CN1624002A - 生物分解性透明质酸衍生物及其聚合微胶粒组合物和药学组合物 - Google Patents

生物分解性透明质酸衍生物及其聚合微胶粒组合物和药学组合物 Download PDF

Info

Publication number
CN1624002A
CN1624002A CNA2004100042354A CN200410004235A CN1624002A CN 1624002 A CN1624002 A CN 1624002A CN A2004100042354 A CNA2004100042354 A CN A2004100042354A CN 200410004235 A CN200410004235 A CN 200410004235A CN 1624002 A CN1624002 A CN 1624002A
Authority
CN
China
Prior art keywords
biodegradable
derivatives
acid
prepolymer
hyaluronic acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100042354A
Other languages
English (en)
Other versions
CN1284801C (zh
Inventor
陈瑞祥
蔡秉宏
张学曾
陈慕兰
陈毓华
詹淑华
刘美君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN1624002A publication Critical patent/CN1624002A/zh
Application granted granted Critical
Publication of CN1284801C publication Critical patent/CN1284801C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6907Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a microemulsion, nanoemulsion or micelle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment

Abstract

本发明涉及一种生物分解性透明质酸衍生物,其包括至少一种如右化学式所示的改质透明质酸重复单元(HA)-[O(C=O)NH-M]p,其中HA为包括N-乙酰基-D-葡糖胺(N-acetyl-D-glucosamine)和D-葡糖醛酸(glucuronic acid)的单元,M为包括C2-16烃基或一预聚物的一改质部分,p为1至4的整数。当此生物分解性透明质酸衍生物溶在一亲水性介质中时,可形成微胶粒并可用于包埋一药学活性或生理活性分子。

Description

生物分解性透明质酸衍生物及其聚合微胶粒组合物 和药学组合物
技术领域
本发明有关于一种生物分解性透明质酸衍生物,特别是一种由透明质酸中的氢氧基和含异氰酸基化合物中的异氰酸酯基(isocyanate group)经由氨基甲酸乙酯(urethane)键合的反应得到的生物分解性透明质酸衍生物。
背景技术
透明质酸(hyaluronan或hyaluronic acid;简称HA)是一种由N-乙酰基-D-葡糖胺(N-acetyl-D-glucosamine)与D-葡糖醛酸(D-glucuronic acid)重复单元所组成的线性粘多糖(linear mucopolysaccharide)。透明质酸一开始于1934年,由Meyer与Palmer于牛眼球的玻璃体中首度发现,之后便陆陆续续在其它组织中发现,如细胞间质(ECM)、关节滑液等。它的水溶液为粘弹性流体,填充在细胞与胶原纤维空间之中且覆盖在某些表皮组织上。在动物体,其主要功能是保护及润滑细胞,调节细胞在此粘弹性基质上的移动,稳定胶原网状结构及保护它免于受到机械性的破坏。透明质酸为天然性润滑以及吸震高分子,在肌腱、肌腱鞘及粘滑膜表面作为润滑剂。
透明质酸可由天然组织(例如鸡冠)中萃取出,或者可由某些细菌中萃取。因其取材有限,以及繁复的纯化步骤,所以透明质酸的价格昂贵。另外,透明质酸的分子量会随来源与分离方法的不同而有差异性,一般介于数百万至数千万Dalton之间。
透明质酸其分子部分(molecular fractions)及其盐类已用于药学、外科、和化妆品等领域,也用于生物分解性(biodegradable)聚合物质的领域。然而,由于透明质酸的价格昂贵,且生物降解速度快,应用相对受限。数十年以来,许许多多有关透明质酸的研究,发展出许许多多改良透明质酸的方法,以增加其对生物降解(biodegradation)的抵抗性。
US Patent 5,462,976中,利用离子交换法,制备葡糖胺聚糖(glycosaminoglycan;GAG)的叔胺盐,如硫酸软骨素(chondroitin sulfate)、透明质酸(hyaluronicacid)等的叔胺盐。在有机溶剂中,GAG上的OH、COOH、NH2等官能基,与光敏性反应基进行酯化反应,形成化学键。酯化产物可在紫外光的作用下,形成架桥,因此可产生非水溶性的GAG衍生物。
US Patent 4,85 1,521中,Francesco della Valle等人披露了一种酯化透明质酸(esters of hyaluronic acid)的制法。在此专利中,先将透明质酸转换成为可溶于有机溶剂的透明质酸盐(salt of hyaluronic acid),接着再将脂肪族醇类化合物(aliphatic type alcohol)与透明质酸盐分子结构中的羧基COOH(羧基)部分或全部反应形成酯键(ester linkage),得到酯化透明质酸产物。此专利中还披露了酯化透明质酸产物可应用于化妆品(cosmetics),外科手术(surgery)及医学(medicine)用途。
US Patent 4,957,744中,Francesco della Valle等人披露一种交链酯化透明质酸(cross-linked esters ofhyaluronic acid)制法,在此专利中先将透明质酸转换成为可溶于有机溶剂的透明质酸盐(salt of hyaluronic acid),接着再使用多元醇olyhydric alcohols类化合物,与多糖类透明质酸盐分子结构中的两个以上的羧基COOH反应,形成一种具交链结构的交链性酯化透明质酸材料。
US Patent的5,122,598中,Francesco della Valle等人披露了一种酯化多糖类(polysaccharide esters)的制法。此专利中先将多糖类高分子,例如羧甲纤维素(carboxymethylcellulose)及羧甲壳多糖(carboxylmethylchitin)转换成为可溶于有机溶剂的多糖类(salt of polysaccharide),接着再使用乙醇类化合物,与多糖类高分子分子结构中的羧基COOH反应而形成一种具酯化多糖类材料。
US Patent的5,202,431中,Francesco della Valle等人披露一种部分酯化透明质酸(partial esters of hyaluronic acid)的制法。于此专利中,先将透明质酸转换成为可溶于有机溶剂的透明质酸盐(salt of hyaluronic acid),接着再使用脂肪醇aliphatic alcohols类化合物与多糖类透明质酸盐分子结构中羧基COOH反应,而形成一种酯化透明质酸材料。亦或可使用具药理活性物质,例如:肾上腺皮质素(cortisone)或皮质醇(hydrocortisone)与多糖类透明质酸盐分子结构中羧基COOH,反应而形成一种将药理活性物质以酯键(esterlinkage)连结于透明质酸高分子的部分酯化透明质酸材料。此专利还披露可将酯化透明质酸与酯键连结药理活性物质的透明质酸高分子相互混合使用。
US Patent的5,336,767中,Francesco della Valle等人披露一种部分或全部酯化透明质酸(total or partial esters of hyaluronic acid)的制法。此专利中,主要是将药理活性物质,例如:肾上腺皮质素,皮质醇,去氢可的松等药物与透明质酸盐分子结构中的羧基COOH反应,形成一种药理活性物质以酯键连结于透明质酸高分子的部分酯化透明质酸材料。
US Patent的5,442,053中,Francesco della Valle等人披露一种包括透明质酸和具药理活性物质的组合物。此专利中揭示,分子量介于50,000-100,000的透明质酸与药理活性物质组合特别适用于伤口愈合(wound healing),分子量介于500,000-730,000的透明质酸与药理活性物质组合特别适用于关节内注射(intraarticular injection)。
US Patent的5,856,299中,Zefferino Righetto等人披露一种高反应性酯化多糖(highly reactive esters of carboxy polysaccharides)及其衍生物制法。此专利中,先将透明质酸转换成为可溶于有机溶剂的透明质酸盐(salt ofhyaluronic acid),接着再使用芳香族醇类(aromatic alcohols)化合物与多糖类透明质酸盐分子结构中的羧基反应,而形成一种高反应性酯化透明质酸多糖类材料,适合作生物医学或药物领域产品应用。
尽管如此,仍有必要将已有的透明质酸加以修饰,使其成为改质透明质酸,以使之具有改良的性质并可用于多种用途。
发明内容
综上所述,本发明藉由透明质酸中的氢氧基和含异氰酸基化合物中的异氰酸酯基(isocyanate group)经由氨基甲酸乙酯(urethane)键合的反应,得到一种生物分解性透明质酸衍生物,实现了将透明质酸加以修饰,使其具有改良的性质并可用于多种用途的目的,并提出其酯化透明质酸产物与药理活性物质并用形成药学组合物等的应用。
本发明的目的在于提供一种生物分解性透明质酸衍生物,其为由氨基甲酸乙酯(urethane)键合从而将一短链基取代在氢氧基位置上得到的产物;以及一种新颖的藉由氨基甲酸乙酯(urethane)键合而将一预聚物接枝于氢氧基位置上的生物分解性透明质酸衍生物。
本发明的目的还在于提供一种生物分解性聚合微胶粒组合物,该组合物由透明质酸衍生物在亲水性介质中所形成。
本发明的目的还在于提供一种药学或生理活性组合物,其包括一药学活性分子或生理活性分子,该分子被包埋于上述生物分解性透明质酸衍生物所形成的微胶粒内。
为达成上述目的,本发明提供的一种生物分解性透明质酸衍生物,其包括至少一种以下化学式所示的改质透明质酸重复单元(HA)-[O(C=O)NH-M]p,其中HA为包括N-乙酰基-D-葡糖胺(N-acetyl-D-glucosamine)和D-葡糖醛酸(glucuronic acid)的单元,M为包括C2-16烃基或一预聚物的一改质部分,p为1至4的整数。
本发明提供的生物分解性聚合微胶粒组合物包括:
一亲水性介质;
一生物分解性透明质酸衍生物,其包括至少一种以下化学式所示的改质透明质酸重复单元:(HA)-[O(C=O)NH-M]p,其中HA为包括N-乙酰基-D-葡糖胺(N-acetyl-D-glucosamine)和D-葡糖醛酸(glucuronic acid)的单元,M为包括C2-16烃基或一生物分解性亲油性预聚物的改质部分,p为1至4的整数;
所述生物分解性透明质酸衍生物在亲水性介质中自行组合形成微胶粒。
本发明提供的药学或生理活性组合物包括:
一亲水性介质;
一生物分解性透明质酸衍生物,其包括至少一种下式所示的改质透明质酸重复单元(HA)-[O(C=O)NH-M]p,其中HA为包括N-乙酰基-D-葡糖胺(N-acetyl-D-glucosamine)和D-葡糖醛酸(glucuronic acid)单元,M为包括C2-16烃基或一生物分解性亲油性预聚物的一改质部分,p为1至4的整数;
一药学活性分子或生理活性分子,该活性分子被包埋于生物分解性透明质酸衍生物所形成的微胶粒内。
本发明提供的生物分解性透明质酸衍生物,是藉由透明质酸中的氢氧基和含异氰酸基化合物中的异氰酸酯基经由氨基甲酸乙酯键合的反应得到的产物,其具有改良的透明质酸的性能,同时提供的含有该生物分解性透明质酸衍生物的生物分解性聚合微胶粒组合物及其药学或生理活性组合物也揭示了该透明质酸衍生物可与药理活性物质并用,提示了该修饰后的产物具有更广泛的用途。
上述的生物分解性透明质酸衍生物,其还包括一自然透明质酸重复单元,该单元包括N-乙酰基-D-葡糖胺和D-葡糖醛酸。
本发明产物的化学式中的M包括C2-16烃基,其中M可以为C2-16烷基,优选为C4-12烷基,更优选为丁基、仲丁基、辛基或十二烷基;M还可以是一生物分解性预聚物,该生物分解性预聚物可以相同或不同,其可为亲油性、亲水性或两亲的。
生物分解性含聚酯的亲油性预聚物包括聚己内酯、聚-左旋-乳酸交酯、聚乳酸、聚羟基乙酸、聚-乳酸-共-羟基乙酸共聚物和聚己内酯-聚乳酸共聚物。
生物分解性亲水预聚物包括聚乙烯吡咯酮、聚乙二醇和聚乙烯醇。
生物分解性两亲预聚物包括聚己内酯-聚乙二醇共聚物、聚乳酸-聚乙二醇共聚物和聚羟基乙酸-聚乙二醇共聚物。
所述的生物分解性预聚物的分子量为500至200000Dalton。
上述的生物分解性聚合微胶粒组合物,其中该生物分解性透明质酸衍生物的浓度大于临界微胶粒浓度,该浓度可以为0.005重量%至0.5重量%之间,优选浓度为0.005重量%至0.3重量%之间;其中该生物分解性透明质酸衍生物为梳子状接枝共聚物;所述生物分解性预聚物为相同或不同,且为聚己内酯、聚-左旋-乳酸交酯、聚乳酸、聚羟基乙酸、聚-乳酸-共-羟基乙酸共聚物或聚己内酯-聚乳酸共聚物,其分子量为500至200000Dalton之间;其中该亲水性介质为水或水溶液。
上述的药学或生理活性组合物,其中M包括一生物分解性亲油性预聚物,该生物分解性亲油性预聚物可相同或不同,且为聚己内酯、聚-左旋-乳酸交酯、聚乳酸、聚羟基乙酸、聚-乳酸-共-羟基乙酸共聚物或聚己内酯-聚乳酸共聚物,其中所述亲水性介质为水或水溶液;该生物分解性透明质酸衍生物的浓度为0.005重量%至0.5重量%之间,优选浓度为0.005重量%至0.3重量%之间;所述的药学活性或生物活性分子为亲油性的。
本发明中藉由氨基甲酸乙酯(urethane)键合而将短链部分或预聚物导入在-OH基上而改质自然透明质酸。所述透明质酸衍生物没有细胞毒性反应。另外,将有生物分解性亲油性预聚物接枝的透明质酸衍生物溶在亲水性介质中,可形成微胶粒,且临界微胶粒浓度低,因此,可将药学活性或生理活性分子包覆在透明质酸衍生物微胶粒内,以形成药学活性或生理活性组成物,有稳定释放的效果。
附图说明
图1a显示没有改质的自然透明质酸重复单元;
图1b显示了改质的透明质酸重复单元,有一个改质部分(M)藉由氨基甲酸乙酯键合而连于其上;
图1c显示了改质的透明质酸重复单元,有三个改质部分(M)藉由氨基甲酸乙酯键合而连于其上;
图1d显示了改质的透明质酸重复单元,有丁基藉由氨基甲酸乙酯键合而连于其上;
图1e为梳子状透明质酸接枝共聚物的化学结构;
图2显示有预聚物接枝的透明质酸衍生物的微胶粒构造;
图3为实施例A-1所制得透明质酸的100%取代丁基氨基甲酸乙酯衍生物(C4-HA)的IR光谱图;
图4a和4b为实施例A-1所制得冷冻干燥的C4-HA的SEM照片;
图5显示实施例A-1所制得C4-HA的膨胀率和pH值的关系;
图6显示有PCL预聚物接枝的透明质酸共聚物的合成路径;
图7显示实施例B-1所得有PCL预聚物接枝的透明质酸共聚物的临界微胶粒浓度(CMC)的测量结果;
图8显示C4-HA的化学构造,其中氢位置以a,b,c,d标示;
图9显示C12-HA的化学构造,其中氢位置以a,b,c,d标示;
图10显示单官能基PCL的化学构造,其中氢位置以a,b,c,d,e,f,g,h,h’标示;
图11显示单官能基PLLA的化学构造,其中氢位置以a,b,c,d,e,f,g标示;
图12显示HA-接枝-PCL的化学构造,其中氢位置以a,b,c,d,e,f,g,h,i,k标示;
图13显示HA-接枝-PLLA的化学构造,其中氢位置以a,b,c,d,e,f,g标示。
具体实施方式
以下结合具体实施例详细说明本发明,但不限定本发明的实施范围。
自然(native)透明质酸是一种由N-乙酰基-D-葡糖胺(N-acetyl-D-glucosamine)与D-葡糖醛酸(D-glucuronic acid)重复单元所组成的线性粘多糖(linear mucopolysaccharide),如图1a所示。
本发明藉由氨基甲酸乙酯键合(urethane linkage;-O(C=O)NH-)而将一改质部分导入在自然透明质酸的氢氧基(-OH)位置上,此改质部分可包括C2-16烃基或一预聚物。
换言之,本发明的改质透明质酸(透明质酸衍生物)包括以下化学式所示的改质透明质酸重复单元:
(HA)-[O(C=O)NH-M]p      (1)
其中HA为包括N-乙酰基-D-葡糖胺(N-acetyl-D-glucosamine)和D-葡糖醛酸(glucuronic acid)的单元,M为包括C2-16烃基或一预聚物的一改质部分,p为1至4的整数。
图1b显示化学式(1)的化学结构,其中p为1。
在本发明透明质酸衍生物中,-COOH基和-NHCOCH3基可保持不变,或者,某些-COOH基和/或某些-NHCOCH3基可依据实际需要而有取代。例如,-COOH基可被转变为-COOM1基,其中M1可为碱金属、碱土金属、铵(ammonium)或铝。本发明透明质酸衍生物的盐类也涵盖在本发明范围内。
此外,依据本发明,自然透明质酸的-OH基可被完全或部分改质,完全改质表示自然透明质酸中的所有-OH基都如上所述藉由urethane键合而被改质(p=4)。
部分改质表示自然透明质酸中的一些-OH基被改质,而一些-OH基没有被改质。即,本发明的透明质酸衍生物可包括复数个自然透明质酸重复单元(p=0,如图1a所示)以及复数个经改质的透明质酸重复单元。经改质的透明质酸重复单元可具有不同的改质程度。亦即,在透明质酸衍生物中,可能存在有不同p值(p=1、2、3、4)的经改质的透明质酸重复单元。图1b显示一经改质的透明质酸重复单元,有一个改质部分(M)藉由氨基甲酸乙酯(urethane)键合而连于其上(p=1)。图1c显示一经改质的透明质酸重复单元,有三个改质部分(M)藉由urethane键合而连于其上(p=3)。
此外,所有的透明质酸重复单元可被改质(即没有自然透明质酸重复单元留下),但是自然透明质酸中的-OH基并不需要全部被改质。例如,本发明的透明质酸衍生物可包括一第一经改质透明质酸重复单元(图1b,p=1)、一第二经改质透明质酸重复单元(p=2)、一第三经改质透明质酸重复单元(p=3)、一第四经改质透明质酸重复单元(p=4)或上述的组合,但没有自然透明质酸重复单元(p=0)存在。
为了方便起见,本发明生物分解性透明质酸衍生物可分为以下两类:
(A)有短链部分取代的生物分解性透明质酸衍生物(此时M为包括C2-16烃基的改质部分);
(B)有预聚物接枝的生物分解性透明质酸共聚物(此时M为包括预聚物的改质部分)。
(A)类:有短链部分取代的透明质酸衍生物
本发明(A)类的透明质酸衍生物包括以下化学式所示的经改质透明质酸重复单元
(HA)-[O(C=O)NH-M]p       (1)
其中HA为包括N-乙酰基-D-葡糖胺(N-acetyl-D-glucosamine)和D-葡糖醛酸(glucuronic acid)的单元,M为包括C2-16烃基的一改质部分,p为1至4的整数。
图1d显示本发明(A)类之化学式(1)的一个例子,其中M为丁基,p为1。
M最好为C2-16烷基,更优选为C4-12烷基。
以下叙述本发明(A)类生物分解性透明质酸衍生物的制备方法。使具有氢氧基(-OH)之一透明质酸与一C2-16烃基异氰酸酯(hydrocarbyl isocyanate)反应(此C2-16烃基异氰酸酯可由C2-16醇类和含有异氰酸基的化合物反应而得)。于是,C2-16烃基(短链部分)就会藉由urethane[-O(C=O)-NH-]键合而被导入在氢氧基上,而形成(A)类的生物分解性透明质酸衍生物。
透明质酸起始物并不需要是自然透明质酸,而可为透明质酸衍生物,也就是说,起始物可为其内的-COOH基或-NHCOCH3基被取代的一透明质酸,而且,只要仍有残余的-OH基可供作藉由urethane键合的短链部分的导入,透明质酸起始物上的-OH基也可以被部分取代。
例如,为了使反应可在有机溶剂中进行,透明质酸起始物可为一透明质酸盐类,能溶于有机溶剂中。例如,具有氢氧基的透明质酸(起始物)可为透明质酸的季铵盐,即自然透明质酸上的-COOH基被转变为-COONH4基。
具有氢氧基的透明质酸(起始物)的分子量可为2,000至3,500,000之间。
C2-16烃基异氰酸酯(改质化合物)最好为一C2-16烷基异氰酸酯,更优选为C4-12烷基异氰酸酯。具体例子包括异氰酸丁酯(butyl isocyanate),异氰酸仲丁酯(sec-butyl isocyanate),异氰酸辛酯(octyl isocyanate)和异氰酸十二烷基酯(异氰酸十二烷基酯dodecyl isocyanate)。
反应可在温度10℃至90℃有触媒存在下进行。适合触媒的具体例子为二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),二-n-丁基锡乙酸盐(di-n-butyltin diacetate),苯酚钠(sodium phenate),氯化铁(ferric chloride),乙酰丙酮铜(copper acetylacetonate),环烷酸锌(zinc naphthenate)或三丁基磷(tributylphosphine)。
(B)类:有生物分解性预聚物接枝的透明质酸衍生物
本发明(B)类的透明质酸衍生物包括以下化学式所示的经改质透明质酸重复单元
(HA)-[O(C=O)NH-M]p            (1)
其中HA为包括N-乙酰基-D-葡糖胺(N-acetyl-D-glucosamine)和D-葡糖醛酸(glucuronic acid)的单元,M为包括一预聚物的一改质部分,p为1至4的整数。
当M包括一预聚物的改质部分时,包括复数个化学式(1)重复单元的透明质酸衍生物可构成一梳子状或刷子状的接枝共聚物,如图1e所示。
依据本发明,接枝到透明质酸的-OH位置上的预聚物可为亲油性的(hydrophobic),亲水性的(hydrophilic)或两亲的(amphiphilic)。适用的预聚物最好是生物分解性的,可相同或不同。例如,生物分解性亲油性预聚物可为一生物分解性含聚酯的预聚物。生物分解性含聚酯的亲油性预聚物的适合例子包括PCL(polycaprolactone;聚己内酯),PLLA(poly L-lactide;聚-左旋-乳酸交酯),PLA(polylactic acid;聚乳酸),PGA(polyglycolic acid;聚羟基乙酸),PLGA共聚合物(poly-lactic-co-glycolic acid copolymer;聚-乳酸-共-羟基乙酸共聚物)和PCL-PLA共聚合物(polycaprolactone-polylactic acidcopolymer;聚己内酯-聚乳酸共聚物)。
生物分解性亲水预聚物具体包括聚乙烯吡咯酮(polyvinylpyrrolidone),聚乙二醇(polyethylene glycol)和聚乙烯醇(polyvinylalcohol)。生物分解性两亲预聚物具体包括PCL-PEG共聚物(polycaprolactone-polyethylene glycol copolymer;聚己内酯-聚乙二醇共聚物),PLA-PEG共聚物(polylactic acid-polyethyleneglycol copolymer;聚乳酸-聚乙二醇共聚物)和PGA-PEG共聚物(polyglycolicacid-polyethylene glycol copolymer;聚羟基乙酸-聚乙二醇共聚物)。
生物分解性预聚物的分子量可为500至200000Dalton,优选为500至50000Dalton。
本发明(B)类生物分解性透明质酸衍生物的制备方法如下所述。
提供具有氢氧基的一预聚物;然后,将具有氢氧基的预聚物与二异氰酸化合物(diisocyanate compound)反应,而藉由urethane键合(-O(C=O)-NH)形成具有异氰酸基(isocyanate;-N=C=O)的改质化合物;最后,将具有氢氧基(-OH)的一透明质酸与具有异氰酸酯基的改质化合物反应,而藉由urethane键合形成(B)类的生物分解性透明质酸衍生物。
接枝在透明质酸的-OH位置上的生物分解性预聚物可为相同或不同。可混合不同的预聚物,然后同时接枝在透明质酸上;或者,不同的预聚物可依序分次接枝在透明质酸上。
适用于本发明的二异氰酸(diisocyanate)可为脂肪型二异氰酸,例如六亚甲基二异氰酸酯(hexamethylene diisocyanate)或4,4-亚甲基-双(亚苯基异氰酸酯)[4,4-methylene-bis(phenylene isocyanate)]。
透明质酸起始物并不需要是自然透明质酸,而可为透明质酸衍生物。也就是说,起始物可为其内的-COOH基或-NHCOCH3基被取代的一透明质酸。而且,只要仍有残余-OH基可供作藉由urethane键合的预聚物的导入,透明质酸起始物上的-OH基也可以被部分取代。
例如,为了使反应可在有机溶剂中进行,透明质酸起始物可为透明质酸盐类,能溶于有机溶剂中。例如,具有氢氧基的透明质酸(起始物)可为透明质酸的季铵盐。即自然透明质酸上的-COOH基被转变为-COON(Bu)4基。
具有氢氧基的透明质酸(起始物)分子量可为2,000至3,500,000Dalton。
适用于本发明的预聚物可为生物分解性,且可为亲油性、亲水性或两亲的。具有氢氧基的生物分解性预聚物的分子量可为500至200000Dalton,优选为500至50000Dalton。
具有氢氧基的生物分解性亲油预聚物的具体例子包括PCL(polycaprolactone;聚己内酯),PLLA(poly L-lactide;聚-左旋-乳酸交酯),PLA(polylactic acid;聚乳酸),PGA(polyglycolic acid;聚羟基乙酸),PLGA共聚合物(poly-lactic-co-glycolic acid copolymer;聚-乳酸-共-羟基乙酸共聚物)和PCL-PLA共聚合物(polycaprolactone-polylactic acid copolymer;聚己内酯-聚乳酸共聚物)。具有氢氧基的生物分解性亲水预聚物的具体例子包括聚乙烯吡咯酮(polyvinylpyrrolidone),聚乙二醇(polyethylene glycol)和聚乙烯醇(polyvinylalcohol)。具有氢氧基的生物分解性两亲预聚物的具体例子包括PCL-PEG共聚物(polycaprolactone-polyethylene glycol copolymer;聚己内酯-聚乙二醇共聚物),PLA-PEG共聚物(polylactic acid-polyethylene glycolcopolymer;聚乳酸-聚乙二醇共聚物)和PGA-PEG共聚物(polyglycolic acid-polyethylene glycol copolymer;聚羟基乙酸-聚乙二醇共聚物)。
反应可在温度10℃至90℃有触媒存在下进行。适合触媒的具体例子为二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate)、二-n-丁基锡乙酸盐(di-n-butyltin diacetate)、苯酚钠(sodium phenate)、氯化铁(ferric chloride)、乙酰丙酮铜(copper acetylacetonate)、环烷酸锌(zinc naphthenate)或三丁基磷(tributylphosphine)。
生物分解性聚合微胶粒组合物:
透明质酸衍生物,不论是上述(A)类的有短链部分(C2-16烃基)取代的,或是上述(B)类的有生物分解性亲油预聚物接枝的,都可溶于一亲水性介质中。于是,透明质酸衍生物会形成微胶粒(micelles)。
例如,当生物分解性透明质酸衍生物为上述梳子状接枝共聚物,溶于一亲水性介质中,且浓度大于临界微胶粒浓度(critical micelle concentration)时,此梳子状接枝共聚物会自行组合(self assembled)成为微胶粒。图2显示微胶粒的示意图。透明质酸主链形成在外亲水层,而生物分解性亲油预聚物则形成在内亲油层,亲油层内则形成了一亲油核。
在此微胶粒组合物中,透明质酸衍生物可具有低的临界微胶粒浓度,范围为0.005重量%至1.0重量%,优选在0.005重量%至0.5重量%,更优选为0.005重量%至0.3重量%。透明质酸衍生物微胶粒的尺寸可为10nm至500nm,优选是50nm至400nm,更优选为50nm至300nm。
亲水性介质可为水或一水溶液。
药学或生理活性组合物:
如上所述的透明质酸衍生物,不论是上述(A)类的有短链部分(C2-16烃基)取代者,或是上述(B)类的有生物分解性亲油预聚物接枝的,当溶于一亲水性介质中,会形成微胶粒,并有一亲油核。因此,此种微胶粒可用来包覆药学活性或生理活性分子。
于是,本发明提供一种药学或生理活性组合物,其包括:
一亲水性介质;
一生物分解性透明质酸衍生物,其包括至少一种以下化学式所示的改质透明质酸重复单元
(HA)-[O(C=O)NH-M]p,其中HA为包括N-乙酰基-D-葡糖胺(N-acetyl-D-glucosamine)和D-葡糖醛酸(glucuronic acid)的单元,M为包括C2-16烃基或一生物分解性亲油性预聚物的改质部分,p为1至4的整数;
药学活性分子或生理活性分子,被包埋于生物分解性透明质酸衍生物所形成的微胶粒内。
优选生物分解性透明质酸衍生物是梳子状接枝共聚物,药学活性或生理活性分子是亲油性的,例如抗肿瘤药,抗排斥药,非鸦片麻醉止痛剂(opioidanalgesics)。
以下,本发明将举实施例以说明本发明的方法、特征及优点,但并非用以限定本发明的范围,本发明的范围应以后附的权利要求为准。
实施例A:有短链烷基取代的透明质酸
制备实施例1:透明质酸的季胺盐的制备
0.5克的透明质酸钠盐溶解于400毫升去离子水中,充分搅拌均匀溶解之后,利用DOWEX 50×8的离子交换树脂(H+ form,填充成25公分管柱),将透明质酸分子上的钠离子交换成氢离子,随后以四丁基氢氧化铵溶液(tetrabutylammonium hydroxide solution)(浓度为40%)滴定至中性。之后以冷冻干燥法干燥。产物为0.667克。
实施例A-1:透明质酸100%取代的丁基氨基甲酸乙酯(butyl urethane)衍生物(C4-HA)
将0.30克制备实施例1所得透明质酸(3×10-3meq,化学计量100%取代)季胺盐,溶于60毫升DMSO(dimethylsulfoxide)中,待溶解后,加入0.3克异氰酸丁酯(butyl isocyanate)(3×10-3meq),随后加入100μl的二-n-二月桂酸二丁锡(di-n-butyltin dilaurate)(触媒),反应温度为摄氏65度,8小时后,加入DBA(di-butyl amine)终止反应。之后利用透析膜(MWCO=12,000~14,000)在饱合食盐水中透析,除去杂质及将季胺盐交换成钠盐,冷冻干燥,得到C4-HA粉末。IR图谱如图3所示,1710cm-1处可见氨基甲酸乙酯(urethane)键合。
图8显示C4-HA的化学结构,其中氢位置以a,b,c,d标示。
C4-HA的1H NMR结构分析:
4.36~2.98(m,hyaluronic acid backbone),1.49~1.53(m,H-a),1.32~1.35(m,H-b),1.18~1.26(m,H-c),0.74~0.83(m,H-d).
图4a和4b为冷冻干燥的C4-HA(透明质酸100%取代的丁基氨基甲酸乙酯衍生物)的SEM照片。可发现透明质酸衍生物为多孔状,适合作为“细胞或组织的支架”(“scaffold for cell or tissue”)(生物分解性多孔基材)。
图5显示C4-HA的膨胀率(swelling ratio)和pH值的关系。
细胞毒性试验:
依ASTM F895规范,以L929细胞株测试C4-HA的细胞毒性反应指数,于6-well培养盘中进行细胞培养,约24小时后可生长成融合的单层细胞(confluent monolayer);将培养液吸出并以2ml琼脂培养基平覆于细胞上,使其固化;将C4-HA粉末平铺于培养盘正中央一公分直径的圆形区域范围内,在37℃二氧化碳培养箱中培养一天后,以中性红试剂(neutral red)染色法评估细胞毒性。细胞毒性反应指数(response index)=区域指数(zone index)/溶解指数(lysis index)。Zone index=0表示试样附近或试样之下没有可检测出的区域。实验结果显示C4-HA材料没有细胞毒性反应。
实施例A-2:透明质酸100%取代的仲丁基氨基甲酸乙酯衍生物
将0.30克由制备实施例1所得的透明质酸(3×10-3meq,化学计量100%取代)的季胺盐,溶于60毫升DMSO中,待溶解之后,加入0.3克的异氰酸仲丁酯(sec-butyl isocyanate)(3×10-3meq),随后加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度为摄氏65度,8小时之后,加入DBA终止反应,之后利用透析膜(MWCO=12,000~14,000)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。
实施例A-3:透明质酸100%取代的辛己氨基甲酸乙酯衍生物
将0.37克由制备实施例1所得的透明质酸(3.7×10-3meq)的季胺盐,溶于60毫升的DMSO中,待溶解之后,加入0.58克的异氰酸辛酯(octylisocyanate(3.7×10-3meq),随后加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度为摄氏65度,8小时之后,加入DBA终止反应,之后利用透析膜(MWCO=12,000~14,000)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。
实施例A-4:透明质酸50%取代的辛基氨基甲酸乙酯衍生物
将0.37克制备实施例1所得的透明质酸(3.7×10-3meq)的季胺盐,溶于60毫升DMSO中,待溶解之后,加入0.29克辛基异氰酸酯(1.85×10-3meq),随后加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度为摄氏65度,8小时之后,加入DBA终止反应,之后利用透析膜(MWCO=12,000~14,000)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。
实施例A-5:透明质酸10%取代的辛基氨基甲酸乙酯衍生物
将0.37克制备实施例1所得的透明质酸(3.7×10-3meq)的季胺盐,溶于60毫升DMSO中,待溶解之后,加入0.058克的辛基异氰酸酯(3.7×10-4meq),随后加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度为摄氏65度,8小时之后,加入DBA终止反应,之后利用透析膜(MWCO=12,000~14,000)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。
实施例A-6:透明质酸100%取代的十二烷基氨基甲酸乙酯(dodecylurethane)衍生物(C12-HA)
将0.35克制备实施例1所得的透明质酸(3.54×10-3meq)的季胺盐,溶于100毫升DMSO中,待溶解之后,加入0.75克的异氰酸十二烷基酯(异氰酸十二烷基酯dodecyl isocyanate)(3.54×10-3meq),随后加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度为摄氏65度,8小时之后,加入DBA终止反应。之后利用透析膜(MWCO=12,000~14,000)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。
图9显示C12-HA的化学结构,其中氢位置以a,b,c,d标示。
C12-HA的1H NMR结构分析:
δ=4.36~2.98(m,hyaluronic backbone),1.49~1.53(m,H-a),1.32~1.35(m,H-b),1.18~1.26(m,H-c),0.74~0.83(m,H-d).
实施例A-7:透明质酸50%取代的十二烷基氨基甲酸乙酯(dodecylurethane)衍生物
将0.35克制备实施例1所得的透明质酸(3.54×10-3meq)的季胺盐,溶于100毫升DMSO中,待溶解之后,加入0.375克异氰酸十二烷基酯dodecylisocyanate(1.77×10-3meq),随后加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度为摄氏65度,8小时之后,加入DBA终止反应。之后利用透析膜(MWCO=12,000~14,000)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。
实施例A-8:透明质酸10%取代的十二烷基氨基甲酸乙酯(dodecylurethane)衍生物
将0.35克制备实施例1所得的透明质酸(3.54×10-3meq)的季胺盐,溶于100毫升的DMSO中,待溶解之后,加入0.075克的异氰酸十二烷基酯dodecyl isocyanate(3.54×10-4meq),随后加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度为摄氏65度,8小时之后,加入DBA终止反应。之后利用透析膜(MWCO=12,000~14,000)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。
B系列实施例
有预聚物接枝的透明质酸
制备实施例2:单官能基PCL(polycaprolactone;聚己内酯)的合成
将200g(1.75mole)己内酯(caprolactone)单体置于反应瓶内,加入32.65g(0.175mole)1-十二烷醇(1-dodecanol)作为起始剂及0.71g(1.75×10-3mole)辛酸亚锡(stannous octanoate)做为触媒,反应温度设为120℃,反应时间2hrs。反应后加入氯仿(chloroform)溶解再倒入乙醚中再沉淀。合成路径如图6所示,图中所示的重复数目例如是2,凝胶渗透层析(GPC;gel permeationchromatography)分析显示,Mn为2352,Mw为3012,PDI(Mw/Mn)=1.28。
图10显示单官能基PCL的化学结构,其中氢位置以a,b,c,d,e,f,g,h,h’标示。
PCL的NMR结构分析:
δ0.76(t,J=7.0HZ,H-a),1.16(S,H-b),3.96(t,J=6.8HZ,H-c),2.20(t,J=7.4HZ,H-d),1.56(m,H-e,g),1.30(m,H-f),3.96(t,J=6.8HZ,H-h),3.53(t,J=7.0Hz,H-h’).
制备实施例3:单官能基PLLA(poly L-lactide;聚-左旋-丙交酯)的合成
将200g(1.39mole)丙交酯单体置于反应瓶内,加入25.82g(0.139mole)1-dodecanol作为起始剂及0.562g(1.39×10-3mole)stannous octanoate做为触媒,反应温度设为120℃,反应时间2hrs。反应后加入氯仿溶解再倒入乙醚中再沉淀。GPC分析结果显示,Mn为2189,Mw为2797,PDI(Mw/Mn)值为1.28。
图11为单官能基PLLA的化学结构,其中氢位置以a,b,c,d,e,f,g标示。
NMR分析:
PLLA:δ0.76(t,J=7.0HZ,H-a),1.14(S,H-b),1.38(m,H-c),4.01(m,H-d),5.06(m,H-e),1.47(d,J=7.2HZ,H-f),4.24(m,H-g).
实施例B-1:有PCL预聚物接枝的透明质酸共聚物(HA220,000-g-100%-PCL2,300)的合成
以透明质酸的伯醇与PCL当量比1∶1的化学计量,将5.75克(2.5×10-3mole)制备实施例2所得的单官能基PCL(M-PCL-OH)(Mw=2300)溶于50毫升的NMP中,溶解后加入0.42克六亚甲基二异氰酸酯(六亚甲基二异氰酸酯(hexamethylene diisocyanate;H12MDI);H12MDI)(2.5×10-3mole),随后加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度60℃,反应时间5小时。5小时之后,再将1克(2.5×10-3mole)分子量为22万的透明质酸季胺盐溶于150毫升的DMSO中,加入先前溶液中,随后再加入100μl的二-n-丁基锡二月桂酸盐,反应温度为摄氏60℃。12小时之后,加入DBA终止反应,得到HA220,000-g-100%-PCL2,300共聚合物。之后利用透析膜(MWCO=3500)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。合成路径如图6所示。
图12显示HA-接枝-PCL的化学结构,其中氢位置以a,b,c,d,e,f,g,h,i,k标示。
NMR数据:
δ4.58(m,H-1),4.49(m,H-1’),4.07(m,H-2),3.21(m,H-2’),3.94(m,H-3),3.60(m,H-3’),3.52(m,H-4),3.60(m,H-4’),3.36(m,H-5),3.52(m,H-5’),4.16(m,H-6a),3.92(m,H-6b),2.28(m,H-f),3.90(m,H-b),1.60(m,H-c,e),1.45(m,H-d),3.89(m,H-g),1.40(m,H-h),0.86(m,H-i),2.03(s,H-k).
临界微胶粒浓度(CMC)的测量:
将HA220,000-g-100%-PCL2,300共聚合物溶于4μM的二苯基己三烯(diphenylhexatriene;DPH)溶液中,浓度分别为0.001%、0.005%、0.01%、0.025%、0.05%、0.1%、0.5%、1%。利用UV-VIS光谱仪于波长356nm测量其吸收值,由吸收值对浓度作图得图7,求内差可得临界微胶粒浓度(CMC)为0.22重量%。
实施例B-2:有PCL预聚物接枝的透明质酸共聚物(HA220,000-g-10%-PCL2,300-)共聚合物
以透明质酸的伯醇与PCL当量比1∶0.1的化学计量,将0.58克(2.5×10-4mole)单官能基PCL(Mw=2300)溶于50毫升NMP中,溶解后加入0.042克六亚甲基二异氰酸酯(hexamethylene diisocyanate;H12MDI)(2.5×10-4mole),随后加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度60℃,反应时间5小时。5小时之后,再将1克(2.5×10-3mole)分子量为22万的透明质酸季胺盐溶于150毫升DMSO中,加入先前溶液中,随后再加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度为60℃,12小时之后,加入DBA终止反应,得到HA220,000-g-10%-PCL2,300共聚合物。之后利用透析膜(MWCO=3500)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。
HA-PCL的NMR结构分析:
δ4.58(m,H-1),4.49(m,H-1’),4.07(m,H-2),3.21(m,H-2’),3.94(m,H-3),3.60(m,H-3’),3.52(m,H-4),3.60(m,H-4’),3.36(m,H-5),3.52(m,H-5’),4.16(m,H-6a),3.92(m,H-6b),2.28(m,H-f),3.90(m,H-b),1.60(m,H-c,e),1.45(m,H-d),3.89(m,H-g),1.40(m,H-h),0.86(m,H-i),2.03(s,H-k).
细胞毒性测试:
以L929细胞株测试HA-PCL copolymer(10%接枝率)及其形成微胶粒(micelle)后的细胞毒性反应。将L929细胞株以1×105的细胞密度种在24-well细胞培养盘中,置于37℃、5%CO2浓度的培养箱中进行细胞培养,约24小时后可生长成融合的单层细胞(confluent monolayer)。
以UV灭菌的HA-PCL copolymer(10%接枝率)粉末溶于培养液中,依序置备成10-2、10-3、10-4、10-5g/ml等浓度的溶液。
将培养盘中的培养液全数吸出,加入含不同浓度HA-PCL(10%接枝率)的培养液2ml,再置于二氧化碳培养箱中培养,24小时后,细胞的存活率以MTT颜色分析法比较细胞毒性,结果显示,HA-PCL共聚物微胶粒在不同浓度下都没有细胞毒性反应。
临界微胶粒浓度(CMC)的测量:
将HA220,000-g-10%-PCL2,300共聚合物溶于4μM的二苯基己三烯(diphenyl hexatriene,DPH)溶液中,浓度分别为0.001%、0.005%、0.01%、0.025%、0.05%、0.1%、0.5%、1%,利用UV-VIS光谱仪于波长356nm测量其吸收值,由吸收值对浓度作图,求其内差,可得临界微胶粒浓度(CMC)为0.0851重量%。
实施例B-3:有PCL预聚物接枝的透明质酸共聚物(HA50,000-g-20%-PCL10,000共聚合物)的合成
以透明质酸的伯醇与PCL当量比1∶0.2的化学计量,将1克(1×10-4mole)单官能基PCL(Mw=10000)溶于100毫升NMP中,溶解后加入0.017克六亚甲基二异氰酸酯(hexamethylene diisocyanate;H12MDI)(1×10-4mole),随后加入100μl二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度60℃,反应时间5小时。5小时之后,再将0.2克(2.5×10-3mole)分子量为5万的透明质酸己胺盐溶于100毫升DMSO中,加入先前溶液中,随后再加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度为60℃,12小时之后,加入DBA终止反应而得到HA50,000-g-20%-PCL10,000,之后利用透析膜(MWCO=3500)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。
HA-PCL的NMR数据:
δ4.58(m,H-1),4.49(m,H-1’),4.07(m,H-2),3.21(m,H-2’),3.94(m,H-3),3.60(m,H-3’),3.52(m,H-4),3.60(m,H-4’),3.36(m,H-5),3.52(m,H-5’),4.16(m,H-6a),3.92(m,H-6b),2.28(m,H-f),3.90(m,H-b),1.60(m,H-c,e),1.45(m,H-d),3.89(m,H-g),1.40(m,H-h),0.86(m,H-i),2.03(s,H-k).
实施例B-4:有PCL预聚物接枝的透明质酸共聚物(HA50,000-g-100%-PCL2,300共聚合物)的合成
以透明质酸的伯醇与PCL当量比1∶1的化学计量,将1.15克(5×10-4mole)单官能基PCL(Mw=2300)溶于50毫升NMP中,溶解后加入0.084克六亚甲基二异氰酸酯(hexamethylene diisocyanate;H12MDI)(5×10-4mole),随后加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度60℃,反应时间5小时。5小时之后,再将0.2克(5×10-4mole)分子量为5万的透明质酸季胺盐溶于100毫升DMSO,加入先前溶液中,随后再加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度为60℃,12小时之后,加入DBA终止反应而得到HA50,000-g-100%-PCL2,300,之后利用透析膜(MWCO=3500)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。
临界微胶粒浓度(CMC)的测量:
 将HA50,000-g-100%-PCL2,300溶于4μM的二苯基己三烯(diphenyl hexatriene,DPH)溶液中,浓度分别为0.001%、0.005%、0.01%、0.025%、0.05%、0.1%、0.5%、1%,利用UV-VIS光谱仪于波长356nm测量其吸收值,由吸收值对浓度作图,求其内差,可得临界微胶粒浓度(CMC)为0.0794重量%。
实施例B-5:有PLLA预聚物接枝的透明质酸共聚物(HA220,000-g-100%-PLLA2,300)的合成
以透明质酸的伯醇与PLLA当量比1∶1的化学计量,将5.75克(2.5×10-3mole)单官能基PLLA(Mw=2300)溶于50毫升NMP中,溶解后加入0.42克六亚甲基二异氰酸酯(hexamethylene diisocyanate;H12MDI)(2.5×10-3mole),随后加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度60℃,反应时间5小时。5小时之后,再将1克(2.5×10-3mole)分子量为22万的透明质酸季胺盐溶于150毫升DMSO中,加入先前溶液中,随后再加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度60℃,12小时之后,加入DBA终止反应,而得到HA220,000-g-100%-PLLA2,300共聚合物,之后利用透析膜(MWCO=3500)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。
图13显示HA-接枝-PLLA的化学结构,其中氢位置以a,b,c,d,e,f,g标示。
HA-PLLA的NMR结构分析:
δ4.59(m,H-1),4.50(m,H-1’),4.07(m,H-2),3.22(m,H-2’),3.94(m,H-3),3.60(m,H-3’),3.52(m,H-4),3.60(m,H-4’),3.37(m,H-5),3.52(m,H-5’),4.16(m,H-6a),3.92(m,H-6b),1.65(m,H-a),5.02(m,H-b),1.47(d,J=7.2HZ,H-c),4.01(m,H-d),1.15(S,H-e),0.76(t,J=7.0HZ,H-f),2.13(s,H-g).
实施例B-6:有PCL预聚物接枝的透明质酸共聚物(HA20,000-g-100%-PCL2,300)的合成
以透明质酸的伯醇与PCL当量比1∶1的化学计量,将1.15克(5×10-4mole)单官能基PCL(Mw=2300)溶于50毫升NMP中,溶解后加入0.084克六亚甲基二异氰酸酯(hexamethylene diisocyanate;H12MDI)(5×10-4mole),随后加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度60℃,反应时间5小时,之后,再将0.2克(5×10-4mole)分子量为2万的透明质酸季胺盐溶于100毫升DMSO中,加入先前溶液中,随后再加入100μl的二-n-丁基锡二月桂酸盐,反应温度为60℃,12小时之后,加入DBA终止反应,而得到HA20,000-g-100%-PCL2,300共聚合物,之后利用透析膜(MWCO=3500)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。
临界微胶粒浓度(CMC)的测量:
将HA20,000-g-100%-PCL2,300溶于4μM二苯基己三烯(diphenylhexatriene,DPH)溶液中,浓度分别为0.001%、0.005%、0.01%、0.025%、0.05%、0.1%、0.5%、1%,利用UV-VIS光谱仪于波长356nm测量其吸收值,由吸收值对浓度作图,求其内差,可得临界微胶粒浓度(CMC)为0.432重量%。
实施例B-7:有PCL预聚物接枝的透明质酸共聚物(HA20,000-g-50%-PCL2,300)的合成
以透明质酸的伯醇与PCL当量比1∶0.5的化学计量,将0.58克(2.5×10-4mole)单官能基PCL(Mw=2300)溶于50毫升NMP中,溶解后加入0.042克六亚甲基二异氰酸酯(hexamethylene diisocyanate;H12MDI)(2.5×10-4mole),随后加入100μl二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度60℃,反应时间5小时,5小时之后,再将0.2克(5×10-4mole)分子量为5万的透明质酸季胺盐溶于100毫升DMSO,加入先前溶液中,随后再加入100μl的二-n-丁基锡二月桂酸盐(di-n-butyltin dilaurate),反应温度为60℃,12小时之后,加入DBA终止反应,而得到HA20,000-g-50%-PCL2,300共聚合物,之后利用透析膜(MWCO=3500)在饱合食盐水中透析,除去杂质以及将季胺盐交换成钠盐,冷冻干燥。
临界微胶粒浓度(CMC)的测量:
将HA20,000-g-50%-PCL2,300共聚合物溶于4μM的二苯基己三烯(diphenylhexatriene,DPH)溶液中,浓度分别为0.001%、0.005%、0.01%、0.025%、0.05%、0.1%、0.5%、1%。用UV-VIS光谱仪于波长356nm测量其吸收值,由吸收值对浓度作图,求其内差,可得临界微胶粒浓度为0.255重量%。
综上所述,本发明藉由氨基甲酸乙酯(urethane)键合而将短链部分或预聚物导入在-OH基上而改质自然透明质酸。本发明的透明质酸衍生物没有细胞毒性反应。另外,将有生物分解性亲油性预聚物接枝的透明质酸衍生物溶在亲水性介质中,可形成微胶粒,且临界微胶粒浓度低。因此,可将药学活性或生理活性分子包覆在透明质酸衍生物微胶粒内,以形成药学活性或生理活性组成物,有稳定释放的效果。
以上描述了本发明的优选实施例,然其并非用以限定本发明。本领域技术人员对在此公开的实施方案可进行并不偏离本发明范畴和精神的改进和变化。

Claims (32)

1.一种生物分解性透明质酸衍生物,其包括至少一种以下化学式所示的改质透明质酸重复单元:
(HA)-[O(C=O)NH-M]p
其中HA为包括N-乙酰基-D-葡糖胺和D-葡糖醛酸的单元,M为包括C2-16烃基或一预聚物的一改质部分,p为1至4的整数。
2.如权利要求1所述的生物分解性透明质酸衍生物,其还包括一自然透明质酸重复单元,该单元包括N-乙酰基-D-葡糖胺和D-葡糖醛酸。
3.如权利要求1所述的生物分解性透明质酸衍生物,其中M包括C2-16烃基。
4.如权利要求3所述的生物分解性透明质酸衍生物,其中M为C2-16烷基。
5.如权利要求4所述的生物分解性透明质酸衍生物,其中M为C4-12烷基。
6.如权利要求5所述的生物分解性透明质酸衍生物,其中M为丁基、仲丁基、辛基或十二烷基。
7.如权利要求1所述的生物分解性透明质酸衍生物,其中M包括一生物分解性预聚物。
8.如权利要求7所述的生物分解性透明质酸衍生物,其为梳子状或刷子状接枝共聚物。
9.如权利要求7所述的生物分解性透明质酸衍生物,其中该生物分解性预聚物为相同或不同。
10.如权利要求9所述的生物分解性透明质酸衍生物,其中该生物分解性预聚物为生物分解性含聚酯的预聚物。
11.如权利要求10所述的生物分解性透明质酸衍生物,其中该生物分解性预聚物为亲油性的。
12.如权利要求11所述的生物分解性透明质酸衍生物,其中该生物分解性预聚物为聚己酸内酯、聚-左旋-丙交酯、聚乳酸、聚羟基乙酸、聚-乳酸-共-羟基乙酸共聚物或聚己内酯-聚乳酸共聚物。
13.如权利要求9所述的生物分解性透明质酸衍生物,其中生物分解性预聚物为亲水性。
14.如权利要求13所述的生物分解性透明质酸衍生物,其中该生物分解性预聚物为聚乙烯吡咯酮、聚乙二醇或聚乙烯醇。
15.如权利要求9所述的生物分解性透明质酸衍生物,其中该生物分解性预聚物为两亲性的。
16.如权利要求15所述的生物分解性透明质酸衍生物,其中该生物分解性预聚物为聚己内酯-聚乙二醇共聚物、聚乳酸-聚乙二醇共聚物或聚羟基乙酸-聚乙二醇共聚物。
17.如权利要求7所述的生物分解性透明质酸衍生物,其中该生物分解性预聚物的分子量为500至200000Dalton。
18.一种生物分解性聚合微胶粒组合物,其包括:
一亲水性介质;
一生物分解性透明质酸衍生物,其包括至少一种以下化学式的改质透明质酸重复单元;
(HA)-[O(C=O)NH-M]p
其中HA为包括N-乙酰基-D-葡糖胺和D-葡糖醛酸的单元,M为包括C2-16烃基或一生物分解性亲油性预聚物的一改质部分,p为1至4的整数;
其中该生物分解性透明质酸衍生物形成微胶粒。
19.如权利要求18所述的生物分解性聚合微胶粒组合物,其中该生物分解性透明质酸衍生物的浓度大于临界微胶粒浓度。
20.如权利要求19所述的生物分解性聚合微胶粒组合物,其中该生物分解性透明质酸衍生物的浓度为0.005重量%至0.5重量%之间。
21.如权利要求20所述的生物分解性聚合微胶粒组合物,其中该生物分解性透明质酸衍生物的浓度为0.005重量%至0.3重量%之间。
22.如权利要求18所述的生物分解性聚合微胶粒组合物,其中该生物分解性透明质酸衍生物为梳子状接枝共聚物。
23.如权利要求18所述的生物分解性聚合微胶粒组合物,其中该生物分解性预聚物为相同或不同,且为聚己内酯、聚-左旋-乳酸交酯、聚乳酸、聚羟基乙酸、聚-乳酸-共-羟基乙酸共聚物或聚己内酯-聚乳酸共聚物。
24.如权利要求18所述的生物分解性聚合微胶粒组合物,其中生物分解性预聚物的分子量为500至200000Dalton之间。
25.如权利要求18所述的生物分解性聚合微胶粒组合物,其中该亲水性介质为水或水溶液。
26.一种药学或生理活性组合物,其包括:
一亲水性介质;
一生物分解性透明质酸衍生物,其包括至少一种以下化学式所示的改质透明质酸重复单元;
(HA)-[O(C=O)NH-M]p,其中HA为包括N-乙酰基-D-葡糖胺和D-葡糖醛酸的单元,M为包括C2-16烃基或一生物分解性亲油性预聚物的一改质部分,p为1至4的整数;
一药学活性分子或生理活性分子,被包埋于该生物分解性透明质酸衍生物所形成的微胶粒内。
27.如权利要求26所述的药学或生理活性组合物,其中M包括一生物分解性亲油性预聚物。
28.如权利要求27所述的药学或生理活性组合物,其中该生物分解性亲油性预聚物为相同或不同,且为聚己内酯、聚-左旋-乳酸交酯、聚乳酸、聚羟基乙酸、聚-乳酸-共-羟基乙酸共聚物或聚己内酯-聚乳酸共聚物。
29.如权利要求26所述的药学或生理活性组合物,其中该亲水性介质为水或水溶液。
30.如权利要求26所述的药学或生理活性组合物,其中该生物分解性透明质酸衍生物的浓度为0.005重量%至0.5重量%之间。
31.如权利要求30所述的药学或生理活性组合物,其中该生物分解性透明质酸衍生物的浓度为0.005重量%至0.3重量%之间。
32.如权利要求26所述的药学或生理活性组合物,其中该药学活性或生物活性分子为亲油性的。
CNB2004100042354A 2003-12-04 2004-02-12 生物分解性透明质酸衍生物及其聚合微胶粒组合物和药学组合物 Expired - Fee Related CN1284801C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0328168A GB2408741B (en) 2003-12-04 2003-12-04 Hyaluronic acid derivative with urethane linkage
GB0328168.0 2003-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100846468A Division CN100420486C (zh) 2003-12-04 2004-02-12 生物分解性聚合微胶粒组合物和药学组合物

Publications (2)

Publication Number Publication Date
CN1624002A true CN1624002A (zh) 2005-06-08
CN1284801C CN1284801C (zh) 2006-11-15

Family

ID=29764606

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2006100846468A Expired - Fee Related CN100420486C (zh) 2003-12-04 2004-02-12 生物分解性聚合微胶粒组合物和药学组合物
CNB2004100042354A Expired - Fee Related CN1284801C (zh) 2003-12-04 2004-02-12 生物分解性透明质酸衍生物及其聚合微胶粒组合物和药学组合物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2006100846468A Expired - Fee Related CN100420486C (zh) 2003-12-04 2004-02-12 生物分解性聚合微胶粒组合物和药学组合物

Country Status (8)

Country Link
US (1) US7780982B2 (zh)
EP (1) EP1538166B8 (zh)
CN (2) CN100420486C (zh)
AT (1) ATE423143T1 (zh)
DE (1) DE602004019488D1 (zh)
DK (1) DK1538166T3 (zh)
GB (1) GB2408741B (zh)
TW (1) TWI246516B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104144962A (zh) * 2011-10-06 2014-11-12 Bvw控股公司 减少蛋白吸附的疏水性和亲水性链段的共聚物
CN107029235A (zh) * 2017-03-31 2017-08-11 武汉理工大学 多功能协同主动靶向给药系统及其制备和应用
CN107459590A (zh) * 2017-09-26 2017-12-12 华熙福瑞达生物医药有限公司 一种透明质酸季铵盐的制备方法
CN109337082A (zh) * 2018-09-27 2019-02-15 福建拓烯新材料科技有限公司 一种玻尿酸-聚乳酸改性材料的制备方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059321A1 (en) 2001-12-21 2003-07-24 Soane David S Use of oligomers and polymers for drug solublization, stabilization, and delivery
ITPD20040312A1 (it) * 2004-12-15 2005-03-15 Fidia Advanced Biopolymers Srl Protesi e o supporto per la sostituzione, riparazione, rigenerazione del menisco
EP1853278A4 (en) * 2005-02-18 2011-12-28 Cartilix Inc GLUCOSAMINMATERIALIEN
US7713637B2 (en) * 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
CN101284883B (zh) * 2008-05-14 2011-02-16 西北大学 聚乳酸-壳聚糖接枝共聚物的制备方法
ITRM20080636A1 (it) * 2008-11-28 2010-05-29 Univ Palermo Procedimento per la produzione di derivati funzionalizzati dell acido ialuronico e relativi idrogeli.
EP2213315A1 (en) * 2009-01-30 2010-08-04 Mero S.r.L. Antibacterial hydrogel and use thereof in orthopedics
US20100203150A1 (en) * 2009-02-06 2010-08-12 National Tsing Hua University Novel amphiphilic copolymers and fabrication method thereof
CZ302503B6 (cs) 2009-12-11 2011-06-22 Contipro C A.S. Zpusob prípravy derivátu kyseliny hyaluronové oxidovaného v poloze 6 glukosaminové cásti polysacharidu selektivne na aldehyd a zpusob jeho modifikace
CZ302504B6 (cs) 2009-12-11 2011-06-22 Contipro C A.S. Derivát kyseliny hyaluronové oxidovaný v poloze 6 glukosaminové cásti polysacharidu selektivne na aldehyd, zpusob jeho prípravy a zpusob jeho modifikace
US8895069B2 (en) * 2011-05-16 2014-11-25 Postech Academy-Industry Foundation Drug delivery system using hyaluronic acid-peptide conjugate micelle
CN103298838B (zh) * 2011-12-29 2015-08-19 财团法人工业技术研究院 pH敏感的透明质酸衍生物和其应用
CZ303879B6 (cs) 2012-02-28 2013-06-05 Contipro Biotech S.R.O. Deriváty na bázi kyseliny hyaluronové schopné tvorit hydrogely, zpusob jejich prípravy, hydrogely na bázi techto derivátu, zpusob jejich prípravy a pouzití
CZ304512B6 (cs) 2012-08-08 2014-06-11 Contipro Biotech S.R.O. Derivát kyseliny hyaluronové, způsob jeho přípravy, způsob jeho modifikace a použití
CZ304654B6 (cs) 2012-11-27 2014-08-20 Contipro Biotech S.R.O. Nanomicelární kompozice na bázi C6-C18-acylovaného hyaluronanu, způsob přípravy C6-C18-acylovaného hyaluronanu, způsob přípravy nanomicelární kompozice a stabilizované nanomicelární kompozice a použití
CZ305153B6 (cs) 2014-03-11 2015-05-20 Contipro Biotech S.R.O. Konjugáty oligomeru kyseliny hyaluronové nebo její soli, způsob jejich přípravy a použití
CZ2014451A3 (cs) 2014-06-30 2016-01-13 Contipro Pharma A.S. Protinádorová kompozice na bázi kyseliny hyaluronové a anorganických nanočástic, způsob její přípravy a použití
CZ309295B6 (cs) 2015-03-09 2022-08-10 Contipro A.S. Samonosný, biodegradabilní film na bázi hydrofobizované kyseliny hyaluronové, způsob jeho přípravy a použití
CZ306479B6 (cs) 2015-06-15 2017-02-08 Contipro A.S. Způsob síťování polysacharidů s využitím fotolabilních chránicích skupin
CZ306662B6 (cs) 2015-06-26 2017-04-26 Contipro A.S. Deriváty sulfatovaných polysacharidů, způsob jejich přípravy, způsob jejich modifikace a použití
CZ308106B6 (cs) 2016-06-27 2020-01-08 Contipro A.S. Nenasycené deriváty polysacharidů, způsob jejich přípravy a jejich použití
CN112159527B (zh) * 2020-10-29 2023-06-06 绍兴文理学院 一种含有透明质酸基团的聚甘油脂肪酸酯ha-pg及其合成方法和其在制备药物制剂中的应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166331A (en) 1983-10-10 1992-11-24 Fidia, S.P.A. Hyaluronics acid fractions, methods for the preparation thereof, and pharmaceutical compositions containing same
CA1238043A (en) * 1983-12-15 1988-06-14 Endre A. Balazs Water insoluble preparations of hyaluronic acid and processes therefor
US5202431A (en) 1985-07-08 1993-04-13 Fidia, S.P.A. Partial esters of hyaluronic acid
US4851521A (en) 1985-07-08 1989-07-25 Fidia, S.P.A. Esters of hyaluronic acid
IT1198449B (it) 1986-10-13 1988-12-21 F I D I Farmaceutici Italiani Esteri di alcoli polivalenti di acido ialuronico
IT1219942B (it) 1988-05-13 1990-05-24 Fidia Farmaceutici Esteri polisaccaridici
US5510418A (en) * 1988-11-21 1996-04-23 Collagen Corporation Glycosaminoglycan-synthetic polymer conjugates
EP0610441A4 (en) * 1991-10-29 1996-01-10 Clover Cons Ltd CROSSLINKABLE POLYSACCHARIDES, POLYCATIONS AND LIPIDS CAN BE USED TO ENCODE AND DISPENSE MEDICINAL PRODUCTS.
JP2855307B2 (ja) 1992-02-05 1999-02-10 生化学工業株式会社 光反応性グリコサミノグリカン、架橋グリコサミノグリカン及びそれらの製造方法
IT1268955B1 (it) 1994-03-11 1997-03-18 Fidia Advanced Biopolymers Srl Esteri attivi di polisaccaridi carbossilici
KR0180334B1 (ko) * 1995-09-21 1999-03-20 김윤 블럭 공중합체 미셀을 이용한 약물전달체 및 이에 약물을 봉입하는 방법
SK282967B6 (sk) * 1997-04-10 2003-01-09 Du�An Bako� Hybridný resorbovateľný biokompatibilný materiál a spôsob jeho prípravy
ITPD980037A1 (it) * 1998-02-25 1999-08-25 Fidia Advanced Biopolymers Srl Acido ialuronico solfatato e i suoi derivati legati covalentemente a polimeri sintetici pe la preparazione di biomateriali e per il rivesti
JP3380899B2 (ja) * 2000-06-06 2003-02-24 独立行政法人産業技術総合研究所 ヒアルロン酸架橋化物
ITTS20010013A1 (it) * 2001-06-04 2002-12-04 Ct Ricerche Poly Tec H A R L S Nuovi derivati di ialuronano.
US7807722B2 (en) * 2003-11-26 2010-10-05 Advanced Cardiovascular Systems, Inc. Biobeneficial coating compositions and methods of making and using thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104144962A (zh) * 2011-10-06 2014-11-12 Bvw控股公司 减少蛋白吸附的疏水性和亲水性链段的共聚物
CN104144962B (zh) * 2011-10-06 2017-03-08 Bvw控股公司 减少蛋白吸附的疏水性和亲水性链段的共聚物
CN107029235A (zh) * 2017-03-31 2017-08-11 武汉理工大学 多功能协同主动靶向给药系统及其制备和应用
CN107459590A (zh) * 2017-09-26 2017-12-12 华熙福瑞达生物医药有限公司 一种透明质酸季铵盐的制备方法
CN107459590B (zh) * 2017-09-26 2021-03-23 华熙生物科技股份有限公司 一种透明质酸季铵盐的制备方法
CN109337082A (zh) * 2018-09-27 2019-02-15 福建拓烯新材料科技有限公司 一种玻尿酸-聚乳酸改性材料的制备方法
CN109337082B (zh) * 2018-09-27 2021-05-25 福建拓烯新材料科技有限公司 一种玻尿酸-聚乳酸改性材料的制备方法

Also Published As

Publication number Publication date
GB0328168D0 (en) 2004-01-07
CN1284801C (zh) 2006-11-15
TWI246516B (en) 2006-01-01
CN100420486C (zh) 2008-09-24
US20050123505A1 (en) 2005-06-09
CN1876185A (zh) 2006-12-13
EP1538166B1 (en) 2009-02-18
GB2408741B (en) 2008-06-18
US7780982B2 (en) 2010-08-24
TW200519129A (en) 2005-06-16
EP1538166B8 (en) 2009-04-08
GB2408741A (en) 2005-06-08
EP1538166A1 (en) 2005-06-08
DE602004019488D1 (de) 2009-04-02
DK1538166T3 (da) 2009-05-11
ATE423143T1 (de) 2009-03-15

Similar Documents

Publication Publication Date Title
CN1284801C (zh) 生物分解性透明质酸衍生物及其聚合微胶粒组合物和药学组合物
Spicer Hydrogel scaffolds for tissue engineering: the importance of polymer choice
Ricapito et al. Synthetic biomaterials from metabolically derived synthons
EP2794701B1 (en) A peptide-hydrogel composite
US10285949B2 (en) Modified alginates for cell encapsulation and cell therapy
Kim et al. Synthesis and evaluation of novel biodegradable hydrogels based on poly (ethylene glycol) and sebacic acid as tissue engineering scaffolds
Chen et al. Poly (sebacoyl diglyceride) cross-linked by dynamic hydrogen bonds: a self-healing and functionalizable thermoplastic bioelastomer
CN100339477C (zh) 用于组织修复的方法和器件
US20210322557A1 (en) Hydrolytically degradable polysaccharide hydrogels
CN1968715A (zh) 聚合偶合剂和由其制备的具有药学活性的聚合物
Adali et al. The chondrocyte cell proliferation of a chitosan/silk fibroin/egg shell membrane hydrogels
CN1646171A (zh) 新型生物材料、其制备和用途
Xie et al. Hydrogels for exosome delivery in biomedical applications
JP2016506422A (ja) ヒアルロン酸の光反応性誘導体,その調製方法,ヒアルロン酸の3d架橋誘導体,その調製方法及び使用
Yan et al. Cellulose/microalgae composite films prepared in ionic liquids
Liu et al. Injectable catalyst-free poly (propylene fumarate) system cross-linked by strain promoted alkyne–azide cycloaddition click chemistry for spine defect filling
Liu et al. A2B-miktoarm glycopolymer fibers and their interactions with tenocytes
Ma et al. Biomacromolecule-based agent for high-precision light-based 3D hydrogel bioprinting
Wang et al. 3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway
Gordon et al. Polyesters based on aspartic acid and poly (ethylene glycol): Functional polymers for hydrogel preparation
Kim et al. Structure–property relationships of 3D-printable chain-extended block copolymers with tunable elasticity and biodegradability
Fakhri et al. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation
Elomaa et al. Rise of tissue-and species-specific 3D bioprinting based on decellularized extracellular matrix-derived bioinks and bioresins
Li et al. Effect of Polymer Topology and Residue Chirality on Biodegradability of Polypeptide Hydrogels
Liu et al. Self-healing alginate hydrogel formed by dynamic benzoxaborolate chemistry protects retinal pigment epithelium cells against oxidative damage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061115

Termination date: 20200212

CF01 Termination of patent right due to non-payment of annual fee