CN1610974A - 具有电压维持区域并从相反掺杂的多晶硅区域扩散的高电压功率mosfet - Google Patents

具有电压维持区域并从相反掺杂的多晶硅区域扩散的高电压功率mosfet Download PDF

Info

Publication number
CN1610974A
CN1610974A CNA028265424A CN02826542A CN1610974A CN 1610974 A CN1610974 A CN 1610974A CN A028265424 A CNA028265424 A CN A028265424A CN 02826542 A CN02826542 A CN 02826542A CN 1610974 A CN1610974 A CN 1610974A
Authority
CN
China
Prior art keywords
dopant
groove
conduction type
epitaxial loayer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028265424A
Other languages
English (en)
Other versions
CN100355086C (zh
Inventor
理查德·A·布兰查德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Semiconductor Inc
Original Assignee
General Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Semiconductor Inc filed Critical General Semiconductor Inc
Publication of CN1610974A publication Critical patent/CN1610974A/zh
Application granted granted Critical
Publication of CN100355086C publication Critical patent/CN100355086C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2257Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

提供了一种用于形成功率半导体器件的方法,本方法首先提供第一(2)或第二导电(1)类型的衬底,之后在衬底(1)上形成电压维持区域。通过在衬底(1)上淀积第一导电类型的外延层并且在外延层中形成至少一个沟槽(520)来形成电压维持区域。在沟槽(520)中淀积具有第二导电类型的第二掺杂剂的第一多晶硅层(512)。扩散第二掺杂剂来形成相邻于沟槽(520)的掺杂的外延区域,并处在外延层中。接下来在沟槽(520)中淀积具有第一导电类型的第一掺杂剂的第二多晶硅层(512)。分别位于第二和第一多晶硅层(512)中的第一和第二掺杂剂彼此相互扩散来实现第一和第二多晶硅层(512)中的电气补偿。最后,在电压维持区域上形成至少一个第二导电类型的区域来在它们之间限定结部。

Description

具有电压维持区域并从相反掺杂的多晶硅 区域扩散的高电压功率MOSFET
相关申请
本发明涉及于2001年10月4日在美国专利商标局提交的、题目为“用于制造具有浮岛电压维持层的功率半导体器件的方法”的、序列号为09/970,972的未授权美国专利申请。
本申请涉及于2001年12月31日在美国专利商标局提交的、题目为“用于制造具有包括由快速扩散形成的掺杂柱的电压维持区域的高电压功率MOSFET的方法”的、序列号为10/039,068的未授权美国专利申请。
本申请涉及于2001年12月31日在美国专利商标局提交的、题目为“具有包括由沟槽蚀刻和离子注入形成的掺杂柱的电压维持区域的高电压功率MOSFET”的、序列号为10/038,845的未授权美国专利申请。
本申请涉及于2001年12月31日在美国专利商标局提交的、题目为“具有包括由使用也是掺杂源的蚀刻剂气体的沟槽蚀刻形成的掺杂柱的电压维持区域的高电压功率MOSFET”的、序列号为10/039,284的未授权美国专利申请。
技术领域
本发明总的来说涉及半导体器件,并且具体的说涉及功率MOSFET器件。
背景技术
在比如自动电气系统、电源,以及功率管理仪器的应用中采用功率MOSFET器件。这种器件应该在截止态中维持高电压,同时在导通状态下具有低电压降和高电流。
图1示出了N沟槽功率MOSFET的典型结构。在N+硅衬底2上形成的N-外延硅层1包括器件中两个MOSFET单元的p-体区5a和6a,N+源区域7和8。P-体区5和6也可以包括深p-体区5b和6b。源-体区电极12延伸穿过外延层1的特定表面部分以接触源极和体区。由延伸到图1的半导体上表面的N-外延层1的部分形成两个单元的N型漏极。在N+衬底2的底部设置漏电极。通常是多晶硅的绝缘栅电极18主要位于器件的体区和漏极部分之上,和体区和漏极通过通常是二氧化硅的绝缘物的薄层分开。当将合适的正向电压加到与源极和体区电极相关的栅极上时,在体区的表面的源和漏之间形成沟槽。
如图1所示的现有MOSFET的导通电阻大部分由外延层1中的漂移区域电阻确定。漂移区域电阻依次由外延层1的掺杂和层厚度确定。但是,为增加器件的击穿电压,必须在增加层厚度的同时减少外延层1的掺杂浓度。图2的曲线20示出了作为现有MOSFET的击穿电压的函数的每单位面积的导通电阻。不幸的是,如曲线20所示,器件的导通电阻随着它的击穿电压的增加快速增加。电阻的快速增加使得在较高的电压操作MOSFET时,具体的说在高于几百伏特的电压操作时会产生问题。
图3示出了设计用于操作在较高的电压的、具有减少的导通电阻的MOSFET。在1998的IEDM论文集(p.683)的第26.2号论文公开了这种MOSFET。这个MOSFET和如图1所示的现有MOSFET类似,除了它包括从体区5和6之下延伸进器件的漂移区域的p型掺杂区域40和42。该p型掺杂区域40和42限定了在由n型掺杂的柱分开的漂移区域中的柱,其中n型掺杂柱由和p型掺杂区域40和42相邻的外延层1的部分限定。相反掺杂类型的另外的柱使得不仅如现有MOSFET中的在纵向方向上建立反向电压,而且在水平方向上也建立反向电压。结果,这个器件可以实现和现有器件相同的反向电压,并且外延层1的层厚度减少而且漂移区域的掺杂浓度增加。图2的曲线25示出了每单位面积的导通电阻,其是如图3所示的MOSFET的击穿电压的函数。很明显,在较高的操作电压,这个器件的导通电阻相比如图1所示的器件显著的减少,基本上随着击穿电压线性增加。
如图3所示的器件的改进的操作特性是基于晶体管的漂移区域中的电荷补偿。就是说,例如,以数量级或更多(by an order of magnitudeor more)显著的增加漂移区域中的掺杂,并且通过添加相反掺杂类型的柱来使添加的电荷平衡。这样晶体管的闭锁电压保持不变。当器件在它的导通状态时电荷补偿柱不对电流导通做出贡献。晶体管的这些所需特征决定性的依靠在相反掺杂类型的相邻柱之间实现电荷补偿的程度。不幸的是,因为在其制造过程中控制处理参数的限制,难以避免柱的掺杂梯度的不均匀。例如,穿过柱和衬底之间的界面和穿过柱和p-体区之间的界面的扩散将引起在那些界面附近的柱的部分的掺杂浓度的改变。
可以以包括多个外延淀积步骤的处理顺序来制造如图3所示的结构,其中每一步淀积后都引入适当的掺杂剂。不幸的是,执行外延淀积步骤是昂贵的,并且使得制造这个结构很昂贵。制造这些器件的另一技术在未授权的美国申请序列号90/970,972中示出,其中将沟槽连续蚀刻到不同深度。在每一蚀刻步骤之后注入掺杂材料并且通过沟槽的底部扩散来形成一系列掺杂区域(所谓的“浮岛”),它们共同执行好像如图3所示的p型掺杂区域40和42的功能,但是,使用该浮岛技术的器件的导通电阻不和使用连续柱的相同器件一样低。
因此,需要提供一种制造如图3所示的MOSFET结构的方法,该方法需要最小数量的外延淀积步骤,使得可以更为廉价的生产,而且还能允许充分控制处理参数,使得可以在器件的漂移区域中的相反掺杂类型的相邻柱中实现高度的电荷补偿。
发明内容
根据本发明,提供了一种用于形成功率半导体器件的方法,本方法首先提供第一或第二导电类型的衬底,之后在衬底上形成电压维持区域。通过在衬底上淀积第一导电类型的外延层并且在外延层中形成至少一个沟槽来形成电压维持区域。在沟槽中淀积具有第二导电类型的第二掺杂剂的第一多晶硅层。扩散第二掺杂剂来形成在外延层中并且和沟槽相邻的掺杂的外延区域。接下来在沟槽中淀积具有第一导电类型的第一掺杂剂的第二多晶硅层。分别位于第二和第一多晶硅层中的第一和第二掺杂剂彼此扩散来实现第一和第二多晶硅层中的电气补偿。最后,在电压维持区域上形成至少一个第二导电类型的区域来在它们之间限定一接合(junction)。
可以从包括纵向DMOS,V-沟槽CMOS以及沟槽DMOSMOSFET,IGBT,双极性晶体管和二极管的组中选择由本发明的方法形成的功率半导体器件。
根据本发明的另一方面,提供一种功率半导体器件。该器件包括第一或第二导电类型的衬底和设置在衬底上的电压维持区域。电压维持区域包括具有第一导电类型的外延层和至少一个位于外延层中的沟槽。至少一个具有第二导电类型的掺杂剂的掺杂柱位于外延层中,并和沟槽的侧壁相邻。第一多晶硅层位于沟槽中,并且第二多晶硅层位于第一多晶硅层上。该柱是通过使第二掺杂剂从第一多晶硅层扩散进入外延层来形成的。在电压维持区域上设置至少一个第二导电类型的区域来限定在它们之间的结。
附图说明:
图1示出了现有的功率MOSFET结构的截面图。
图2示出了现有的功率MOSFET的作为击穿电压的函数的每单位面积导通电阻。
图3示出了包括具有位于体区下的p型掺杂剂的柱的电压维持区域的MOSFET结构,其被设计用于操作在使每单位面积的导通电阻比如图1所示的结构在相同的电压时更低。
图4(a)-4(d)示出了可以采用来制造根据本发明构造的电压维持区域的示例性处理步骤的顺序。
具体实施方式
根据本发明,将在下面描述一种在半导体功率器件的电压维持层中形成p型柱的方法。首先,在形成器件的电压维持区域的n型掺杂外延层中蚀刻一个或多个沟槽。每一沟槽被置于将设置掺杂柱的地方的中心。在沟槽中淀积第一p型掺杂多晶硅层。将在多晶硅中的p型掺杂剂扩散进在沟槽周围的n型掺杂外延层。之后,淀积第二n型掺杂多晶硅层来填充该沟槽。来自相反掺杂的多晶硅层的掺杂剂彼此扩散,并且彼此进行电气补偿。但是,因为在多晶硅中n型掺杂剂的扩散速率大于形成外延层中的单晶硅的扩散速率,在外延层中形成的p型掺杂区域不经历显著的电荷补偿。产生的几乎是电中性的多晶硅柱显示出高电阻,并且不以任何显著的方式对器件性能做出贡献,同时p型掺杂的单晶硅区域形成连续掺杂的柱,其具有类似于如图3所示的光滑的侧面。在本发明的一些实施例中,采用的p型掺杂剂是硼并且采用的n型掺杂剂是磷、砷或它们的组合物。
可以根据下面的在图4(a)-4(d)中示出了的示例性步骤制造类似于如图3所示的功率半导体器件。
首先,在现有N+掺杂衬底502上生长N型掺杂外延层501。外延层501通常是15-50微米厚并且在400-800V下具有5-40欧姆-厘米的电阻率。之后,通过以介质层覆盖外延层501的表面形成介质掩模层,并且之后使用现有的曝光和构图方法来留下限定沟槽520的位置的部分。通过掩模开口以反应离子蚀刻将沟槽520干蚀刻到最初的深度,该深度可能在(例如)10-45微米的范围。
如果需要的话,每一沟槽的侧壁可以是光滑的。首先,可以使用干化学蚀刻来从沟槽侧壁移去氧化物的薄层(通常大约500-1000埃)来消除反应离子蚀刻过程引起的损坏。之后,在沟槽520上生长牺牲二氧化硅层。该牺牲层通过缓冲氧化物蚀刻,或通过HF蚀刻移去,使得产生的沟槽侧壁尽可能的光滑。
在图4(b)中,在沟槽520中淀积p型掺杂多晶硅层510。之后执行扩散步骤使得p型掺杂剂从沟槽520扩散进周围的外延层501,这样形成单晶硅的p型掺杂柱512。通常,应该选择沟槽深度、掺杂剂剂量和扩散处理的幅度(magnitude)和持续时间来达到所需的电荷补偿度(degree)。
参考图4(c),之后淀积n型掺杂的多晶硅层516来填充沟槽。其后执行扩散步骤使得多晶硅层516中的n型掺杂剂和多晶硅层510中的p型掺杂剂互相扩散。允许进行互相扩散处理直到p和n型掺杂剂彼此进行电气补偿,使得多晶硅层510和51 6成为电平衡。如在 Solid State Electronics的Vol.27,No.11,pp.995-1001,1984的“半绝缘多晶硅电阻”(由M.K.Lee,C.Y.Lu,K.Z.Chang和C.Shih)中所描述的,如果正确地选择n型和p型掺杂剂的量可以实现电荷补偿,并且将其在这里完全包括并全文引入作为参考。
通过给位于沟槽520中的多晶硅层提供电气补偿,在沟槽520的中心形成高电阻区域。当将反向电压应用到完成的器件时,假定高电阻多晶硅区域中的任意过度电荷具有和外延硅的掺杂柱512相同的导电类型,这个电阻引起小的泄漏电流在器件的两个高压终端之间流过。但是,如果高电阻多晶硅区域具有和掺杂的柱512相反的导电类型,它将在掺杂柱512中“电气”漂移,除非超过临界电场。
最后,如图4(d)所示,通过从它的表面移去多晶硅对该结构的表面进行平坦化处理。
上述顺序的处理步骤产生了如图4(d)所示的结构,其提供具有p型掺杂柱的电压维持层,在其上可以制造任意数量的不同的功率半导体器件。如前所述,这种功率半导体器件包括纵向DMOS,V-沟槽DMOS,以及沟槽MOS MOSFET,IGBT和其它MOS门控器件。例如,图3示出了包括具有类似于在本发明中采用的掺杂柱的电压维持层的MOSFET的实例,除了在本发明中,该掺杂柱具有纵向的侧壁。应该注意虽然图4示出了用来形成掺杂柱的单一沟槽,本发明包含具有一个或多个沟槽来形成任意数量的掺杂柱的电压维持区域。例如,当适当的减少器件的导通电阻时,一个或多个掺杂柱可以位于栅极的中心以下或其它位置。
如图4所示,一旦形成了电压维持区域和一个或多个掺杂柱,可以以下面的方式完成如图3所示的MOSFET。在形成有源区掩模之后生长栅氧化物。之后,淀积、掺杂、并氧化多晶硅层。然后对多晶硅层进行掩模处理来形成栅极区域。使用传统的掩模处理、注入和扩散步骤形成p+掺杂深体区5b和6b。例如,在20到200KeV以大约1×1014到5×1015/cm2的剂量将硼注入p+掺杂深体区。以类似的方式形成浅体区5a和6a。这个区域的注入剂量将是在20到100KeV能量下的1×1013到5×1014/cm2
接下来,使用光致抗蚀剂掩模处理来形成限定源区域7和8的构图的掩模层。然后通过注入和扩散处理形成源区域7和8。例如,在衬底上形成氧化层之后,可以在20到100KeV、在通常2×1015到1.2×1016/cm2的浓度将砷注入源区域。在注入之后,将砷扩散到大约0.5到2.0微米的深度。体区的深度通常在大约1-3微米的范围,其中P+掺杂深体区(如果存在的话)稍微深一些。以传统的方式,通过蚀刻氧化层来在前表面上形成接触开口来完成DMOS晶体管。还淀积金属化层并对其进行掩模处理以限定源-体区和栅电极。而且,使用垫(pad)掩模来限定垫接触。最后,在衬底的下表面形成漏接触层,产生如图5所示的器件。
应该注意虽然公开了制造功率MOSFET的特定处理顺序,但可以使用其它处理顺序,同时保持在本方面的范围之中。例如,可以在限定栅极区域之前形成深p+掺杂体区。还可以在形成沟槽之前形成深p+掺杂体区。在一些DMOS结构中,该p+掺杂的深体区可以比p-掺杂体区更浅,或者在一些情况中,甚至可能没有p+掺杂体区。
在本发明的一些实施例中,不需要淀积掺杂的多晶硅层。而是,可以使用气相掺杂将掺杂剂添加到第一多晶硅层510。另外,可以在多晶硅上淀积二氧化硅的掺杂层,这里多晶硅在它在蚀刻步骤中被移去之前用作固体源(solid source)。类似的,可以将掺杂剂从气相或从二氧化硅的掺杂淀积层添加到第二多晶硅层516,并使第二层不填充沟槽。如果采用气相淀积,则淀积或生长介质层或未掺杂的多晶硅层来在平化之前以填充沟槽。相反的,如果掺杂的多晶硅用作掺杂源,则其可以被用于填充沟槽。还可以仅淀积一层掺杂的多晶硅(例如,层510)并且使用气相掺杂或通过从如上所述的固体掺杂源引入掺杂剂来引入电气补偿掺杂的多晶硅的掺杂剂。如上所述,然后以介质或未掺杂的多晶硅随后填充沟槽。
先前的描述表示该层510中的n型掺杂剂没有扩散进p型掺杂柱512。但是,事实上可以在层516中使用n型掺杂剂来补偿一些掺杂柱512中的p型掺杂剂,这样提供了一种用于调整掺杂柱512中的电荷的技术,以获得最大(或最佳)的击穿电压。还可以最初以未掺杂的多晶硅填充沟槽,然后将第一掺杂剂扩散进多晶硅以及外延层501的周围部分(来形成掺杂柱512),并且之后,将第二掺杂剂扩散进多晶硅来补偿第一掺杂剂。这个方法将产生具有从晶片表面延伸到超过沟槽底部的点的掺杂剂浓度梯度的掺杂区域,这个梯度是沟槽尺寸、多晶硅晶粒尺寸、沟槽深度、引入的掺杂剂的量以及其它变量的函数。
虽然在这里特别示出并描述了多种实施例,应该理解由上述说明覆盖了不脱离本发明的精神和范围的修改和变型,并且它们在附加的权利要求的范围之内。例如,可以提供根据本发明的功率半导体器件,其中多种半导体区域的导电性和在这里所述的相反。另外,虽然使用纵向DMOS晶体管来示出制造根据本发明的器件需要的示例性步骤,根据这些教导也可以制造其它DMOS FET和其它功率半导体器件,比如二极管、双极性晶体管、功率JFET、IGBT、MCT和其它MOS门控功率器件。

Claims (59)

1.一种形成功率半导体器件的方法,包括下面的步骤:
A.提供第一或第二导电类型的衬底;
B.在所述衬底上通过下列步骤形成电压维持区域:
1.在衬底上淀积外延层,所述外延层具有第一导电类型;
2.在所述外延层中形成至少一个沟槽;
3.在所述沟槽中淀积具有第二导电类型的第二掺杂剂的第一材料层;
4.扩散所述第二掺杂剂来形成相邻所述沟槽的掺杂的外延区域并处在所述外延层中;
5.在所述沟槽中淀积具有第一导电类型的第一掺杂剂的第二材料层;
6.互相扩散分别位于第二和第一材料层中的第一和第二掺杂剂来实现第一和第二材料层中的电气补偿;
C.在所述电压维持区域上形成至少一个所述第二导电类型的区域来在它们之间限定一结。
2.如权利要求1所述的方法,其中所述电气补偿足够基本上实现在第一和第二材料层中的电荷平衡。
3.如权利要求1所述的方法,其中该第二层基本上充满沟槽。
4.如权利要求1所述的方法,其中步骤(C)进一步包括步骤:
在栅极绝缘区域上形成栅导体;
在外延层中形成第一和第二体区来在它们之间限定一漂移区域,所述体区具有第二导电类型;
在该第一和第二体区中分别形成第一导电类型的第一和第二源区域。
5.如权利要求1所述的方法,其中所述第二掺杂剂是硼。
6.如权利要求1所述的方法,其中所述第一掺杂剂包括磷。
7.如权利要求1所述的方法,其中所述第一掺杂剂包括砷。
8.如权利要求1所述的方法,其中所述第一掺杂剂包括磷和砷。
9.如权利要求4所述的方法,其中所述体区包括深体区。
10.如权利要求1所述的方法,其中通过提供限定至少一个沟槽的掩模层,并且蚀刻由该掩模层限定的沟槽来形成所述沟槽。
11.如权利要求4所述的方法,其中通过将掺杂剂注入并扩散进衬底来形成所述体区。
12.如权利要求1所述的方法,其中所述功率半导体器件是从包括纵向DMOS、V-槽DOS、和沟槽DMOS MOSFET、IGBT、二极管和双极性晶体管的组中选择的。
13.如权利要求1所述的方法,其中所述第一和第二材料层是多晶硅层。
14.如权利要求2所述的方法,其中所述第一和第二材料层是多晶硅层。
15.如权利要求3所述的方法,其中所述第一和第二材料层是多晶硅层。
16.如权利要求4所述的方法,其中所述第一和第二材料层是多晶硅层。
17.如权利要求1所述的方法,进一步包括将第一掺杂剂的部分扩散进所述掺杂的外延区域来调整所述掺杂的外延区域的电子电荷的步骤。
18.一种根据权利要求1的方法制造的功率半导体器件。
19.一种根据权利要求16的方法制造的功率半导体器件。
20.一种根据权利要求12的方法制造的功率半导体器件。
21.一种功率半导体器件,包括:
第一或第二导电类型的衬底;
设置在所述衬底上的电压维持区域,所述电压维持区域包括:
具有第一导电类型的外延层;
位于所述外延层中的至少一个沟槽;
位于该沟槽中的第一材料层;
位于第一多晶硅层上的第二材料层;
至少一个掺杂的柱,其与沟槽相邻并且位于外延层中,所述至少一个掺杂的柱具有第二导电类型的掺杂剂,通过将第二掺杂剂从第一材料层扩散进外延层来形成所述至少一个掺杂柱;
至少一个所述第二导电性的区域,其设置在所述电压维持区域上以在它们之间限定结。
22.如权利要求21所述的器件,其中所述第一和第二材料层是高电阻率材料层。
23.如权利要求21所述的器件,其中所述第一和第二材料层基本上是电中性的。
24.如权利要求21所述的器件,其中至少一个区域进一步包括:
栅介质和设置在所述栅介质上的栅导体;
第一和第二体区,其位于外延层中以在它们之间限定漂移区域,所述体区具有第二导电类型,以及;
第一导电类型的第一和第二源区域,其分别位于第一和第二体区中。
25.如权利要求24所述的器件,其中所述体区包括深体区。
26.如权利要求21所述的器件,其中该第二层基本上填充该沟槽。
27.如权利要求21所述的器件,其中所述掺杂剂是硼。
28.如权利要求21所述的器件,进一步包括从第二层扩散到第一层的第一掺杂剂。
29.如权利要求23所述的器件,进一步包括从第二层扩散到第一层,以实现第一和第二材料层电中性的第二掺杂剂。
30.如权利要求29所述的器件,其中所述另一掺杂剂包括砷。
31.如权利要求29所述的器件,其中所述另一掺杂剂包括磷。
32.如权利要求29所述的方法,其中所述另一掺杂剂包括磷和砷。
33.如权利要求21所述的器件,其中所述功率半导体器件是从包括纵向DMOS、V-槽DOS,和沟槽DMOS MOSFET、IGBT、二极管和双极性晶体管的组中所选择的。
34.如权利要求21所述的器件,其中所述第一和第二材料层是多晶硅层。
35.如权利要求22所述的器件,其中所述第一和第二材料层是多晶硅层。
36.如权利要求23所述的器件,其中所述第一和第二材料层是多晶硅层。
37.如权利要求24所述的方法,其中所述第一和第二材料层是多晶硅层。
38.如权利要求29所述的方法,其中所述第一和第二材料层是多晶硅层。
39.一种形成功率半导体器件的方法,包括下面的步骤:
A.提供第一或第二导电类型的衬底;
B.在所述衬底上通过下列步骤形成电压维持区域:
1.在衬底上淀积外延层,所述外延层具有第一导电类型;
2.在所述外延层中形成至少一个沟槽;
3.在所述沟槽中提供具有第二导电类型的第二掺杂剂的第一材料层;
4.扩散所述第二掺杂剂来形成相邻所述沟槽的掺杂的外延区域,并处在所述外延层中;
5.在所述沟槽中提供具有第一导电类型的第一掺杂剂的第二材料层;
6.互相扩散分别位于第二和第一材料层中的第一和第二掺杂剂以在第一和第二材料层中实现电气补偿;
C.在所述电压维持区域上形成至少一个所述第二导电类型的区域以在它们之间限定一结。
40.如权利要求39所述的方法,其中所述电气补偿足够基本上实现第一和第二材料层中的电荷平衡。
41.如权利要求39所述的方法,其中该第二层基本上填充该沟槽。
42.如权利要求39所述的方法,其中步骤(C)进一步包括步骤:
在栅介质区域上形成栅导体;
在外延层中形成第一和第二体区以在它们之间限定漂移区域,所述体区具有第二导电类型;
在第一和第二体区中分别形成第一导电类型的第一和第二源区域。
43.如权利要求39所述的方法,其中所述第二掺杂剂是硼。
44.如权利要求39所述的方法,其中所述第一掺杂剂包括磷。
45.如权利要求39所述的方法,其中所述第一掺杂剂包括砷。
46.如权利要求39所述的方法,其中所述第一掺杂剂包括磷和砷。
47.如权利要求42所述的方法,其中所述体区包括深体区。
48.如权利要求39所述的方法,其中所述沟槽是通过提供限定至少一个沟槽的掩模层、并且蚀刻由掩模层限定的沟槽来形成的。
49.如权利要求42所述的方法,其中所述体区通过将掺杂剂注入并扩散进衬底来形成。
50.如权利要求39所述的方法,其中所述功率半导体器件是从包括纵向DMOS、V-槽DOS、和沟槽DMOS MOSFET、IGBT、二极管和双极性晶体管的组中选择。
51.如权利要求39所述的方法,其中提供第一材料层的步骤包括在使用气相掺杂以第二掺杂剂掺杂第一材料层之后淀积第一材料层的步骤。
52.如权利要求51所述的方法,其中提供第二材料层的步骤包括在使用气相掺杂以第一掺杂剂掺杂第二材料层之后淀积第二材料层的步骤。
53.如权利要求52所述的方法,进一步包括以介质材料填充沟槽的步骤。
54.如权利要求52所述的方法,进一步包括以未掺杂的多晶硅填充沟槽的步骤。
55.如权利要求39或51所述的方法,其中所述第一和第二材料层是多晶硅层。
56.如权利要求52所述的方法,其中所述第一和第二材料层是多晶硅层。
57.如权利要求53所述的方法,其中所述第一和第二材料层是多晶硅层。
58.如权利要求39所述的方法,进一步包括将第一掺杂剂的部分扩散进所述掺杂的外延区域以调整所述掺杂的外延区域的电荷的步骤。
59.一种形成功率半导体器件的方法,包括下面的步骤:
A.提供第一或第二导电类型的衬底;
B.在所述衬底上通过下列步骤形成电压维持区域:
1.在衬底上淀积外延层,所述外延层具有第一导电类型;
2.在所述外延层中形成至少一个沟槽;
3.在所述沟槽中提供具有第二导电类型的第二掺杂剂的第一材料层;
4.扩散所述第二掺杂剂以形成相邻所述沟槽的掺杂的外延区域,并处在所述外延层中;
5.将第一导电类型的第一掺杂剂扩散进第一材料层以实现第一材料层中的电气补偿;
C.在所述电压维持区域上形成至少一个所述第二导电类型的区域以在它们之间限定一结部。
CNB028265424A 2001-12-31 2002-12-30 具有电压维持区域并从相反掺杂的多晶硅区域扩散的高电压功率mosfet Expired - Fee Related CN100355086C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/039,241 US6576516B1 (en) 2001-12-31 2001-12-31 High voltage power MOSFET having a voltage sustaining region that includes doped columns formed by trench etching and diffusion from regions of oppositely doped polysilicon
US10/039,241 2001-12-31

Publications (2)

Publication Number Publication Date
CN1610974A true CN1610974A (zh) 2005-04-27
CN100355086C CN100355086C (zh) 2007-12-12

Family

ID=21904417

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028265424A Expired - Fee Related CN100355086C (zh) 2001-12-31 2002-12-30 具有电压维持区域并从相反掺杂的多晶硅区域扩散的高电压功率mosfet

Country Status (8)

Country Link
US (3) US6576516B1 (zh)
EP (1) EP1476894B1 (zh)
JP (1) JP4880199B2 (zh)
KR (1) KR100952538B1 (zh)
CN (1) CN100355086C (zh)
AU (1) AU2002359889A1 (zh)
TW (1) TWI270208B (zh)
WO (1) WO2003058684A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208436A (zh) * 2010-03-31 2011-10-05 比亚迪股份有限公司 功率半导体器件的终端结构及功率半导体器件
CN102593157A (zh) * 2011-01-05 2012-07-18 茂达电子股份有限公司 具有低米勒电容的超级介面的功率晶体管及其制作方法
CN102751191A (zh) * 2011-04-21 2012-10-24 茂达电子股份有限公司 功率半导体装置的制作方法
CN112614860A (zh) * 2020-12-16 2021-04-06 上海华力微电子有限公司 垂直栅半导体器件的制备方法

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656797B2 (en) * 2001-12-31 2003-12-02 General Semiconductor, Inc. High voltage power MOSFET having a voltage sustaining region that includes doped columns formed by trench etching and ion implantation
US6750104B2 (en) * 2001-12-31 2004-06-15 General Semiconductor, Inc. High voltage power MOSFET having a voltage sustaining region that includes doped columns formed by trench etching using an etchant gas that is also a doping source
US6686244B2 (en) * 2002-03-21 2004-02-03 General Semiconductor, Inc. Power semiconductor device having a voltage sustaining region that includes doped columns formed with a single ion implantation step
DE10235000B4 (de) * 2002-07-31 2007-01-04 Infineon Technologies Ag Verfahren zur Bildung einer Kanalzone eines Transistors und NMOS-Transistor
US7041572B2 (en) * 2002-10-25 2006-05-09 Vanguard International Semiconductor Corporation Fabrication method for a deep trench isolation structure of a high-voltage device
TW563244B (en) * 2002-10-25 2003-11-21 Vanguard Int Semiconduct Corp Deep trench isolation structure of high voltage device and its manufacturing method
US6887768B1 (en) * 2003-05-15 2005-05-03 Lovoltech, Inc. Method and structure for composite trench fill
US7638841B2 (en) 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US6982193B2 (en) * 2004-05-10 2006-01-03 Semiconductor Components Industries, L.L.C. Method of forming a super-junction semiconductor device
US7285823B2 (en) * 2005-02-15 2007-10-23 Semiconductor Components Industries, L.L.C. Superjunction semiconductor device structure
US7176524B2 (en) * 2005-02-15 2007-02-13 Semiconductor Components Industries, Llc Semiconductor device having deep trench charge compensation regions and method
US7482220B2 (en) * 2005-02-15 2009-01-27 Semiconductor Components Industries, L.L.C. Semiconductor device having deep trench charge compensation regions and method
US7355223B2 (en) * 2005-03-04 2008-04-08 Cree, Inc. Vertical junction field effect transistor having an epitaxial gate
US7279368B2 (en) * 2005-03-04 2007-10-09 Cree, Inc. Method of manufacturing a vertical junction field effect transistor having an epitaxial gate
TWI400757B (zh) * 2005-06-29 2013-07-01 Fairchild Semiconductor 形成遮蔽閘極場效應電晶體之方法
JP2007012858A (ja) * 2005-06-30 2007-01-18 Toshiba Corp 半導体素子及びその製造方法
US20070012983A1 (en) * 2005-07-15 2007-01-18 Yang Robert K Terminations for semiconductor devices with floating vertical series capacitive structures
US7955969B2 (en) * 2005-09-08 2011-06-07 International Rectifier Corporation Ultra thin FET
US7554137B2 (en) * 2005-10-25 2009-06-30 Infineon Technologies Austria Ag Power semiconductor component with charge compensation structure and method for the fabrication thereof
US7679146B2 (en) * 2006-05-30 2010-03-16 Semiconductor Components Industries, Llc Semiconductor device having sub-surface trench charge compensation regions
US7411266B2 (en) * 2006-05-30 2008-08-12 Semiconductor Components Industries, L.L.C. Semiconductor device having trench charge compensation regions and method
US7799640B2 (en) * 2006-09-28 2010-09-21 Semiconductor Components Industries, Llc Method of forming a semiconductor device having trench charge compensation regions
KR101279574B1 (ko) 2006-11-15 2013-06-27 페어차일드코리아반도체 주식회사 고전압 반도체 소자 및 그 제조 방법
CN101868856B (zh) 2007-09-21 2014-03-12 飞兆半导体公司 用于功率器件的超结结构及制造方法
ITMI20072340A1 (it) * 2007-12-14 2009-06-15 St Microelectronics Srl Regioni di guardia profonde migliorate per ridurre il latch-up in dispositivi elettronici
ITMI20072341A1 (it) * 2007-12-14 2009-06-15 St Microelectronics Srl Contatti profondi di dispositivi elettronici integrati basati su regioni inpiantate attraverso solchi
ES2374774B1 (es) * 2008-03-18 2013-01-30 Consejo Superior De Investigaciones Científicas (Csic) Método de fabricación de dispositivos rb-igbt.
US7902075B2 (en) * 2008-09-08 2011-03-08 Semiconductor Components Industries, L.L.C. Semiconductor trench structure having a sealing plug and method
US9000550B2 (en) * 2008-09-08 2015-04-07 Semiconductor Components Industries, Llc Semiconductor component and method of manufacture
US7960781B2 (en) * 2008-09-08 2011-06-14 Semiconductor Components Industries, Llc Semiconductor device having vertical charge-compensated structure and sub-surface connecting layer and method
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
JP5621441B2 (ja) * 2010-09-14 2014-11-12 株式会社デンソー 半導体装置の製造方法
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
TWI446459B (zh) * 2012-02-14 2014-07-21 Anpec Electronics Corp 具有超級介面之功率電晶體元件之製作方法
US9306010B2 (en) * 2012-03-14 2016-04-05 Infineon Technologies Ag Semiconductor arrangement
US8823084B2 (en) * 2012-12-31 2014-09-02 Infineon Technologies Austria Ag Semiconductor device with charge compensation structure arrangement for optimized on-state resistance and switching losses
US9024383B2 (en) 2013-05-01 2015-05-05 Infineon Technologies Austria Ag Semiconductor device with a super junction structure with one, two or more pairs of compensation layers
US9117694B2 (en) 2013-05-01 2015-08-25 Infineon Technologies Austria Ag Super junction structure semiconductor device based on a compensation structure including compensation layers and a fill structure
US9147763B2 (en) 2013-09-23 2015-09-29 Infineon Technologies Austria Ag Charge-compensation semiconductor device
US9029250B2 (en) * 2013-09-24 2015-05-12 Infineon Technologies Austria Ag Method for producing semiconductor regions including impurities
US9401410B2 (en) * 2014-11-26 2016-07-26 Texas Instruments Incorporated Poly sandwich for deep trench fill
US20170373142A1 (en) 2016-06-23 2017-12-28 Littelfuse, Inc. Semiconductor device having side-diffused trench plug
JP6857351B2 (ja) * 2017-02-28 2021-04-14 国立研究開発法人産業技術総合研究所 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US10453754B1 (en) 2018-06-28 2019-10-22 Globalfoundries Inc. Diffused contact extension dopants in a transistor device
KR102554248B1 (ko) * 2019-02-28 2023-07-11 주식회사 디비하이텍 수퍼 정션 반도체 장치 및 이의 제조 방법
US11569345B2 (en) * 2020-11-23 2023-01-31 Alpha And Omega Semiconductor (Cayman) Ltd. Gas dopant doped deep trench super junction high voltage MOSFET
CN113161230B (zh) * 2020-12-14 2022-05-17 安徽安芯电子科技股份有限公司 磷硼同步一次扩散缓变结芯片的扩散工艺

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US26977A (en) * 1860-01-31 Machine foe
US39284A (en) * 1863-07-21 Improvement in hollow augers
US39068A (en) * 1863-06-30 Improvement in power-windlass
US36704A (en) * 1862-10-21 Improved composition for treating vegetable paper
US38845A (en) * 1863-06-09 Improvement in portable shields for infantry or artillery
US53568A (en) * 1866-04-03 Improvement in carriages
US970758A (en) * 1909-09-03 1910-09-20 Seidel Machine Company Bottle-washing machine.
US4140558A (en) 1978-03-02 1979-02-20 Bell Telephone Laboratories, Incorporated Isolation of integrated circuits utilizing selective etching and diffusion
US4419150A (en) 1980-12-29 1983-12-06 Rockwell International Corporation Method of forming lateral bipolar transistors
US4569701A (en) 1984-04-05 1986-02-11 At&T Bell Laboratories Technique for doping from a polysilicon transfer layer
US4711017A (en) 1986-03-03 1987-12-08 Trw Inc. Formation of buried diffusion devices
US4795716A (en) * 1987-06-19 1989-01-03 General Electric Company Method of making a power IC structure with enhancement and/or CMOS logic
US4893160A (en) 1987-11-13 1990-01-09 Siliconix Incorporated Method for increasing the performance of trenched devices and the resulting structure
JP2733271B2 (ja) 1988-12-23 1998-03-30 シャープ株式会社 半導体装置の製造方法
CN1019720B (zh) 1991-03-19 1992-12-30 电子科技大学 半导体功率器件
DE59409300D1 (de) * 1993-06-23 2000-05-31 Siemens Ag Verfahren zur Herstellung von einem Isolationsgraben in einem Substrat für Smart-Power-Technologien
DE4332057A1 (de) * 1993-09-21 1995-03-30 Siemens Ag Integrierte mikromechanische Sensorvorrichtung und Verfahren zu deren Herstellung
CN1035294C (zh) * 1993-10-29 1997-06-25 电子科技大学 具有异形掺杂岛的半导体器件耐压层
JP3395473B2 (ja) * 1994-10-25 2003-04-14 富士電機株式会社 横型トレンチmisfetおよびその製造方法
JPH08195433A (ja) * 1995-01-19 1996-07-30 Toshiba Corp 半導体装置及びその製造方法
JP3291957B2 (ja) * 1995-02-17 2002-06-17 富士電機株式会社 縦型トレンチmisfetおよびその製造方法
US5759921A (en) * 1995-09-21 1998-06-02 Lsi Logic Corporation Integrated circuit device fabrication by plasma etching
WO1997029518A1 (de) * 1996-02-05 1997-08-14 Siemens Aktiengesellschaft Durch feldeffekt steuerbares halbleiterbauelement
KR100225409B1 (ko) * 1997-03-27 1999-10-15 김덕중 트렌치 디-모오스 및 그의 제조 방법
EP0973203A3 (de) * 1998-07-17 2001-02-14 Infineon Technologies AG Halbleiterschicht mit lateral veränderlicher Dotierung und Verfahren zu dessen Herstellung
KR100304717B1 (ko) * 1998-08-18 2001-11-15 김덕중 트렌치형게이트를갖는반도체장치및그제조방법
DE19840032C1 (de) * 1998-09-02 1999-11-18 Siemens Ag Halbleiterbauelement und Herstellungsverfahren dazu
DE19839970C2 (de) * 1998-09-02 2000-11-02 Siemens Ag Randstruktur und Driftbereich für ein Halbleiterbauelement sowie Verfahren zu ihrer Herstellung
DE19843959B4 (de) 1998-09-24 2004-02-12 Infineon Technologies Ag Verfahren zum Herstellen eines Halbleiterbauelements mit einem sperrenden pn-Übergang
US6452230B1 (en) * 1998-12-23 2002-09-17 International Rectifier Corporation High voltage mosgated device with trenches to reduce on-resistance
JP2001345444A (ja) * 1999-10-25 2001-12-14 Seiko Instruments Inc 半導体装置とその製造方法
JP4371521B2 (ja) 2000-03-06 2009-11-25 株式会社東芝 電力用半導体素子およびその製造方法
US6246090B1 (en) * 2000-03-14 2001-06-12 Intersil Corporation Power trench transistor device source region formation using silicon spacer
JP3949869B2 (ja) * 2000-03-22 2007-07-25 セイコーインスツル株式会社 縦形mosトランジスタ及びその製造方法
GB0010041D0 (en) 2000-04-26 2000-06-14 Koninkl Philips Electronics Nv Trench semiconductor device manufacture
US6479352B2 (en) * 2000-06-02 2002-11-12 General Semiconductor, Inc. Method of fabricating high voltage power MOSFET having low on-resistance
US6472678B1 (en) * 2000-06-16 2002-10-29 General Semiconductor, Inc. Trench MOSFET with double-diffused body profile
US6472708B1 (en) * 2000-08-31 2002-10-29 General Semiconductor, Inc. Trench MOSFET with structure having low gate charge
US6608350B2 (en) * 2000-12-07 2003-08-19 International Rectifier Corporation High voltage vertical conduction superjunction semiconductor device
US6459628B1 (en) 2001-04-02 2002-10-01 Advanced Micro Devices, Inc. System and method to facilitate stabilization of reference voltage signals in memory devices
US6465304B1 (en) * 2001-10-04 2002-10-15 General Semiconductor, Inc. Method for fabricating a power semiconductor device having a floating island voltage sustaining layer
US6649477B2 (en) * 2001-10-04 2003-11-18 General Semiconductor, Inc. Method for fabricating a power semiconductor device having a voltage sustaining layer with a terraced trench facilitating formation of floating islands
US6566201B1 (en) * 2001-12-31 2003-05-20 General Semiconductor, Inc. Method for fabricating a high voltage power MOSFET having a voltage sustaining region that includes doped columns formed by rapid diffusion
US6656797B2 (en) * 2001-12-31 2003-12-02 General Semiconductor, Inc. High voltage power MOSFET having a voltage sustaining region that includes doped columns formed by trench etching and ion implantation
US6750104B2 (en) * 2001-12-31 2004-06-15 General Semiconductor, Inc. High voltage power MOSFET having a voltage sustaining region that includes doped columns formed by trench etching using an etchant gas that is also a doping source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208436A (zh) * 2010-03-31 2011-10-05 比亚迪股份有限公司 功率半导体器件的终端结构及功率半导体器件
CN102208436B (zh) * 2010-03-31 2013-10-02 比亚迪股份有限公司 功率半导体器件的终端结构及功率半导体器件
CN102593157A (zh) * 2011-01-05 2012-07-18 茂达电子股份有限公司 具有低米勒电容的超级介面的功率晶体管及其制作方法
CN102751191A (zh) * 2011-04-21 2012-10-24 茂达电子股份有限公司 功率半导体装置的制作方法
CN112614860A (zh) * 2020-12-16 2021-04-06 上海华力微电子有限公司 垂直栅半导体器件的制备方法

Also Published As

Publication number Publication date
KR100952538B1 (ko) 2010-04-12
AU2002359889A1 (en) 2003-07-24
WO2003058684A3 (en) 2003-10-02
TWI270208B (en) 2007-01-01
KR20040069213A (ko) 2004-08-04
EP1476894B1 (en) 2016-06-22
US6794251B2 (en) 2004-09-21
TW200302575A (en) 2003-08-01
JP4880199B2 (ja) 2012-02-22
US6576516B1 (en) 2003-06-10
JP2005514787A (ja) 2005-05-19
US20030203552A1 (en) 2003-10-30
US7224027B2 (en) 2007-05-29
WO2003058684A2 (en) 2003-07-17
CN100355086C (zh) 2007-12-12
EP1476894A4 (en) 2009-02-18
EP1476894A2 (en) 2004-11-17
AU2002359889A8 (en) 2003-07-24
US20050042830A1 (en) 2005-02-24

Similar Documents

Publication Publication Date Title
CN100355086C (zh) 具有电压维持区域并从相反掺杂的多晶硅区域扩散的高电压功率mosfet
CN1171318C (zh) 具有低导通电阻的高压功率金属氧化物半导体场效应晶体管
CN100409452C (zh) 一种功率半导体器件及其形成该功率半导体器件的方法
CN1305122C (zh) 具有浮岛电压维持层的功率半导体器件的制造方法
US6710400B2 (en) Method for fabricating a high voltage power MOSFET having a voltage sustaining region that includes doped columns formed by rapid diffusion
US6686244B2 (en) Power semiconductor device having a voltage sustaining region that includes doped columns formed with a single ion implantation step
CN100342544C (zh) 含有掺杂柱的高压功率mosfet
CN100568466C (zh) 具有带易于浮岛形成的台阶式沟槽的电压维持层的功率半导体器件的制造方法
CN1921146A (zh) 用于沟槽igbt的深n扩散

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071212

Termination date: 20151230

EXPY Termination of patent right or utility model