线性电动机和采用它的线性压缩机
技术领域
本发明涉及线性电动机,以及将该线性电动机用于制冷循环等情况下的线性压缩机。
背景技术
近年来,冷冻设备的高效率化的必要性进一步增加。与此相对,由于采用线性电动机的压缩机的机构组成简单,故期待大幅度地降低滑动损耗。由此,为了提高效率,广泛地使用冷冻设备。下面参照附图,对现有的线性压缩机进行说明。
图21为现有的线性压缩机的剖视图。密闭外壳(在下面称为“外壳”)1收纳具有线性电动机2的主体3,存储有润滑油4。
该线性电动机2由定子9和活动件12构成。该定子9由呈中空圆筒状的第1硅钢片层(在下面称为“钢片层”)6和呈中空圆筒状的第2硅钢片层(在下面称为“钢片层”)8构成,该第2硅钢片层8上缠绕有线圈7,且该第2硅钢片层8在钢片层6的外周面侧上形成规定空隙。钢片层6,8保持在支架5上。活动件12可宽松地插入于钢片层6和钢片层8之间,多个磁铁11粘接于由非磁性体材料形成的磁性壳10的前端部,呈中空圆筒状。另外,磁铁11一般由钕等具有强磁场的稀土类材料形成的磁铁材料制成,沿与活动件12的摆动方向相垂直的方向对其进行磁化。
在以可自由往复运动的方式插入具有圆筒状的孔的汽缸14中的活塞15和汽缸14之间,形成轴承部16。活塞15和磁性壳10按照同轴而成一体的方式形成。另外,汽缸14设置于呈中空圆筒状的钢片层6的内侧,并且在其外周,形成有支架5。
活塞15呈中空圆筒状,在内部空间,形成吸入通路(在下面称为“通路”)17。在通路17的压缩室18侧的开口端,安装有吸入阀(在下面称为“阀”)19。另外,在压缩室18的开口端,设置有排出阀(在下面称为“阀”)20。
汽缸14、活塞15、钢片层6,8具有共同的轴线。活塞15通过其与汽缸14之间的轴承部16,保持活动件12。由此,磁铁11与相应的钢片层6与8,保持规定的空隙。
内侧共振弹簧(在下面称为“弹簧”)21和外侧共振弹簧(在下面称为“弹簧”)22均为压缩螺旋弹簧。弹簧21按照与钢片层6和磁性壳10接触的方式设置,弹簧22按照与磁性壳10和外支架23接触的方式设置。弹簧21,22均在受到压缩的状态组装。另外,供油泵24形成于主体3的底部,位于润滑油4的内部。
下面对象上述那样构成的线性压缩机的动作进行说明。
首先,如果使电流流过线圈7,对其进行激励,则从钢片层6,经空隙、磁铁11、空隙、钢片层8、空隙、磁铁11、空隙、直到钢片层6,产生一系列的磁通环,形成磁回路。通过该磁通,将磁铁11吸引到形成于该钢片层8上的磁极上。接着,如果使向线圈7的电流交替,则活动件12在钢片层6和钢片层8之间,沿图21中的水平方向往复运动。由此,与活动件12连接的活塞15也在汽缸14的内部往复运动。通过该往复运动,外壳1内的空间的制冷气体通过通路17,从阀19,吸入到压缩室18中,在压缩室18的内部受到压缩,从阀20排出。
弹簧21介于汽缸14和钢片层6之间,通过弹力支承活动件12的内侧。上述弹簧22通过弹力支承活动件12的外侧。此外,在活动件12往复运动时,弹簧21和弹簧22将活塞15的直线往复运动转换为弹性能量,将其存储。弹簧21和弹簧22在将该存储的弹性能量转换为直线运动的同时,引起共振运动。
此外,供油泵24通过压缩机主体3的振动,将润滑油供给到轴承部16。这样的压缩机比如,在JP特开2001-73942号文献中公开。
但是,在上述已有的构成中,活动件12在钢片层6和钢片层8之间摆动。即,需要避免活动件12与两个钢片层6,8双方接触的情况。由此,在活动件12与钢片层6,8之间分别设置空隙。但是,该2层的空隙形成磁阻,磁通按照与距离成比例的方式减少。与此相对,为了获得驱动活动件12所必需的推力,需要按照2层的空隙导致的磁通的减少量,增加供给线圈7的电流。其结果是,由于所输入的电流增加,故难于提高效率。
还有,为了获得驱动活动件12所必需的推力,在现有的线性电动机中,必须增加磁铁11的尺寸。但是,由于磁铁11采用高价的稀土类材料,故如果磁铁11的尺寸增加,则成本大幅度地上升。
再有,如果形成于活动件12和钢片层6,8之间的2层的空隙的距离具有差异,则在磁铁11和钢片层6,8之间,产生磁吸力的非平衡。其结果是,沿活动件12的摆动方向,产生直角的扭力,在由活塞15和汽缸14构成的轴承部16中产生滑动损耗。或者,在轴承部16处,产生异常的磨耗,还成为压缩机的寿命降低的原因。此外,在越产生磨耗,活塞15和汽缸14之间的扭力越大的情况下,产生伴随振动而造成的噪音。由此,希望该空隙在任何的部位均为相同的距离。
为了避免这样的问题,有增加上述2层的空隙的距离,降低距离差异的比例的方法。但是,在这样的构成中,为了获得必要的推力,必须增加输入,并且必须进一步增加磁铁11的尺寸。于是,通常,提高包括磁性壳10的驱动系统的加工精度。为了提高该加工精度,必须增加厚度,以便提高作为活动部的磁性壳10的刚性,其结果是,驱动系统的重量增加。另外,由于驱动活动件12所必需的推力增加,故必须增加供给线圈7的电流。此外,轴承部16所承受的荷载也增加,滑动损耗增加。
此外,磁性壳10和活塞15在钢片层6,8的外侧连接,并且在磁性壳10和钢片层6之间设置弹簧21。由此,磁性壳10呈沿轴向较长的形状。在这样形状的情况下,特别是安装有磁铁11的前端部分的刚性容易降低。于是,为了确保精度,必须提高刚性,因增加板厚等的措施,重量进一步增加。
还有,除了加工精度,对于降低磁吸力的非平衡来说,按照空隙均匀的方式以良好的精度组装是必不可少的。由于具有2层的空隙,故必须对磁性壳10的内侧和外侧这两者的空隙进行管理,制造时的精度的管理严格,这样使成本上升。
如果为了减轻重量,通过较薄的板形成圆筒状的磁性壳10,则磁性壳10和支承它的结构的刚性不足。由此,产生部件精度、组装精度、磁铁11的磁力不均等造成磁吸力的不平衡,使得支承结构变形,沿半径方向吸引磁铁11。另外,在2层的空隙中的每个空隙中,磁铁11和钢片层6,8接近,磁吸力进一步增加,由此,导致磁铁11的偏心更大的恶性循环。其结果是,对磁性壳10等,作用较大的力,产生变形,由此产生噪音,最差的情况为钢片层6,8与磁铁11碰撞,造成破损。
发明内容
本发明的线性电动机包括具有固定铁心和磁导线的定子;具有活动铁心和磁铁的活动件;使上述活动件摆动自由地支承的板状的弹性部件。另外,本发明的线性压缩机包括线性电动机、和在上述活动件的摆动方向上共有轴心的汽缸;以及可往复自由地插入汽缸内且与活动件连接的活塞。
附图说明
图1为本发明的第1实施方式的线性电动机的侧面剖视图;
图2为表示图1的线性电动机的板簧的相对位置的示意图;
图3为图1的线性电动机的分解立体图;
图4为表示图1的线性电动机的动作原理的示意图;
图5为表示图1的线性电动机的电流流动的示意图;
图6为本发明的第2实施方式的线性压缩机的侧面剖视图;
图7为图6的水平剖视图;
图8为本发明的第3实施方式的线性压缩机的侧面剖视图;
图9为本发明的第4实施方式的线性压缩机的侧面剖视图;
图10为本发明的第5实施方式的线性压缩机的侧面剖视图;
图11为本发明的第6实施方式的线性压缩机的侧面剖视图;
图12为本发明的第7实施方式的线性压缩机的侧面剖视图;
图13为沿图12中的A-A线的剖视图;
图14为本发明的第7实施方式的线性电动机所采用的弹性轴承(flexure bearing)的平面图;
图15为本发明的第8实施方式的线性电动机的剖视图;
图16为本发明的第9实施方式的线性电动机的剖视图;
图17为本发明的第10实施方式的线性压缩机的剖视图;
图18为本发明的第11实施方式的线性压缩机的主要部分的剖视图;
图19为本发明的第12实施方式的线性压缩机的主要部分的剖视图;
图20为本发明的第13实施方式的线性压缩机的剖视图;
图21为现有的线性压缩机的剖视图。
具体实施方式
下面参照附图,对本发明的线性电动机和线性压缩机的实施方式进行说明。另外,在各实施方式中,针对相同的组成,采用同一标号,省略具体的说明。
(第1实施方式)
图1为本发明的第1实施方式的线性电动机的侧面剖视图。图2为表示板簧的相对位置的示意图,图3为从板簧42A侧,立体地观看活动件31、定子35、板簧42B的图。图3为表示线性电动机的组装状态的分解立体图,图4为表示线性电动机的动作原理的示意图,图5为表示线性电动机的电流流动方向的示意图。
基本呈圆筒状的定子25具有呈环状卷绕的两根磁导线26A,26B,固定铁心27,以及支承固定铁心27的外周的支架28。该固定铁心27收纳磁导线26A,26B,并且在其内周形成三个磁极29A,29B,29C。
该固定铁心27按照下述方式形成,即,从磁性方面来说是无方向的,并且透磁率较高,比如,将以JIS C2552的无向性电磁钢带作为代表的硅钢片(图中未示出)相对圆筒的轴心呈辐射状而排列。该固定铁心27按照在内周面形成有磁极29A,29B,29C,夹持预先呈环状缠绕的磁导线26A,26B的方式装配。
该磁导线26A,26B的绕组的端部26C,26D,26E,26F在固定铁心27中的、呈辐射状设置的钢板的间隙被引出。另外,象图5所示的那样,端部26C,26D,26E,26F按照电流绕轴流动的方向与磁导线26A,26B是彼此逆向的方式连接。另外,端部26G,26H利用实现电绝缘处理的导线(图中未示出),引出到固定铁心27的外侧。
活动件31呈与定子25同轴心的基本圆筒状,按照可在轴心方向自由摆动的方式收纳于定子25的内侧。该活动件31具有活动铁心34,磁铁35A,35B。活动铁心34由铁系材料形成的轴32,以及以轴心为中心而呈辐射状地、将透磁率较高的硅钢片排列于轴32的外周的薄板部33成一体形成。该薄板部33与构成固定铁心27的硅钢片相同,比如,由以JIS C2552的无方向性电磁钢带为代表的硅钢片形成。磁铁35A,35B按照与定子25的内周保持一定空隙的方式,通过粘接剂固定于活动铁心34的外周,沿轴向分离为两个部分。磁铁35A,35B在与固定铁心27面对的主面上,具有各自不同的磁极。磁铁35A,35B采用包括稀土类元素,具有强磁场的磁铁。
端板36为安装于定子25的固定铁心27的两个端面上的环状的板。端板36使形成固定铁心27的呈辐射状排列的硅钢片的强度提高。另外,端板36由不锈钢等的非磁性材料形成,由此,防止磁通从定子25的硅钢片泄漏等的情况,电动机效率提高。另外,为了简化起见,在图3未示出端板36。
板簧42A,42B设置于活动件31的轴向的两侧。该板簧42A,42B由具有弹性且富有柔性的板状的金属材料形成,具体来说,由弹簧钢、工具钢、不锈钢等的铁系材料形成。在板簧42A,42B中,中心部42C和涡旋状的两个臂的前端42D,42E这三个部位开设有通孔。中心部42C通过螺栓与活动件31的轴32连接,前端42D,42E通过螺栓与定子25的支架28连接。板簧42A,42B构成弹性部件。
板簧42A按照从中心部42C延伸到前端42D,42E的臂部42F,42G从图3的板簧42A侧观看,沿逆时针方向旋转的方式安装。此外,板簧42B也同样地安装。另外,象图3所示的那样,板簧42A相对支架28的安装角度为相对板簧42B的支架28的安装角度大致旋转90度的方向。由此,臂部42F,42G的位置在线性电动机43的两侧不一致。
通过板簧42A,42B,活动件31在与定子25的磁极29A,29B保持一定空隙的同时,实现相对,按照可沿轴心方向自由摆动的方式支承。象这样,活动件31和定子25等构成线性电动机43。
下面主要参照图4,对象上述那样构成的线性电动机43的动作进行说明。
如果电流流过磁导线26A,26B,则象箭头所示的那样,产生经过固定铁心27、空隙、磁铁35A、活动铁心34、磁铁35A、空隙、固定铁心27的闭合的磁通Φ。另外,产生经过固定铁心27、空隙、磁铁35B、活动铁心34、磁铁35B、空隙、固定铁心27的闭合的磁通Φ。通过该磁通Φ,分别将各磁极29A,29B,29C磁化为N极、S极、N极。分别将磁铁35A,35B的外表面磁化为S极,N极,在各磁极和各磁铁之间,产生由空白箭头表示的吸引、排斥的力。由此,沿箭头X表示的方向,驱动活动件31。
接着,如果反向的电流流过磁导线26A,26B,则产生与上述相反的动作,活动件31沿与箭头X相反的方向驱动。按照交替地切换电流的方向和大小的方式进行控制,由此,活动件31进行往复动作。
磁铁35A,35B固定于活动铁心34的外周上。由此,与现有的活动铁心型的线性电动机相比较,磁铁35A,35B与活动铁心34之间不产生空隙,由此,磁通环中的空隙小。其结果是,由于磁阻变小,故磁通与现有的线性电动机相比较,更容易流动。于是,可减小为了获得必要推力,向产生一定磁通的磁导线26A,26B付与的电流,可提高效率,或降低磁铁量。
在活动件31中,由于磁铁35A,35B与活动铁心34粘接,故结构牢固,外径尺寸的精度提高容易。另外,对较脆的磁铁本身的强度进行补偿。其结果是,可减小由高价的稀土类形成的磁铁的厚度,大幅度地降低成本,并且活动部的重量变轻,效率提高。
此外,活动件31通过板簧42A,42B支承于定子25上,但是板簧42A,42B的半径方向的刚性高于轴向的弹性常数。由此,在活动件31和定子25之间,即使在作用有活动件31的自重的荷载或磁吸力的不平衡等的情况下,活动件31和定子25之间的空隙的变化极小。于是,防止活动件31变形、产生噪音或活动件31和定子25碰撞的情况。
由于板簧42A,42B具有一边沿同一方向旋转一边延伸的多个臂部42F,42G,故与内径相比具有较长的臂部。由此,在弹性范围内的摆动幅度较大,减缓弹簧的应力增加。
另外,板簧42A,42B均按照从图3的板簧42A侧观看,沿逆时针方向旋转的方式安装。另外,臂部42F,42G的旋转方向相同。由此,因伴随两个弹簧的往复运动的弹簧的微小的扭转而产生的旋转方向相同。由此,通过圆筒形的活动件31稍微旋转,可防止约束扭转时产生的应力增加,可靠性增加。
在活动件31通过板簧42A,42B而固定于定子25上时,必须在活动件31和定子25之间,插入多块宽度较小的薄板状的测厚规,确保均匀的空隙。但是,如果在线性电动机43的两端面上,设置板簧42A,42B,则活动件31和定子25之间的空隙隐藏在板簧42A,42B后面。由此,露出的空隙如图2所示的那样减少。但是,在本实施方式中,按照板簧42A,42B的安装角度在活动件31的两侧相互错开90度的方式设置。由此,通过从电动机的两侧插入测厚规,可在几乎全周插入测厚规。于是,在插入测厚规后,活动件31和定子25通过板簧42A,42B连接,由此,确保均匀的空隙。其结果是,防止由于磁吸力的不平衡而产生扭力的情况,减小滑动损耗的发生,防止磨耗。
另外,固定铁心27在包括磁导线26A,26B的收纳部分的截面,沿轴向分割为3块。由此,通过以夹持预先呈环状而卷绕的磁导线26A,26B的方式插入,可进行组装,获得较高的生产效率。
此外,在本实施方式中,定子25的磁极数为三个,沿轴向设置2个活动件31的磁铁,但是,即使在定子的磁极数为2个,或4个以上的情况下,仍可形成电动机。即,可在定子上设置多个磁极,在活动件上,沿轴向设置比定子的磁极数少1个的磁铁。
对于固定铁心27的磁通的流动,在磁极29A,29B,29C,与磁导线26A,26B的外周侧,改变约90度方向。但是,固定铁心27采用无向性电磁钢带。由此,无论磁通向哪个方向流动,透磁性仍没有方向性。于是,不产生显著的效率降低。
(第2实施方式)
图6为本发明的第2实施方式的线性压缩机的侧面剖视图,图7为图6的水平剖视图。密闭外壳(在下面称为“外壳”)41收纳包括线性电动机43的压缩机主体53。
在与线性电动机43的定子25连接的汽缸51中,以往复运动的方式插入有与线性电动机43的活动件31连接的活塞52。在该汽缸51的端面上,安装有汽汽缸盖54、吸入消声器55。汽缸盖54、吸入消声器55、汽缸51、定子25等形成固定部57。
活动部58由活塞52、活动件31等构成。在活动件31的轴32的前端,安装有活塞52,轴32和活塞52通过球窝接头61,以可旋转的方式连接。板簧42A,42B的相应中心部安装于活动部58,两个前端部安装于固定部57,构成共振弹簧59。汽缸51安装于线性电动机43的定子25的支架28上,活塞52以可自由摆动的方式插入圆筒状的汽缸51的内面51A上。
压缩机主体53按照线性电动机43的往复方向基本处于水平状态的方式通过悬簧64弹性地支承于外壳41的内部。毛细管66的一端浸泡于贮存于外壳41的底部的润滑油44中,另一端开口于吸入消声器55的管部55A的内部。
下面对象上述那样构成的线性压缩机的动作进行说明。如果电流流过线性电动机43,则伴随活动件31的往复运动,安装于其上的活塞52在汽缸51的内部往复运动,进行压缩机的动作。此时,电流的频率在由固定部57、活动部58的质量和共振弹簧59的弹性常数确定的共振频率的附近,由此,通过共振作用,线性电动机43的能量损耗少,以良好的效率往复运动。
制冷气体通过吸入消声器55被吸入到压缩室48中,但是,此时,从毛细管66供给润滑油44,对活塞52和汽缸51的滑动部等进行润滑。由于作用于活动件31和定子25之间的荷载由板簧42A,42B承受,故在活塞52和汽缸51的滑动部,几乎不作用侧向的力。另外,活塞52和活动件31通过球窝接头61连接。由此,由于即使在因部件的尺寸、组装精度的影响,使得线性电动机43的摆动方向和汽缸51的轴微小地错位的情况下,球窝接头61仍旋转,故防止活塞52和汽缸51的扭转。于是,防止滑动损耗的增加造成的效率降低,以及摩擦造成的可靠性降低。
另外,在本实施方式的线性压缩机中,按照汽缸51、板簧42B、电动机43、板簧42A的顺序,这些部件沿轴向直线排列。即,令活动件31的摆动方向基本沿水平方向构成。由此,与在电动机的内部设置有汽缸的现有的线性压缩机相比较,直径较小。通过按照轴心沿水平方向的方式设置这样的线性压缩机,整体高度小于现有的压缩机。其结果是,在装载于冰箱中时,收纳压缩机的机械室的容积变小,冷藏室的室内容积增加。
此外,由于活动部58确实通过板簧42A,42B支承,故即使在横向设置压缩机的情况下,活动部58的重量仍不会作为活塞52和汽缸51的接触荷载而作用。由此,防止滑动损耗的增加造成的效率降低,以及摩擦造成的可靠性降低。
(第3实施方式)
图8为本发明的第3实施方式的线性压缩机的剖视图。活塞71和活动件31通过可歪倒杆(在下面称为“杆”)72连接。其以外的组成与第2实施方式的相同。
杆72由直径较小的棒状的弹性体构成,以便获得能沿轴向承受载荷的刚性,同时具有沿横向的柔性和弹性。具体来说,由不锈钢、弹簧钢等具有弹力性和刚性的金属材料形成。即,杆72可沿与活塞71的轴平行的方向移动,并且可沿旋转方向发生变形。由此,即使在活动件31的轴32和汽缸51的轴心稍稍错位的情况下,仍防止活塞71和汽缸51的扭转,防止摩擦、磨耗。
(第4实施方式)。
图9为本发明的第4实施方式的线性压缩机的剖视图。在汽缸81中,设置有气体通路81B,该气体通路81B从汽缸盖54的高压室54A,连通到内面81A中的与活塞52面对的位置,形成气体轴承82。另外,在本实施方式中,由于不需要润滑油,故不设置图6所示的润滑油44和毛细管66。其以外的组成与第2实施方式的图6相同。
在气体轴承82中,通过从汽缸盖54的高压室54A供给的高压的制冷气体,活塞52处于相对汽缸81上浮的状态。通常,由于气体轴承防止固体之间的接触,故摩擦非常少。但是,为了承受较大的荷载,必须使大量的气体流动,在用于压缩机的活塞52和汽缸81之间时,气体的泄漏造成损耗。在本实施方式中,由于活动件31通过板簧42A,42B支承,故在气体轴承82上,仅仅作用较小的荷载。由此,供给气体轴承82的气体量较少。但是,球窝接头61防止活塞52和汽缸81的倾斜。由此,滑动损耗和泄漏损耗这两者变小。由此,压缩机的效率提高,并且防止摩擦造成的可靠性的降低。
此外,由于不采用润滑油,故润滑油不附着于冷却系统的热交换器的传热面上,由此,改善与制冷剂的热传递,改善冷却系统的效率。另外,由于制冷剂在润滑油中不溶解,故可减小冷却系统所采用的制冷剂量,不仅价格低,而且冷却系统的热交换的效率提高,冷却系统的整体的效率提高。此外,在采用自然制冷剂,可燃性制冷剂时,由于可减小制冷剂的使用量,故万一制冷剂泄漏时的着火、爆炸的可能性降低,安全性提高。
(第5实施方式)
图10为本发明的第5实施方式的线性压缩机的剖视图。汽缸91由本身具有润滑性的材料构成。具体来说,在滑动面上,设置与金刚石类似的碳膜。另外,在本实施方式中,未设置气体轴承82。其以外的组成与第4实施方式的图9相同。
活塞52和汽缸91的滑动部的荷载较小。另外,由于汽缸91的表面91A本身具有润滑性,故即使在不采用润滑油的情况下,仍防止磨耗,确保滑动部的可靠性。象这样,本实施方式实现与第4实施方式相同的效果。
此外,在本实施方式中,汽缸91采用与金刚石类似的碳膜,但是即使在除此以外,采用添加了碳等本身具有润滑性的材料或PTFE等材料的情况下,仍获得相同的效果。
还有,在本实施方式中,本身具有润滑性的材料用于汽缸91,但是,即使在用于活塞52的情况下,仍获得相同的效果。
(第6实施方式)
图11为本发明的第6实施方式的线性压缩机的剖视图。活塞96由陶瓷类的材料,具体来说,由在表面上设置碳化钨的表面膜的部件构成。其以外的组成与第5实施方式的图10相同。
由于在活塞96的表面上,设置耐磨耗性较高的碳化钨表面膜,故即使在不采用润滑油的情况下,仍防止磨耗,确保滑动部的可靠性。另外,由于不采用润滑油,故在粘性摩擦降低等方面与第5实施方式具有相同的效果。
另外,在本实施方式中,陶瓷类的材料采用碳化钨,但是,即使在采用其它的氧化锆等的陶瓷类材料的情况下,可靠性仍提高。
此外,即使代替活塞96,在汽缸51中采用陶瓷类的材料的情况下,仍获得相同的效果。
(第7实施方式)
图12为本发明的第7实施方式的线性电动机的侧面剖视图,图13为沿图12中的A-A线的剖视图,图14为弹性轴承的平面图。本实施方式的活动件121具有由芯部121A和薄板部121B形成一体而构成的活动铁心124;固定于芯部121A上,沿摆动方向伸出的活动轴126A,126B。另外,分别设置于活动件121的摆动方向的两侧的弹性轴承128A,128B保持活动轴126A,126B,可自由摆动地支承活动件121。其以外的组成与第1实施方式相同。此外,在本实施方式中,未设置通过图1而说明的端板36,但是也可与第1实施方式相同,设置端板36。
芯部121A由铁系材料形成,呈中空圆筒状。薄板部121B是将透磁率较高的,比如,JIS C2552的无向性电磁钢带为代表的硅钢片,以活动件121的轴心为中心地呈辐射状排列于芯部121A的外周而形成。活动轴126A,126B均由其电阻比铁足够大的、非磁性的不锈钢材料等形成。
弹性轴承128A,128B分别具有通过在板状的弹性件上设置较窄的槽的方式形成的八个臂128C,128D,128E,128F,128G,128H,128J,128K。
弹性轴承128A,128B的外周部分别与支架28连接固定,其内周部与活动轴126A,126B连接固定。该弹性轴承128A,128B构成弹性部件。虽然该弹性轴承128A,128B的半径方向的刚性极大,但是作为弹性部件的轴向(摆动方向)的刚性与半径方向相比较非常小。于是,弹性轴承128A,128B用作按照可沿轴向往复运动的方式支承活动件121的轴承。半径方向、轴向的刚性随臂的形状、排列、材料、材料厚度等的设计因素而变化。弹性轴承128A,128B承受至少通过磁吸力而将活动件121吸引到定子25上的力,活动件121和定子25具有遍及全周,确保一定间隙的半径方向的刚性。
磁铁35A,35B与磁极29A,29B,29C按照即使在活动件121摆动时的情况下,磁铁35A仍与磁极29A,29B面对,磁铁35B与磁极29B,29C面对的方式设置。另外,活动件121按照在摆动时,不从定子25的内部向外部露出这样的长度构成,其与定子25的长度的差基本与活动件121的最大振幅一致。
下面对象这样构成的线性电动机的动作进行说明。使电流流过磁导线26A,26B,按照与第1实施方式的图4相同的方式,驱动活动件121。接着,如果使电流的方向相反,则驱动活动件121被沿反向驱动。按照交替地切换电流的方向和大小的方式进行控制,由此,活动件121进行往复动作。
同样在本实施方式中,与第1实施方式相同,磁铁35A,35B和活动铁心124形成一体。由此,磁通环中包含的空隙变小,磁阻减小。由此,可通过小而少的磁铁,产生必要的磁力,并且减小承受与活动件121的往复运动方向相垂直的方向的扭力和重力的支承机构的损耗。
在这里,在弹性轴承128A,128B上,伴随活动件121的往复运动,产生微小的旋转扭力。在这里,活动件121和定子25的形状呈与活动件121的摆动方向的轴心相同的基本圆筒状,由此,将旋转扭力吸收。
由此,活动件121即使在旋转的情况下,仍与定子25保持一定的空间距离。即,防止活动件121和定子25接触或碰撞而造成的效率降低,噪音的增加等的问题。
另外,活动件121和定子25的位置关系可仅仅使相互的轴心对准。即,与活动件121的表面为平面的情况相比较,容易按照使空隙保持一定的方式组装。其结果是,几乎没有作用于活动件121和定子25之间的磁铁35A,35B的磁吸力的偏置,这样,几乎不产生沿半径方向的荷载。
此外,由于沿半径方向的荷载由弹性轴承128A,128B承受,故与采用滑动轴承等的支承机构的情况相比较,没有伴随活动件121的摆动而产生的滑动损耗。另外,几乎不产生侧向的荷载。由此,支承活动件121所必需的弹性轴承128A,128B的半径方向的刚性较小即可。即,可实现减少该弹性轴承128A,128B的个数,减小厚度,减小臂的数量等的低刚性设计。由此,将弹性轴承128A,128B沿摆动方向变形时的滞后损耗抑制在最小程度,获得较高效率。此外,该滞后损耗在以弹簧为实例进行说明时,是指将弹簧压缩,积累于内部的能量不作为弹簧伸长的反力而完全排出,此时产生的损耗。
还有,活动件121的活动铁心124和定子25的固定铁心27均由以轴向为中心呈辐射状设置的薄板构成。由此,由于薄板的延展方向和磁通方向一致,故透磁率增加,并且抑制在铁心内部产生的感应电流,损耗减少。
再有,在本实施方式中,支承活动件121的活动轴126A,126B、支承定子25的外周的支架28、弹性轴承128A,128B由作为非磁性体的不锈钢构成。由此,防止从固定铁心27通过支架28、弹性轴承128A,128B,绕过活动轴126A,126B的磁通的泄漏。由此,防止泄漏磁通造成的感应电流的发生,防止电动机的效率降低。另外,即使在塑料等不锈钢以外的非磁性材料用于这些部分的情况下,仍获得相同的效果。
由于活动件121的活动铁心124设置以圆筒状的芯部121A为轴,在周围呈辐射状具有相同宽度的薄板,故可容易按照圆筒形状形成。
另外,由于活动件121的芯部121A由铁系材料形成,故用作磁通闭环的磁路的一部分,这样可减轻活动件121的重量,同时可提高效率。
此外,由于作为结构体的强度及作为磁通环的磁路的贡献较小的芯部121A的中心附近是中空的,故减轻活动件121的重量。
还有,活动件121的往复距离的最大值大致与活动件121与定子25的长度的差值一致。由此,防止由于活动件121的磁铁35A,35B飞出到定子25的外侧,拉回磁吸力作用在定子25内部引起的电动机推力降低的情况。
再有,本实施方式的弹性轴承在板状的弹性体上具有螺旋状的臂,但是也可为其它的形状。
另外,本实施方式的组成是作为线性电动机而说明的,但是,也可用作通过完全相同的结构,将往复运动转换为电流的发电机。
此外,将呈环状卷绕的磁导线26A,26B串联,但是也可将它们并联。
(第8实施方式)
图15为本发明的第8实施方式的线性电动机的剖视图。具有基本呈圆弧状截面形状的磁铁129A,129B,129C,129D与设置于活动铁心124的内部的活动件122成一体。其以外的组成与第7实施方式相同。
本实施方式实现与第7实施方式相同的效果。另外,由于磁铁129A,129B,129C,129D不在活动件121的表面露出,故与磁性体的吸力变小。由此,与磁性体的装配容易,处理容易,批量生产性,生产率大幅度地提高。该方案也可与第1实施方式组合。
(第9实施方式)
图16为本发明的第9实施方式的线性电动机的剖视图。
螺旋弹簧(在下面称为“弹簧”)130A,130B的一端分别与连接在活动件121上的活动轴126A,126B固定,另一端分别与固定于支架28上的弹簧保持件(在下面称为“保持件”)131A,131B固定。弹簧130A,130B的组装时的长度(L)小于自然长度(H),其压缩尺寸(H-L)在活动件121的摆动距离,即行程(S)的1/2以上。即,活动件121被弹簧130A,130B从两侧按压。
弹簧130A,130B作为与弹性轴承128A,128B组合的总弹性常数的,确定由与活动件121的质量关系决定的共振频率。
往复运动的活动件121、活动轴126A,126B、弹簧130A,130B、定子25等所有组成部件收纳于由支架28和保持件131A,131B构成的大致密闭的空间(在下面称为“空间”)131C的内部。
下面对象以上那样构成的线性电动机的动作进行说明。
如果交流电流流过环状的磁导线26A,26B,则按照与第7实施方式同样的原理,活动件121往复动作。比如,在活动件121沿箭头Y方向移动时,弹簧130A挠曲,第1反力积蓄于弹簧130A中。接着,电流的流动方向改变,活动件121沿箭头Z的方向移动时,第1反力被从弹簧130A释放出,作为活动件121的速度而回收。同时,弹簧130B挠曲,第2反力积蓄于弹簧130B中。在活动件121再次沿箭头Y方向移动时,第2反力被从弹簧130B释放出,作为活动件121的速度而回收。
该动作为所谓的共振作用,与不采用弹簧130A,130B时相比较,可以较小的电流,进行行程较大的往复运动。此时的电源的频率与下述的共振频率一致,该共振频率是根据活动件121、定子25的质量和弹性轴承128A,128B、弹簧130A,130B的弹性常数而求出。于是,活动件121和作为共振弹簧的弹簧130A,130B的加速度的周期是同步的。其结果是,将能量损耗抑制在较小值,活动件121有效地往复运动。
为了提高该共振频率,必须减少活动件121的重量,或增加弹簧130A,130B、弹性轴承128A,128B的弹性常数。但是,活动件121的重量减少具有作为电动机的设计极限。由此,实际上多数情况是容易增加弹性常数。如果为了增加该弹性常数,增加弹性轴承128A,128B的弹性常数,则滞后损耗增加,效率降低。具体来说,进行增加该弹性轴承128A,128B的厚度,或将它们多个重合等操作。另一方面,弹簧130A,130B基本上没有滞后损耗。由此,通过仅仅增加弹簧130A,130B的弹性常数,在提高共振频率的设计上,滞后损耗小,可确保较高的效率。
此外,弹簧130A,130B的组装时的长度(L)小于自然长度(H),其压缩尺寸(H-L)在活动件121的摆动距离,即,行程(S)的1/2以上。由此,即使在活动件121沿箭头Y方向移动最大程度的情况下,弹簧130B的长度(Lb)小于自然长度(H),即,弹簧130B处于必然从自然长度(H)压缩的状态。同样,即使在活动件121沿箭头Z的方向移动最大程度的情况下,弹簧130A的长度(La)小于自然长度(H)。即,弹簧130A处于必然从自然长度(H)压缩的状态。
于是,即使在活动件121往复运动的情况下,在平时,弹簧130A,130B处于从自然长度压缩的状态。由此,通过因其变形而积蓄的能量,弹簧130A,130B以挠曲的状态固定于活动轴126A,126B与保持件131A,131B之间。其结果是,线性电动机常时反复进行效率良好的共振运动。另外,弹簧130A,130B即使在不采用特殊的固定部的情况下,也不脱落。
还有,往复运动的活动件121、活动轴126A,126B、弹簧130A、130B、定子25等所有组成部件收纳于空间131C的内部。由此,伴随活动件121、活动轴126A,126B,弹簧130A,130B的运动而产生的噪音限制于空间131C的内部。即,减少噪音传递到外部的情况,获得隔音效果。
再有,活动件121的活动铁心124和定子25的固定铁心27均由以轴向为中心呈辐射状而设置的薄板形成。由此,组成部件振动,由此,还具有振动造成的来自薄板等的噪音的情况,但是还将该噪音隔绝。
另外,在本实施方式中,弹簧130A、130B为相同弹性常数的弹簧,但是,即使在将弹性常数、尺寸不同的螺旋弹簧组合的情况下,仍可同样地实施。也可将采用第1实施方式的板簧的线性电动机和本实施方式的螺旋弹簧组合,构成共振弹簧。
(第10实施方式)
图17为本发明的第10实施方式的线性压缩机的剖视图。弹性轴承128A,128B的外周部通过弹簧保持件(在下面称为“保持件”)131A,131B,支承定子25的支架28夹持而固定。另外,该弹性轴承128A,128B的内周部与连接在活动件121的活动轴126A,126B和弹簧转接件(在下面称为“转接件”)132A,132B固定。
螺旋弹簧(在下面称为“弹簧”)130A,130B夹持由活动件121和定子25形成的线性电动机137而设置于两端面侧。另外,弹簧130A,130B以挠曲状态固定于转接件132A,132B和保持件131A,131B之间,不采用特殊的固定部。但是,在转接件132A,132B和保持件131A,131B中间的弹簧130A,130B的接触面上,设置稍小的台阶,以便固定弹簧130A,130B。
汽缸51固定于保持件131B上,汽缸盖134固定于汽缸51上,转接件132B通过球窝接头61,与活塞52连接。活塞52可相对弹簧转接件132B,自由地倾斜、旋转。压缩室48由活塞52和汽缸51构成。
下面对象上述那样构成的线性压缩机的动作进行说明。
如果交流电流流过线性电动机137的磁导线26A,26B,则活动件121相对定子25往复运动。其驱动力通过活动轴126B,转接件132B,球窝接头61,传递给活塞52,该活塞52与活动件121成一体地往复运动。另外,通过该活塞52的往复运动,依次对吸入到压缩室48内的制冷气体进行压缩,将其排出到外部的制冻循环。
此时,如通过第9实施方式而说明的那样,优选使向线性电动机137通电的电源频率与下述的共振频率一致,该共振频率通过活动件121、定子25的质量、弹簧130A,130B、弹性轴承128A,128B的弹性常数求出。由此,活动件121和作为共振弹簧的弹簧130A,130B的加速度的周期是同步的。其结果是,将能量损耗抑制在较小程度,活动件121有效地往复运动。
另外,由于弹性轴承128A,128B支承活动件121的两侧,故与采用滑动轴承等的支承机构时的情况相比较,不产生伴随活动件121的摆动而产生的滑动损耗。另外,由于沿弹性轴承128A,128B的半径方向所需要的刚性较小,可按照减少弹性轴承、减小厚度、减小臂数量等的低刚性的设计。由此,将弹性轴承128A,128B变形时的滞后损耗抑制在最小限,获得较高的效率。
还有,弹性轴承128A,128B在两侧完全地承受活动件121在半径方向作用的磁吸力。由此,在活动件121和定子25之间产生的磁吸力不作为活塞52和汽缸51的侧压而作用,不产生滑动损耗。该磁性吸力指相对于定子25将活动件121向半径方向拉近的力。由此,使滑动损耗降低,压缩机的效率提高,并且滑动部的可靠性也大幅度地提高。另外,即使在转接件132B和活塞52之间设置球窝接头61的情况下,仍对活塞52进行支承,将活动件121的往复运动传递给活塞52。由此,当活塞52在汽缸51的内部往复运动时,在相对于汽缸51轴几乎没有倾斜的状态下摆动,从而活塞52通过球窝接头61而倾斜。
于是,即使在按照活动件121与汽缸51的轴心偏离,或轴倾斜的方式组装的情况下,球窝接头61吸收轴错位或轴倾斜,从而活塞52和汽缸51的轴心对准。由此,不使部件、部件组装精度提高,因汽缸51和活塞52之间的侧压降低,使滑动损耗减少,获得高效率的压缩机。
另外,在本实施方式中,大致水平地构成活动件121的摆动方向。由此,按照与第2实施方式相同的方式,与在电动机的内部设置汽缸的现有的线性压缩机相比较,直径变小。
(第11实施方式)
图18为本发明的第11实施方式的线性压缩机的主要部分的剖视图。本实施方式针对第10实施方式的方案,采用在第3实施方式中说明的可歪倒杆(在下面称为“杆”)72,以代替球窝接头,采用通过第4实施方式说明的气体轴承82。
杆72从强度等的方面来说,由不锈钢、铝等的材料形成,具有截面形状为圆形的较细的部位。由于具有较细的部位,杆72可沿相对轴向倾斜的方向,在弹性变形的范围内歪倒。
排出到汽缸盖134内的高压室134A中的大部分制冷气体,通过D线141排到压缩机之外。其一部分通过设置于汽缸142A内的多个气体通路81B,送到活塞139A和汽缸142A的滑动部,形成气体轴承82。由此,按照与第4实施方式相同的方式,不采用润滑油。
在高压室134A的内部,设置有排出阀机构(在下面称为“阀”)144,以及将阀144靠压到汽缸142A的排出弹簧(在下面称为“弹簧”)145。
第2吸入管146的一端146A在弹簧保持件131B的内部,开口于汽缸142A的压缩室相反侧的附近,另一端146B开口于密闭外壳41的内部。该吸入通路139B设置于活塞139A的内部,吸入阀机构(在下面称为“阀”)139C安装于活塞139A的压缩室48侧。
下面对象上述那样构成的线性压缩机的动作进行说明。
弹性轴承128A,128B从两侧完全地承受作用在活动件121的半径方向的磁吸力。由此,将活动件121的往复运动传递给活塞139A的部件不必承受磁吸力,仅仅要求轴向的刚性,半径方向的刚性可较小。由此,活塞139A和活动件121的连接可采用可歪倒杆72。由此,即使在活动件121和汽缸142A的轴心错位或倾斜的情况下,杆72倾斜或挠曲,从而处于活塞139A和汽缸142A的轴心对准,也没有轴倾斜的状态。由此,抵消部件精度或部件组装精度不良的情况。
于是,在不提高部件或部件组装精度的情况下,减少汽缸142A和活塞139A之间的侧压,活动损耗减少。由此,获得高效率的压缩机,并且滑动部的可靠性也进一步提高。
此外,杆72与球窝接头机构等相比较,结构简单,并且由于象球窝接头机构那样,连较小的滑动部也没有,故滑动损耗也减小,并且作为连接机构的可靠性也较高。
另外,排到高压室134A中的制冷气体的一部分通过设置于汽缸142A的内部的多个气体通路81B,传送到活塞139A和汽缸142A的滑动部的微小间隙。由此,形成气体膜,构成气体轴承82,活塞139A和汽缸142A处于非接触状态。
一般,对气体轴承82按照怎样少的气体量,怎样低的气体压力实现非接触的情况进行评价。另一方面,伴随气体通路81B的形状、尺寸、设置位置等因素,气体轴承82的性能发生较大变化。于是,优选至少在气体通路81B的一部分,设置相当于φ30μm~φ200μm程度的截面积的微小截面积部。在该构成中,如果存在润滑油,则上述微小截面积部被润滑油堵塞,制冷气体不流动,气体轴承82不发挥作用。由此,在本实施方式的情况下,不采用润滑油,而仅仅采用气体轴承82。
象上述那样,可使活塞139A和汽缸142A处于非接触状态,由此,使活塞139A和汽缸142A之间的滑动损耗大致减小到零。另外,显著地减小滑动部的磨耗,可靠性大幅度地提高。越是运转频率高,滑动损耗大的压缩机,采用该结构的效果越大。
另外,由于在本实施方式中,形成不采用润滑油的无油的构成,故实现与第4实施方式相同的效果。
象上述那样,将滑动损耗大致减小到零。另一方面,由于将制冷气体送到活塞139A和汽缸142A的滑动部,故滑动部的泄漏损耗增加,另外由于将已压缩的高压气体用作气体轴承82,故压缩损耗也增加。但是,以上述的气体轴承82的设计诀窍等为基础,该损耗的减小也可构成设计要素。
(第12实施方式)
图19为本发明的第12实施方式的线性压缩机的主要部分的剖视图。本实施方式是在第11实施方式的构成中,代替气体轴承,将在第5实施方式中说明的具有本身润滑性的材料和在第6实施方式中说明的陶瓷材料分别用于活塞和汽缸。即,活塞139D采用具有本身润滑性的材料147A,汽缸142B采用陶瓷类材料147B。由此,根据本身润滑性的效果以及陶瓷类材料147B的耐磨耗性,即使在不采用润滑油的情况下,仍防止滑动部的磨耗,确保可靠性。
另外,吸入到密闭外壳41内的制冷气体通过第2吸入管146,送到汽缸142B中的压缩室相反侧的附近。接着,制冷气体通过设置于汽缸142B中的压缩室相反侧、汽缸142B中的活塞139D相反侧、活塞139D中的吸入通路139A和吸入阀机构139B,流入到压缩室48的内部。
通过压缩室48压缩的制冷气体克服将排出阀机构(在下面称为“阀”)144压靠到汽缸142B的排出弹簧145的压靠力,打开阀144,将其排向高压室134A。
但是,在冰箱等的冷却系统的过度运转时,必然有运转压力变化,在这样的情况下,产生活塞139D超过规定的行程而往复运动的情况。另外,在对压缩机的运转电流、运转电压等进行控制的情况下,还由于控制精度、干扰对应精度等因素,产生活塞139D超过规定的行程而往复运动的情况。
在本实施方式中,活塞139D可将阀144压回,实现摆动。由此,即使在这样的情况下,与无法压回的排出阀机构相比较,减轻作用于活塞139D上的冲突的冲击力。于是,减少活塞139D的冲突时的噪音,并且阀144、活塞139D的可靠性提高。
(第13实施方式)
图20为本发明的第13实施方式的线性压缩机的剖视图。在密闭外壳(在下面称为“外壳”)41的内部,按照活动件121的摆动方向与重力方向一致的方式纵向地设置有压缩机构部149。另外,压缩机构部149被多个悬簧(在下面称为“弹簧”)150、上端簧(在下面称为“弹簧”)151内部悬挂并支承。
动吸振器152由重块153、弹簧154、保持件155构成,形成于外壳48内的顶部空间。该重块153由一个或多个形成,其形状为沿外壳41内侧的基本环状或基本圆弧状。弹簧154由弹簧154A,154B构成。
在组装的状态,或线性压缩机停止的状态下,弹簧154A,154B均处于比自然长度短,受到压缩的状态。由此,重块153在与活塞139A的摆动方向相同的方向,通过弹簧154A,154B的弹力而夹持,安装于保持件155上。该保持件155的形状也呈基本环状,或基本圆弧状。
弹簧154可伴随重块153的移动,沿活塞139A的摆动方向而发生弹性变形。另外,重块153的重量与弹簧154的活塞139A摆动方向的弹性常数的总和按照由它们确定的共振频率与线性压缩机的运转频率一致的方式选择。
此外,汽缸142A中的至少一部分以插入方式设置于螺旋弹簧(下面称为“弹簧”)130B的内部。
在本实施方式中,按照活动件121的摆动方向与重力方向一致的方式纵向地设置。由此,沿活动件121的半径方向作用的力仅仅为作用于活动件121和定子25之间的磁铁35A,35B的磁吸力,未作用有活动件121的重力。于是,由于未作用有活动件121的重力,故支承活动件121且承受磁吸力的弹性轴承128A,128B的半径方向的刚性可减小。由此,可实现比如,低价格的材料选择,板厚的减小,形状的简化,整体尺寸减小。
并且,同样由于在汽缸142A和活塞139A的滑动部上未作用有活塞139A的重力导致的侧压,故使滑动损耗减小。
下面对动吸振器52的振动减小情况进行说明。
在压缩机构部149中,活动件121相对定子25,往复运动而进行压缩,但是,此时,定子25因活动件121的往复运动的反作用等,沿活塞139A的往复运动方向振动。压缩机构部149通过弹簧150,弹性地悬架于外壳41内,压缩机构部149的振动通过弹簧50,作为激振力而传递给外壳41。通过传递给外壳41的激振力,对由重块153和弹簧154形成的共振部进行激励,重块153沿活塞139A的往复运动方向而振动。此时,从弹簧150传递给外壳41的激振力,与重块153的振动引起的作用力大小基本相等,并且相位相反。由此,通过来自动吸振器152的作用力,来抵消来自压缩机构部149的激振力。
此外,外壳41的振动频率与线性压缩机的驱动频率一致。由此,通过使线性压缩机的驱动频率与动吸振器152的重块153的摆动频率一致,最大限度地发挥出动吸振器152的效果,最大限度地减小外壳41的振动。共振频率通过外壳41和重块153的质量以及弹簧154的弹性常数确定。于是,按照与线性压缩机的驱动频率一致的方式,有选择地设计重块153的质量和弹簧154的弹性常数,由此,最大程度地减小外壳41的振动。
还有,在不采用动吸振器152的情况下,由于纵向地设置,故活动件121的摆动方向和弹簧150的伸缩方向均与重力方向一致。由此,外壳41的振动方向也构成重力方向。于是,通过减小弹簧150的刚性的简单的方法,使压缩机构部149朝向外壳41的振动传递减少。即,与活塞139A的往复运动方向为水平方向的横向设置相比较,使外壳41的振动大幅度地减小。
再有,动吸振器152形成于外壳41的顶部空间。压缩机构部149中的半径方向尺寸最大,决定半径方向的尺寸的是线性压缩机137,但是,线性压缩机137不设置于外壳41的顶部空间。由此,相对外壳41的半径方向的尺寸,在顶部空间和底部空间,形成无效的空间。由于将动吸振器152设置于该空间,故不增加外壳41的尺寸,在外壳41的内部,以紧凑的尺寸设置动吸振器152,使振动减小。
特别是,优选与线性压缩机137的圆形形状、外壳41的圆形形状相同,动吸振器152的形状为沿外壳41的内侧的大致环状,或大致圆弧形状。由此,在不增加外壳41的情况下,将动吸振器152以紧凑的方式设置在该外壳41的内部。另外,可增加动吸振器152的重块153的尺寸,即增加其重量,由外壳41和重块153的质量与弹簧154的弹性常数确定的共振频率的设计幅度增加。由此,可通过动吸振器152而减小外壳41的振动的驱动频率的幅度扩大,按低振动的方式驱动的线性压缩机的运转频率幅度增加。
此外,将汽缸142A的至少一部分以插入方式设置于弹簧130B的内部。由此,与将汽缸142A设置于弹簧130B之外的情况相比较,可减小活动件121的摆动方向的尺寸。由此,可减小作为线性压缩机的外壳41的整体尺寸,特别是可在活动件121的摆动方向上使整体尺寸减小。
还有,在本实施方式中,在外壳41内的顶部空间形成动吸振器152,但是,即使在形成于外壳41内的底部空间的情况下,仍获得相同的效果。
再有,在本实施方式中,线性电动机设置于重力方向的上方,但是即使在线性电动机设置于重力方向的下方的情况下,同样仍可实施。
另外,上面说明的实施方式的特征可在可能范围内进行组合,这样的形式属于本发明的范围。
产业上利用可能性
本发明的线性电动机包括具有固定铁心和磁导线的定子;具有活动铁心和磁铁的活动件;在摆动方向上自由摆动地支承活动件的板状弹性部件。通过该构成,不需要支承活动件的滑动部,故可减小伴随活动件的往复运动而产生的损耗。另外,采用该线性电动机的线性压缩机的效率高,可靠性也较高。