TWI446459B - 具有超級介面之功率電晶體元件之製作方法 - Google Patents

具有超級介面之功率電晶體元件之製作方法 Download PDF

Info

Publication number
TWI446459B
TWI446459B TW101104734A TW101104734A TWI446459B TW I446459 B TWI446459 B TW I446459B TW 101104734 A TW101104734 A TW 101104734A TW 101104734 A TW101104734 A TW 101104734A TW I446459 B TWI446459 B TW I446459B
Authority
TW
Taiwan
Prior art keywords
trench
type
doping
conductivity type
diffusion
Prior art date
Application number
TW101104734A
Other languages
English (en)
Other versions
TW201334084A (zh
Inventor
Yung Fa Lin
Shou Yi Hsu
Meng Wei Wu
Chia Hao Chang
Original Assignee
Anpec Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anpec Electronics Corp filed Critical Anpec Electronics Corp
Priority to TW101104734A priority Critical patent/TWI446459B/zh
Priority to CN2012100907611A priority patent/CN103247534A/zh
Priority to US13/553,806 priority patent/US8753937B2/en
Publication of TW201334084A publication Critical patent/TW201334084A/zh
Application granted granted Critical
Publication of TWI446459B publication Critical patent/TWI446459B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Description

具有超級介面之功率電晶體元件之製作方法
本發明係關於一種具有超級介面之功率電晶體元件之製作方法,尤指一種具有超級介面之功率電晶體元件之製作方法,用於調整超級介面鄰近溝槽側壁之摻雜濃度。
在功率電晶體元件中,汲極與源極間導通電阻RDS(on)的大小係與元件之功率消耗成正比,因此降低導通電阻RDS(on)的大小可減少功率電晶體元件所消耗之功率。於導通電阻RDS(on)中,用於耐壓之磊晶層所造成之電阻值所佔的比例係為最高。雖然增加磊晶層中導電物質之摻雜濃度可降低磊晶層之電阻值,但磊晶層的作用係為用於承受高電壓。若增加摻雜濃度會降低磊晶層之崩潰電壓,因而降低功率電晶體元件之耐壓能力。
為了維持或提升功率電晶體元件之耐壓能力,並降低磊晶層之電阻值,目前已發展出一種具有超級介面(super junction)之功率電晶體元件,以兼具高耐壓能力以及低導通電阻。習知製作功率電晶體元件之方法是在N型基底上形成一N型磊晶層,然後利用蝕刻製程於N型磊晶層中形成複數個深溝槽。接著,在深溝槽中填入摻雜物來源層,並利用高溫擴散之方法將摻雜物來源層中之P型摻雜物擴散至N型磊晶層中,以形成P型摻雜區,且N型磊晶層與P型摻雜區構成垂直基底之PN接面,即超級介面。然而,P型摻雜區是利用擴散方式所形成,因此其摻雜濃度是隨著越接近深溝槽之側壁而越高。藉此,P型摻雜區之表面摻雜濃度容易過高,使超級介面中之電洞濃度與電子濃度分布不均勻,導致超級介面的耐壓能力不佳。
有鑑於此,降低用於形成超級介面之摻雜區的表面摻雜濃度,以解決超級介面結構中之電洞濃度與電子濃度分布不均勻之問題實為業界努力之目標。
本發明之主要目的在於提供一種具有超級介面之功率電晶體元件之製作方法,以解決超級介面中之電洞濃度與電子濃度分布不均勻之問題。
為達上述之目的,本發明提供一種具有超級介面之功率電晶體元件之製作方法。首先,提供一半導體基底,具有一第一導電類型。然後,於半導體基底中形成至少一溝槽。接著,於溝槽中填入一摻雜物來源層,其中摻雜物來源層包括複數個摻雜物,且摻雜物具有不同於第一導電類型之一第二導電類型。隨後,進行一第一熱趨入製程,將摻雜物擴散至半導體基底中,以於溝槽之二側之半導體基底中分別形成二擴散摻雜區,其中各擴散摻雜區鄰近溝槽之側壁之摻雜濃度不同於各擴散摻雜區遠離溝槽之側壁之摻雜濃度。接著,移除摻雜物來源層。然後,進行一斜角度離子佈植(tilt-angle ion implantation)製程與一第二熱趨入製程,以調整鄰近溝槽之側壁之各擴散摻雜區之摻雜濃度。
為達上述之目的,本發明另提供一種具有超級介面之功率電晶體元件之製作方法。首先,提供一半導體基底,具有一第一導電類型。接著,於半導體基底中形成至少一溝槽。然後,於溝槽中填入一第一摻雜物來源層,其中第一摻雜物來源層包括第一摻雜物,且第一摻雜物具有不同於第一導電類型之一第二導電類型。隨後,進行一第一熱趨入製程,將第一摻雜物擴散至半導體基底中,以於溝槽之二側之半導體基底中分別形成二擴散摻雜區,其中各擴散摻雜區鄰近溝槽之側壁之摻雜濃度不同於各擴散摻雜區遠離溝槽之側壁之摻雜濃度。接著,移除第一摻雜物來源層。然後,於溝槽中填入一摻雜濃度調整層,並進行一第二熱趨入製程,以調整鄰近溝槽之側壁之各擴散摻雜區之摻雜濃度。隨後,移除摻雜濃度調整層。
本發明利用斜角度離子佈植製程或於溝槽中填入摻雜濃度調整層並搭配熱趨入製程,來調整各擴散摻雜區鄰近各溝槽之側壁之摻雜濃度,藉此由各擴散摻雜區與半導體基底所構成之超級介面可具有均勻之電洞濃度與電子濃度之分布比例,進而可解決超級介面耐壓能力不佳的問題。
請參考第1圖至第8圖,第1圖至第8圖為本發明一較佳實施例之功率電晶體元件之製作方法示意圖。如第1圖所示,首先,提供一半導體基底102,且半導體基底102具有一第一導電類型。接著,於半導體基底102上形成一墊層104,例如二氧化矽(SiO2 ),但不限於此。然後,進行一沉積製程,於墊層104上形成一硬遮罩層106,例如氮化矽(Si3 N4 ),但不限於此。接著,進行一微影暨蝕刻製程,圖案化墊層104與硬遮罩層106,於墊層104與硬遮罩層106中形成複數個開口108,分別貫穿墊層104與硬遮罩層106並曝露出半導體基底102。然後,以硬遮罩層106為遮罩,進行一蝕刻製程,經由各開口108於半導體基底102中形成複數個溝槽110。於本實施例中,半導體基底102可包括一基材102a,例如矽晶圓,以及一磊晶層102b,且磊晶層102b設於基材102a上。並且,各溝槽110貫穿磊晶層102b,並曝露出基材102a,但本發明不限於此,各溝槽110亦可未貫穿磊晶層102b。此外,本發明之開口108與溝槽110之數量不限為複數個,亦可分別僅為單一個。
如第2圖所示,接著,於各溝槽110中填入一第一摻雜物來源層112,且第一摻雜物來源層112覆蓋於硬遮罩層106上。其中,第一摻雜物來源層112包含有複數個具有不同於第一導電類型之一第二導電類型的第一摻雜物。然後,進行一第一熱趨入製程,將第二導電類型之第一摻雜物擴散至半導體基底102中,以於各溝槽110之二側之半導體基底102中分別形成二擴散摻雜區114,其中各擴散摻雜區114鄰近各溝槽110之側壁之摻雜濃度不同於各擴散摻雜區114遠離各溝槽之側壁之摻雜濃度。於本實施例中,由於各擴散摻雜區114是藉由熱來擴散第一摻雜物而形成的,因此各擴散摻雜區114亦具有第二導電類型,且各擴散摻雜區114之摻雜濃度分布會隨著越接近摻雜物來源層112而具有越高之摻雜濃度。亦即,各擴散摻雜區114鄰近各溝槽110之側壁之摻雜濃度大於各擴散摻雜區114遠離各溝槽之側壁之摻雜濃度,但本發明不限於此。並且,第一導電類型為N型,且第二導電類型為P型,但不限於此,本發明之第一導電類型與第二導電類型亦可互換。另外,本實施例形成第一摻雜物來源層112之材料包含有硼矽玻璃(Boron silicate glass,BSG),但不限於此,本發明之第一摻雜物來源層112之材料可根據所欲形成之擴散摻雜區114的導電類型來決定。例如:當第二導電類型為P型時,形成第一摻雜物來源層之材料包括硼矽玻璃。當第二導電類型為N型時,形成第一摻雜物來源層之材料包括砷矽玻璃(arsenic silicate glass,ASG)或磷矽玻璃(phosphor silicate glass,PSG)。於本發明之其他實施例中,形成P型擴散摻雜區之方法亦可利用P型離子佈植製程,於N型半導體基底中植入P型第一摻雜物,然後進行第一熱趨入製程來形成P型擴散摻雜區。
如第3圖所示,然後,進行另一蝕刻製程,移除第一摻雜物來源層112。隨後,進行一斜角度離子佈植(tilt-angle ion implantation)製程116,以於鄰近各溝槽110之側壁之各P型擴散摻雜區114中植入複數個第二摻雜物。接著,進行一第二熱趨入製程,使第二摻雜物均勻擴散,以調整鄰近各溝槽110之側壁之各P型擴散摻雜區114之摻雜濃度。於本實施例中,斜角度離子佈植製程係為N型,以用於佈植具有N型的第二摻雜物,因此一濃度調整區118會形成於鄰近各溝槽110之側壁之各P型擴散摻雜區114中。由於植入各P型擴散摻雜區114之N型第二摻雜物係與各P型擴散摻雜區114之P型第一摻雜物的導電類型不同,因此於各濃度調整區118中,N型第二摻雜物會與各P型擴散摻雜區114中之部分P型第一摻雜物中和,使各濃度調整區118中之P型第一摻雜物的摻雜濃度被調整至接近各P型擴散摻雜區114之P型第一摻雜物的摻雜濃度。藉此,當各P型擴散摻雜區114鄰近各溝槽110之側壁之摻雜濃度過大時,各P型擴散摻雜區114鄰近各溝槽110之側壁之摻雜濃度可被降低至接近各P型擴散摻雜區114之其他區域的摻雜濃度,且由各P型擴散摻雜區114與N型半導體基底102所構成垂直於N型半導體基底102之PN接面,即超級介面,可具有均勻之電洞濃度與電子濃度之分布比例,進而可解決超級介面耐壓能力不佳的問題。
如第4圖所示,於N型斜角度離子佈植製程116與第二熱趨入製程之後,進行另一沉積製程,於硬遮罩層106上形成一絕緣材料層,例如:氧化矽,且絕緣材料層填滿於各溝槽110中。然後,進行一化學機械研磨(Chemical Mechanical Polishing,CMP)製程,移除位於硬遮罩層106上之絕緣材料層。接著,進行另一蝕刻製程,移除位於開口108中之絕緣材料層,以於各溝槽110中形成一絕緣層120。於本實施例中,絕緣層120之上表面約略與墊層104之上表面位於同一平面,但本發明並不限於此,絕緣層120之上表面亦可介於墊層104之上表面與N型半導體基底102之上表面之間,或與N型半導體基底102之上表面位於同一平面。
如第5圖所示,隨後,移除硬遮罩層106與墊層104,並曝露出N型半導體基底102。接著,進行一熱氧化製程,於N型半導體基底102上形成一閘極絕緣層122。然後,於閘極絕緣層122與絕緣層120上覆蓋一導電材料層,例如多晶矽。隨後,進行另一微影暨蝕刻製程,圖案化導電材料層,以於二相鄰溝槽110之間的N型半導體基底102上分別形成一閘極導電層124,作為功率電晶體元件之閘極,且各閘極導電層124與位於各閘極導電層124以及N型半導體基底102之間的閘極絕緣層122構成一閘極結構126。於本實施例中,閘極絕緣層122之上表面約略與絕緣層120之上表面位於同一平面,但不限於此。於本發明之其他實施例中,閘極結構亦可僅為單一個,而可於其中一溝槽之一側之N型半導體基底上形成閘極結構。
如第6圖所示,接著,以閘極導電層124為遮罩,進行一P型離子佈值製程以及另一熱趨入製程,於各閘極結構126之二側的N型半導體基底102中分別形成二P型基體摻雜區128,且各P型基體摻雜區128與各P型擴散摻雜區114以及P型濃度調降區118相接觸,並與各閘極結構126部分重疊,以作為功率電晶體元件之基極。
如第7圖所示,然後,利用一光罩(圖未示),進行一N型離子佈值製程以及另一熱趨入製程,於各P型基體摻雜區128中形成一N型源極摻雜區130,分別與各閘極結構126部分重疊,以作為功率電晶體元件之源極。本發明之閘極結構126、P型基體摻雜區128以及N型源極摻雜區130並不限分別具有複數個,且亦可僅具有單一個,並可依據實際需求來作相對應調整。
如第8圖所示,接著,於閘極結構126以及絕緣層120上覆蓋一介電層132,例如氧化矽。然後,進行另一微影暨蝕刻製程,於介電層132中形成複數個接觸洞132a,並移除部分閘極絕緣層122以及絕緣層120。各接觸洞132a曝露出N型源極摻雜區130與P型基體摻雜區128。接著,進行另一P型離子佈植製程與另一熱趨入製程,以於各P型基體摻雜區128中形成一P型接觸摻雜區134,以降低源極電阻。然後,進行另一沉積製程,於介電層132上與接觸洞132a之側壁與底部覆蓋一阻障層136,例如鈦或氮化鈦。接著,於阻障層136上形成一源極金屬層138,且源極金屬層138填滿接觸洞132a,並覆蓋於介電層132上。並且,於N型半導體基底102下形成一汲極金屬層140。至此已完成本實施例之功率電晶體元件100。於本實施例中,形成源極金屬層138與汲極金屬層140之步驟可分別包含進行電漿濺鍍或電子束沉積等製程,且源極金屬層138與汲極金屬層140可分別包括鈦、氮化鈦、鋁、鎢等金屬或金屬化合物,但不限於此。
以下將進一步說明本實施例利用N型斜角度離子佈植製程與第二熱趨入製程來降低各P型擴散摻雜區鄰近各溝槽之側壁之摻雜濃度之功效。請參考第9圖,第9圖為各P型擴散摻雜區與N型半導體基底之摻雜濃度以及距離各溝槽之側壁之長度的關係示意圖。如第9圖所示,第一曲線C1 代表未進行N型斜角度離子佈植製程與第二熱趨入製程之前的各P型擴散摻雜區之摻雜濃度與距離各溝槽之側壁之長度的關係曲線;第二曲線C2 代表進行N型斜角度離子佈植製程與第二熱趨入製程之後的各P型擴散摻雜區之摻雜濃度與距離各溝槽之側壁之長度的關係曲線;以及第三曲線C3 代表N型半導體基底之摻雜濃度與距離各溝槽之側壁之長度之關係曲線。由圖可知,鄰近各溝槽之側壁之各P型擴散摻雜區之摻雜濃度可因進行N型斜角度離子佈植製程與第二熱趨入製程而被降低至接近遠離各溝槽之側壁之各P型擴散摻雜區之摻雜濃度,使由各P型擴散摻雜區與N型半導體基底所構成之超級介面可具有均勻之電洞濃度與電子濃度之分布比例,進而解決超級介面耐壓能力不佳的問題。本發明之N型斜角度離子佈植製程之佈植濃度與深度以及第二熱趨入製程之加熱時間可根據所欲形成之超級介面之耐壓能力來決定。
於本發明之其他實施例中,當各P型擴散摻雜區鄰近各溝槽之側壁之摻雜濃度小於各P型擴散摻雜區遠離各溝槽之側壁之摻雜濃度時,斜角度離子佈植製程可為P型斜角度離子佈植製程,以於鄰近各溝槽之側壁之各P型擴散摻雜區中植入複數個P型摻雜物。並且,在第二熱趨入製程之後,一濃度提升區會形成於鄰近各溝槽之側壁之各P型擴散摻雜區中,且鄰近各溝槽之側壁之各P型擴散摻雜區之摻雜濃度可被提升至接近遠離各溝槽之側壁之各P型擴散摻雜區之摻雜濃度。藉此,當各P型擴散摻雜區鄰近各溝槽之側壁之摻雜濃度過低時,利用P型斜角度離子佈植製程與第二熱趨入製程可提升各P型擴散摻雜區鄰近各溝槽之側壁之摻雜濃度,使超級介面可具有均勻之電洞濃度與電子濃度之分布比例。
以下將進一步說明本實施例利用P型斜角度離子佈植製程與第二熱趨入製程來提升各P型擴散摻雜區鄰近各溝槽之側壁之摻雜濃度之功效。請參考第10圖,第10圖為各P型擴散摻雜區與N型半導體基底之摻雜濃度以及距離各溝槽之側壁之長度的關係示意圖。如第10圖所示,第四曲線C4 代表未進行P型斜角度離子佈植製程與第二熱趨入製程之前的各P型擴散摻雜區之摻雜濃度與距離各溝槽之側壁之長度的關係曲線;第五曲線C5 代表進行P型斜角度離子佈植製程與第二熱趨入製程之後的各P型擴散摻雜區之摻雜濃度與距離各溝槽之側壁之長度的關係曲線;以及第六曲線C6 代表N型半導體基底之摻雜濃度與距離各溝槽之側壁之長度之關係曲線。由此可知,鄰近各溝槽之側壁之各P型擴散摻雜區之摻雜濃度可因進行P型斜角度離子佈植製程與第二熱趨入製程而被提升,使由各P型擴散摻雜區與N型半導體基底所構成之超級介面可具有均勻之電洞濃度與電子濃度之分布比例,進而解決超級介面耐壓能力不佳的問題。本發明之P型斜角度離子佈植製程之佈植濃度與深度以及第二熱趨入製程之加熱時間可根據所欲形成之超級介面之耐壓能力來決定。
本發明之功率電晶體元件之超級介面結構之製作方法並不以上述實施例為限。下文將繼續揭示本發明之其它實施例或變化形,然為了簡化說明並突顯各實施例或變化形之間的差異,下文中使用相同標號標注相同元件,並不再對重複部分作贅述。
請參考第11圖與第12圖,且一併參考第1圖與第2圖以及第4圖至第8圖。第11圖與第12圖為本發明另一較佳實施例之超級介面結構之製作方法。相較於上述實施例,本實施例之製作方法係利用第二摻雜物來源層來調整P型擴散摻雜區之摻雜濃度。本實施例之製作方法於形成P型擴散摻雜區之步驟之前與上述實施例相同,因此各P型擴散摻雜區鄰近各溝槽之側壁之摻雜濃度大於各P型擴散摻雜區遠離各溝槽之側壁之摻雜濃度,如第1圖與第2圖所示。接著,如第11圖所示,移除第一摻雜物來源層112,然後於各溝槽中填入一摻雜濃度調整層202。其中,摻雜濃度調整層202係由一第二摻雜物來源層所構成,且第二摻雜物來源層包括複數個第二摻雜物。接著,進行第二熱趨入製程,使第二摻雜物朝P型擴散摻雜區114擴散,以調整鄰近各溝槽110之側壁之各P型擴散摻雜區114之摻雜濃度。然後,如第12圖所示,移除摻雜濃度調整層202。本實施例之後續步驟與上述實施例相同,如第4圖至第8圖所示,因此不再在此贅述。於本實施例中,第二摻雜物來源層係為N型,因此第二摻雜物為N型,且濃度調整區118會形成於鄰近各溝槽110之側壁之各P型擴散摻雜區114中。並且,形成第二摻雜物來源層之材料包括砷矽玻璃或磷矽玻璃,但不限於此。本發明形成第一摻雜物來源層與第二摻雜物來源層之材料係依據所具有之第一摻雜物與第二摻雜物的導電類型來決定。例如:當第一導電類型為N型,第二導電類型為P型時,形成第一摻雜物來源層112之材料包含有硼矽玻璃,且形成第二摻雜物來源層之材料包括砷矽玻璃或磷矽玻璃。當第一導電類型為P型,且第二導電類型為N型時,形成第一摻雜物來源層112之材料包括砷矽玻璃或磷矽玻璃,且形成第二摻雜物來源層之材料包括硼矽玻璃,但本發明不以此為限。
另外,由於植入各P型擴散摻雜區114之N型第二摻雜物係與各P型擴散摻雜區114之P型第一摻雜物的導電類型不同,因此於各濃度調整區118中,N型第一摻雜物會與各P型擴散摻雜區114中之部分P型第一摻雜物中和,使各濃度調整區118中之P型第一摻雜物的摻雜濃度被調整至接近各P型擴散摻雜區114之P型第一摻雜物的摻雜濃度。藉此,當各P型擴散摻雜區114鄰近各溝槽110之側壁之摻雜濃度過大時,各P型擴散摻雜區114鄰近各溝槽110之側壁之摻雜濃度可被降低至接近各P型擴散摻雜區114之遠離各溝槽110之側壁之摻雜濃度,且由各P型擴散摻雜區114與N型半導體基底102所構成之超級介面可具有均勻之電洞濃度與電子濃度之分布比例,進而可解決超級介面耐壓能力不佳的問題。
於本發明之其他實施例中,形成摻雜濃度調整層之材料亦可包括單晶矽、多晶矽、非晶矽或矽氧化物等未摻雜材料,以於進行第二熱趨入製程時,藉由擴散原理將鄰近各溝槽之側壁之各P型擴散摻雜區的P型第一摻雜物擴散至摻雜濃度調整層中,進而降低鄰近各溝槽之側壁之P型擴散摻雜區的摻雜濃度。
此外,於本發明之其他實施例中,當各P型擴散摻雜區鄰近各溝槽之側壁之摻雜濃度小於各P型擴散摻雜區遠離各溝槽之側壁之摻雜濃度時,第二摻雜物來源層之第二摻雜物亦可為P型。此時,形成第二摻雜物來源層之材料係與形成第一摻雜物來源層之材料相同,且包括硼矽玻璃,但不限於此。藉此,當各P型擴散摻雜區鄰近各溝槽之側壁之摻雜濃度過低時,利用填入第二摻雜物來源層與第二熱趨入製程可於鄰近各溝槽之側壁之各P型擴散摻雜區中形成濃度提升區,並提升各P型擴散摻雜區鄰近各溝槽之側壁之摻雜濃度,使超級介面可具有均勻之電洞濃度與電子濃度之分布比例。
綜上所述,本發明利用斜角度離子佈植製程或於溝槽中填入摻雜濃度調整層並搭配熱趨入製程,在各擴散摻雜區鄰近各溝槽之側壁之摻雜濃度過高時降低其摻雜濃度,而在各擴散摻雜區鄰近各溝槽之側壁之摻雜濃度過低時提升其摻雜濃度,藉此由各擴散摻雜區與半導體基底所構成之超級介面可具有均勻之電洞濃度與電子濃度之分布比例,進而可解決超級介面耐壓能力不佳的問題。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
100...功率電晶體元件
102...半導體基底
102a...基材
102b...磊晶層
104...墊層
106...硬遮罩層
108...開口
110...溝槽
112...第一摻雜物來源層
114...擴散摻雜區
116...斜角度離子佈植製程
118...濃度調整區
120...絕緣層
122...閘極絕緣層
124...閘極導電層
126...閘極結構
128...基體摻雜區
130...源極摻雜區
132...介電層
132a...接觸洞
134...接觸摻雜區
136...阻障層
138...源極金屬層
140...汲極金屬層
202...摻雜濃度調整層
C1 ...第一曲線
C2 ...第二曲線
C3 ...第三曲線
C4 ...第四曲線
C5 ...第五曲線
C6 ...第六曲線
第1圖至第8圖為本發明一較佳實施例之功率電晶體元件之製作方法示意圖。
第9圖為各P型擴散摻雜區與N型半導體基底之摻雜濃度以及與各溝槽之側壁間之距離示意圖。
第10圖為各P型擴散摻雜區與N型半導體基底之摻雜濃度以及與各溝槽之側壁間之距離示意圖。
第11圖與第12圖為本發明另一較佳實施例之超級介面結構之製作方法。
102...半導體基底
102a...基材
102b...磊晶層
104...墊層
106...硬遮罩層
108...開口
110...溝槽
114...擴散摻雜區
116...斜角度離子佈植製程
118...濃度調整區

Claims (15)

  1. 一種具有超級介面之功率電晶體元件之製作方法,包括:提供一半導體基底,具有一第一導電類型;於該半導體基底中形成至少一溝槽;於該溝槽中填入一摻雜物來源層,其中該摻雜物來源層包括複數個摻雜物,且該等摻雜物具有不同於該第一導電類型之一第二導電類型;進行一第一熱趨入製程,將該等摻雜物擴散至該半導體基底中,以於該溝槽之二側之該半導體基底中分別形成二擴散摻雜區,其中各該擴散摻雜區鄰近該溝槽之側壁之摻雜濃度不同於各該擴散摻雜區遠離該溝槽之側壁之摻雜濃度;移除該摻雜物來源層;以及進行一斜角度離子佈植(tilt-angle ion implantation)製程與一第二熱趨入製程,以調整鄰近該溝槽之側壁之各該擴散摻雜區之摻雜濃度。
  2. 如請求項1所述之具有超級介面之功率電晶體元件之製作方法,其中各該擴散摻雜區鄰近該溝槽之側壁之摻雜濃度大於各該擴散摻雜區遠離該溝槽之側壁之摻雜濃度,且該斜角度離子佈植製程係於鄰近該溝槽之側壁之各該擴散摻雜區中植入複數個具有該第一導電類型之摻雜物。
  3. 如請求項1所述之具有超級介面之功率電晶體元件之製作方法,其中各該擴散摻雜區鄰近該溝槽之側壁之摻雜濃度小於各該擴散摻雜區遠離該溝槽之側壁之摻雜濃度,且該斜角度離子佈植製程係於鄰近該溝槽之側壁之各該擴散摻雜區中植入複數個具有該第二導電類型之離子。
  4. 如請求項1所述之具有超級介面之功率電晶體元件之製作方法,其中該第二導電類型為P型,且形成該摻雜物來源層之材料包括硼矽玻璃(boron-silicate glass,BSG)。
  5. 如請求項1所述之具有超級介面之功率電晶體元件之製作方法,其中該第二導電類型為N型,且形成該摻雜物來源層之材料包括砷矽玻璃(arsenic silicate glass,ASG)或磷矽玻璃(phosphor silicate glass,PSG)。
  6. 如請求項1所述之具有超級介面之功率電晶體元件之製作方法,其中於該斜角度離子佈植製程與該第二熱趨入製程之後,該製作方法另包括:於該溝槽中形成一絕緣層;於該溝槽之至少一該側之該半導體基底上形成一閘極結構;於該閘極結構之二側的該半導體基底中分別形成二基體摻雜區,且各該基體摻雜區分別與各該擴散摻雜區相接觸,其中該等基體摻雜區具有該第二導電類型;以及於各該基體摻雜區中分別形成一源極摻雜區。
  7. 一種具有超級介面之功率電晶體元件之製作方法,包括:提供一半導體基底,具有一第一導電類型;於該半導體基底中形成至少一溝槽;於該溝槽中填入一第一摻雜物來源層,其中該第一摻雜物來源層包括複數個第一摻雜物,且該等第一摻雜物具有不同於該第一導電類型之一第二導電類型;進行一第一熱趨入製程,將該等第一摻雜物擴散至該半導體基底中,以於該溝槽之二側之該半導體基底中分別形成二擴散摻雜區,其中各該擴散摻雜區鄰近該溝槽之側壁之摻雜濃度不同於各該擴散摻雜區遠離該溝槽之側壁之摻雜濃度;移除該第一摻雜物來源層;於該溝槽中填入一摻雜濃度調整層,並進行一第二熱趨入製程,以調整鄰近該溝槽之側壁之各該擴散摻雜區之摻雜濃度;以及移除該摻雜濃度調整層。
  8. 如請求項7所述之具有超級介面之功率電晶體元件之製作方法,其中該摻雜濃度調整層係由一第二摻雜物來源層所構成,且該第二摻雜物來源層包括複數個具有該第一導電類型之第二摻雜物。
  9. 如請求項8所述之具有超級介面之功率電晶體元件之製作方法,其中該第一導電類型為N型,該第二導電類型為P型,形成該第一摻雜物來源層之材料包括硼矽玻璃,且形成該第二摻雜物來源層之材料包括砷矽玻璃(arsenic silicate glass,ASG)或磷矽玻璃(phosphor silicate glass,PSG)。
  10. 如請求項8所述之具有超級介面之功率電晶體元件之製作方法,其中該第一導電類型為P型,該第二導電類型為N型,形成該第一摻雜物來源層之材料包括砷矽玻璃或磷矽玻璃,且形成該第二摻雜物來源層之材料包括硼矽玻璃。
  11. 如請求項7所述之具有超級介面之功率電晶體元件之製作方法,其中該摻雜濃度調整層係由一第二摻雜物來源層所構成,且該第二摻雜物來源層包括複數個具有該第二導電類型之第二摻雜物。
  12. 如請求項11所述之具有超級介面之功率電晶體元件之製作方法,其中該第二導電類型為P型,且形成該第一摻雜物來源層與該第二摻雜物來源層之材料分別包括硼矽玻璃。
  13. 如請求項11所述之具有超級介面之功率電晶體元件之製作方法,其中該第二導電類型為N型,且形成該第一摻雜物來源層與該第二摻雜物來源層之材料分別包括砷矽玻璃或磷矽玻璃。
  14. 如請求項7所述之具有超級介面之功率電晶體元件之製作方法,其中形成該摻雜濃度調整層之材料包括單晶矽、多晶矽、非晶矽或矽氧化物。
  15. 如請求項7所述之具有超級介面之功率電晶體元件之製作方法,其中於移除該摻雜濃度調整層之後,該製作方法另包括:於該溝槽中形成一絕緣層;於該溝槽之至少一該側之該半導體基底上形成一閘極結構;於該閘極結構之二側的該半導體基底中分別形成二基體摻雜區,且各該基體摻雜區分別與各該擴散摻雜區相接觸,其中該等基體摻雜區具有該第二導電類型;以及於各該基體摻雜區中分別形成一源極摻雜區。
TW101104734A 2012-02-14 2012-02-14 具有超級介面之功率電晶體元件之製作方法 TWI446459B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW101104734A TWI446459B (zh) 2012-02-14 2012-02-14 具有超級介面之功率電晶體元件之製作方法
CN2012100907611A CN103247534A (zh) 2012-02-14 2012-03-30 具有超级结的功率晶体管组件的制作方法
US13/553,806 US8753937B2 (en) 2012-02-14 2012-07-19 Manufacturing method of power transistor device with super junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101104734A TWI446459B (zh) 2012-02-14 2012-02-14 具有超級介面之功率電晶體元件之製作方法

Publications (2)

Publication Number Publication Date
TW201334084A TW201334084A (zh) 2013-08-16
TWI446459B true TWI446459B (zh) 2014-07-21

Family

ID=48926962

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101104734A TWI446459B (zh) 2012-02-14 2012-02-14 具有超級介面之功率電晶體元件之製作方法

Country Status (3)

Country Link
US (1) US8753937B2 (zh)
CN (1) CN103247534A (zh)
TW (1) TWI446459B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112026B2 (en) * 2012-10-17 2015-08-18 Semiconductor Components Industries, Llc Semiconductor devices and method of making the same
CN103545219A (zh) * 2013-10-30 2014-01-29 电子科技大学 一种半导体器件漂移区的制造方法
CN105575781B (zh) * 2016-01-29 2018-06-19 上海华虹宏力半导体制造有限公司 沟槽型超级结的制造方法
CN107507857B (zh) * 2017-08-10 2020-06-19 华润微电子(重庆)有限公司 自对准超结结构及其制备方法
DE102017118957B4 (de) * 2017-08-18 2021-10-21 Infineon Technologies Austria Ag Herstellen eines superjunction-transistorbauelements
TWI642116B (zh) * 2017-11-24 2018-11-21 帥群微電子股份有限公司 製作半導體元件的方法
CN108807184B (zh) * 2018-06-25 2021-01-05 济南安海半导体有限公司 具有超级结结构的场效应晶体管及其制造方法
DE102018132435B4 (de) 2018-12-17 2021-01-21 Infineon Technologies Austria Ag Verfahren zum Herstellen eines Superjunction-Transistorbauelements
CN110429140A (zh) * 2019-08-06 2019-11-08 上海朕芯微电子科技有限公司 一种超结mosfet结构及其制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408554B1 (de) * 1996-02-05 2015-03-25 Infineon Technologies AG Durch Feldeffekt steuerbares Halbleiterbauelement
CN1171318C (zh) * 1999-06-03 2004-10-13 通用半导体公司 具有低导通电阻的高压功率金属氧化物半导体场效应晶体管
US6608350B2 (en) * 2000-12-07 2003-08-19 International Rectifier Corporation High voltage vertical conduction superjunction semiconductor device
KR100485297B1 (ko) * 2001-02-21 2005-04-27 미쓰비시덴키 가부시키가이샤 반도체 장치 및 그 제조 방법
US6576516B1 (en) * 2001-12-31 2003-06-10 General Semiconductor, Inc. High voltage power MOSFET having a voltage sustaining region that includes doped columns formed by trench etching and diffusion from regions of oppositely doped polysilicon
WO2005060676A2 (en) * 2003-12-19 2005-07-07 Third Dimension (3D) Semiconductor, Inc. A method for manufacturing a superjunction device with wide mesas
JP2007515079A (ja) * 2003-12-19 2007-06-07 サード ディメンジョン (スリーディ) セミコンダクタ インコーポレイテッド 従来の端子を備えた超接合装置の製造方法
US6982193B2 (en) * 2004-05-10 2006-01-03 Semiconductor Components Industries, L.L.C. Method of forming a super-junction semiconductor device
US7381603B2 (en) * 2005-08-01 2008-06-03 Semiconductor Components Industries, L.L.C. Semiconductor structure with improved on resistance and breakdown voltage performance
US7790549B2 (en) * 2008-08-20 2010-09-07 Alpha & Omega Semiconductor, Ltd Configurations and methods for manufacturing charge balanced devices
US7943452B2 (en) * 2006-12-12 2011-05-17 International Business Machines Corporation Gate conductor structure
TW200921912A (en) 2007-11-05 2009-05-16 Anpec Electronics Corp Power transistor capable of decreasing capacitance between gate and drain
US7893488B2 (en) * 2008-08-20 2011-02-22 Alpha & Omega Semiconductor, Inc. Charged balanced devices with shielded gate trench
TWI366236B (en) 2008-09-04 2012-06-11 Anpec Electronics Corp Method of forming power device
TWI396240B (zh) * 2009-05-08 2013-05-11 Anpec Electronics Corp 製造功率半導體元件的方法
US8084811B2 (en) * 2009-10-08 2011-12-27 Monolithic Power Systems, Inc. Power devices with super junctions and associated methods manufacturing
US8067800B2 (en) * 2009-12-28 2011-11-29 Force Mos Technology Co., Ltd. Super-junction trench MOSFET with resurf step oxide and the method to make the same
US8372717B2 (en) * 2009-12-28 2013-02-12 Force Mos Technology Co., Ltd. Method for manufacturing a super-junction trench MOSFET with resurf stepped oxides and trenched contacts
US8373225B2 (en) * 2009-12-28 2013-02-12 Force Mos Technology Co., Ltd. Super-junction trench MOSFET with Resurf stepped oxides and split gate electrodes
US8525260B2 (en) * 2010-03-19 2013-09-03 Monolithic Power Systems, Inc. Super junction device with deep trench and implant
JP5560897B2 (ja) * 2010-05-20 2014-07-30 富士電機株式会社 超接合半導体装置の製造方法
TW201239995A (en) * 2011-03-30 2012-10-01 Anpec Electronics Corp Production method of power transistor with super junction
TW201243958A (en) * 2011-04-21 2012-11-01 Anpec Electronics Corp Method for fabricating a semiconductor power device
US9312335B2 (en) * 2011-09-23 2016-04-12 Alpha And Omega Semiconductor Incorporated Lateral PNP bipolar transistor with narrow trench emitter
US8916951B2 (en) * 2011-09-23 2014-12-23 Alpha And Omega Semiconductor Incorporated Lateral PNP bipolar transistor formed with multiple epitaxial layers
TWI469351B (zh) * 2011-11-29 2015-01-11 Anpec Electronics Corp 具有超級介面之功率電晶體元件及其製作方法

Also Published As

Publication number Publication date
US8753937B2 (en) 2014-06-17
CN103247534A (zh) 2013-08-14
US20130210205A1 (en) 2013-08-15
TW201334084A (zh) 2013-08-16

Similar Documents

Publication Publication Date Title
TWI446459B (zh) 具有超級介面之功率電晶體元件之製作方法
US8187941B2 (en) Method of manufacturing semiconductor device
TWI396240B (zh) 製造功率半導體元件的方法
JP5607109B2 (ja) 半導体装置およびその製造方法
TWI587503B (zh) 半導體裝置及其製造方法
JP7182850B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US20110008939A1 (en) Method of making a trench MOSFET having improved avalanche capability using three masks process
KR101832334B1 (ko) 반도체소자 및 그 제조방법
TWI503983B (zh) 半導體裝置及其製造方法
CN115579326A (zh) 一种半导体集成电路的制造方法
TW201327686A (zh) 具有超級介面之溝槽型功率電晶體元件及其製作方法
TWI470698B (zh) 超級介面電晶體及其製作方法
US20130307064A1 (en) Power transistor device and fabricating method thereof
TW201334036A (zh) 降低擴散摻雜區之表面摻雜濃度之方法、超級介面結構之製作方法以及功率電晶體元件之製作方法
TWI478341B (zh) 功率電晶體元件及其製作方法
TWI517393B (zh) 半導體裝置及其製作方法
JP7462732B2 (ja) 横方向拡散金属酸化物半導体デバイス及びその製造方法
TWI506705B (zh) 半導體裝置及其製造方法
CN216389378U (zh) 一种沟槽型功率器件
TWI798809B (zh) 半導體結構以及其形成方法
TW202407808A (zh) 功率半導體裝置及其製造方法
CN114388362A (zh) 一种超结器件结构及其制备方法
CN116544188A (zh) 半导体集成电路的制造方法
TWI433311B (zh) 具有自對準矽化物接觸的功率裝置及其製造方法
KR20050072352A (ko) 트랜지스터 제조 방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees