚀刻,从掩膜开口向下蚀刻氮化矽层720以露出控制闸,复晶矽层520的接触开口2903C与控制闸128不相连,以避免字元线520与控制闸128形成短路。
接触开口138可以使用已知的技术以N+掺杂复晶矽插塞填满,如果因为接触掩膜的没有对准使得接触开口138的蚀刻影响了沟槽910内的绝缘层1010,则沟槽内被移除的绝缘层1010就会在形成插塞时被填入N+复晶矽,复晶矽插塞可以避免金属接触及P掺杂基板区域150间形成短路。
在某些实施例中,相邻的源极线144之间会形成短路,举例而言,源极线可以四个为一组,每一组的四个源极线可以与金属带2903相接形成短路,金属带2903可以经由记忆阵列相邻行间的间隙3010内开口144C与源极线接触,使源极线短路可以减少需要连接源极线至较高金属层(没有画出)的区域,因为四条源极线与较高金属层接触只需要一个接触开口(没有画出),与较高金属层的接触也可以用来降低源极线的电阻,由较高金属层所形成的金属带可以形成于源极线上方,与金属带2903间隔接触,金属带2903与源极线在间隙3010内开口144C接触,记忆阵列可以有多个间隙3010。对每一组的四源极线而言,所伴随的八个控制闸线128也可以接在一起形成短路。
由光阻掩膜1014所定义的控制闸线128沿着源极线接触开口144C弯曲,如果相邻的控制闸线128在间隙3010内的位元线区域312中非常靠近,复晶矽层520可能会填入上述区域312中,导致字元线520在这些区域形成麻烦的短路,为了避免短路,可以使用光阻掩膜1710(图28)移除间隙3010内的复晶矽层520,这会使得字元线间壁520在间隙3010内被截断,不过闸隙3010间的个别部分字元线会以金属带2903(如图30B所示)电连接,金属带2903则在间隙2701内与字元线接触。
位于闸隙2701和3010间的记忆阵列区段2703.1和2703.2的剖面与图24A和图24B相似,金属带2903在记忆阵列区段2703.1和2703.2中,位于字元线之上,但不与其接触。
在某些实施例中,会借由矽化源极线144以降低其电阻,举例而言,在图24A和图24B的阶段(即掺杂位元线区域134之前或之后)的结构上沉积钴或其他合适的金属,加热晶圆使得裸露的矽与钴或其他金属反应,而形成导电的矽化物,然后移除未反应的钴或其他金属,此矽化物便会留在源极线144和字元线520上方,上述的矽化步骤与此领域中已知的矽化制程(即自对准矽化物)相同。
在某些实施例中,绝缘层1810可能不足以避免钴或其他金属与位元线区域134间形成短路,因此,字元线520是有可能会与位元线区域134形成短路,我们可利用下列方法避免这种情况:当晶圆经过图20A和图20B阶段的处理之后,就在沉积光阻掩膜1710之前,先沉积绝缘层3003(如图31A和图31B),上述绝缘层3003的材质可以是二氧化矽。然后如上所述的方法,依序形成光阻掩膜1710,接着移除裸露在光阻掩膜1710外边的绝缘层3003,再将晶圆经过图21A至图23B步骤的处理,具体而言就是蚀刻复晶矽层520和掺杂源极线144(即植入2110),然后移除光阻掩膜1710,生成的结构便如图32A和图32B所示。
然后再沉积一层金属(如钴),加热晶圆使得金属与源极线区域中的矽反应,并移除未反应的金属,最后,就在源极线上方形成矽化层3301(如图33A和图33B所示)。
在某种情况下,如果没有完全蚀刻去除位于沟槽910内的绝缘层1010(如图23B所示),则沟槽910内的矽化物3301会被截断。
接着,继续蚀刻绝缘层3003,在位元线区域134和源极线进行植入2401(如图24A和图24B所示),或者是可以穿过绝缘层3003进行植入,当然绝缘层3003也可以选择保留在存储器中。
而源极线矽化技术可以与图16的实施例(即周边电晶体栅极是由控制闸层128所形成)一起应用,也可以与图25、图26A、图26B、图26C的实施例(即周边电晶体栅极是由复晶矽层520所形成)一起应用,或者是与图44至图50的实施例(复晶矽层128和520都用来做为周边电晶体栅极)一起应用,这部分将于后面说明,矽化技术也可以与凸起520E(如图27至图30所示)结合。
图34说明根据本发明的另一快闪记忆阵列,每一个隔离沟槽910突出于相邻的源极线144之间,但是并不与源极线相交,我们把隔离沟槽的边界标示为910B。
上述这种存储器的制程如下:掺杂基板905形成隔离区域150(如图11所示),然后依序形成穿隧氧化层108、复晶矽层124、氮化矽层1203、光阻掩膜904(如图12A和图12B所示),图案化氮化矽层1203和复晶矽层124,不过,这个步骤并没有蚀刻基板区域150,穿隧氧化层108则可自行决定是否要蚀刻掉,接着移除光阻掩膜904,得到的结构便如图35所示。
接着,以化学气相沉积法沉积一层厚的300nm的一氧化矽层2710(如图36所示),如硼磷矽玻璃,然后微影图案化光阻掩膜2810(如图37所示),使成为字元线方向的长条,每一长条位于源极线144将形成的区域,光阻掩膜2810与存储器其他元件(如控制闸128)有关(如图38所示),这个步骤还没有形成控制闸128。
借由对光阻掩膜2810和氮化矽层1203的选择比蚀刻去除光阻掩膜和氮化矽层1203所包围的二氧化层2710和108,然后移除光阻掩膜2810,以二氧化层2710和氮化矽层1203为掩膜蚀刻基板区域150,形成长方形沟槽910;或者是在蚀刻基板区域150时,可以将光阻掩膜2810留着,在这个情形下不需要沉积二氧化层2710。图39显示使用二氧化层2710的实施例的剖面,这个剖面是沿着图37的线39-39切下所得到通过沟槽的平面,没有通过沟槽的平面剖面则与图36一样。
然后再沉积一绝缘层1010(如图13所示),并以化学机械研磨法移除部分绝缘层1010(如图14所示),接着移除氮化矽层1203,选择性蚀刻绝缘层1010,致使上表面成为一平坦表面。图40B是所得结构在平行字元线并通过沟槽的平面剖面图,图40A则是通过相邻沟槽间的平面剖面图,有些绝缘层1010可能覆盖源极线144部分的基板区域150。源极线并没有跨过沟槽(有些二氧化层2710可以留在复晶矽长条124的侧壁上,这时氧化层看起来会像是绝缘层1010的一部分)。
在某些实施例中,会蚀刻去除部分绝缘层1010,以曝露出复晶矽层124的侧壁,借此改善控制闸128和浮动闸124间的电容耦合(如图24C所示)。
剩下的制程步骤可与前述图16至图33B相同,如形成绝缘层(材质可为氧氮氧化层,ONO layer)98、控制闸层128、氮化矽层720、光阻掩膜1014等步骤(即周边电晶体栅极可由128层或字元线层520所形成)。
然后形成二氧化矽层1510(如图18A所示),氮化矽间壁903和二氧化矽层1810(如图19A所示)。
沉积并非等向性蚀刻复晶矽层520(如图20A所示),然后形成光阻掩膜1710(如图21A所示),蚀刻源极线144处的复晶矽层520(如图22A所示),至于源极线144处的绝缘层1010可蚀刻可不蚀刻,然后进行植入2110,因为源极线没有与沟槽910相交,这次的植入掺杂整个长条的源极线,生成的结构与图22A相同,图41显示沿着沟槽的剖面(即这个剖面图是假设已经蚀刻源极线处的绝缘层1010)。
如同前面有关图24A和图24B的说明,移除光阻邀罩1710,进行N型植入2401掺杂位元线区域134和源极线144,在植入2410步骤前可先蚀刻源极线处的绝缘层1010,或是在植入2110和2410步骤之间进行蚀刻,或是在植入2410步骤后进行,或是不要蚀刻。
在某些实施例中,图27至图30的凸起部分520E被当作字元线520;在某些实施例中,如图24A、图31A至图33B所示,会矽化源极线144以降低其电阻。
在图42中,我们省略了二氧化层2710和光阻掩膜2810,隔离沟槽910如图12A所示是由光阻掩膜904所定义,但是由于沟槽910是长方形的(如图37所示),因此氮化矽层1203和复晶矽层124与图37的复合层有同样的轮廓,沟槽910与图34至图41的沟槽有同样的外形,以化学机械研磨法移除源极线144上方的绝缘层1010(如图15所示),剩下的制程步骤就和图37至图41一样,当定义堆叠结构710时,并同时蚀刻源极线144上方的复晶矽层124和二氧化层108,这个步骤会曝露出源极线144。
在图9A到图43的实施例中,是利用源极端热电子注入法来程式化(使成为非导电)记忆胞元,请参阅W.D.Brown等人于1998年发表的《Nonvolatile Semiconductor Memory Technology》第21至23页,下表1列出以1.8V外部电源供应(VCC)驱动的存储器参考电压,斜线是用来表示选择/非选择记忆列或行的电压,举个例子,在表1的“程式化”行、“位元线区域134”列,项目“0V/V3”表示选择位元线是0V,而未被选择位元线是电压V3,我们没有列出所有的非选择电压。
记忆胞元的抹除可使用从浮动闸124到源极线144(请参考表1的“经由源极线抹除扇区”行)或是到基板区域150(“经由基板抹除扇区”)的Fowler-Nordheim穿隧,后者是比较佳的技术,因为降低了带与带间(band-to-band)电流。在图10B和图34的快闪记忆阵列中,只能抹除整个区域(sector),而不能抹除个别的胞元,一个区域是指一列或是数列,他们对应的源极线144经由电路连接形成短路,而对应的控制闸线128也经由电路连接形成短路。
一些实施例提供了于单一操作步骤中抹除多个区域或是整个记忆阵列的选择,其中利用从浮动闸124到基板区域150的Fowler-Nordheim电子穿隧以同步抹除所有待抹除的胞元,这就是表1的“晶片抹除”,区域150相对于所有的控制闸是正向偏压,阵列抹除采用晶片抹除方式的速度会比逐列抹除方式来的快,这在测试存储器时特别有用。
表1
 程式化  经由源极线抹除整个区域  经由基板抹除整个区域  晶片抹除  读取
控制闸128  +10V/0V  -10V  -10V  -10V  1.8V
位元线区域134  0V/V3**(VCC=1.8V)  V4***(VCC=1.8V)  浮动  浮动  1.5
源极线144  6V  5V  浮动  浮动  0V
选择栅极520  VTN+ΔV1 *  0V  0V  0V  VCC+ΔV2 *(VCC=1.8V)
基板区域150  0V  0V  6V  6V  0V
注:
*在实施例中,VTN=0.6V、ΔV1=0.9V、ΔV2=1.4V。
**V3是大于0V1的电压。
***V4电压范围0<V4<VCC。
一条存储器可以有多个记忆阵列,每一个记忆阵列都有自己的位元线和字元线,不同的阵列可以放在相同的基板区域150或是放在同一集成电路的不同隔离基板区域150。“晶片抹除”操作可以抹除在某一个基板区域150上的记忆胞元,而不会抹除到在其他基板区域150的胞元。
电压产生器和解码器区块4201(如图43所示)会使用已知的技术因应电源供应电压VCC、位址讯号“ADDR”、其他的命令/控制讯号等产生必须的电压。
图44说明根据图9A至图43的存储器实施例所得到不同金氧半电晶体栅极绝缘层的厚度,高速操作时需要薄的栅极绝缘层,相反地,暴露在高电压下的电晶体则需要较厚的栅极绝缘层,同时,穿隧氧化层108也要有足够的厚度以记忆长资料。
在下面马上要叙述中实施例中,所有的栅极绝缘层都是二氧化矽层,但这不是一定的,有关栅极绝缘层的厚度是假设VCC=1.8V,而操作电压如上表1所列,这些电压仅供说明而非用来限制本发明。
在图44中,穿隧氧化层108厚约9um,选择电晶体栅极氧化层1810则要比较薄(如5nm),以提供快速运算,但是也要够厚,才耐得住表1中用作读取操作的电压3.2V(范例中VCC+ΔV2=3.2V)。
周边区域1603包括主动区域4402、4404、4406,高电压主动区域4402是给暴露在10V到-10V电压(请参阅表1)及其他高电压下的电晶体使用,这些电晶体可能是电压产生器4201(如图43所示)的一部分,在区域4402的栅极氧化层4408上较厚,约22到25nm厚。
高速主动区域4404是给暴露在低于VCC电压下的电晶体使用,这些电晶体可能是位址解码器、感测放大器、时脉讯号产生器、电压产生器、位址及资料缓冲器及其他电路的一部分,他们的栅极氧化层4410相当薄,约3.5nm厚。
I/O主动区域4406是给做为切断晶片电路介面的电晶体使用,切断晶片电路可能在更高的电源供应电压下操作,如2.5V或3.3V,所以I/O电晶体必须有较厚的栅极氧化层以承受这么高的电压,在图44中,I/O电晶体栅极氧化层1810跟选择电晶体栅极氧化层1810是同一层,约为5um厚。
在图44中,区域4402和4404的电晶体栅极是由控制闸层128所形成,区域4406的I/O电晶体栅极及记忆胞元的选择闸520(即字元线)是由复晶矽层520所形成,如图26B和图26C的说明,选择闸520之上可以有金属层及/或氮化矽层,控制闸128可以是由复晶矽多晶矽化金属或其他导电层所形成。
上述形成栅极绝缘层的制程如下:生成厚9nm的穿隧氧化层108(如图12A所示),上述氧化层108是生成在整个晶片上(包括周边区域1603),然后沉积并图案化复晶矽层124,接着形成隔离沟槽910,并以绝缘材料1010填满沟槽910,请参阅图12A至图15、图37、图42及相关的文字说明。
形成二氧化矽层98.1和氮化矽层98.2(如图16所示),上述这些层的参考厚度分别是1nm和5nm。
然后沉积并微影图案化光阻掩膜4501,使其盖住记忆阵列(如图45所示),蚀刻周边区域1603的98.2、98.1、124、108各层,以曝露出基板905。
接着,移除光阻掩膜4501,在850℃或较低的温度下氧化晶圆,如此会在主动区域4402、4404、4406生成厚24um的二氧化矽层4408(如图46所示),同时,在记忆阵列主动区域901的氮化矽层98.2上方则形成厚1nm到1.5nm的二氧化矽层98.3。
然后沉积并图案化光阻掩膜4601,使其盖住整个记忆阵列和高电压主动区域4402,主动区域4404和4406没有被盖住,因此得以蚀刻主动区域4404和4406的二氧化矽层4408。
然后移除光阻掩膜4601,一般而言,移除光阻之后的步骤通常是清洁晶圆,在此实施例中清洁步骤不太会损坏区域4402的二氧化层4408,这是因为二氧化层4408很厚,而薄氧化层4410(如图44所示)因不会与光阻有接触,所以也不会因为移除光阻后的清洁步骤而造成损坏。
然后氧化晶圆,在主动区域4404和4406生成厚3.5nm的二氧化矽层4410(如图47所示),这里可使用温度低于850℃的干式氧化法,这个步骤使得二氧化层4408(即区域4402内)的厚度增加到约25um。
然后在晶圆上沉积控制闸层128和氧化矽层720,形成光阻掩膜1014,并利用此光阻掩膜1014定义堆叠结构710和位于高电压区域4402及高速区域4404的电晶体栅极,光阻掩膜1014并没有覆盖I/O主动区域44406,并依序蚀刻光阻掩膜1014以曝露出底下的氮化矽层720、控制闸层128、以及98.3、98.2、98.1、4408、4410各层,其中在蚀刻过程中只要碰到阵列主动区域901的复晶矽层124和周边主动区域的基板905即停止。
然后移除光阻掩膜1014,形成另一光阻掩膜4801(如图48所示)覆盖所有的周边区域1603(有形成氮化矽层720的区域可以不用光阻掩膜4801),蚀刻晶圆上未被光阻掩膜4801和氮化矽层720保护的复晶矽层124和二氧化矽层108,如此形成堆叠结构710,然后移除光阻掩膜4801,所生成的结构如图49所示。
接着,继续形成二氧化矽层1510和氮化矽层903(如图19A和图19B所示),以保护堆叠结构710的侧壁,然后氧化晶圆,在记忆阵列主动区域901的裸露基板区域150和I/O主动区域4406的裸露基板905上方形成厚5um的二氧化矽层1810(如图20A和图44所示),接着沉积并图案化复晶矽层520,以做为I/O周边电晶体栅极(如图25、图26A、图26B、图26C所示)。
如上所述,在进行化学机械研磨时,主动区域4406复晶矽层520上方的氮化矽层2607(如图26C所示)会保护复晶矽层520,但假使如果没有形成上述氮化矽层2607的话,也可以以图50的方式保护复晶矽层520,其方法为:先在靠近电晶体主动区域4406的“虚置(dummy)”区域4404D形成虚置结构,虚置区域的处理步骤与高速区域4404相同(图44),如此会在区域4404D形成氮化矽层720,氮化矽层720的上表面比区域4406复晶矽层520的上表面要高,当稍后以二氧化矽(没有画出)覆盖晶图并进行化学机械研磨时,区域4404D的氮化矽层720不会让区域4406复晶矽层520上方的二氧化矽被移除,如此即可保护复晶矽层520。
另外,虚置区域的处理步骤也可以与高电压区域4402相同,或者,可用不同的虚置区域围住每一个I/O电晶体主动区域4406,有些是利用区域4402的方式,有些则利用区域4404的方式,或提供于任一侧面围住元件的单一处置结构。一些区域4404D可以不是虚置区域,即可以在这些区域内形成电晶体。可以利用隔离沟槽910将区域4404D与区域4406隔开,或者区域4404D可能部分与隔离沟槽重叠,或完全位于隔离沟槽的上方。
下面我们针对以虚置结构保护电路元件的方式,再做进一步的说明。
图51是半导体结构110的剖面图,此结构包括半导体基板905、复晶矽层128和520、保护层720其材质可为氮化矽),介电层113。电路结构121.1包括由复晶矽层128所形成的电路元件128.1以及由复晶矽层520所形成的电路元件520.1,在一实施例中,上述元件128.1可以是电容板或薄膜电晶体的栅极,而元件520.1可以是电容板、电晶体的源极、漏极及/或通道区域,两者可以是不同的装置,举例而言,元件128.1可以是电晶体栅极,而元件520.1可以是电阻器、电容板、内连线等。
复晶矽层520提供电路元件520.2,在图51的实施例中,元件520.2是电晶体121.2的栅极,电晶体121.2在基板905内有源极/漏极区域129,电晶体121.2在基板905与栅极520.2间有栅极绝缘层1810,本发明并不限制这类电晶体,元件520.2可以是电容板、电阻器、内连线或任何其他的元件。同样地,复晶矽层128提供电路元件128.3,在图51中,元件128.3是电晶体121.3的栅极,电晶体121.3包括形成于基板905内的源极/漏极区域133,栅极绝缘层4410分开栅极128.3与基板905。
保护特征720.1和720.2是由720层所形成,在化学机械研磨介电层113时可以保护元件128.1、520.1、520.2。
至少一部分的元件128.3没有被保护层720盖住。
在靠近元件128.3的地方形成虚置结构141,可以在化学机械研磨介电层113时保护这个电路元件,每一个虚置结构包括由复晶矽层520所形成的部分520.3,由保护层720所形成的特征元件720.3会覆盖个别的部分520.3,特征520.3不会做为任何电路元件,也不提供任何电性功能,可以连接至一固定电压或让其浮动。
场隔离区域1010是由浅沟槽隔离技术所形成,或是可以利用局部矽氧化(local oxidation of silicon,LOCOS)技术或其他技术形成;虚置结构141位于场隔离区域1010上方,但是这不是必须的。
因为各元件的非平坦轮廓影响,使得介电层113的上表面并不平坦,我们对介电层113进行化学机械研磨,碰到保护层720时停止,借此达成平坦化的目的,生成的结构如图52所示,结构的上表面可能是完全平坦的,或还留有一些非平坦区域,形成非平坦的一个原因是各特征元件720.1、720.2、720.3并不平坦,其中元件720.2和720.3的上表面比元件720.1的上表面低,还有,元件128.3上方的介电层113上表面也会比较低,这是因为下方没有保护层720的结构,另一个平坦性不佳的原因可能是元件在集成电路的某些部分密度较低,请参阅于1999年6月1日公告的美国专利号5,909,628“REDUCING NON-UNIFORMITYIN A REFILL LAYER THICKNESS FOR A SEMICONDUCTOR DEVICE”,不过,经过化学机械研磨之后,结构110的上表面已经比较平坦,属于实质性平坦。
在某些实施例中,保护层720的高点和介电层113的低点间差距小于15nm,已知非平坦的程度与介电层113的厚度、研磨时间、化学机械研磨参数(如压力)有关,非平坦的程度也跟特定的化学机械研磨技术(如使用泥浆或低泥浆固定研磨剂)有关,本发明不限定任何特定的化学机械研磨制程或非平坦程度。
在某些实施例中,不是所有的保护层720都受到研磨影响,比如说只有较高的特征元件720.1会受到研磨影响,而较低的特征元件720.2则不会。
虚置结构141会保护元件128.3不受影响,在某些实施例中,元件128.3相反两侧的相邻结构141间距约为5mm,层720为厚的160nm的氮化矽,而虚置特征元件720.3的上表面在元件128.3上方约0.21mm;在其他实施例中,元件128.3相反两侧的虚置结构141间距超过10mm,最大可允许间距跟使用的材料、层厚度、化学机械研磨的品质都有关系。
可以只在结构121.3的一边提供虚置结构。
如果在元件128.3上方的介电层113不够厚,以致于无法提供所需的隔离,则可以在结构上沉积另一层绝缘层(没有画出),这一层会有比较实质性平坦的上表面,因为下方的介电层113经过化学机械研磨之后,有比较平坦的结构。
栅极绝缘层1810和栅极绝缘层4410不一定是由同样的绝缘层形成,可以使用不同的绝缘层,尤其是当我们想让电晶体121.2和121.3有不同厚度的栅极绝缘层。
下面提供一参考制程:依照各人需求处理基板905(如形成互补金氧半导体(complementary metal oxide semiconductor,CMOS)井,不过本发明不仅限于互补金氧半导体),然后形成绝缘层4410或1810及其他层,沉积并图案化128、520、720各层,然后沉积绝缘层113,并以化学机械研磨法处理,当然可于制程中的某些阶段形成其他层或进行掺杂步骤。
沉积复晶矽层128和520可以利用化学气相沉积法、溅镀法或其他已知未知的技术。可以使用单一掩膜同时图案化720和520层,也可在形成128层之后才形成1810层。
在图53中,虚置结构141是使用复晶矽层128,图53的集成电路包括一快闪记忆阵列901,矽层124做为记忆胞元的浮动闸,复晶矽层128做为控制闸,复晶矽层520做为选择栅极,绝缘层108(“穿隧氧化层”)是由二氧化矽形成,有足够的厚度以提供适当的资料记忆,在某些实施例中,氧化层108厚9nm,选择电晶体栅极氧化层1810厚5nm,这里提到的材料与厚度只供说明之用而非用来限制本发明。
记忆胞元的位元线区域134与上方位元线(没有画出)连接,其伸向位元线“BL”的方向,源极线区域144伸向字元线的方向,与位元线垂直。
其中周边区域1603包括主动区域4402、4404、4406(如图53所示),其内形成电晶体,高电压主动区域4402是供位于高电压环境中的电晶体使用,电晶体则用于抹除及程式化阵列901的记忆胞元,这个区域的电晶体栅极由复晶矽层128所形成,栅极绝缘层4408是厚约20nm的二氧化矽层。
高速区域4404包括具有较薄栅极氧化层4410的电晶体,于低电压下操作,氧化层4410厚3.5nm,电晶体栅极是由128层所形成。
I/O主动区域4406是供做为切断晶片电路介面的电晶体使用,切断晶片电路可以在更高的电源供应电压下操作,所以电晶体有比较厚的栅极氧化层,以承受这种电压,栅极绝缘层与做为记忆阵列901选择电晶体栅极绝缘1810层相同。
标号133是指示区域4402、4404、4406内的电晶体源极和漏极区域,场绝缘层1010形成于区域4406内的电晶体或其他电晶体的四周。
有关的制造步骤简述如下:
在基板905上以热氧化法形成厚9nm的穿隧氧化层108(图54),然后依序沉积复晶矽层124、二氧化矽层98.1、氮化矽层98.2,接着在记忆阵列901上方形成光阻掩膜4501,蚀刻区域4402、4404、4406内的98.2、98.1、124各层,以裸露出基板905。
在沉积二氧化矽层98.1之前,先图案化复晶矽层124和基板905,形成隔离沟槽,以二氧化矽1010填满沟槽。
蚀刻氧化层108之后,移除光阻掩膜4501,在基板905上加热生成厚19nm的氧化层4408(图55),这时会在氮化矽层98.2上方形成薄薄的二氧化矽层98.3。
在记忆阵列901和高电压区域4402微影生成光阻掩膜4601,蚀刻区域4404和4406内基板上的二氧化矽层4408。
然后移除光阻掩膜4601,氧化晶圆,在区域4404和4406内的基板905上方生成厚3.5nm的二氧化矽层4410(第56图),在这个步骤中,区域4402内的氧化层4408的厚度有稍微增加。
然后在晶圆上沉积复晶矽层128和氮化矽层720,形成光阻掩膜1014以定义(i)记忆阵列的浮动闸和控制闸(ii)区域4402和4404内的电晶体栅极、(iii)区域4406内的虚置结构141,蚀刻未被掩膜覆盖区域的720、128、98.3、98.2、98.1、4408、4410各层,蚀刻将停止于记忆阵列区域中的复晶矽层124及其他区域中的基板905(图57)。
然后移除光阻1014,在清理步骤时,复晶矽层128和氮化矽层720会保护高速区域4404的薄栅极氧化层4410。
在区域4402、4404、4406形成另一光阻掩膜4801,有氮化矽层720的地方可以不用,除了光阻掩膜4801和氮化矽层720保护的区域之外,蚀刻晶圆的复晶矽层1124和二氧化矽层108,然后移除光阻掩膜4801(图58)。
在124和128层的露出侧壁及基板905的上方氧化结构生成薄二氧化矽层1510(图59),然后沉积并非等向性蚀刻薄氮化矽层903,如此可在电晶体栅极结构和虚置结构形成间壁,于蚀刻时,因蚀刻氮化矽层903而露出的二氧化矽层1510可能会被移除。
在基板905的裸露表面上方以热氧化生成厚5nm的二氧化矽层1810(图60)。
在结构上沉积复晶矽层520,然后形成光阻掩膜2501以定义I/O区域4406的电晶体栅极,非等向性蚀刻复晶矽层520形成电晶体栅极结构和虚置结构侧壁上的间壁。
移除先阻掩膜2501,在I/O电晶体的栅极和记忆阵列的选择栅极上方形成光阻层1710(图61),蚀刻剩下区域的复晶矽层520。
于制程中的适当阶段进行适宜的掺杂步骤,形成电晶体的源极和漏极区域、位元线和源极线区域及其他掺杂区域。
在某些实施例中,记忆胞元是多阶胞元(multilevel cells,MLC),即每一个记忆胞元可以储存超过一位元的资讯,每一个浮动闸124可以储存三个或更多的电荷能阶,对应到三个或更多个不同的控制闸128定限电压,请参阅Lee于1999年9月4日公告的美国专利5,953,255。
本发明并不局限于上述的实施例,本发明不只限定于特定的抹除或程式化机制(如Fowler-Nordheim、或热电子注入),本发明涵盖非快闪电子式可抹除可程式只读存储器(electrically eraseableprogrammable read only memory,EEPROM)及其他已知或未发明的存储器,本发明也不仅限于上述材料,比如说控制闸、选择闸及其他导电元件的材质可以是金属、金属矽化物、多晶矽化金属及其他导电材料或复合物,或者也可以同时包含导体和导体部分,如部分掺杂的复晶矽层,二氧化矽或氮化矽也可以用其他的绝缘材料取代,P型及N型传导方式是可以互换的,本发明不受限于任何特定的程序步骤或步骤顺序,举个例子,在某些实施例中,矽的热氧化可以换成以化学气相沉积法或其他技术沉积一层二氧化矽或其他绝缘材料,在某些实施例中,深植入2110可以在蚀刻绝缘材料1010后进行,本发明不限于矽集成电路,权利要求范围定义了其他符合本发明范畴的实施例及变化。

Claims (6)

1、一种抹除在一半导体区域内部及上方的快闪记忆阵列记忆胞元的方法,该记忆阵列包含多个区段,每一该区段可以个别抹除,每一该区段有多个记忆胞元,该方法包括:
该存储器接收一指令,指示是否要抹除整个记忆阵列,或是要采除少于整个记忆阵列;
如果要抹除整个记忆阵列,则抹除该整个记忆阵列;以及
如果要抹除少于整个记忆阵列,则抹除部分的该记忆阵列,而不抹除该整个记忆阵列。
2、如权利要求1所述的方法,其中抹除该整个记忆阵列包括提供该半导体区域一第一电压,并提供该记忆阵列的所有控制闸一第二电压。
3、如权利要求1所述的方法,其中抹除部分的该记忆阵列包括:
提供给该部分内记忆胞元的控制闸一第一电压;以及
提供给该记忆阵列内该部分外记忆胞元的控制闸一第二电压。
4、如权利要求1所述的方法,其中抹除该整个记忆阵列包括利用从该胞元浮动闸至位于该半导体区域内该胞元的通道区域的Fowler-Nordheim穿隧以抹除一记忆胞元。
5、如权利要求1所述的方法,其中抹除该部分记忆阵列包括利用从该胞元浮动闸至位于该半导体区域内该胞元的通道区域的Fowler-Nordheim穿隧以抹除一记忆胞元。
6、如权利要求1所述的方法,其中抹除该部分记忆阵列包括利用从该胞元浮动间至位于该半导体区域内该胞元的源极/漏极区域的Fowler-Nordheim穿隧以抹除一记忆胞元。
CNB2004100965881A 2001-12-31 2001-12-31 抹除快闪存储阵列存储单元的方法 Expired - Lifetime CN100390960C (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 01145049 CN1280891C (zh) 2001-12-31 2001-12-31 非挥发性存储器结构及其制造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN 01145049 Division CN1280891C (zh) 2001-12-31 2001-12-31 非挥发性存储器结构及其制造方法

Publications (2)

Publication Number Publication Date
CN1632945A true CN1632945A (zh) 2005-06-29
CN100390960C CN100390960C (zh) 2008-05-28

Family

ID=4677992

Family Applications (3)

Application Number Title Priority Date Filing Date
CN 01145049 Expired - Lifetime CN1280891C (zh) 2001-12-31 2001-12-31 非挥发性存储器结构及其制造方法
CNB2004100965881A Expired - Lifetime CN100390960C (zh) 2001-12-31 2001-12-31 抹除快闪存储阵列存储单元的方法
CNB2004100965896A Expired - Lifetime CN100533740C (zh) 2001-12-31 2001-12-31 包含非易失性存储器的集成电路

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN 01145049 Expired - Lifetime CN1280891C (zh) 2001-12-31 2001-12-31 非挥发性存储器结构及其制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB2004100965896A Expired - Lifetime CN100533740C (zh) 2001-12-31 2001-12-31 包含非易失性存储器的集成电路

Country Status (1)

Country Link
CN (3) CN1280891C (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151458A (zh) * 2013-03-22 2013-06-12 厦门博佳琴电子科技有限公司 一种嵌入式相变化存储器阵列及制造方法
CN108091658A (zh) * 2017-11-16 2018-05-29 上海华力微电子有限公司 闪存的工艺集成结构和方法
TWI655326B (zh) * 2016-08-11 2019-04-01 南韓商愛思開矽得榮股份有限公司 晶圓以及晶圓的製造方法
CN114678370A (zh) * 2022-05-30 2022-06-28 广州粤芯半导体技术有限公司 一种Flash结构及其制备方法
CN115274676A (zh) * 2022-09-29 2022-11-01 广州粤芯半导体技术有限公司 一种闪存结构及其制作方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100365817C (zh) * 2003-08-28 2008-01-30 旺宏电子股份有限公司 非挥发性存储器阵列结构
JP4455017B2 (ja) * 2003-11-10 2010-04-21 株式会社東芝 不揮発性半導体記憶装置
CN100452355C (zh) * 2005-08-19 2009-01-14 力晶半导体股份有限公司 非挥发性存储器及其制造方法
CN100385646C (zh) * 2005-08-19 2008-04-30 力晶半导体股份有限公司 防止击穿的半导体元件及其制造方法
US8125051B2 (en) * 2008-07-03 2012-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Device layout for gate last process
US7981801B2 (en) 2008-09-12 2011-07-19 Taiwan Semiconductor Manufacturing Company, Ltd. Chemical mechanical polishing (CMP) method for gate last process
KR20100108715A (ko) * 2009-03-30 2010-10-08 주식회사 하이닉스반도체 비휘발성 메모리 장치의 제조방법
CN102931143B (zh) 2011-08-10 2015-04-29 无锡华润上华科技有限公司 NOR Flash器件制作方法
CN103021855B (zh) * 2011-09-27 2015-04-01 中芯国际集成电路制造(上海)有限公司 分离栅闪存的有源区制造方法
US9590051B2 (en) * 2013-12-18 2017-03-07 Intel Corporation Heterogeneous layer device
US10043672B2 (en) * 2016-03-29 2018-08-07 Lam Research Corporation Selective self-aligned patterning of silicon germanium, germanium and type III/V materials using a sulfur-containing mask
CN107845634B (zh) * 2016-09-19 2020-04-10 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制作方法、电子装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732070B2 (ja) * 1988-07-12 1998-03-25 三菱電機株式会社 不揮発性半導体記憶装置の書込み方法
US5280446A (en) * 1990-09-20 1994-01-18 Bright Microelectronics, Inc. Flash eprom memory circuit having source side programming
US5912842A (en) * 1995-11-14 1999-06-15 Programmable Microelectronics Corp. Nonvolatile PMOS two transistor memory cell and array
JP3850136B2 (ja) * 1998-04-03 2006-11-29 株式会社リコー 不揮発性半導体記憶装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151458A (zh) * 2013-03-22 2013-06-12 厦门博佳琴电子科技有限公司 一种嵌入式相变化存储器阵列及制造方法
TWI655326B (zh) * 2016-08-11 2019-04-01 南韓商愛思開矽得榮股份有限公司 晶圓以及晶圓的製造方法
CN108091658A (zh) * 2017-11-16 2018-05-29 上海华力微电子有限公司 闪存的工艺集成结构和方法
CN108091658B (zh) * 2017-11-16 2021-04-13 上海华力微电子有限公司 闪存的工艺集成结构和方法
CN114678370A (zh) * 2022-05-30 2022-06-28 广州粤芯半导体技术有限公司 一种Flash结构及其制备方法
CN114678370B (zh) * 2022-05-30 2022-08-02 广州粤芯半导体技术有限公司 一种Flash结构及其制备方法
CN115274676A (zh) * 2022-09-29 2022-11-01 广州粤芯半导体技术有限公司 一种闪存结构及其制作方法
CN115274676B (zh) * 2022-09-29 2022-12-13 广州粤芯半导体技术有限公司 一种闪存结构及其制作方法

Also Published As

Publication number Publication date
CN100390960C (zh) 2008-05-28
CN1632952A (zh) 2005-06-29
CN1430264A (zh) 2003-07-16
CN100533740C (zh) 2009-08-26
CN1280891C (zh) 2006-10-18

Similar Documents

Publication Publication Date Title
CN1183601C (zh) 非易失性半导体存储器及其制造方法
CN1280891C (zh) 非挥发性存储器结构及其制造方法
CN1252832C (zh) 半导体器件及其制造方法
CN1309054C (zh) 具有一非易失性内存的集成电路及其制造方法
CN1914739A (zh) 绝缘层上覆硅上的nor型信道程序化信道抹除非接触式闪存
CN1203547C (zh) 半导体器件及其制造方法
CN1320655C (zh) 非易失半导体存储器及其制造方法
CN1230904C (zh) 非易失性半导体存储器
CN1591904A (zh) 半导体器件及其制造方法
CN1157792C (zh) 一次可编程半导体非易失性存储器件及其制造方法
CN1685443A (zh) 一种新单体式复合型非易失性存储器
CN1404150A (zh) 半导体存储单元和半导体存储装置
CN1542974A (zh) 半导体器件及其制造方法
CN101030556A (zh) 半导体器件的制造方法
CN1906756A (zh) 柱状单元快闪存储器技术
CN1514485A (zh) 非挥发性内存及其制造方法
CN1303127A (zh) 非易失性半导体存储器及其制造方法
CN1729558A (zh) 垂直分离栅非易失性存储单元及其制造方法
CN1306616C (zh) 包括每个有浮动栅和控制栅极的mos晶体管的半导体存储器
CN1162913C (zh) 半导体存储器及其制造方法和驱动方法
CN1144294C (zh) 半导体存储器
CN1244156C (zh) 非易失性半导体存储器件及其制造方法和操作方法
CN1204868A (zh) 非易失存储器的制造方法
CN1722445A (zh) 电荷捕捉非挥发性记忆体及其操作方法
CN1774808A (zh) 存储单元、存储单元装置及存储单元制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: MAODE SCIENCE AND TECHNOLOGY CO LTD

Free format text: FORMER OWNER: CHINA TAIWAN MOSEL VITELIC INC.

Effective date: 20120418

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20120418

Address after: Hsinchu City, Taiwan, China

Patentee after: Maode Science and Technology Co., Ltd.

Address before: Hsinchu Science Park, Taiwan, China

Patentee before: Mao Electronics China Limited by Share Ltd, Taiwan, China

CX01 Expiry of patent term

Granted publication date: 20080528

CX01 Expiry of patent term