WO2020173480A1 - 一种双气缸线性压缩机和制冷设备 - Google Patents

一种双气缸线性压缩机和制冷设备 Download PDF

Info

Publication number
WO2020173480A1
WO2020173480A1 PCT/CN2020/076961 CN2020076961W WO2020173480A1 WO 2020173480 A1 WO2020173480 A1 WO 2020173480A1 CN 2020076961 W CN2020076961 W CN 2020076961W WO 2020173480 A1 WO2020173480 A1 WO 2020173480A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
rod
piston rod
ball
dual
Prior art date
Application number
PCT/CN2020/076961
Other languages
English (en)
French (fr)
Inventor
刘华
宋斌
刘洋
俞国新
马国军
Original Assignee
青岛海尔智能技术研发有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910152047.2A external-priority patent/CN111622921B/zh
Priority claimed from CN201910152057.6A external-priority patent/CN111622922B/zh
Application filed by 青岛海尔智能技术研发有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔智能技术研发有限公司
Publication of WO2020173480A1 publication Critical patent/WO2020173480A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric

Definitions

  • the present invention relates to the technical field of linear compressors, in particular to a two-cylinder linear compressor and refrigeration equipment. Background technique
  • a two-cylinder linear compressor includes two sets of cylinders and pistons, and they are used in combination in the same compressor.
  • the two sets of cylinders and pistons work at the same time, it is difficult to ensure the coaxiality due to the limitation of machining accuracy. Reliability problems such as stuck cylinder.
  • the two-cylinder linear compressor used in refrigeration equipment has a structure with a piston head and a connecting rod without relative position changes.
  • the piston is connected to one end of the mover assembly, and the other end of the mover assembly is connected to the resonance spring.
  • the resonant spring itself generates a certain radial force during the expansion and contraction process, and the radial force is transmitted to the piston through the mover assembly, causing an increase in friction loss and reducing the working efficiency of the compressor .
  • the present invention provides a dual-cylinder linear compressor and refrigeration equipment, which aims to solve the problem of increased friction loss caused by the radial force generated by the resonant spring during the operation of the existing dual-cylinder linear compressor and reduced compressor efficiency. problem.
  • a brief summary is given below. This summary is not a general review, nor is it intended to determine key/important elements or describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simple form as a prelude to the detailed description that follows.
  • a two-cylinder linear compressor includes: a body;
  • the piston mechanism includes a linear cylinder arranged in the body, a piston rod arranged in the cylinder and connected to the driving mechanism, and piston heads respectively arranged at both ends of the piston rod; each piston head is on its corresponding side The end space of the cylinder performs compression movement; wherein the piston rod can move relative to the piston head along its own radial direction;
  • the driving mechanism is drivingly connected with the piston mechanism to drive the piston mechanism to perform a reciprocating compression movement.
  • the piston rod being able to move relative to the piston head along its own radial direction includes: the piston rod has a deformable rod section that can be elastically deformed along its own radial direction.
  • the piston rod includes a deformable rod section and a non-deformable rod section, and the deformable rod section is located in a rod middle section, or a rod side section, or both ends of the rod of the piston rod.
  • the rod diameter of the deformable rod section is smaller than the rod diameter of the non-deformable rod section.
  • the deformable rod section located in the rod middle section of the piston rod is a straight rod with a uniform rod diameter, or a rod section whose rod diameter gradually decreases from both ends to the middle.
  • the connecting node between the mover and the piston rod is set at the joint position of the deformable rod section and the non-deformable rod section.
  • the length of the deformable rod section is greater than the length of the non-deformable rod section.
  • the deformable rod segments located at both ends of the rod of the piston rod constitute an annular groove structure.
  • the deformable rod section is made of a material having a bending strength lower than that of the non-deformable rod section.
  • the piston rod being able to move relative to the piston head along its own radial direction includes: the piston rod and the piston head at one or both ends form a dynamic coupling that can perform relative movement in the radial direction of the piston rod.
  • the piston rod and the piston head form a dynamic coupling and fit through a ball fixing structure, and the axis of the ball fixing structure is coaxial with the axis of the piston rod.
  • the ball fixing structure includes:
  • the first ball groove is arranged at the end of the piston rod, the groove depth of the first ball groove is less than or equal to the radius of the ball; the second ball groove is arranged on the connecting end surface of the piston head, and the groove depth of the second ball groove is less than or Equal to the radius of the ball;
  • the ball is movably arranged in the ball space formed by the first ball groove and the second ball groove after the end of the piston rod abuts the connecting end surface of the piston head.
  • the ball fixing structure includes:
  • the first ball groove is arranged at the end of the piston rod, and the groove depth of the first ball groove is less than or equal to the radius of the ball; the ball is arranged in the first ball groove at the end of the piston rod, and the ball is exposed to the first ball Part of the bead body of the groove abuts against the connecting end surface of the piston head and can move relative to the connecting end surface.
  • the ball fixing structure includes:
  • the second ball groove is provided on the connecting end surface of the piston head, and the groove depth of the second ball groove is less than or equal to the radius of the ball;
  • the ball is arranged in the second ball groove of the connecting end surface of the piston head, and a part of the ball exposed in the second ball groove abuts against the end of the piston rod and can move relative to the end.
  • the ball fixing structure includes a rolling bearing, and the balls on both sides of the rolling bearing exposed to the balls respectively abut against the end of the piston rod and the connecting end surface of the piston head and can move relative to both.
  • the connecting end surface of the piston head that forms the dynamic coupling is a slope structure, and the piston rod The end of the corresponding connecting end surface is a chamfered surface structure adapted to the shape of the inclined surface structure.
  • the slope structures of the two piston heads are complementary.
  • the dual-cylinder linear compressor provided by the present invention effectively simplifies the structure of the dual-cylinder linear compressor by improving the design of the connection between the piston rod and the piston head, and reduces the friction loss of the piston mechanism, thereby improving the working efficiency of the dual-cylinder linear compressor .
  • Fig. 1 is a schematic structural diagram of a dual-cylinder linear compressor according to an exemplary embodiment
  • FIG. 2 is a schematic diagram showing the structure of a piston rod of a dual-cylinder linear compressor according to an exemplary embodiment
  • FIG. 3 is a schematic diagram of a piston rod structure of a dual-cylinder linear compressor according to another exemplary embodiment
  • 4 is a schematic diagram of a piston rod structure of a dual-cylinder linear compressor according to another exemplary embodiment
  • FIG. 5 is a deformable rod section structure of a piston rod of a dual-cylinder linear compressor according to an exemplary embodiment
  • Fig. 6 is a schematic structural diagram of a two-cylinder linear compressor according to another exemplary embodiment
  • the terms "include”, “include” or any other variation thereof are intended to cover non-exclusive A structure, device or equipment including a series of elements not only includes those elements, but also includes other elements not explicitly listed, or also includes elements inherent to the structure, device, or equipment. In the case of no more restrictions, the element defined by the sentence "including one" does not exclude the existence of other identical elements in the structure, device or equipment including the element.
  • the various embodiments herein are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • the term “plurality” means two or more.
  • A/B means: A or B.
  • the term “and/or” refers to an association relationship describing objects, which means that three relationships can exist.
  • a and/or B means: A or B, or, A and B.
  • a dual-cylinder linear compressor is provided.
  • the exemplary dual-cylinder linear compressor includes a body 1, a piston mechanism 2 and a driving mechanism 3.
  • the driving mechanism 3 and the piston mechanism 2 Drive connection.
  • the drive mechanism 3 is used to drive the piston mechanism 2 to perform reciprocating compression.
  • the piston mechanism 2 includes a cylinder 21, a piston rod 22 and a piston head 23.
  • the cylinder 21 is a linear cylinder 21 arranged in the body 1.
  • the piston The rod 22 is arranged in the cylinder 21 and connected with the driving mechanism 3.
  • the piston heads 23 are respectively arranged at both ends of the piston rod 22, and each piston head 23 performs a compression movement in the end space of the cylinder 21 on its corresponding side.
  • the piston rod 22 has a deformable rod section that can be elastically deformed in its radial direction.
  • the piston heads 23 are respectively arranged at two ends of the piston rod 22, and the number of the piston heads 23 can be two.
  • the piston heads 23 include a first piston head and a second piston head.
  • the piston rod 22 includes a deformable rod section 221 and a non-deformable rod section 222, wherein the deformable rod section 221 of the piston rod can be elastically deformed in its own radial direction, and the non-deformable rod section of the piston rod 22 cannot or Elastic deformation occurs in other directions.
  • the radial force mentioned herein refers to the force along the radius of the cross section of the piston rod 22, that is, the force perpendicular to the axial force, that is, the force perpendicular to the direction in which the piston rod 22 extends.
  • the degree of freedom of elastic deformation of the deformation rod section 221 of the piston rod is not specifically limited, and the degree of freedom of elastic deformation includes at least all the deformation states of the deformation rod section during the reciprocating movement of the piston mechanism 2 in one cycle.
  • the deformation rod section 221 of the piston rod may be elastically deformable with respect to only one piston head 23, and is relatively
  • the piston head 23 that can be elastically deformed by the deformable rod section 221 of the plug rod may be a first piston head or a second piston head.
  • the deformable rod section 221 of the piston rod may only be elastically deformable relative to the first piston head, and relative to the second piston head, a leaf spring and a spring fitting are used to support the displacement of the piston member.
  • the deformable rod section 221 of the piston rod can be elastically deformed relative to the two piston heads 23.
  • the driving mechanism 3 includes an inner stator, an outer stator, a coil, a permanent magnet, and a permanent magnet skeleton.
  • the alternating current generated in the coil interacts with the permanent magnet to cause the permanent magnet to reciprocate
  • the permanent magnet skeleton is connected with the permanent magnet, and the permanent magnet drives the permanent magnet skeleton to reciprocate at the same time.
  • Connecting the piston rod 22 to the driving mechanism 3 can be an optional connection method for connecting the permanent magnet frame of the driving mechanism 3 and the piston rod 22, which can be fixed connection by a nut, or by a coaxial movable connection structure, or by a snap connection Way to connect.
  • the piston head 23 is respectively arranged at both ends of the piston rod 22, the driving mechanism 3 drives the piston rod 22 to reciprocate, and the piston rod 22 drives the piston head 23 in the cylinder 21 to compress the gas in the cylinder 21.
  • the piston rod 22 When the driving mechanism 3 drives the piston rod 22 to reciprocate, the piston rod 22 not only receives a force along the axial direction of the piston rod 22, but also receives a relatively small radial force, which is transmitted to those with a smaller movement gap.
  • the piston head 23 will increase the side force and increase the friction loss.
  • the piston rod 22 has a deformable rod section that can be elastically deformed in its radial direction, which can buffer the radial force received by the piston rod 22, and will not transmit the radial force to the piston head 23, so that it reduces The friction loss between the piston head 23 and the inner wall of the cylinder 21 is reduced, which effectively reduces the frequency of cylinder jamming.
  • the dual-cylinder linear compressor improves the design and material of the piston rod 22, increases the deformation rod section 221 of the piston rod, and buffers the radial force on the piston rod in a way that the piston rod can produce radial deformation, thereby reducing the radial force.
  • the transmission of force to the piston head 23 reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21 and improves the transmission efficiency of axial force. By reducing the friction loss of the piston mechanism 2, the working efficiency of the dual-cylinder linear compressor is improved.
  • the piston rod includes a deformable rod section and a non-deformable rod section, and the deformable rod section is located in the rod middle section, or the rod side section, or both ends of the rod of the piston rod.
  • the position of the deformable rod section on the piston rod 22 is not specifically limited, and the deformable rod section may be located at the middle section of the rod of the piston rod.
  • the degree of freedom of deformation is the same, and the sizes of the piston cylinders on both sides In the same situation, the compressor is more stable during operation.
  • the deformable rod section may be located on the rod side section of the piston rod.
  • the connection node between the mover and the piston rod 22 may be set at the joint position of the deformable rod section and the non-deformable rod section. In this way, the mover and the piston rod The connection of 22 is firmer and the compressor has better stability.
  • the deformable rod section may be located at both ends of the rod of the piston rod 22, and both ends of the piston rod 22 are respectively connected with a piston head 23.
  • a deformable rod section is respectively provided on the piston rod 22, close to the connecting piston head 23, a deformable rod section is respectively provided.
  • the deformable rod section close to the first piston head 23 is the first deformable rod section
  • the deformable rod section near the second piston head 23 is the second deformable rod section
  • the piston rod 22 except the first deformable rod section and the second deformable rod section Part of it is a non-deformable rod section.
  • the first deformable rod section has a rod diameter smaller than that of the non-deformable rod section.
  • the first deformable rod section and its end faces are directly connected to the cross-sections of the non-deformable rod sections on both sides.
  • the end face area of the deformable rod section is smaller than the cross-sectional area of the non-deformable rod section. Therefore, the connection between the first deformable rod section and the non-deformable rod section will surround a circle of the non-deformable rod section.
  • the plane of the section is not specifically limited.
  • the piston rod 22 reciprocates, and the piston rod 22 receives a radial force, in order to slow down the transmission of the radial force to the piston head 23, the piston
  • the deformable rod section 221 of the rod is deformed and produces a certain bending angle, which relieves the radial force of the deformed rod section 221 of the piston rod.
  • the dual-cylinder linear compressor improves the design and material of the piston rod 22, increases the deformation rod section 221 of the piston rod, and buffers the radial force received by the piston rod 22 in a way that the piston rod 22 can produce radial deformation.
  • the transmission of radial force to the piston head 23 reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21, improves the transmission efficiency of axial force, and reduces the friction loss of the piston mechanism 2, thereby improving the working efficiency of the dual-cylinder linear compressor .
  • the rod diameter of the deformable rod section is smaller than the rod diameter of the non-deformable rod section.
  • the deformable rod section 221 of the piston rod is deformed in the radial direction due to the radial force, and the rod diameter of the deformed rod section 221 of the piston rod is smaller than the rod diameter of the non-deformable rod section, so that The deformable rod section has a higher degree of freedom of deformation during deformation.
  • the piston rod 22 of the compressor deforms more flexibly under force. In this way, the double-cylinder linear compressor improves the design and material of the piston rod 22, increases the deformation rod section 221 of the piston rod, and reduces the radial force received by the piston rod 22 in a way that the piston rod 22 can produce radial deformation.
  • the transmission of radial force to the piston head 23 reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21, improves the transmission efficiency of axial force, and reduces the friction loss of the piston mechanism 2, thereby improving the working efficiency of the dual-cylinder linear compressor .
  • the deformable rod section located in the rod middle section of the piston rod 22 is a straight rod with a uniform rod diameter, or a rod section whose rod diameter gradually decreases from both ends to the middle.
  • the deformable rod section located in the middle section of the rod of the piston rod 22 is a straight rod with a uniform rod diameter, that is, where the deformable rod section 221 of the piston rod and the non-deformable rod section meet, a cross-sectional difference is formed, and this joint can just be used as The connection and fixing place between the permanent magnet frame and the piston rod 22 is very convenient.
  • the deformable rod section located in the rod middle section of the piston rod 22 is a rod section whose rod diameter gradually decreases from both ends to the middle.
  • the deformed rod section 221 of the piston rod and the non-deformable rod section smoothly transition, and there is no obvious joint.
  • Interface, such a connection is firmer, has better initial properties, has a higher degree of freedom of deformation, is less likely to malfunction, cause damage, and is more durable.
  • the dual-cylinder linear compressor increases the piston rod 22 by improving the design and material of the piston rod 22.
  • the deformable rod section 221 buffers the radial force of the piston rod in a way that the piston rod can produce radial deformation, reduces the transmission of radial force to the piston head 23, and reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21,
  • the transmission efficiency of the axial force is improved, and by reducing the friction loss of the piston mechanism 2, the working efficiency of the two-cylinder linear compressor is improved.
  • the driving mechanism 3 includes a mover connected with the piston rod, and a stator that uses electromagnetic force to drive the mover to make a linear reciprocating motion; when the deformable rod section is located in the rod middle section or the rod side section of the piston rod, the mover and the piston
  • the connecting node of the rod is set at the joint position of the deformable rod section and the non-deformable rod section.
  • the deformable rod section 221 of the piston rod can be elastically deformed relative to the two piston heads 23.
  • the mover of the driving mechanism 3 includes a permanent magnet
  • the permanent magnet frame is used as a support member of the permanent magnet
  • the mover is connected with the piston rod
  • the deformable rod section 221 of the piston rod can only be elastically deformable relative to the first piston head 23
  • the connection node with the mover is set at the non-deformable rod section 222 of the piston rod, and the non-deformable rod section is directly connected with the second piston head 23, and there is no deformable rod section in between, and between the non-deformable rod section and the first piston head 23 Equipped with deformable rod section.
  • the stator of the driving mechanism 3 includes an inner stator, an outer stator and a coil, and the relative movement of the permanent magnet and the coil.
  • the driving mechanism 3 includes an inner stator, an outer stator, a coil, a permanent magnet, and a permanent magnet skeleton.
  • the piston rod in the process of driving the piston rod to reciprocate by the driving mechanism 3, the piston rod not only receives a force along the axial direction of the piston rod, but also receives a small radial force, which is transmitted to the piston head with a small movement gap. 23. It will increase the side force and increase the friction loss. Since the piston rod includes a deformed rod section, it can buffer the radial force received by the piston rod, and slow down the transmission of the radial force to the piston head 23, that is, reduce the piston head 23 and the piston head 23. The friction loss of the inner wall of the cylinder 21.
  • the double-cylinder linear compressor increases the deformation rod section 221 of the piston rod by improving the design and material of the piston rod, so as to buffer the radial deformation of the piston rod in a way that the piston rod can produce radial deformation. It reduces the transmission of radial force to the piston head 23, reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21, improves the transmission efficiency of axial force, and reduces the friction loss of the piston mechanism 2, thereby improving the linear compression of the double cylinder The efficiency of the machine.
  • the length of the deformable rod section is greater than the length of the non-deformable rod section.
  • the length of the deformable rod section 221 of the piston rod is greater than the length of the non-deformable rod section, which can increase the freedom of deformation of the deformable rod section of the piston rod, so that when the compressor is running,
  • the dual-cylinder linear compressor improves the design and material of the piston rod, increases the deformation rod section 221 of the piston rod, and buffers the radial force received by the piston rod in a way that the piston rod can produce radial deformation, thereby reducing the radial force.
  • the transmission to the piston head 23 reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21 and improves the transmission efficiency of the axial force. By reducing the friction loss of the piston mechanism 2, the working efficiency of the two-cylinder linear compressor is improved.
  • the deformable rod segments at both ends of the rod of the piston rod constitute an annular groove structure.
  • the deformable rod section may be located at both ends of the rod of the piston rod
  • the deformed rod section at both ends of the rod of the piston rod constitutes an annular groove structure
  • both ends of the piston rod 22 are respectively connected with a piston head 23 on the piston rod 22
  • Adjacent to the connecting piston head 23 a deformation rod section is respectively provided
  • the deformation rod section near the first piston head 23 is the first deformation rod section
  • the deformation rod section near the second piston head 23 is the second deformation rod section
  • the part of the piston rod 22 excluding the first deformable rod section and the second deformable rod section is a non-deformable rod section.
  • the first deformable rod section has a rod diameter smaller than that of the non-deformable rod section.
  • the first deformable rod section and its two end faces are directly connected to each other.
  • the cross-sections of the non-deformable rod segments on both sides are connected. Since the end face area of the first deformable rod segment is smaller than the cross-sectional area of the non-deformable rod segment, the connection between the first deformable rod segment and the non-deformable rod segment surrounds the non-deformable rod segment.
  • the cross section of the deformable rod section is not specifically limited in the plane of the section.
  • the deformable rod section has the freedom of radial elastic deformation, and under the action of the driving mechanism 3, the piston rod 22 reciprocates, and the piston rod 22 is also affected by Radial force, the plane where the cross section of the deformable rod section and the non-deformable rod section is located is not perpendicular to the piston rod 22, that is, the two sides of the annular groove structure are not parallel, and there is a slight The small angle creates a small included angle with the vertical surface of the piston rod 22.
  • Such a groove structure arrangement can effectively relieve the radial force received by the piston rod 22.
  • the dual-cylinder linear compressor improves the design and material of the piston rod 22, increases the deformation rod section 221 of the piston rod, and buffers the radial force on the piston rod in a way that the piston rod can produce radial deformation, thereby reducing the radial force.
  • the transmission of force to the piston head 23 reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21 and improves the transmission efficiency of axial force. By reducing the friction loss of the piston mechanism 2, the working efficiency of the dual-cylinder linear compressor is improved.
  • the deformable rod section is made of a material with a bending strength lower than that of the non-deformable rod section.
  • the material of the deformable rod section 221 of the piston rod is not specifically limited, and may be a polymer composite material, such as composite heat-resistant rubber, as the material of the deformable rod section 221 of the piston rod, and its bending strength is lower than that of low-density polymer.
  • the vinyl material has good chemical stability and can be elastically deformed with a high degree of freedom. When the piston mechanism 2 receives a radial force, it will produce relative deformation, which can relieve the transmission of radial force to the piston head 23.
  • the material of the non-deformable rod section 222 of the piston rod is not specifically limited, and may be a high-density polyethylene material, which has higher bending strength than low-density polyethylene material, and has good heat resistance and cold resistance , It has good chemical stability and good mechanical strength. It is very suitable for use as the non-deformable rod section 222 of the piston rod. It can well support the deformable rod section 221 of the piston rod and complete the reciprocating movement of the piston mechanism 2.
  • the dual-cylinder linear compressor improves the design and material of the piston rod, increases the deformation rod section 221 of the piston rod, and buffers the radial force received by the piston rod in a way that the piston rod can produce radial deformation, thereby reducing the radial force.
  • the transmission to the piston head 23 reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21 and improves the transmission efficiency of the axial force. By reducing the friction loss of the piston mechanism 2, the working efficiency of the two-cylinder linear compressor is improved.
  • a two-cylinder linear compressor is provided.
  • the exemplary two-cylinder linear compressor includes a body 1, a piston mechanism 2 and a driving mechanism 3.
  • the driving mechanism 3 and the piston mechanism 2 Drive connection.
  • the drive mechanism 3 is used to drive the piston mechanism 2 to perform reciprocating compression.
  • the piston mechanism 2 includes a cylinder 21, a piston rod 22 and a piston head 23.
  • the cylinder 21 is a linear cylinder 21 arranged in the body 1.
  • the piston The rod 22 is arranged in the cylinder 21 and connected with the driving mechanism 3.
  • the piston heads 23 are respectively arranged at both ends of the piston rod 22, and each piston head 23 performs a compression movement in the end space of the cylinder 21 on its corresponding side.
  • the piston rod 22 and the piston head 23 at one or both ends form a dynamic coupling that can perform relative movement in the radial direction of the piston rod 22.
  • the piston heads 23 are respectively arranged at two ends of the piston rod 22, and the number of the piston heads 23 can be two.
  • the piston heads 23 include a first piston head and a second piston head.
  • the driving mechanism 3 includes an inner stator, an outer stator, a coil, a permanent magnet, and a permanent magnet skeleton.
  • the alternating current generated in the coil interacts with the permanent magnet to cause the permanent magnet to reciprocate
  • the permanent magnet skeleton is connected with the permanent magnet, and the permanent magnet drives the permanent magnet skeleton to reciprocate at the same time.
  • Connecting the piston rod 22 to the driving mechanism 3 can be an optional connection method for connecting the permanent magnet frame of the driving mechanism 3 and the piston rod 22, which can be fixed connection by a nut, or by a coaxial movable connection structure, or by a snap connection Way to connect.
  • the piston head 23 is respectively provided at both ends of the piston rod 22, and the driving mechanism 3 drives the piston rod 22 to reciprocate.
  • the piston rod 22 drives the piston head 23 to compress the gas in the cylinder 21 in the cylinder 21.
  • the piston rod 22 When the driving mechanism 3 drives the piston rod 22 to reciprocate, the piston rod 22 not only receives a force along the axial direction of the piston rod 22, but also receives a relatively small radial force, which is transmitted to those with a smaller movement gap.
  • the piston head 23 will increase the side force and increase the friction loss.
  • the piston rod 22 and the piston head 23 at one or both ends form a dynamic coupling that can move relative to each other in the radial direction of the piston rod 22.
  • the relative movement between the piston head 23 and the piston rod 22 can affect the diameter of the piston rod 22.
  • the directional force acts as a buffer and does not transmit radial force to the piston head 23. In this way, the friction loss between the piston head 23 and the inner wall of the cylinder 21 is reduced, and the occurrence frequency of the cylinder jam phenomenon is effectively reduced.
  • the radial force mentioned herein refers to the force along the radius of the cross section of the piston rod 22, that is, the force perpendicular to the axial force, that is, the force perpendicular to the direction in which the piston rod 22 extends.
  • the double-cylinder linear compressor can effectively simplify the structure of the double-cylinder linear compressor by improving the design of the connection between the piston rod 22 and the piston head 23, and reduce the friction loss of the piston mechanism 2, thereby improving the work of the double-cylinder linear compressor. effectiveness.
  • the piston rod 22 and the piston head 23 form a dynamic coupling and cooperation through a ball fixing structure, and the axis of the ball fixing structure and the axis of the piston rod 22 are coaxial. That is, the relative movement between the piston head 23 and the piston rod 22 is realized by adding a ball fixing structure between the piston head 23 and the piston rod 22.
  • the structure in which the piston rod 22 and the piston head 23 at one or both ends form a dynamic coupling capable of relative movement in the radial direction of the piston rod 22 may be a ball fixing structure, and the ball fixing structure includes a ball groove and a ball, wherein, The balls roll in the ball groove, and the size and quantity of the balls affect the cushioning capacity of the ball fixing structure.
  • the ball fixing structure further includes a cage.
  • the cage evenly spaces the balls in the ball groove, so that each ball rolls in the ball groove.
  • the piston rod 22 has a hollow tubular structure, and the thickness of the tube wall is less than or equal to the diameter of the ball.
  • the end of the piston rod 22 forms an inwardly smooth concave arc surface along the tube wall, and the concave arc surface may be a semicircle.
  • the arc surface, or slightly smaller than the semicircular arc surface, forms a ball groove. Therefore, the axis of the piston rod 22 is the axis of the wall of the piston rod 22, that is, the axis of the ball groove and the axis of the piston rod 22 are coaxial, which will increase the stability of the ball fixing structure and enable the piston rod 22 to drive the piston head 23 During the exercise, it is more stable.
  • a notch may be provided on the piston rod 22, which can cooperate with the ball fixing structure at both ends of the piston rod 22, so that the radial force received by the piston rod 22 is sufficiently buffered.
  • the number of balls is two
  • the ball groove is in the shape of a ring
  • any diameter is drawn from the center of the ring of the ball groove.
  • the diameter and the two focal points of the ball groove are the positions where the balls are set.
  • the ball defines the rolling range of the ball through the cage.
  • the number of balls is 8.
  • a radius extension line is drawn in any direction along the center of the ball groove.
  • the intersection point of the radius extension line and the ball groove can be the position of one of the balls, and based on the radius extension line, draw an angle of 45 degrees from the circle point
  • the intersection of the extension line with the ball groove can determine the position of another ball, and the balls are arranged uniformly along the ball groove. The existence of multiple balls can reduce the transmission of radial force on the piston rod 22 to the piston head 23.
  • the dual-cylinder linear compressor improves the design of the connection between the piston rod 22 and the piston head 23, and installs a ball fixing structure at the connection between the piston rod 22 and the piston head 23 to reduce the radial direction of the piston rod 22 in a rolling manner.
  • the transmission of force to the piston head 23 reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21 and improves the transmission efficiency of axial force.
  • the working efficiency of the dual-cylinder linear compressor is improved.
  • the ball fixing structure includes: a first ball groove, a second ball groove, and balls.
  • the first ball groove is provided at the end of the piston rod 22, the second ball groove is provided at the connecting end surface of the piston head 23, and the ball is movably provided at the end of the piston rod 22 and the connecting end surface of the piston head 23 to abut against In the ball space formed by the rear first ball groove and the second ball groove.
  • the ball fixing structure includes a first ball groove and a second ball groove, and the groove depth of the first ball groove and the second ball groove are both less than or equal to the radius length of the ball. If the groove depths of the first ball groove and the second ball groove are greater than the radius of the ball, the ball will not play a role in buffering the transmission of radial force between the piston rod 22 and the piston head 23.
  • the dual-cylinder linear compressor improves the design of the connection between the piston rod 22 and the piston head 23,
  • a ball fixing structure is provided at the connection between 22 and the piston head 23 to reduce the transmission of the radial force received by the piston rod 22 to the piston head 23 in a rolling manner, reduce the friction loss between the piston head 23 and the inner wall of the cylinder 21, and improve the axial direction.
  • the efficiency of force transmission improves the working efficiency of the dual-cylinder linear compressor by reducing the friction loss of the piston mechanism 2.
  • the ball fixing structure includes: a first ball groove arranged at the end of the piston rod 22; a ball arranged in the first ball groove at the end of the piston rod 22, and the ball is exposed to a part of the first ball groove The body abuts against the connecting end surface of the piston head 23 and can move relative to the connecting end surface.
  • the groove depth of the first ball groove is less than or equal to the radius of the ball, or the groove depth of the first ball groove is greater than the radius of the ball and less than the diameter of the ball.
  • the dual-cylinder linear compressor improves the design of the connection between the piston rod 22 and the piston head 23, and installs a ball fixing structure at the connection between the piston rod 22 and the piston head 23 to reduce the radial direction of the piston rod 22 in a rolling manner.
  • the transmission of force to the piston head 23 reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21 and improves the transmission efficiency of axial force.
  • the working efficiency of the dual-cylinder linear compressor is improved.
  • the ball fixing structure includes:
  • the second ball groove is arranged on the connecting end surface of the piston head 23.
  • the ball is arranged in the second ball groove on the connecting end surface of the piston head 23. A part of the ball exposed in the second ball groove is against the end of the piston rod 22. Reliable and movable relative to the end.
  • the groove depth of the first ball groove is less than or equal to the radius of the ball, or the groove depth of the first ball groove is greater than the radius of the ball and less than the diameter of the ball.
  • the dual-cylinder linear compressor improves the design of the connection between the piston rod 22 and the piston head 23, and installs a ball fixing structure at the connection between the piston rod 22 and the piston head 23 to reduce the radial direction of the piston rod 22 in a rolling manner.
  • the transmission of force to the piston head 23 reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21 and improves the transmission efficiency of axial force.
  • the working efficiency of the dual-cylinder linear compressor is improved.
  • the ball fixing structure includes a rolling bearing, and the balls on both sides of the rolling bearing exposed to the balls respectively abut against the end of the piston rod 22 and the connecting end surface of the piston head 23 and can move relative to both.
  • the rolling bearing includes an inner ring, an outer ring, balls, and a cage.
  • the inner ring is fixed on the end of the piston rod 22
  • the outer ring is fixed on the end face of the piston head 23 and the piston rod 22 connected
  • the inner ring and the outer ring support the ball
  • the ball is a component that bears the load.
  • Rolling between the ring and the outer ring, the size and quantity of the balls directly affect the load-carrying capacity of the rolling bearing.
  • the cage evenly spaced the balls apart so that each ball can roll between the inner and outer rings.
  • the dual-cylinder linear compressor improves the design of the connection between the piston rod 22 and the piston head 23,
  • a ball fixing structure is provided at the connection between 22 and the piston head 23 to reduce the transmission of the radial force received by the piston rod 22 to the piston head 23 in a rolling manner, reduce the friction loss between the piston head 23 and the inner wall of the cylinder 21, and improve the axial direction.
  • the efficiency of force transmission improves the working efficiency of the dual-cylinder linear compressor by reducing the friction loss of the piston mechanism 2.
  • the connecting end surface of the piston head 23 constituting the dynamic coupling fit is a beveled structure
  • the end of the corresponding connecting end surface of the piston rod 22 is a beveled surface structure adapted to the shape of the beveled structure.
  • piston rod 22 and the piston head 23 are connected by a wedge structure that can produce radial movement.
  • the slope structures of the two piston heads 23 are complementary.
  • the inclined surface structures of the two piston heads 23 are complementary, that is, the side of the wedge-shaped structure in contact with the piston rod 22 is an inclined surface, and the inclined surface in contact with the first piston head 23 is the first inclined surface, and the second piston head 23
  • the contacting inclined plane is the second inclined plane, and the first inclined plane and the second inclined plane are arranged in parallel, that is, the first inclined plane and the second inclined plane have the same inclination angle and the same direction, so that when the piston rod 22 receives a radial force, it is transmitted to At the inclined surface structure, since the inclination angle and direction of the two inclined surfaces are the same, it can play a good buffering effect and slow down the transmission of radial force to the piston head 23.
  • the dual-cylinder linear compressor is connected to the piston head 23 by improving the piston rod 22
  • an inclined surface structure is provided at the connection between the piston rod 22 and the piston head 23 to generate a radial movement to reduce the transmission of the radial force received by the piston rod 22 to the piston head 23 and slow down the piston head 23 and the piston head 23.
  • the friction loss of the inner wall of the cylinder 21 improves the transmission efficiency of the axial force. By reducing the friction loss of the piston mechanism 2, the working efficiency of the dual-cylinder linear compressor is improved.
  • the connecting end surface of the piston head 23 forming the dynamic coupling fit is an inner concave arc surface structure
  • the end of the corresponding connecting end surface of the piston rod 22 is an outer convex arc surface structure adapted to the shape of the inclined surface structure.
  • the dual-cylinder linear compressor improves the design of the connection between the piston rod 22 and the piston head 23, and sets the piston head at the connection between the piston rod 22 and the piston head 23.
  • the inner concave arc surface structure of 23 and the outer convex arc surface structure of the piston rod 22 cooperate to generate a slight radial movement to reduce the transmission of the radial force received by the piston rod 22 to the piston head 23 and slow down the piston head.
  • the friction loss between 23 and the inner wall of the cylinder 21 improves the transmission efficiency of the axial force. By reducing the friction loss of the piston mechanism 2, the working efficiency of the dual-cylinder linear compressor is improved.
  • An embodiment of the present invention further provides a refrigeration equipment, which includes the dual-cylinder linear compressor as described in any of the above-mentioned optional embodiments.
  • the dual-cylinder linear compressor improves the design and material of the piston rod, increases the deformation rod section 221 of the piston rod, and buffers the radial force received by the piston rod in a way that the piston rod can produce radial deformation, thereby reducing the radial force.
  • the transmission to the piston head 23 reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21 and improves the transmission efficiency of axial force. By reducing the friction loss of the piston mechanism 2, the working efficiency of the dual-cylinder linear compressor is improved.
  • the refrigeration equipment is at least one of the following product types: air conditioners and refrigerators.
  • the refrigeration equipment may be an air conditioner
  • the two cylinders of the two-cylinder linear compressor may be respectively connected to the refrigerant circulation circuits of different air-conditioning indoor unit equipment.
  • one of the cylinders is defined as the first cylinder
  • the other is the second cylinder
  • the second cylinder A refrigerant circulation circuit connected to a cylinder provides heat exchange power for the first air conditioner indoor unit
  • a refrigerant circulation circuit connected to the second cylinder provides heat exchange power for the second air conditioner indoor unit.
  • the first cylinder and the second cylinder are arranged in the same Among the compressors, one compressor can simultaneously provide the heating or cooling requirements of two different indoor units.
  • each air-conditioning indoor unit using the same compressor can only achieve one of the functions of cooling or heating at the same time.
  • the optional embodiment provided by the present invention solves the problem. This single-function problem is realized, and at the same time, heating or cooling can be provided for different indoor units.
  • the piston rod 22 of the dual-cylinder linear compressor has a deformable rod section that can be elastically deformed in its radial direction.
  • the dual-cylinder linear compressor increases the deformable rod section 221 of the piston rod by improving the design and material of the piston rod 22.
  • the piston rod 22 can generate radial deformation to buffer the radial force received by the piston rod 22, reduce the transmission of radial force to the piston head 23, reduce the friction loss between the piston head 23 and the inner wall of the cylinder 21, and improve the shaft
  • the efficiency of force transmission, and further, the air conditioner reduces the friction loss of the piston mechanism 2 of the two-cylinder linear compressor, thereby improving the cooling or heating efficiency of the air conditioner.
  • the refrigeration equipment may be an air conditioner
  • the two cylinders of the two-cylinder linear compressor may be respectively connected to the refrigerant circulation circuits of different air-conditioning indoor unit devices.
  • one of the cylinders 21 is defined as the first cylinder
  • the other is the second cylinder
  • the refrigerant circulation circuit connected to the first cylinder provides heat exchange power for the first air conditioner indoor unit
  • the refrigerant circulation circuit connected to the second cylinder provides heat exchange power for the second air conditioner indoor unit
  • the first cylinder and the second cylinder are arranged in
  • one compressor can simultaneously provide the heating or cooling requirements of two different indoor units.
  • the prior art can only meet the requirement that when connected to the same outdoor unit, that is, each air-conditioning indoor unit using the same compressor can only achieve one of the functions of cooling or heating at the same time.
  • the optional embodiment provided by the present invention solves the problem This single-function problem can be realized at the same time to provide heating or cooling for different indoor units.
  • the piston rod 22 and the piston head 23 at one or both ends form a dynamic coupling that can move relative to each other in the radial direction of the piston rod 22.
  • the relative movement between the piston head 23 and the piston rod 22 passes through the piston head 23 and the piston This is achieved by adding a ball fixing structure between the rods 22.
  • the ball fixing structure includes: a first ball groove arranged at the end of the piston rod 22, the groove depth of the first ball groove is less than or equal to the radius of the ball; a second ball groove arranged at the connection of the piston head 23 On the end surface, the groove depth of the second ball groove is less than or equal to the radius of the ball; the ball is movably arranged at the end of the piston rod 22 and the connecting end surface of the piston head 23 after the first ball groove and the second ball groove are in common In the ball space formed, the cage and the cage evenly space the balls in the ball groove, so that each ball rolls in the ball groove.
  • the dual-cylinder linear compressor improves the design of the connection between the piston rod 22 and the piston head 23, and installs a ball fixing structure at the connection between the piston rod 22 and the piston head 23 to reduce the radial direction of the piston rod 22 by rolling.
  • the transmission of force to the piston head 23 reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21, and improves the transmission efficiency of axial force.
  • the air conditioner improves the air conditioning by reducing the friction loss of the piston mechanism 2 of the dual-cylinder linear compressor. The cooling or heating efficiency.
  • the refrigeration equipment may be a refrigerator
  • the two cylinders of the two-cylinder linear compressor may be respectively connected to the refrigerating chamber and the refrigerant circulation circuit of the fresh-keeping compartment
  • the two cylinders of the two-cylinder linear compressor may be designed to have different cylinders 21
  • the size of the freezer compartment and the fresh-keeping compartment can meet the different requirements for refrigeration.
  • the larger cylinder 21 has a larger amount of compressed gas during the operation of the compressor, which can be connected to the refrigerant circuit of the freezer compartment, and the cooling effect is better.
  • the cylinder 21 is small and can communicate with the refrigerant circuit of the fresh-keeping compartment.
  • the piston rod 22 of the dual-cylinder linear compressor has a deformable rod section that can be elastically deformed in its radial direction.
  • the dual-cylinder linear compressor increases the deformable rod section 221 of the piston rod by improving the design and material of the piston rod 22.
  • the piston rod 22 can generate radial deformation to buffer the radial force received by the piston rod 22, reduce the transmission of radial force to the piston head 23, reduce the friction loss between the piston head 23 and the inner wall of the cylinder 21, and improve the shaft
  • the efficiency of force transmission, and further, the refrigerator reduces the friction loss of the piston mechanism 2 of the two-cylinder linear compressor, thereby improving the cooling efficiency of the refrigerator.
  • the refrigeration equipment may be a refrigerator
  • the two cylinders of the two-cylinder linear compressor may be connected to the refrigeration compartment and the refrigerant circulation circuit of the fresh-keeping compartment respectively
  • the two cylinders of the two-cylinder linear compressor may be designed with different sizes. In this way, the different requirements for refrigeration of the freezer compartment and the fresh-keeping compartment can be met.
  • the cylinder 21 is larger.
  • the amount of compressed gas is larger and can be connected to the refrigerant circuit of the freezer compartment. The cooling effect is better. 21 is smaller and can be connected with the refrigerant circuit of the fresh-keeping compartment.
  • the piston rod 22 and the piston head 23 at one or both ends form a dynamic coupling that can move relative to each other in the radial direction of the piston rod 22.
  • the relative movement between the piston head 23 and the piston rod 22 passes through the piston head 23 and the piston This is achieved by adding a ball fixing structure between the rods 22.
  • the ball fixing structure includes a rolling bearing, and the balls on both sides of the rolling bearing exposed to the balls respectively abut against the end of the piston rod 22 and the connecting end surface of the piston head 23 and can move relative to both.
  • Rolling bearings include inner ring, outer ring, balls and cage.
  • the inner ring is fixed on the end of the piston rod 22
  • the outer ring is fixed on the end surface connecting the piston head 23 and the piston rod 22
  • the inner ring and the outer ring support the ball
  • the ball is a component that bears the load.
  • Rolling between the ring and the outer ring, the size and quantity of the balls directly affect the load-carrying capacity of the rolling bearing.
  • the cage evenly spaced the balls apart so that each ball can roll between the inner and outer rings.
  • the dual-cylinder linear compressor improves the design of the connection between the piston rod 22 and the piston head 23, and provides a ball fixing structure at the connection between the piston rod 22 and the piston head 23 to reduce the radial direction of the piston rod 22 in a rolling manner.
  • the transmission of force to the piston head 23 reduces the friction loss between the piston head 23 and the inner wall of the cylinder 21, and improves the transmission efficiency of the axial force.
  • the refrigerator improves the refrigerator by reducing the friction loss of the piston mechanism 2 of the dual-cylinder linear compressor. The cooling efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

一种双气缸线性压缩机和制冷设备,双气缸线性压缩机包括机体(1)、活塞机构(2)和驱动机构(3),活塞机构(2)包括设置于机体(1)内的直线式的气缸(21)、设于气缸(21)内并与驱动机构(3)连接的活塞杆(22)、以及分别设于活塞杆(22)的两端的活塞头(23);每一活塞头(23)分别在其对应一侧的气缸(21)的端部空间进行压缩运动,活塞杆(22)能够沿自身径向发生相对活塞头(23)的运动,驱动机构(3)与活塞机构(2)驱动连接,以带动活塞机构(2)进行往复压缩运动。双气缸线性压缩机通过改进活塞杆(22)与活塞头(23)连接处的设计,简化双气缸线性压缩机的结构,降低活塞机构(2)的摩擦损耗,提高双气缸线性压缩机的工作效率。

Description

一种双气缸线性压缩机和制冷设备 本申请基于申请号为 201910152057.6、 申请日为 2019年 2月 28日的中国专利申请提 出, 并要求该中国专利申请的优先权, 该中国专利申请的全部内容在此引入本申请作为参 考。
本申请基于申请号为 201910152047.2、 申请日为 2019年 2月 28日的中国专利申请提 出, 并要求该中国专利申请的优先权, 该中国专利申请的全部内容在此引入本申请作为参 考。 技术领域
本发明涉及线性压缩机技术领域, 特别是涉及一种双气缸线性压缩机和制冷设备。 背景技术
双气缸线性压缩机包括两套气缸及活塞, 并在同一压缩机里组合使用, 这两套气缸及 活塞在同时工作时, 因为加工精度的局限性, 很难确保同轴度, 因此产生压缩机卡缸等可 靠性问题。
目前, 制冷设备中应用的双气缸线性压缩机, 其活塞头与连接杆采用的结构为相互无 相对位置变化的结构, 活塞与动子组件的一端相连, 动子组件的另一端与谐振弹簧相连, 在压缩机活塞运行过程中, 谐振弹簧本身在伸缩过程中会产生一定的径向力, 该径向力经 过动子组件传递到活塞处, 造成摩擦损耗的增加, 降低了压缩机的工作效率。 发明内容
本发明提供了一种双气缸线性压缩机和制冷设备, 旨在解决现有双气缸线性压缩机在 运行过程中, 由于谐振弹簧产生的径向力,造成的摩擦损耗增加, 降低压缩机效率的问题。 为了对披露的实施例的一些方面有一个基本的理解, 下面给出了简单的概括。该概括部分 不是泛泛评述, 也不是要确定关键 /重要组成元素或描绘这些实施例的保护范围。 其唯一 目的是用简单的形式呈现一些概念, 以此作为后面的详细说明的序言。
根据本发明的第一个方面, 提供了一种双气缸线性压缩机, 双气缸线性压缩机包括: 机体;
活塞机构, 包括设置于机体内的直线式的气缸、 设于气缸内并与驱动机构连接的活塞 杆、 以及分别设于活塞杆的两端的活塞头; 每一活塞头分别在其对应一侧的气缸的端部空 间进行压缩运动; 其中, 活塞杆能够沿自身径向发生相对活塞头的运动;
驱动机构, 与活塞机构驱动连接, 以带动活塞机构进行往复压缩运动。
在一种可选的实施方式中, 活塞杆能够沿自身径向发生相对活塞头的运动包括: 活塞 杆具有能够沿自身径向发生弹性形变的形变杆段。 在一种可选的实施方式中, 活塞杆包括形变杆段和非形变杆段, 形变杆段位于活塞杆 的杆中段, 或者杆侧段, 或者杆两端。
在一种可选的实施方式中, 形变杆段的杆径小于非形变杆段的杆径。
在一种可选的实施方式中, 位于活塞杆的杆中段的形变杆段为杆径均匀的直杆, 或者 杆径由两端向中部逐渐缩小的杆段。
在一种可选的实施方式中, 驱动机构包括与活塞杆连接的动子、 利用电磁作用力驱动 动子作直线往复运动的定子;
当形变杆段位于活塞杆的杆中段或杆侧段时,动子与活塞杆的连接节点设于形变杆段 和非形变杆段的衔接位置。
在一种可选的实施方式中, 形变杆段的长度大于非形变杆段的长度。
在一种可选的实施方式中, 位于活塞杆的杆两端的形变杆段构成环形凹槽结构。 在一种可选的实施方式中,形变杆段由抗弯强度小于非形变杆段的抗弯强度的材料制 成。
在一种可选的实施方式中, 活塞杆能够沿自身径向发生相对活塞头的运动包括: 活塞 杆与一端或两端的活塞头构成能够在活塞杆的径向进行相对运动的动联接配合。
在一种可选的实施方式中, 活塞杆与活塞头之间通过滚珠固定结构构成动联接配合, 滚珠固定结构的轴心与活塞杆的轴线共轴。
在一种可选的实施方式中, 滚珠固定结构包括:
第一滚珠槽,设置于活塞杆的端部,第一滚珠槽的槽深度小于或等于滚珠的半径长度; 第二滚珠槽, 设置于活塞头的连接端面, 第二滚珠槽的槽深度小于或等于滚珠的半径 长度;
滚珠,可活动的设于活塞杆的端部与活塞头的连接端面抵接后第一滚珠槽和第二滚珠 槽共同构成的滚珠空间中。
在一种可选的实施方式中, 滚珠固定结构包括:
第一滚珠槽,设置于活塞杆的端部,第一滚珠槽的槽深度小于或等于滚珠的半径长度; 滚珠, 设于活塞杆的端部的第一滚珠槽中, 滚珠外露于第一滚珠槽的部分珠体与活塞 头的连接端面抵靠且可相对于连接端面运动。
在一种可选的实施方式中, 滚珠固定结构包括:
第二滚珠槽, 设置于活塞头的连接端面, 第二滚珠槽的槽深度小于或等于滚珠的半径 长度;
滚珠, 设于活塞头的连接端面的第二滚珠槽中, 滚珠外露于第二滚珠槽的部分珠体与 活塞杆的端部抵靠且可相对于端部运动。
在一种可选的实施方式中, 滚珠固定结构包括滚动轴承, 滚动轴承的滚珠外露的两侧 部分珠体分别与活塞杆的端部和活塞头的连接端面抵靠且可相对于两者运动。
在一种可选的实施方式中, 构成动联接配合的活塞头的连接端面为斜面结构, 活塞杆 的对应连接端面的端部为与斜面结构形状适配的斜切面结构。
在一种可选的实施方式中, 当活塞杆与两端的活塞头均构成动联接配合时, 两个活塞 头的斜面结构互补。
在一种可选的实施方式中, 构成动联接配合的活塞头的连接端面为内凹弧面结构, 活 塞杆的对应连接端面的端部为与斜面结构形状适配的外凸弧面结构。
根据本发明的第二方面, 还提供了一种制冷设备, 制冷设备包括如前述任一项可选实 施方式的双气缸线性压缩机。
在一种可选的实施方式中, 制冷设备至少为以下产品类型之一: 空调、 冰箱。
本发明采用上述技术方案所具有的有益效果是:
本发明提供的双气缸线性压缩机通过改进活塞杆与活塞头连接处的设计,有效简化了 双气缸线性压缩机的结构, 并降低活塞机构的摩擦损耗, 从而提高双气缸线性压缩机的工 作效率。
应当理解的是, 以上的一般描述和后文的细节描述仅是示例性和解释性的, 并不能限 制本发明。 附图说明
此处的附图被并入说明书中并构成本说明书的一部分, 示出了符合本发明的实施例, 并与说明书一起用于解释本发明的原理。
图 1是根据一示例性实施例所示出的双气缸线性压缩机的结构示意图;
图 2是根据一示例性实施例所示出的双气缸线性压缩机的活塞杆结构示意图; 图 3是根据又一示例性实施例所示出的双气缸线性压缩机的活塞杆结构示意图; 图 4是根据又一示例性实施例所示出的双气缸线性压缩机的活塞杆结构示意图; 图 5 是根据一示例性实施例所示出的双气缸线性压缩机的活塞杆的形变杆段结构示 意图;
图 6是根据又一示例性实施例所示出的双气缸线性压缩机的结构示意图;
其中, 1、 机体; 2、 活塞机构; 3、 驱动机构; 21、 气缸; 22、 活塞杆; 23、 活塞头; 221、 形变杆段; 222、 非形变杆段。 具体实施方式
以下描述和附图充分地示出本文的具体实施方案, 以使本领域的技术人员能够实践它 们。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本文的 实施方案的范围包括权利要求书的整个范围, 以及权利要求书的所有可获得的等同物。本 文中, 术语“第一”、 “第二”等仅被用来将一个元素与另一个元素区分开来, 而不要求 或者暗示这些元素之间存在任何实际的关系或者顺序。实际上第一元素也能够被称为第二 元素, 反之亦然。 而且, 术语“包括”、 “包含”或者其任何其他变体意在涵盖非排他性 的包含, 从而使得包括一系列要素的结构、 装置或者设备不仅包括那些要素, 而且还包括 没有明确列出的其他要素, 或者是还包括为这种结构、 装置或者设备所固有的要素。 在没 有更多限制的情况下, 由语句“包括一个 ”限定的要素, 并不排除在包括所述要素的 结构、 装置或者设备中还存在另外的相同要素。 本文中各个实施例采用递进的方式描述, 每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相 参见即可。
本文中的术语“纵向”、 “横向”、 “上”、 “下”、 “前”、 “后”、 “左”、 “右”、 “竖直”、 “水平”、 “顶”、 “底”、 “内”、 “外”等指示的方位或位置关系为基于 附图所示的方位或位置关系, 仅是为了便于描述本文和简化描述, 而不是指示或暗示所指 的装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因此不能理解为对本发明 的限制。 在本文的描述中, 除非另有规定和限定, 术语“安装”、 “相连”、 “连接”应 做广义理解, 例如, 可以是机械连接或电连接, 也可以是两个元件内部的连通, 可以是直 接相连, 也可以通过中间媒介间接相连, 对于本领域的普通技术人员而言, 可以根据具体 情况理解上述术语的具体含义。
本文中, 除非另有说明, 术语“多个”表示两个或两个以上。
本文中, 字符“/”表示前后对象是一种“或” 的关系。 例如, A/B表示: A或 B。 本文中, 术语“和 /或”是一种描述对象的关联关系, 表示可以存在三种关系。 例如, A和 /或 B, 表示: A或 B, 或, A和 B这三种关系。
在一些可选实施例中, 提供了一种双气缸线性压缩机, 如图 1所示, 该示意性双气缸 线性压缩机包括机体 1、 活塞机构 2和驱动机构 3 , 驱动机构 3与活塞机构 2驱动连接, 驱动机构 3用于带动活塞机构 2进行往复压缩运动, 活塞机构 2包括气缸 21、 活塞杆 22 和活塞头 23, 其中, 气缸 21为设置于机体 1内的直线式气缸 21, 活塞杆 22设于气缸 21 内并与驱动机构 3相连接, 活塞头 23分别设于活塞杆 22的两端, 每一活塞头 23分别在 其对应一侧的气缸 21的端部空间进行压缩运动, 其中, 活塞杆 22具有能够沿自身径向发 生弹性形变的形变杆段。
这里, 活塞头 23分别设置于活塞杆 22的两端, 活塞头 23的个数可以为 2个, 为便 于描述, 活塞头 23包括第一活塞头和第二活塞头。
本文中, 活塞杆 22包括形变杆段 221和非形变杆段 222, 其中, 活塞杆的形变杆段 221 能够沿自身径向发生弹性形变, 活塞杆 22 的非形变杆段不能沿自身径向或者其他方 向发生弹性形变。
本文所述的径向力是指沿活塞杆 22截面半径方向的力, 即与轴向力垂直方向的力, 即与活塞杆 22延伸方向垂直方向的力。
这里, 对活塞杆的形变杆段 221的弹性形变自由度不做具体限定, 其弹性形变自由度 至少包括活塞机构 2做一个周期的往复运动过程中, 形变杆段的全部形变状态。
可选地, 活塞杆的形变杆段 221可以只相对于一个活塞头 23可弹性形变, 相对于活 塞杆的形变杆段 221可弹性形变的活塞头 23可以为第一活塞头, 或者也可以为第二活塞 头。
可选地, 活塞杆的形变杆段 221可以只相对于第一活塞头可弹性形变, 相对于第二活 塞头采用板弹簧和弹簧配件配合支撑的方式支撑活塞构件的位移。
可选地, 活塞杆的形变杆段 221可以相对于两个活塞头 23均可弹性形变。
可选地, 驱动机构 3包括内定子、 外定子、 线圈、 永磁体和永磁体骨架, 当压缩机通 电处于运行状态时, 线圈中产生的交变电流与永磁体相互作用, 使永磁体产生往复运动, 永磁体骨架与永磁体相连接, 永磁体带动永磁体骨架同时产生往复运动。
活塞杆 22与驱动机构 3相连可以为驱动机构 3的永磁体骨架与活塞杆 22相连接 种可选的连接方式, 可以是通过螺母固定连接, 或者通过同轴活动连接结构连接, 或者通 过卡接的方式连接。
可选地, 活塞头 23分别设于活塞杆 22的两端, 驱动机构 3驱动活塞杆 22做往复运 动, 活塞杆 22带动活塞头 23在气缸 21内压缩气缸 21内的气体。
在驱动机构 3带动活塞杆 22做往复运动的过程中, 活塞杆 22不仅受到沿活塞杆 22 轴向的力, 还会受到较小的径向力, 该径向力传至运动间隙较小的活塞头 23, 会造成侧 力增大, 增加摩擦损耗。 这里活塞杆 22具有能够沿自身径向发生弹性形变的形变杆段, 即可对活塞杆 22受到的径向力起到缓冲作用, 不会将径向力传至活塞头 23 , 这样, 就减 小了活塞头 23与气缸 21内壁的摩擦损耗, 有效降低了卡缸现象的发生频率。
这样, 双气缸线性压缩机通过改进活塞杆 22的设计和材质, 增加活塞杆的形变杆段 221, 以活塞杆可以产生径向形变的方式来缓冲活塞杆受到的径向力, 减少了径向力向活 塞头 23的传递, 减缓了活塞头 23与气缸 21 内壁的摩擦损耗, 提高轴向力的传递效率, 通过降低活塞机构 2的摩擦损耗, 从而提高双气缸线性压缩机的工作效率。
可选地, 活塞杆包括形变杆段和非形变杆段, 形变杆段位于活塞杆的杆中段, 或者杆 侧段, 或者杆两端。
这里, 形变杆段位于活塞杆 22的位置不做具体限定, 形变杆段可以位于活塞杆的杆 中段, 这样, 对于活塞杆 22两端的活塞头 23 , 形变自由度一致, 在两侧活塞缸尺寸相同 的情况下, 压缩机在运行过程中, 更加稳定。
可选地, 形变杆段可以位于活塞杆的杆侧段, 此时, 动子与活塞杆 22的连接节点可 以设于形变杆段和非形变杆段的衔接位置, 这样, 动子与活塞杆 22的连接更加牢固, 压 缩机稳定性更佳。
可选地, 形变杆段可以位于活塞杆 22 的杆两端, 活塞杆 22两端分别连接有活塞头 23 , 在活塞杆 22上, 靠近连接活塞头 23处, 分别设有形变杆段, 设靠近第一活塞头 23 的形变杆段为第一形变杆段, 靠近第二活塞头 23的形变杆段为第二形变杆段, 活塞杆 22 除去第一形变杆段和第二形变杆段的部分为非形变杆段,第一形变杆段为杆径小于非形变 杆段的杆径, 第一形变杆段与其两端面直接与两侧的非形变杆段的截面相连接, 由于第一 形变杆段的端面面积小于非形变杆段的截面面积, 所以, 第一形变杆段与非形变杆段的连 接处会环绕一圈非形变杆段的截面, 该截面所在平面不做具体限定, 由于形变杆段具有径 向弹性形变的自由度, 且在驱动机构 3的作用下, 活塞杆 22做往复运动, 活塞杆 22受到 径向力, 为减缓该径向力传至活塞头 23 , 活塞杆的形变杆段 221 发生形变, 并产生了一 定弯折角度, 这样就缓解了活塞杆的形变杆段 221受到的径向力。 这样, 双气缸线性压缩 机通过改进活塞杆 22的设计和材质, 增加活塞杆的形变杆段 221, 以活塞杆 22可以产生 径向形变的方式来缓冲活塞杆 22受到的径向力, 减少了径向力向活塞头 23的传递, 减缓 了活塞头 23与气缸 21内壁的摩擦损耗, 提高轴向力的传递效率, 通过降低活塞机构 2的 摩擦损耗, 从而提高双气缸线性压缩机的工作效率。
可选地, 形变杆段的杆径小于非形变杆段的杆径。
可选地, 压缩机在运行过程中, 活塞杆的形变杆段 221由于受到径向力, 在径向发生 形变, 活塞杆的形变杆段 221的杆径小于非形变杆段的杆径, 使形变杆段在形变时形变自 由度更高, 在压缩机运行过程中, 压缩机的活塞杆 22受力形变更加灵活。 这样, 双气缸 线性压缩机通过改进活塞杆 22的设计和材质, 增加活塞杆的形变杆段 221, 以活塞杆 22 可以产生径向形变的方式来缓冲活塞杆 22受到的径向力,减少了径向力向活塞头 23的传 递, 减缓了活塞头 23与气缸 21内壁的摩擦损耗, 提高轴向力的传递效率, 通过降低活塞 机构 2的摩擦损耗, 从而提高双气缸线性压缩机的工作效率。
可选地, 位于活塞杆 22的杆中段的形变杆段为杆径均匀的直杆, 或者杆径由两端向 中部逐渐缩小的杆段。
可选地, 位于活塞杆 22的杆中段的形变杆段为杆径均匀的直杆, 即活塞杆的形变杆 段 221与非形变杆段衔接处, 形成一个截面差, 这个衔接处刚好可以作为永磁体骨架与活 塞杆 22的连接固定处, 十分方便。
可选地, 位于活塞杆 22的杆中段的形变杆段为杆径由两端向中部逐渐缩小的杆段, 这样, 活塞杆的形变杆段 221与非形变杆段平稳过度, 衔接处无明显接口, 这样的衔接更 加牢固, 初性更好, 形变自由度更高, 不易发生故障, 造成损坏, 更加耐用, 这样, 双气 缸线性压缩机通过改进活塞杆 22 的设计和材质, 增加活塞杆的形变杆段 221, 以活塞杆 可以产生径向形变的方式来缓冲活塞杆受到的径向力,减少了径向力向活塞头 23的传递, 减缓了活塞头 23与气缸 21内壁的摩擦损耗, 提高轴向力的传递效率, 通过降低活塞机构 2的摩擦损耗, 从而提高双气缸线性压缩机的工作效率。
可选地, 驱动机构 3包括与活塞杆连接的动子、 利用电磁作用力驱动动子作直线往复 运动的定子; 当形变杆段位于活塞杆的杆中段或杆侧段时, 动子与活塞杆的连接节点设于 形变杆段和非形变杆段的衔接位置, 此时, 活塞杆的形变杆段 221可以相对于两个活塞头 23均可弹性形变。
可选地, 驱动机构 3的动子包括永磁体, 永磁体骨架作为永磁体的支撑部件, 动子与 活塞杆连接, 活塞杆的形变杆段 221可以只相对于第一活塞头 23可弹性形变时, 活塞杆 与动子的连接节点设在活塞杆的非形变杆段 222处, 且非形变杆段与第二活塞头 23直接 相连, 中间没有形变杆段, 非形变杆段与第一活塞头 23之间设有形变杆段。
可选地, 驱动机构 3的定子包括内定子、 外定子和线圈, 永磁体和线圈的相对运动。 可选地, 驱动机构 3包括, 内定子、 外定子、 线圈、 永磁体和永磁体骨架, 当压缩机 通电处于运行状态时,线圈中产生的交变电流与永磁体相互作用,使永磁体产生往复运动, 永磁体骨架与永磁体相连接, 永磁体带动永磁体骨架同时产生往复运动, 永磁体骨架与活 塞杆相连接, 进而, 带动活塞杆做往复运动, 活塞杆与活塞头 23相连接, 继而, 活塞头 23在气缸 21内产生往复压缩气缸 21内的气体。
其中, 驱动机构 3带动活塞杆做往复运动的过程中, 活塞杆不仅受到沿活塞杆轴向的 力, 还会受到较小的径向力, 该径向力传至运动间隙较小的活塞头 23, 会造成侧力增大, 增加摩擦损耗, 由于活塞杆包括形变杆段, 能够缓冲活塞杆受到的径向力, 减缓了该径向 力传递至活塞头 23, 即降低了活塞头 23与气缸 21 内壁的摩擦损耗, 这样, 双气缸线性 压缩机通过改进活塞杆的设计和材质, 增加活塞杆的形变杆段 221, 以活塞杆可以产生径 向形变的方式来缓冲活塞杆受到的径向力, 减少了径向力向活塞头 23 的传递, 减缓了活 塞头 23与气缸 21内壁的摩擦损耗, 提高轴向力的传递效率, 通过降低活塞机构 2的摩擦 损耗, 从而提高双气缸线性压缩机的工作效率。
可选地, 形变杆段的长度大于非形变杆段的长度。
可选地, 在活塞杆的总长度一定的情况下, 活塞杆的形变杆段 221的长度大于非形变 杆段的长度, 这样可以增加活塞杆形变杆段形变自由度, 使压缩机运行时, 活塞杆受到径 向力时, 形变更灵活, 损耗更小。这样, 双气缸线性压缩机通过改进活塞杆的设计和材质, 增加活塞杆的形变杆段 221, 以活塞杆可以产生径向形变的方式来缓冲活塞杆受到的径向 力, 减少了径向力向活塞头 23的传递, 减缓了活塞头 23与气缸 21 内壁的摩擦损耗, 提 高轴向力的传递效率, 通过降低活塞机构 2的摩擦损耗, 从而提高双气缸线性压缩机的工 作效率。
可选地, 位于活塞杆的杆两端的形变杆段构成环形凹槽结构。
可选地, 形变杆段可以位于活塞杆的杆两端时, 位于活塞杆的杆两端的形变杆段构成 环形凹槽结构, 活塞杆 22两端分别连接有活塞头 23 , 在活塞杆 22上, 靠近连接活塞头 23处, 分别设有形变杆段, 设靠近第一活塞头 23的形变杆段为第一形变杆段, 靠近第二 活塞头 23的形变杆段为第二形变杆段,活塞杆 22除去第一形变杆段和第二形变杆段的部 分为非形变杆段, 第一形变杆段为杆径小于非形变杆段的杆径, 第一形变杆段与其两端面 直接与两侧的非形变杆段的截面相连接, 由于第一形变杆段的端面面积小于非形变杆段的 截面面积, 所以, 第一形变杆段与非形变杆段的连接处会环绕一圈非形变杆段的截面, 该 截面所在平面不做具体限定, 由于形变杆段具有径向弹性形变的自由度, 且在驱动机构 3 的作用下, 活塞杆 22做往复运动, 同时活塞杆 22还受到径向力, 形变杆段与非形变杆段 连接处的截面所在平面不与活塞杆 22垂直, 即环形凹槽结构的两侧边非平行设置, 有微 小角度, 使其与活塞杆 22的垂直面产生一个小夹角, 这样的凹槽结构设置, 就有效缓解 了活塞杆 22受到的径向力。
这样, 双气缸线性压缩机通过改进活塞杆 22的设计和材质, 增加活塞杆的形变杆段 221, 以活塞杆可以产生径向形变的方式来缓冲活塞杆受到的径向力, 减少了径向力向活 塞头 23的传递, 减缓了活塞头 23与气缸 21 内壁的摩擦损耗, 提高轴向力的传递效率, 通过降低活塞机构 2的摩擦损耗, 从而提高双气缸线性压缩机的工作效率。
可选地, 形变杆段由抗弯强度小于非形变杆段的抗弯强度的材料制成的。
可选地, 活塞杆的形变杆段 221的材质不做具体限定, 可以为高分子复合材料, 如复 合型耐热橡胶作为活塞杆的形变杆段 221材质, 其抗弯强度低于低密度聚乙烯材料, 并具 有良好的化学稳定性, 可弹性形变自由度高, 活塞机构 2在受到径向力时, 会产生相对形 变, 缓解径向力向活塞头 23传递。
可选地, 活塞杆的非形变杆段 222的材质不做具体限定, 可以为高密度聚乙烯材料, 其抗弯强度高于低密度聚乙烯材料, 且其具有良好的耐热性和耐寒性, 化学稳定性好, 机 械强度好, 十分适合用作活塞杆的非形变杆段 222, 可以很好的支撑活塞杆的形变杆段 221, 完成活塞机构 2的往复运动。
这样,双气缸线性压缩机通过改进活塞杆的设计和材质,增加活塞杆的形变杆段 221, 以活塞杆可以产生径向形变的方式来缓冲活塞杆受到的径向力, 减少了径向力向活塞头 23的传递, 减缓了活塞头 23与气缸 21 内壁的摩擦损耗, 提高轴向力的传递效率, 通过 降低活塞机构 2的摩擦损耗, 从而提高双气缸线性压缩机的工作效率。
在一些可选实施例中, 提供了一种双气缸线性压缩机, 如图 6所示, 该示意性双气缸 线性压缩机包括机体 1、 活塞机构 2和驱动机构 3 , 驱动机构 3与活塞机构 2驱动连接, 驱动机构 3用于带动活塞机构 2进行往复压缩运动, 活塞机构 2包括气缸 21、 活塞杆 22 和活塞头 23, 其中, 气缸 21为设置于机体 1内的直线式气缸 21, 活塞杆 22设于气缸 21 内并与驱动机构 3相连接, 活塞头 23分别设于活塞杆 22的两端, 每一活塞头 23分别在 其对应一侧的气缸 21的端部空间进行压缩运动, 其中, 活塞杆 22与一端或两端的活塞头 23构成能够在活塞杆 22的径向进行相对运动的动联接配合。
这里, 活塞头 23分别设置于活塞杆 22的两端, 活塞头 23的个数可以为 2个, 为便 于描述, 活塞头 23包括第一活塞头和第二活塞头。
可选地, 驱动机构 3包括内定子、 外定子、 线圈、 永磁体和永磁体骨架, 当压缩机通 电处于运行状态时, 线圈中产生的交变电流与永磁体相互作用, 使永磁体产生往复运动, 永磁体骨架与永磁体相连接, 永磁体带动永磁体骨架同时产生往复运动。
活塞杆 22与驱动机构 3相连可以为驱动机构 3的永磁体骨架与活塞杆 22相连接 种可选的连接方式, 可以是通过螺母固定连接, 或者通过同轴活动连接结构连接, 或者通 过卡接的方式连接。
可选地, 活塞头 23分别设于活塞杆 22的两端, 驱动机构 3驱动活塞杆 22做往复运 动, 活塞杆 22带动活塞头 23在气缸 21内压缩气缸 21内的气体。
在驱动机构 3带动活塞杆 22做往复运动的过程中, 活塞杆 22不仅受到沿活塞杆 22 轴向的力, 还会受到较小的径向力, 该径向力传至运动间隙较小的活塞头 23, 会造成侧 力增大, 增加摩擦损耗。 这里活塞杆 22与一端或两端的活塞头 23构成能够在活塞杆 22 的径向进行相对运动的动联接配合, 活塞头 23与活塞杆 22间的相对运动, 即可对活塞杆 22受到的径向力起到缓冲作用, 不会将径向力传至活塞头 23 , 这样, 就减小了活塞头 23 与气缸 21内壁的摩擦损耗, 有效降低了卡缸现象的发生频率。
本文所述的径向力是指沿活塞杆 22截面半径方向的力, 即与轴向力垂直方向的力, 即与活塞杆 22延伸方向垂直方向的力。
这样, 双气缸线性压缩机通过改进活塞杆 22与活塞头 23连接处的设计, 有效简化了 双气缸线性压缩机的结构, 并降低活塞机构 2的摩擦损耗, 从而提高双气缸线性压缩机的 工作效率。
可选地, 活塞杆 22与活塞头 23之间通过滚珠固定结构构成动联接配合, 滚珠固定结 构的轴心与活塞杆 22的轴线共轴。 即, 活塞头 23与活塞杆 22间的相对运动通过在活塞 头 23与活塞杆 22间增加滚珠固定结构来实现。
可选地, 活塞杆 22与一端或两端的活塞头 23构成能够在活塞杆 22的径向进行相对 运动的动联接配合的结构可以是滚珠固定结构, 滚珠固定结构包括滚珠槽和滚珠, 其中, 滚珠在滚珠槽内滚动, 滚珠的尺寸和数量影响滚珠固定结构的缓冲能力。
可选地, 滚珠固定结构还包括保持架, 保持架将滚珠在滚珠槽内均匀地间隔开来, 使 每个滚珠在滚珠槽滚动运转。
可选地, 活塞杆 22为空心管状结构, 管壁的厚度小于或等于滚珠的直径长度, 活塞 杆 22端部沿管壁形成一圈向内的圆滑凹弧面, 凹弧面可以为半圆弧面, 或者略小于半圆 弧面, 形成滚珠槽。 所以, 活塞杆 22的轴线即为活塞杆 22壁的轴线, 即, 滚珠槽的轴心 与活塞杆 22 的轴线共轴, 这样会增加滚珠固定结构的稳定性, 使活塞杆 22带动活塞头 23运动的过程中, 更加稳定。
可选地, 活塞杆 22上可设置一缺口, 可以配合活塞杆 22两端的滚珠固定结构, 使活 塞杆 22受到的径向力得到跟充分的缓冲。
可选地, 滚珠数量为 2个, 滚珠槽呈圆环形状, 以滚珠槽的圆环中心引出任意直径, 该直径与滚珠槽的两个焦点即为设置滚珠的位置。 滚珠通过保持架限定滚珠的滚动范围。
可选地, 滚珠数量为 8个。 沿滚珠槽的圆心向任意方向引出一半径延长线, 该半径延 长线与滚珠槽的交点可以为其中一个滚珠的位置, 并以该半径延长线为基准, 在从圆点引 一间隔 45度角的延长线, 其与滚珠槽的交点可以确定又一滚珠的位置, 滚珠沿滚珠槽依 次均匀排列。 多个滚珠的存在可以降低活塞杆 22受到径向力向活塞头 23的传递。
这样, 双气缸线性压缩机通过改进活塞杆 22与活塞头 23 连接处的设计, 在活塞杆 22与活塞头 23的连接处设置滚珠固定结构, 以滚动的方式来降低活塞杆 22受到的径向 力向活塞头 23的传递, 减缓了活塞头 23与气缸 21 内壁的摩擦损耗, 提高轴向力的传递 效率, 通过降低活塞机构 2的摩擦损耗, 从而提高双气缸线性压缩机的工作效率。
可选地, 滚珠固定结构包括: 第一滚珠槽、 第二滚珠槽和滚珠。 第一滚珠槽, 设置于 活塞杆 22的端部, 第二滚珠槽, 设置于活塞头 23的连接端面, 滚珠, 可活动的设于活塞 杆 22的端部与活塞头 23的连接端面抵接后第一滚珠槽和第二滚珠槽共同构成的滚珠空间 中。
其中, 滚珠固定结构包括第一滚珠槽和第二滚珠槽, 且第一滚珠槽和第二滚珠槽的槽 深度均小于或等于滚珠的半径长度。若第一滚珠槽和第二滚珠槽的槽深度均大于滚珠的半 径长度, 则滚珠在活塞杆 22和活塞头 23之间将起不到缓冲径向力传递的作用。
这样, 双气缸线性压缩机通过改进活塞杆 22与活塞头 23 连接处的设计, 在活塞杆
22与活塞头 23的连接处设置滚珠固定结构, 以滚动的方式来降低活塞杆 22受到的径向 力向活塞头 23的传递, 减缓了活塞头 23与气缸 21 内壁的摩擦损耗, 提高轴向力的传递 效率, 通过降低活塞机构 2的摩擦损耗, 从而提高双气缸线性压缩机的工作效率。
可选地, 滚珠固定结构包括: 第一滚珠槽, 设置于活塞杆 22的端部; 滚珠, 设于活 塞杆 22的端部的第一滚珠槽中,滚珠外露于第一滚珠槽的部分珠体与活塞头 23的连接端 面抵靠且可相对于连接端面运动。
可选地, 第一滚珠槽的槽深度小于或等于滚珠的半径长度, 或者第一滚珠槽的槽深度 大于滚珠的半径长度且小于滚珠的直径长度。
这样, 双气缸线性压缩机通过改进活塞杆 22与活塞头 23 连接处的设计, 在活塞杆 22与活塞头 23的连接处设置滚珠固定结构, 以滚动的方式来降低活塞杆 22受到的径向 力向活塞头 23的传递, 减缓了活塞头 23与气缸 21 内壁的摩擦损耗, 提高轴向力的传递 效率, 通过降低活塞机构 2的摩擦损耗, 从而提高双气缸线性压缩机的工作效率。
可选地, 滚珠固定结构包括:
第二滚珠槽, 设置于活塞头 23的连接端面, 滚珠, 设于活塞头 23的连接端面的第二 滚珠槽中, 滚珠外露于第二滚珠槽的部分珠体与活塞杆 22的端部抵靠且可相对于端部运 动。
可选地, 第一滚珠槽的槽深度小于或等于滚珠的半径长度, 或者第一滚珠槽的槽深度 大于滚珠的半径长度且小于滚珠的直径长度。
这样, 双气缸线性压缩机通过改进活塞杆 22与活塞头 23 连接处的设计, 在活塞杆 22与活塞头 23的连接处设置滚珠固定结构, 以滚动的方式来降低活塞杆 22受到的径向 力向活塞头 23的传递, 减缓了活塞头 23与气缸 21 内壁的摩擦损耗, 提高轴向力的传递 效率, 通过降低活塞机构 2的摩擦损耗, 从而提高双气缸线性压缩机的工作效率。
可选地, 滚珠固定结构包括滚动轴承, 滚动轴承的滚珠外露的两侧部分珠体分别与活 塞杆 22的端部和活塞头 23的连接端面抵靠且可相对于两者运动。
可选地, 滚动轴承包括内圈、 外圈、 滚珠和保持架。 其中, 内圈固定在活塞杆 22的端部, 外圈固定在活塞头 23与活塞杆 22连接的端面 上, 内圈和外圈对滚珠其支承作用, 滚珠为承受负载的部件, 其在内圈与外圈之间滚动, 滚珠的尺寸和数量直接影响滚动轴承的承载能力, 保持架将滚珠均匀地相互间隔开, 使每 个滚珠在内圈外圈之间滚动运转。
这样, 双气缸线性压缩机通过改进活塞杆 22与活塞头 23 连接处的设计, 在活塞杆
22与活塞头 23的连接处设置滚珠固定结构, 以滚动的方式来降低活塞杆 22受到的径向 力向活塞头 23的传递, 减缓了活塞头 23与气缸 21 内壁的摩擦损耗, 提高轴向力的传递 效率, 通过降低活塞机构 2的摩擦损耗, 从而提高双气缸线性压缩机的工作效率。
可选地, 构成动联接配合的活塞头 23的连接端面为斜面结构, 活塞杆 22的对应连接 端面的端部为与斜面结构形状适配的斜切面结构。
可选地, 活塞杆 22与活塞头 23 通过可以产生径向移动的楔形结构连接, 当活塞杆 22与两端的活塞头 23均构成动联接配合时, 两个活塞头 23的斜面结构互补。
其中, 两个活塞头 23的斜面结构互补, S卩, 楔形结构与活塞杆 22相接触的一面为斜 面, 其与第一活塞头 23相接触的斜面为第一斜面, 与第二活塞头 23相接触的斜面为第二 斜面, 第一斜面与第二斜面平行设置, 即, 第一斜面与第二斜面倾斜角度一致, 且方向相 同, 这样当活塞杆 22受到径向力作用时, 传递到斜面结构处, 由于两斜面倾斜角度和方 向一致, 可以起到很好的缓冲作用, 减缓径向力相活塞头 23 的传递, 这样, 双气缸线性 压缩机通过改进活塞杆 22与活塞头 23连接处的设计,在活塞杆 22与活塞头 23的连接处 设置斜面结构, 以产生径向移动的方式, 来降低活塞杆 22受到的径向力向活塞头 23的传 递, 减缓了活塞头 23与气缸 21内壁的摩擦损耗, 提高轴向力的传递效率, 通过降低活塞 机构 2的摩擦损耗, 从而提高双气缸线性压缩机的工作效率。
可选地, 构成动联接配合的活塞头 23的连接端面为内凹弧面结构, 活塞杆 22的对应 连接端面的端部为与斜面结构形状适配的外凸弧面结构。当活塞杆 22受到径向力的作用, 活塞杆 22 的外凸弧面结构与活塞头 23 的内凹弧面结构产生微小的径向位移, 使活塞杆 22与活塞头 23产生轻微的不同轴, 从而减缓了径向力对活塞头 23 的作用, 这样, 双气 缸线性压缩机通过改进活塞杆 22与活塞头 23连接处的设计,在活塞杆 22与活塞头 23的 连接处设置活塞头 23的内凹弧面结构和活塞杆 22的外凸弧面结构相配合, 以产生微小径 向移动的方式, 来降低活塞杆 22受到的径向力向活塞头 23的传递, 减缓了活塞头 23与 气缸 21 内壁的摩擦损耗, 提高轴向力的传递效率, 通过降低活塞机构 2的摩擦损耗, 从 而提高双气缸线性压缩机的工作效率。
本发明实施例进一步提供了一种制冷设备,该制冷设备包括如上述任意可选实施例所 述的双气缸线性压缩机。 这样, 双气缸线性压缩机通过改进活塞杆的设计和材质, 增加活 塞杆的形变杆段 221, 以活塞杆可以产生径向形变的方式来缓冲活塞杆受到的径向力, 减 少了径向力向活塞头 23的传递, 减缓了活塞头 23与气缸 21 内壁的摩擦损耗, 提高轴向 力的传递效率,通过降低活塞机构 2的摩擦损耗,从而提高双气缸线性压缩机的工作效率。 可选地, 制冷设备至少为以下产品类型之一: 空调、 冰箱。
可选地, 制冷设备可以为空调, 双气缸线性压缩机的双气缸可以分别连接不同空调室 内机设备的冷媒循环回路, 若定义其中一个气缸为第一气缸, 另一个为第二气缸, 与第一 气缸相连的冷媒循环回路为第一空调室内机提供换热动力,与第二气缸相连的冷媒循环回 路为第二空调室内机提供换热动力, 而第一气缸和第二气缸又设置在同一台压缩机中, 所 以就实现了一台压缩机同时提供两不同室内机的制热或制冷需求。 现有技术仅能满足, 连 接在同一室外机, 即使用同一压缩机的各个空调室内机, 在同一时间内, 仅能实现制冷或 者制热其中一个功能, 本发明提供的可选实施例解决了这种功能单一的问题, 实现, 在同 一时间, 可以为不同室内机提供制热或者制冷。
其中,双气缸线性压缩机的活塞杆 22具有能够沿自身径向发生弹性形变的形变杆段, 这样, 双气缸线性压缩机通过改进活塞杆 22的设计和材质, 增加活塞杆的形变杆段 221, 以活塞杆 22可以产生径向形变的方式来缓冲活塞杆 22受到的径向力,减少了径向力向活 塞头 23的传递, 减缓了活塞头 23与气缸 21 内壁的摩擦损耗, 提高轴向力的传递效率, 进而, 空调通过降低双气缸线性压缩机的活塞机构 2的摩擦损耗, 从而提高空调的制冷或 者制热效率。
可选地, 制冷设备可以为空调, 双气缸线性压缩机的双气缸可以分别连接不同空调室 内机设备的冷媒循环回路, 若定义其中一个气缸 21为第一气缸, 另一个为第二气缸, 与 第一气缸相连的冷媒循环回路为第一空调室内机提供换热动力,与第二气缸相连的冷媒循 环回路为第二空调室内机提供换热动力, 而第一气缸和第二气缸又设置在同一台压缩机 中, 所以就实现了一台压缩机同时提供两不同室内机的制热或制冷需求。 现有技术仅能满 足, 连接在同一室外机, 即使用同一压缩机的各个空调室内机, 在同一时间内, 仅能实现 制冷或者制热其中一个功能,本发明提供的可选实施例解决了这种功能单一的问题,实现, 在同一时间, 可以为不同室内机提供制热或者制冷。
其中, 活塞杆 22与一端或两端的活塞头 23构成能够在活塞杆 22的径向进行相对运 动的动联接配合, 活塞头 23与活塞杆 22间的相对运动, 并通过在活塞头 23与活塞杆 22 间增加滚珠固定结构来实现。
可选地, 滚珠固定结构包括: 第一滚珠槽, 设置于活塞杆 22的端部, 第一滚珠槽的 槽深度小于或等于滚珠的半径长度; 第二滚珠槽, 设置于活塞头 23 的连接端面, 第二滚 珠槽的槽深度小于或等于滚珠的半径长度; 滚珠, 可活动的设于活塞杆 22的端部与活塞 头 23 的连接端面抵接后第一滚珠槽和第二滚珠槽共同构成的滚珠空间中, 保持架, 保持 架将滚珠在滚珠槽内均匀地间隔开来, 使每个滚珠在滚珠槽滚动运转。 这样, 双气缸线性 压缩机通过改进活塞杆 22与活塞头 23连接处的设计,在活塞杆 22与活塞头 23的连接处 设置滚珠固定结构, 以滚动的方式来降低活塞杆 22受到的径向力向活塞头 23的传递, 减 缓了活塞头 23与气缸 21内壁的摩擦损耗, 提高轴向力的传递效率, 进而, 空调通过降低 双气缸线性压缩机的活塞机构 2的摩擦损耗, 从而提高空调的制冷或制热效率。 可选地, 制冷设备可以为冰箱, 双气缸线性压缩机的双气缸可以分别连接冰箱的冷冻 室和保鲜室的冷媒循环回路, 双气缸线性压缩机的双气缸可以将两气缸 21设计为不同的 尺寸, 这样就可以满足冷冻室和保鲜室对制冷的不同需求, 气缸 21较大的, 在压缩机运 行过程中, 压缩气体量较大, 可以与冷冻室的冷媒回路连通, 制冷效果更好, 气缸 21较 小的, 可以与保鲜室的冷媒回路连通。
其中,双气缸线性压缩机的活塞杆 22具有能够沿自身径向发生弹性形变的形变杆段, 这样, 双气缸线性压缩机通过改进活塞杆 22的设计和材质, 增加活塞杆的形变杆段 221, 以活塞杆 22可以产生径向形变的方式来缓冲活塞杆 22受到的径向力,减少了径向力向活 塞头 23的传递, 减缓了活塞头 23与气缸 21 内壁的摩擦损耗, 提高轴向力的传递效率, 进而, 冰箱通过降低双气缸线性压缩机的活塞机构 2的摩擦损耗, 从而提高冰箱的制冷效 率。
可选地, 制冷设备可以为冰箱, 双气缸线性压缩机的双气缸可以分别连接冰箱的冷冻 室和保鲜室的冷媒循环回路, 双气缸线性压缩机的双气缸可以将两气缸设计为不同的尺 寸, 这样就可以满足冷冻室和保鲜室对制冷的不同需求, 气缸 21较大的, 在压缩机运行 过程中, 压缩气体量较大, 可以与冷冻室的冷媒回路连通, 制冷效果更好, 气缸 21较小 的, 可以与保鲜室的冷媒回路连通。
其中, 活塞杆 22与一端或两端的活塞头 23构成能够在活塞杆 22的径向进行相对运 动的动联接配合, 活塞头 23与活塞杆 22间的相对运动, 并通过在活塞头 23与活塞杆 22 间增加滚珠固定结构来实现。
可选地, 滚珠固定结构包括滚动轴承, 滚动轴承的滚珠外露的两侧部分珠体分别与活 塞杆 22的端部和活塞头 23的连接端面抵靠且可相对于两者运动。滚动轴承包括内圈、 外 圈、 滚珠和保持架。 其中, 内圈固定在活塞杆 22的端部, 外圈固定在活塞头 23与活塞杆 22 连接的端面上, 内圈和外圈对滚珠其支承作用, 滚珠为承受负载的部件, 其在内圈与 外圈之间滚动, 滚珠的尺寸和数量直接影响滚动轴承的承载能力, 保持架将滚珠均匀地相 互间隔开, 使每个滚珠在内圈外圈之间滚动运转。 这样, 双气缸线性压缩机通过改进活塞 杆 22与活塞头 23连接处的设计, 在活塞杆 22与活塞头 23的连接处设置滚珠固定结构, 以滚动的方式来降低活塞杆 22受到的径向力向活塞头 23的传递, 减缓了活塞头 23与气 缸 21 内壁的摩擦损耗, 提高轴向力的传递效率, 进而, 冰箱通过降低双气缸线性压缩机 的活塞机构 2的摩擦损耗, 从而提高冰箱的制冷效率。
应当理解的是, 本发明并不局限于上面己经描述并在附图中示出的流程及结构, 并且 可以在不脱离其范围进行各种修改和改变。 本发明的范围仅由所附的权利要求来限制。

Claims

权利要求
1. 一种双气缸线性压缩机, 其特征在于, 所述压缩机包括:
机体;
活塞机构,包括设置于所述机体内的直线式的气缸、设于所述气缸内并与驱动机构连 接的活塞杆、 以及分别设于所述活塞杆的两端的活塞头;每一所述活塞头分别在其对应一 侧的所述气缸的端部空间进行压缩运动;其中,所述活塞杆能够沿自身径向发生相对所述 活塞头的运动;
驱动机构, 与所述活塞机构驱动连接, 以带动所述活塞机构进行往复压缩运动。
2 根据权利要求 1所述的双气缸线性压缩机, 其特征在于, 所述活塞杆能够沿自身 径向发生相对所述活塞头的运动包括:
所述活塞杆具有能够沿自身径向发生弹性形变的形变杆段。
3. 根据权利要求 2所述的双气缸线性压缩机, 其特征在于, 所述活塞杆包括所述形 变杆段和非形变杆段,所述形变杆段位于所述活塞杆的杆中段,或者杆侧段,或者杆两端。
4. 根据权利要求 3所述的双气缸线性压缩机, 其特征在于, 所述形变杆段的杆径小 于所述非形变杆段的杆径。
5. 根据权利要求 4所述的双气缸线性压缩机, 其特征在于, 位于所述活塞杆的杆中 段的所述形变杆段为杆径均匀的直杆, 或者杆径由两端向中部逐渐缩小的杆段。
6. 根据权利要求 4所述的双气缸线性压缩机, 其特征在于, 所述驱动机构包括与所 述活塞杆连接的动子、 利用电磁作用力驱动所述动子作直线往复运动的定子;
当所述形变杆段位于所述活塞杆的杆中段或杆侧段时,所述动子与所述活塞杆的连接 节点设于所述形变杆段和非形变杆段的衔接位置。
7. 根据权利要求 6所述的双气缸线性压缩机, 其特征在于, 所述形变杆段的长度大 于所述非形变杆段的长度。
8. 根据权利要求 4所述的双气缸线性压缩机, 其特征在于, 位于所述活塞杆的杆两 端的所述形变杆段构成环形凹槽结构。
9. 根据权利要求 3所述的双气缸线性压缩机, 其特征在于, 所述形变杆段由抗弯强 度小于所述非形变杆段的抗弯强度的材料制成。
10. 根据权利要求 1所述的双气缸线性压缩机, 其特征在于, 所述活塞杆能够沿自身
Figure imgf000016_0001
所述活塞杆与一端或两端的所述活塞头构成能够在所述活塞杆的径向进行相对运动 的动联接配合。
11. 根据权利要求 10所述的双气缸线性压缩机, 其特征在于, 所述活塞杆与活塞头
Figure imgf000016_0002
线共轴。
12. 根据权利要求 11所述的双气缸线性压缩机, 其特征在于, 所述滚珠固定结构包 括:
第一滚珠槽,设置于所述活塞杆的端部,所述第一滚珠槽的槽深度小于或等于滚珠的 半径长度;
第二滚珠槽,设置于所述活塞头的连接端面,所述第二滚珠槽的槽深度小于或等于滚 珠的半径长度;
滚珠,可活动的设于所述活塞杆的端部与所述活塞头的连接端面抵接后所述第一滚珠 槽和所述第二滚珠槽共同构成的滚珠空间中。
13. 根据权利要求 11所述的双气缸线性压缩机, 其特征在于, 所述滚珠固定结构包 括:
第一滚珠槽,设置于所述活塞杆的端部,所述第一滚珠槽的槽深度小于或等于滚珠的 半径长度;
滚珠,设于所述活塞杆的端部的所述第一滚珠槽中,所述滚珠外露于所述第一滚珠槽 的部分珠体与所述活塞头的连接端面抵靠且可相对于所述连接端面运动。
14. 根据权利要求 11所述的双气缸线性压缩机, 其特征在于, 所述滚珠固定结构包 括:
第二滚珠槽,设置于所述活塞头的连接端面,所述第二滚珠槽的槽深度小于或等于滚 珠的半径长度;
滚珠,设于所述活塞头的连接端面的所述第二滚珠槽中,所述滚珠外露于所述第二滚 珠槽的部分珠体与所述活塞杆的端部抵靠且可相对于所述端部运动。
15. 根据权利要求 11所述的双气缸线性压缩机, 其特征在于, 所述滚珠固定结构包 括滚动轴承,所述滚动轴承的滚珠外露的两侧部分珠体分别与所述活塞杆的端部和所述活 塞头的连接端面抵靠且可相对于两者运动。
16. 根据权利要求 10所述的双气缸线性压缩机, 其特征在于, 构成所述动联接配合 的所述活塞头的连接端面为斜面结构,所述活塞杆的对应所述连接端面的端部为与所述斜 面结构形状适配的斜切面结构。
17. 根据权利要求 16所述的双气缸线性压缩机, 其特征在于, 当所述活塞杆与两端 的所述活塞头均构成所述动联接配合时, 两个活塞头的所述斜面结构互补。
18. 根据权利要求 10所述的双气缸线性压缩机, 其特征在于, 所述构成所述动联接 配合的所述活塞头的连接端面为内凹弧面结构,所述活塞杆的对应所述连接端面的端部为 与所述斜面结构形状适配的外凸弧面结构。
19. 一种制冷设备, 其特征在于, 所述制冷设备包括如权利要求 1-18 的任一项所述 的双气缸线性压缩机。
20. 根据权利要求 19所述的制冷设备, 其特征在于, 所述制冷设备至少为以下产品 类型之一: 空调、 冰箱。
PCT/CN2020/076961 2019-02-28 2020-02-27 一种双气缸线性压缩机和制冷设备 WO2020173480A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910152047.2A CN111622921B (zh) 2019-02-28 2019-02-28 一种双气缸线性压缩机和制冷设备
CN201910152047.2 2019-02-28
CN201910152057.6A CN111622922B (zh) 2019-02-28 2019-02-28 一种双气缸线性压缩机和制冷设备
CN201910152057.6 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020173480A1 true WO2020173480A1 (zh) 2020-09-03

Family

ID=72239177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076961 WO2020173480A1 (zh) 2019-02-28 2020-02-27 一种双气缸线性压缩机和制冷设备

Country Status (1)

Country Link
WO (1) WO2020173480A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2266932A (en) * 1992-05-06 1993-11-17 Yih Kai Enterprise Co Ltd Magnetically reciprocating compressor
CN1579044A (zh) * 2002-10-16 2005-02-09 松下冷机株式会社 线性电动机和采用它的线性压缩机
CN101268276A (zh) * 2005-07-21 2008-09-17 菲舍尔和佩克尔应用有限公司 线性压缩机中定子部分的夹紧
CN101270743A (zh) * 2003-05-30 2008-09-24 菲舍尔和佩克尔应用有限公司 压缩机改进结构
CN101395788A (zh) * 2006-02-28 2009-03-25 Bsh博世和西门子家用器具有限公司 具有减小的轴向分力的线性驱动装置、线性压缩机和制冷装置
US20110056235A1 (en) * 2009-09-04 2011-03-10 Kabushiki Kaisha Toyota Jidoshokki Linear electric compressor and refrigerant circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2266932A (en) * 1992-05-06 1993-11-17 Yih Kai Enterprise Co Ltd Magnetically reciprocating compressor
CN1579044A (zh) * 2002-10-16 2005-02-09 松下冷机株式会社 线性电动机和采用它的线性压缩机
CN101270743A (zh) * 2003-05-30 2008-09-24 菲舍尔和佩克尔应用有限公司 压缩机改进结构
CN101268276A (zh) * 2005-07-21 2008-09-17 菲舍尔和佩克尔应用有限公司 线性压缩机中定子部分的夹紧
CN101395788A (zh) * 2006-02-28 2009-03-25 Bsh博世和西门子家用器具有限公司 具有减小的轴向分力的线性驱动装置、线性压缩机和制冷装置
US20110056235A1 (en) * 2009-09-04 2011-03-10 Kabushiki Kaisha Toyota Jidoshokki Linear electric compressor and refrigerant circuit

Similar Documents

Publication Publication Date Title
US10128710B2 (en) Linear compressor and linear motor for a linear compressor
US9429150B2 (en) Linear compressor
EP2977612A1 (en) Linear compressor
JP2017508906A (ja) 電動式圧縮機及びそれを備えた冷凍装置
US9702352B2 (en) Linear compressor and a spring assembly
WO2020173480A1 (zh) 一种双气缸线性压缩机和制冷设备
CN206221201U (zh) 直线压缩机用活塞连接结构及直线压缩机
US9506460B2 (en) Linear compressor
CN111561437B (zh) 一种热泵系统用无油线性压缩机
US20060083627A1 (en) Vapor compression system including a swiveling compressor
KR101495188B1 (ko) 왕복동식 압축기
CN104807228B (zh) 冷却设备和压缩机
CN218347540U (zh) 活塞气缸系统、制冷机及冷藏设备
CN111622921B (zh) 一种双气缸线性压缩机和制冷设备
CN217082971U (zh) 大行程柱弹簧支撑的大冷量集成式斯特林气动制冷机
CN106918162B (zh) 空调器
CN111622922B (zh) 一种双气缸线性压缩机和制冷设备
CN1306229C (zh) 采用油润滑压缩机驱动的斯特林制冷系统
CN110242526A (zh) 气体弹簧弹出器及热声热机系统
CN105065230B (zh) 往复式压缩机及家用电器
CN210859534U (zh) 一种冰箱压缩机用曲轴组件
US20230332588A1 (en) Linear compressor
CN104114959A (zh) 压缩机
CN110274406B (zh) 一种冷头结构及分体式自由活塞斯特林制冷机
US20230258166A1 (en) Linear compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20763560

Country of ref document: EP

Kind code of ref document: A1