CN1551300A - 一种用于制造具有金属栅电极的半导体器件的方法 - Google Patents

一种用于制造具有金属栅电极的半导体器件的方法 Download PDF

Info

Publication number
CN1551300A
CN1551300A CNA2004100381512A CN200410038151A CN1551300A CN 1551300 A CN1551300 A CN 1551300A CN A2004100381512 A CNA2004100381512 A CN A2004100381512A CN 200410038151 A CN200410038151 A CN 200410038151A CN 1551300 A CN1551300 A CN 1551300A
Authority
CN
China
Prior art keywords
metal
gate electrode
oxide
layer
work function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100381512A
Other languages
English (en)
Other versions
CN1311527C (zh
Inventor
���ء����߸�
罗伯特·周
马克·多齐
马库斯·库恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1551300A publication Critical patent/CN1551300A/zh
Application granted granted Critical
Publication of CN1311527C publication Critical patent/CN1311527C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明描述了一种用于制造半导体器件的方法。该方法包括:在衬底上形成电介质层,并且在电介质层上形成含杂质金属层。然后由该含杂质金属层形成金属栅电极。本发明还描述了一种半导体器件,所述半导体器件包括形成在电介质层上的金属栅电极,其中所述电介质层形成在衬底上。金属栅电极包括足够量的杂质,以使所述金属栅电极的功函数改变至少约0.1eV。

Description

一种用于制造具有金属栅电极的半导体器件的方法
技术领域
本发明涉及用于制造半导体器件的方法,更具体地涉及用于制造包括金属栅电极的半导体器件的方法。
背景技术
具有由二氧化硅制成的非常薄的栅电极的MOS场效应晶体管可能遇到不能令人满意的栅极漏电流。由特定的高k电介质材料而不是二氧化硅形成栅极电介质可以减小栅极漏流。然而,这样的电介质可能不与多晶硅相容。由于此原因,对于包括高k栅极电介质的器件,利用金属栅电极代替基于多晶硅的栅电极可能是理想的。
取决于金属栅电极是用于形成NMOS晶体管还是PMOS晶体管,其最佳的功函数是不同的。当相同的材料被用于制造用于NMOS和PMOS晶体管的金属栅电极时,栅电极不可能表现出对于两种类型器件都是理想的功函数。如果选择材料来确保对于NMOS晶体管的栅电极的满意的功函数,则对于PMOS晶体管的栅电极的功函数将是不令人满意的。类似地,选择确保对于PMOS晶体管的栅电极的满意的功函数的材料,将妨碍NMOS晶体管的栅电极获得合适的功函数。选择中间能隙(midgap)材料(即,为用于NMOS和PMOS晶体管的金属栅电极提供中间功函数的材料)将为两种晶体管提供次最佳功函数。
通过由第一材料形成NMOS晶体管的金属栅电极并由第二材料形成PMOS晶体管的金属栅电极,有可能解决此问题。第一材料可以确保对于NMOS栅电极的满意的功函数,同时第二材料可以确保对于PMOS晶体管的满意的功函数。然而,用于形成这样的双金属栅极器件的工艺可能是复杂而昂贵的。
因此,存在对于用于制造包括金属栅电极的半导体器件的改进工艺的需要。存在对于用于制造具有金属栅电极的器件的相对廉价和简单的工艺的需要,其中所述金属栅电极是对于NMOS和PMOS晶体管两者都表现出最佳功函数的金属栅电极。本发明的方法提供这样的工艺。
发明内容
针对上述的问题,提出了本发明。
在本发明中,提供了一种用于制造半导体器件的方法,包括:在衬底上形成电介质层;在所述电介质层上形成含杂质金属层;以及由所述含杂质金属层形成金属栅电极。
优选地,本方法还可以包括将足够量的元素加入到所述金属层,以使所述金属层的功函数改变至少约0.1eV。
在本发明中,还提供了一种用于制造CMOS晶体管的方法,包括:在衬底上形成高k栅极电介质层;以及在所述高k栅极电介质层上形成含杂质金属层,其中,所述含杂质金属层的第一部分包括足够量的第一元素,以降低所述金属层的功函数,并且其中所述含杂质金属层的第二部分包括足够量的第二元素,以提高所述金属层的功函数。
优选地,本方法还可以包括:由所述含杂质金属层的所述第一部分形成用于NMOS晶体管的栅电极,以及由所述含杂质金属层的所述第二部分形成用于PMOS晶体管的栅电极,并且其中所述第一元素具有小于1.7的电负性值,而所述第二元素具有大于2.8的电负性值。
优选地,在上述方法中,所述含杂质金属层由如下步骤形成:形成具有约4.3eV至约4.9eV之间的功函数的金属层;然后将足够量的第一元素加入到所述金属层的第一部分,以使所述金属层的功函数降低至约4.0eV至约4.2eV之间,并且将足够量的第二元素加入到所述金属层的第二部分,以使所述金属层的功函数提高至约5.0eV至约5.2eV之间。
此外,在本发明中,还提供了一种半导体器件,所述半导体器件包括:形成在衬底上的电介质层;以及形成在所述电介质层上的金属栅电极,其中,所述金属栅电极包括足够量的杂质,以使所述金属栅电极的功函数改变至少约0.1eV。
附图说明
图1a-1d表示当实施本发明的方法的实施例时可以形成的结构的横截面。
图2提供了示出了各种元素的功函数与它们的电负性的关系的曲线图。
图3a-3d表示当实施本发明的方法的第二实施例时可以形成的结构的横截面。
在这些图中示出的特征没有特意按比例绘制。
具体实施方式
本发明描述了一种用于制造半导体器件的方法。此方法包括在衬底上形成电介质层,以及在电介质层上形成含杂质金属层。然后,由含杂质金属层形成金属栅电极。本发明还描述了包括金属栅电极的半导体器件。此器件包括形成在衬底上的电介质层,和形成在电介质层上的金属栅电极。金属栅电极包括足够量的杂质,以使金属栅电极的功函数改变至少约0.1eV。
在下面的描述中阐述了很多具体细节,以便于充分理解本发明。但是,可以以很多不同于在此被清楚地描述的其他方式来实施本发明,对于本领域的技术人员来说是很明显的。因此,本发明不受下面公开的具体细节的限制。
图1a-1d图示了当实施本发明的方法的实施例时可以形成的结构。首先,在衬底100上形成电介质层101,生成图1a的结构。衬底100可以包括体硅和绝缘体上硅次结构。或者,衬底100可以包括其他的材料,其可以是与或者不与硅结合的,例如锗、锑化铟、碲化铅、砷化铟、磷化铟、砷化镓或锑化镓。虽然在此描述了可以形成衬底100的材料的几个示例,但是可以作为其上可构建半导体器件的基底的任何材料都落入了本发明的精神和范围中。
电介质层101优选包含高k栅极电介质层。可以用来制造高k栅极电介质的一些材料包括:氧化铪、氧化铪硅、氧化镧、氧化锆、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛、氧化锶钛、氧化钇、氧化铝、氧化铅钪钽和铌酸铅锌。特别优选的是氧化铪、氧化锆、氧化钛和氧化铝。虽然在此描述了可以用来形成电介质层101的材料的少数示例,但是此层可以由起到减小栅极漏流作用的其他材料制成。
电介质层101可以通过使用传统的沉积方法形成在衬底100上,所述传统的沉积方法例如是传统的化学气相沉积(“CVD”)、低压CVD或者物理气相沉积工艺。优选地,使用传统的原子层CVD工艺。在这样的工艺中,金属氧化物前驱体(例如,金属氯化物)和蒸汽可以以选定的流速供入CVD反应器,然后以选定的温度和压力运行所述CVD反应器,以在衬底100和电介质层101之间生成原子光滑的界面。CVD反应器应该运行足够长的时间,以形成具有理想厚度的层。在大多数的应用中,电介质层101的厚度应该小于约60埃,且更优选地,厚度在约5埃到40埃之间。
在电介质层101被形成在衬底100上之后,在电介质层101上形成金属栅电极。在优选的实施例中,通过首先在电介质层101上形成金属层102,生成图1b的结构,来形成金属栅电极。金属层102可以包括由其可以得到金属栅电极的任何导电材料。优选地,金属层102具有使其适合于制造用于半导体器件的金属栅电极的刻蚀和热稳定特性。在这点上,金属层102能耐相对高的温度,例如能耐高于约900℃的温度可能是理想的。如果金属层102能经受这样的相对高温,则可以更容易将此层集成到用于制造半导体器件的整个工艺中。
可以制成金属层102的耐高温材料的示例包括钨、铂、钌、钯、钼和铌,以及由这些元素及其他元素形成的合金。或者,金属层102可以包括其他的、导电性更低的金属化合物。这样的化合物包括例如碳化钛、碳化锆、碳化钽和碳化钨的金属碳化物、例如氮化钛和氮化钽的金属氮化物以及例如氧化钌的导电金属氧化物。
虽然金属层102优选包含可以经受高温退火工艺的材料,但是金属层102也可以包含例如铝、钛或者钽的其他材料。虽然在此描述了可以用来形成金属层102的材料的少数示例,但是此层可以由许多其他的材料制成。在本申请中所使用的术语“金属层”因此包括可以得到金属栅电极(即,不包含大量硅或者多晶硅的栅电极)的任何导电材料。
利用例如传统原子层CVD工艺的传统CVD或者PVD工艺在电介质层101上形成金属层102,并且金属层102的厚度优选约50埃到约2,000之间。在形成金属层102时,可以将掺杂剂加入到金属层102。例如,当CVD工艺被用于制造层102时,在沉积层102的同时可以将掺杂剂结合到层102中。因为被引入层102中的掺杂剂的量根据沉积的温度可能变化,所以通过改变温度可以改变掺杂剂水平。例如,降低沉积温度可以导致被加入到金属层102的氯的量增大。所得到的掺杂剂浓度还可能受到被包含在供入CVD反应器之中的处理气体中的元素的类型和量的影响。
在它们被沉积的同时进行掺杂的金属层落入本申请中所使用的术语“金属层”的定义中。因为本领域的技术人员熟悉可以用来在电介质层101上形成金属层102的设备、材料和流程,所以将不提供关于此工艺步骤的另外的细节。
因为是被沉积的,所以如果其缺乏满意的功函数,则金属层102可能不适合于形成栅电极。在本发明的这个实施例中,将杂质加入到金属层102,以使其功函数改变。这些杂质可以包含当加入到金属层102时提高或者降低金属层102的功函数的一种或者多种元素。在优选的实施例中,足够量的此种元素或者多种元素被加入到层102,以使此层的功函数改变至少约0.1eV。当由层102形成NMOS晶体管时,应该使用具有相对低的电负性的元素,例如电负性值小于约1.7的元素。当形成PMOS晶体管时,应该使用具有相对高的电负性的元素,例如电负性值小于约2.8的元素。
图2提供了示出了材料的功函数与电负性的关系的曲线图。将大量具有相对高的电负性的材料加到金属层102将提高金属层102的功函数,而将大量具有相对低的电负性的材料加到金属层102将降低金属层102的功函数。如从此曲线图中可以清楚看到的,可以减小中间能隙膜(例如具有处在约4.3eV和约4.9eV之间的功函数的膜)的功函数使其适合于形成NMOS栅电极的元素包括:镧系金属、钪、锆、铪、铝、钛、钽、铌和钨。其他可能有用的元素包括碱金属和碱土金属。铝和铈可以是用于减小金属层102的功函数的特别优选的元素。可以增大中间能隙膜的功函数以使其适合于形成PMOS栅电极的元素包括:氮、氯、氧、氟和溴。氯可以是用于提高金属层102的功函数的特别优选的元素。
能最好地用于将金属层102的功函数提高和降低到所需水平的元素将取决于金属层102的组成和性质。即使具有低至2.2的电负性值的元素(例如铂、钯、钌和碘)也可以提高某些金属层的功函数。虽然在此确定了可以改变金属层102的功函数的元素中的少数示例,但是作为替代,可以使用其他元素。本发明的工艺因此考虑了使用可以起到改变金属层102的功函数的作用的任何元素。最好是将单个元素加入到层102还是代之以加入多种元素可能取决于应用。
可以使用任何传统的掺杂工艺将上面所确定的功函数改变元素加入到金属层102。这样的工艺的示例包括离子注入、等离子体增强离子注入、熔炉扩散(furnace diffusion)和等离子体沉积。这样的元素还可以通过这样的方式加入到金属层102,即首先将包含所述元素的膜沉积到层102的表面上,然后使得材料从膜扩散到层102之中。图1c图示了使用离子注入工艺来将功函数改变元素引入到金属层102之中。因为本领域的技术人员熟悉可以用来将这样的元素加入到金属层102的设备、材料和流程,所以关于此工艺步骤的另外的细节被省略了。
被加入到金属层102以将其功函数改变至目标水平的杂质或者是多种杂质的最佳浓度将取决于层102的组成和性质(包括其初始的功函数)、所使用的杂质的类型和目标功函数。将金属层102的功函数从4.3eV改变至4.2eV(例如,为了使层102适合于NMOS的应用)所需的第一杂质的量将很可能明显小于将功函数从4.3eV改变至5.0eV(例如,为了使层102适合于PMOS的应用)所需的第二杂质的量。在大多数应用中,将合适的元素加入到金属层102直至其占所得含杂质金属层的约3原子百分比至约50原子百分比,应该足够将功函数改变至满意的程度。在很多应用中,加入杂质直至其占所得层的约5原子百分比至约20原子百分比应该是足够的。
如图1d中所示,在将杂质加入到层102之后,可以使用传统的技术来刻蚀该层和层101,以形成金属栅电极103。例如形成源漏区以及器件的接触的用于完成晶体管的后续步骤对于本领域的技术人员是公知的,在此将不进行更详细地描述。
图3a-3d表示当实施本发明的方法的第二实施例时可以形成的结构的横截面。在此实施例中,本发明的方法被用来形成具有NMOS和PMOS晶体管的CMOS器件,所述NMOS和PMOS晶体管具有满意的功函数。
在电介质层201上形成金属层202(例如,利用上述的材料和工艺步骤)之后,金属层202的部分210例如由光刻胶215掩蔽,生成图3a的结构。在优选的实施例中,金属层202具有约4.3eV至约4.9eV之间的功函数。用于CMOS器件的PMOS晶体管将在金属层202被掩蔽的地方制成,而用于CMOS器件的NMOS晶体管将在金属层202保持暴露的地方制成。如在图3b中所示出的,在掩蔽部分210之后,杂质被加入到金属层202的暴露部分211。杂质包含上面所指明的元素中的一种和多种,并且可以使用前面所描述的工艺中的任何一种将所述杂质加入到金属层202。
当NMOS晶体管将被形成在金属层202被暴露的地方时,应该选择这样的元素,即该元素将使金属层202的功函数改变至适合于用于NMOS晶体管的金属栅电极的水平。在优选的实施例中,应该将足够量的第一元素加入到金属层202的暴露部分211,以使该层的所述第一部分的功函数降低至约4.0eV至约4.2eV之间。在上面确认了适合于NMOS晶体管制造的元素。
在利用这样的元素掺杂暴露部分211之后,其中所述元素使金属层202的所述部分的功函数改变至有利于NMOS晶体管的水平,部分211被掩蔽(例如被光刻胶216)并且部分210被暴露。如图3c中所示出的,在掩蔽部分211之后,杂质被加入到暴露部分210。当PMOS晶体管将被形成在金属层202被暴露的地方时,应该选择这样的元素,即该元素将使金属层202的功函数改变至适合于用于PMOS晶体管的金属栅电极的水平。在优选的实施例中,应该将足够量的第二元素加入到金属层202的暴露部分210,以使该层的所述第二部分的功函数提高至约5.0eV至约5.2eV之间。在上面确认了适合于PMOS晶体管制造的元素。
掺杂金属层202的不同部分的次序是不重要的。如所示出的,在利用具有相对高电负性值的元素掺杂金属层202的第二部分之前,可以利用具有相对低电负性值的元素掺杂金属层202的第一部分。然而,本发明的此实施例还考虑到了这样的工艺,即在所述工艺中,在利用具有相对低电负性值的元素掺杂金属层202的第二部分之前,可以利用具有相对高电负性值的元素掺杂金属层202的第一部分。
如上所述,加入到金属层202来充分减小该层第一部分的功函数并增大该层第二部分的功函数的杂质最佳浓度将取决于层202的组成和性质、所使用的杂质的类型以及目标功函数。在大多数应用中,加入杂质至金属层直至它们分别占所得含杂质金属层第一部分和第二部分的约3原子百分比至约50原子百分比应该是足够的。
已经发现,通过加入足够量的铝以生成包含约11原子百分比的铝的层,可以使碳化钛金属层(具有约4.5eV的功函数)第一部分的功函数改变至约4.2eV的值。通过加入足够量的氯以生成包含约12原子百分比的氯的层,可以使这样的金属层的第二部分的功函数改变至约5.1eV的值。
在金属层202不同部分的功函数已经被改变,以对于NMOS和PMOS晶体管两者都能够由金属层202获得具有满意电性能的栅电极之后,可以刻蚀金属层202和电介质层201,生成图3d的结构。此结构将包括:NMOS栅电极220,其将具有适合于NMOS晶体管的功函数;和PMOS栅电极230,其将具有适合于PMOS晶体管的功函数。因为本领域技术人员熟悉用于完成NMOS和PMOS晶体管的步骤,所以将省略对于这些步骤的进一步描述。
本发明的方法可以使单个的金属层由不同的多种杂质(例如,具有相对高电负性值或者相对低电负性值的多种杂质)来进行改性,这允许栅电极将由具有最佳功函数的所述层来制成,而不管它们是形成NMOS栅电极还是形成PMOS栅电极。上述的方法因此允许制造这样的CMOS器件而不必进行双金属栅电极工艺需要的复杂而昂贵的工艺步骤,其中所述CMOS器件包括用于NMOS和PMOS晶体管两者的具有合适功函数的若干金属栅电极。
虽然上述的实施例提供了这样的工艺,该工艺用于改性金属层以使其可以被用来制造具有满意的功函数的NMOS栅电极以及PMOS栅电极,但是本发明不限于这些具体的实施例,而是考虑到了用于改性金属层以使其可以被这样使用的其他工艺。
除了上述的方法,申请人的发明还考虑了包含电介质层101和金属栅电极103的半导体器件,其中,所述电介质层101形成在衬底100上,所述金属栅电极103形成在电介质层101上。如上所述,金属栅电极103包括足够量的杂质,以使其功函数改变至少约0.1eV。此半导体器件的金属栅电极可以作为用于NMOS晶体管的栅电极。在此情况下,杂质优选为其电负性值小于约1.7的元素。当金属栅电极作为用于PMOS晶体管的栅电极时,杂质优选为其电负性大于约2.8的元素。另外,如上面所指出的,该杂质或者这些杂质优选以约3原子百分比至约50原子百分比的浓度存在于金属栅电极中。
当半导体器件包含CMOS晶体管时,其将包括第一金属栅电极和第二金属栅电极。第一金属栅电极优选包括足够量的第一元素,以使第一金属栅电极的功函数降低至少约0.1eV,而第二金属栅电极优选包括足够量的第二元素,以使第二金属栅电极的功函数提高至少约0.1eV。当第一金属栅电极作为用于NMOS晶体管的栅电极时,第一元素优选为其电负性值小于约1.7的元素。当第二金属栅电极作为用于PMOS晶体管的栅电极时,第二元素优选为其电负性值大于约2.8的元素。
虽然可以利用上面所详细描述的工艺来制造在本申请中所描述和要求保护的半导体器件,但是所述半导体器件可以另外选择利用其他类型的工艺来形成。由于此原因,本发明的半导体器件不意于限制为可以使用上述的工艺进行制造的器件。
虽然上述的描述已经说明了可以用于本发明的特定步骤和材料,但是本领域技术人员将了解可以进行许多修改和替换。因此,所有这些修改、变换、替代以及添加应被认为落入了由所附权利要求限定的本发明的精神和范围之中。

Claims (30)

1.一种用于制造半导体器件的方法,包括:
在衬底上形成电介质层;
在所述电介质层上形成含杂质金属层;以及
由所述含杂质金属层形成金属栅电极。
2.如权利要求1所述的方法,其中所述电介质层包括高介电常数栅极电介质层。
3.如权利要求2所述的方法,其中所述高介电常数栅极电介质层通过原子层化学气相沉积形成,并且包含选自由氧化铪、氧化铪硅、氧化镧、氧化锆、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛、氧化锶钛、氧化钇、氧化铝、氧化铅钪钽和铌酸铅锌所组成的组中的材料。
4.如权利要求1所述的方法,其中所述含杂质金属层可以耐超过约900℃的温度。
5.如权利要求2所述的方法,其中所述含杂质金属层包含选自由钨、铂、钌、钯、钼、铌、以及它们的合金,金属碳化物、金属氮化物和导电金属氧化物所组成的组中的材料。
6.如权利要求5所述的方法,其中所述含杂质金属层包含选自由碳化钛、碳化锆、碳化钽、碳化钨、氮化钛、氮化钽和氧化钌所组成的组中的材料。
7.如权利要求1所述的方法,其中所述含杂质金属层由如下步骤形成:
形成具有约4.3eV至约4.9eV之间的功函数的金属层;以及
将足够量的元素加入到所述金属层,以使所述金属层的功函数改变至少约0.1eV。
8.如权利要求7所述的方法,其中所述金属栅电极将作为用于N型金属氧化物半导体晶体管的栅电极,并且其中所述元素具有小于约1.7的电负性值。
9.如权利要求8所述的方法,其中所述元素选自由镧系金属、碱金属、碱土金属、钪、锆、铪、铝、钛、钽、铌和钨所组成的组。
10.如权利要求9所述的方法,其中所述元素是铝。
11.如权利要求7所述的方法,其中所述金属栅电极将作为用于P型金属氧化物半导体晶体管的栅电极,并且其中所述元素具有大于约2.8的电负性值。
12.如权利要求11所述的方法,其中所述元素选自由氮、氯、氧、氟和溴所组成的组。
13.如权利要求12所述的方法,其中所述元素是氯。
14.如权利要求7所述的方法,其中所述元素被加入到所述金属层中,直至其占所述含杂质金属层的约3原子百分比至约50原子百分比。
15.一种用于制造互补金属氧化物半导体晶体管的方法,包括:
在衬底上形成高介电常数栅极电介质层;以及
在所述高介电常数栅极电介质层上形成含杂质金属层;
其中,所述含杂质金属层的第一部分包括足够量的第一元素,以降低所述金属层的功函数,并且其中所述含杂质金属层的第二部分包括足够量的第二元素,以提高所述金属层的功函数。
16.如权利要求15所述的方法,还包括由所述含杂质金属层的所述第一部分形成用于N型金属氧化物半导体晶体管的栅电极,以及由所述含杂质金属层的所述第二部分形成用于P型金属氧化物半导体晶体管的栅电极,并且其中所述第一元素具有小于约1.7的电负性值,而所述第二元素具有大于约2.8的电负性值。
17.如权利要求15所述的方法,其中所述含杂质金属层由如下步骤形成:
形成具有约4.3eV至约4.9eV之间的功函数的金属层;以及然后
将足够量的第一元素加入到所述金属层的第一部分,以使所述金属层的功函数降低至约4.0eV至约4.2eV之间,并且
将足够量的第二元素加入到所述金属层的第二部分,以使所述金属层的功函数提高至约5.0eV至约5.2eV之间。
18.如权利要求17所述的方法,其中在所述金属层的所述第二部分被掩蔽时,将所述第一元素加入到所述金属层的所述第一部分,并且当所述金属层的所述第一部分被掩蔽时,将所述第二元素加入到所述金属层的所述第二部分。
19.如权利要求18所述的方法,其中所述第一元素选自由镧系金属、钪、锆、铪、铝、钛、钽、铌和钨所组成的组,并且所述第二元素选自由氮、氯、氧、氟和溴所组成的组。
20.如权利要求19所述的方法,其中将所述第一元素加入到所述金属层中,直至其占所述含杂质金属层的所述第一部分的约3原子百分比至约50原子百分比,并且将所述第二元素加入到所述金属层中,直至其占所述含杂质金属层的所述第二部分的约3原子百分比至约50原子百分比。
21.一种半导体器件,包括:
形成在衬底上的电介质层;和
形成在所述电介质层上的金属栅电极;
其中,所述金属栅电极包括足够量的杂质,以使所述金属栅电极的功函数改变至少约0.1eV。
22.如权利要求21所述的半导体器件,其中所述电介质层包括高介电常数电介质层。
23.如权利要求22所述的半导体器件,其中所述高介电常数电介质层由原子层化学气相沉积形成,并且包含选自由氧化铪、氧化铪硅、氧化镧、氧化锆、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛、氧化锶钛、氧化钇、氧化铝、氧化铅钪钽和铌酸铅锌所组成的组中的材料。
24.如权利要求21所述的半导体器件,其中所述金属栅电极将作为用于N型金属氧化物半导体晶体管的栅电极,并且其中所述杂质是具有小于约1.7的电负性值的元素。
25.如权利要求24所述的半导体器件,其中所述元素选自由镧系金属、碱金属、碱土金属、钪、锆、铪、铝、钛、钽、铌和钨所组成的组。
26.如权利要求21所述的半导体器件,其中所述金属栅电极将作为用于P型金属氧化物半导体晶体管的栅电极,并且其中所述杂质是具有大于约2.8的电负性的元素。
27.如权利要求26所述的半导体器件,其中所述元素选自由氮、氯、氧、氟和溴所组成的组。
28.如权利要求21所述的半导体器件,其中所述杂质以约3原子百分比至约50原子百分比的浓度存在于所述金属栅电极中。
29.如权利要求21所述的半导体器件,其中所述金属栅电极是第一金属栅电极,且还包括第二金属栅电极;并且其中所述第一金属栅电极包括足够量的第一元素,以使所述第一金属栅电极的功函数降低至少约0.1eV,且所述第二金属栅电极包括足够量的第二元素,以使所述第二金属栅电极的功函数提高至少约0.1eV。
30.如权利要求29所述的半导体器件,其中:
所述第一金属栅电极作为用于N型金属氧化物半导体晶体管的栅电极;
所述第一元素具有小于约1.7的电负性值,选自由镧系金属、钪、锆、铪、铝、钛、钽、铌和钨所组成的组,并且以约3原子百分比至约50原子百分比的浓度存在于所述第一金属栅电极中;
所述第二金属栅电极作为用于P型金属氧化物半导体晶体管的栅电极;并且
所述第二元素具有大于约2.8的电负性值,选自由氮、氯、氧、氟和溴所组成的组,并且以约3原子百分比至约50原子百分比的浓度存在于所述第二金属栅电极中。
CNB2004100381512A 2003-05-06 2004-05-08 一种用于制造具有金属栅电极的半导体器件的方法 Expired - Lifetime CN1311527C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/431,166 US6890807B2 (en) 2003-05-06 2003-05-06 Method for making a semiconductor device having a metal gate electrode
US10/431,166 2003-05-06

Publications (2)

Publication Number Publication Date
CN1551300A true CN1551300A (zh) 2004-12-01
CN1311527C CN1311527C (zh) 2007-04-18

Family

ID=33416401

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100381512A Expired - Lifetime CN1311527C (zh) 2003-05-06 2004-05-08 一种用于制造具有金属栅电极的半导体器件的方法

Country Status (7)

Country Link
US (2) US6890807B2 (zh)
EP (1) EP1620898A1 (zh)
KR (1) KR100738711B1 (zh)
CN (1) CN1311527C (zh)
AU (1) AU2003304143A1 (zh)
TW (1) TWI234880B (zh)
WO (1) WO2004105138A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100517751C (zh) * 2005-09-13 2009-07-22 株式会社东芝 半导体器件
US7718521B2 (en) 2005-03-03 2010-05-18 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
CN101447421B (zh) * 2007-11-28 2010-09-22 中国科学院微电子研究所 一种制备金属栅电极的方法
CN101443918B (zh) * 2005-01-13 2011-07-06 国际商业机器公司 一种半导体结构及其形成方法
CN101569005B (zh) * 2006-05-26 2012-07-04 飞思卡尔半导体公司 形成具有中间层的半导体器件的方法及该半导体器件的结构
CN103165666A (zh) * 2011-12-15 2013-06-19 财团法人交大思源基金会 半导体元件及其制作方法
WO2014082337A1 (zh) * 2012-11-30 2014-06-05 中国科学院微电子研究所 半导体器件及其制造方法
CN103855014A (zh) * 2012-11-30 2014-06-11 中国科学院微电子研究所 P型mosfet及其制造方法
CN103855013A (zh) * 2012-11-30 2014-06-11 中国科学院微电子研究所 N型mosfet的制造方法
CN104916589A (zh) * 2014-03-12 2015-09-16 中芯国际集成电路制造(上海)有限公司 一种制作半导体器件的方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087480B1 (en) * 2002-04-18 2006-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Process to make high-k transistor dielectrics
US7952118B2 (en) * 2003-11-12 2011-05-31 Samsung Electronics Co., Ltd. Semiconductor device having different metal gate structures
US7153734B2 (en) 2003-12-29 2006-12-26 Intel Corporation CMOS device with metal and silicide gate electrodes and a method for making it
US20050145893A1 (en) * 2003-12-29 2005-07-07 Doczy Mark L. Methods for fabricating metal gate structures
US7226826B2 (en) * 2004-04-16 2007-06-05 Texas Instruments Incorporated Semiconductor device having multiple work functions and method of manufacture therefor
US8178902B2 (en) 2004-06-17 2012-05-15 Infineon Technologies Ag CMOS transistor with dual high-k gate dielectric and method of manufacture thereof
US8399934B2 (en) * 2004-12-20 2013-03-19 Infineon Technologies Ag Transistor device
US20050285208A1 (en) * 2004-06-25 2005-12-29 Chi Ren Metal gate electrode for semiconductor devices
US7157378B2 (en) * 2004-07-06 2007-01-02 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode
US7902058B2 (en) * 2004-09-29 2011-03-08 Intel Corporation Inducing strain in the channels of metal gate transistors
US7611943B2 (en) * 2004-10-20 2009-11-03 Texas Instruments Incorporated Transistors, integrated circuits, systems, and processes of manufacture with improved work function modulation
US7514310B2 (en) * 2004-12-01 2009-04-07 Samsung Electronics Co., Ltd. Dual work function metal gate structure and related method of manufacture
KR101147868B1 (ko) * 2005-02-22 2012-05-24 삼성전자주식회사 이중 일함수 금속 게이트 전극들을 갖는 반도체 소자의 제조방법 및 그에 의하여 제조된 반도체 소자
US7745887B2 (en) * 2005-02-22 2010-06-29 Samsung Electronics Co., Ltd. Dual work function metal gate structure and related method of manufacture
US7160781B2 (en) 2005-03-21 2007-01-09 Infineon Technologies Ag Transistor device and methods of manufacture thereof
US20060220090A1 (en) * 2005-03-23 2006-10-05 Intel Corporation Semiconductor device with a high-k gate dielectric and a metal gate electrode
US7241691B2 (en) * 2005-03-28 2007-07-10 Freescale Semiconductor, Inc. Conducting metal oxide with additive as p-MOS device electrode
US7361538B2 (en) * 2005-04-14 2008-04-22 Infineon Technologies Ag Transistors and methods of manufacture thereof
US7446380B2 (en) 2005-04-29 2008-11-04 International Business Machines Corporation Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for CMOS
US7538001B2 (en) * 2005-09-01 2009-05-26 Micron Technology, Inc. Transistor gate forming methods and integrated circuits
US20070052036A1 (en) * 2005-09-02 2007-03-08 Hongfa Luan Transistors and methods of manufacture thereof
US7332433B2 (en) * 2005-09-22 2008-02-19 Sematech Inc. Methods of modulating the work functions of film layers
US7510943B2 (en) * 2005-12-16 2009-03-31 Infineon Technologies Ag Semiconductor devices and methods of manufacture thereof
US20100237747A1 (en) * 2005-12-19 2010-09-23 Physical Logic Ag Piezoelectric Composite Material
US7728492B2 (en) 2005-12-19 2010-06-01 Physical Logic Ag Piezoelectric composite material
US7425497B2 (en) 2006-01-20 2008-09-16 International Business Machines Corporation Introduction of metal impurity to change workfunction of conductive electrodes
JP4749174B2 (ja) * 2006-02-13 2011-08-17 パナソニック株式会社 ドライエッチング方法、微細構造形成方法、モールド及びその製造方法
US7439105B2 (en) * 2006-03-02 2008-10-21 Freescale Semiconductor, Inc. Metal gate with zirconium
KR100775965B1 (ko) * 2006-08-17 2007-11-15 삼성전자주식회사 모스 트랜지스터 및 그 제조 방법
US20080050898A1 (en) * 2006-08-23 2008-02-28 Hongfa Luan Semiconductor devices and methods of manufacture thereof
US7582549B2 (en) 2006-08-25 2009-09-01 Micron Technology, Inc. Atomic layer deposited barium strontium titanium oxide films
US20080136030A1 (en) * 2006-10-23 2008-06-12 Interuniversitair Microelektronicacentrum (Imec) Semiconductor device comprising a doped metal comprising main electrode
US20080290416A1 (en) * 2007-05-21 2008-11-27 Taiwan Semiconductor Manufacturing Co., Ltd. High-k metal gate devices and methods for making the same
US7585716B2 (en) * 2007-06-27 2009-09-08 International Business Machines Corporation High-k/metal gate MOSFET with reduced parasitic capacitance
US20090152651A1 (en) * 2007-12-18 2009-06-18 International Business Machines Corporation Gate stack structure with oxygen gettering layer
US7763943B2 (en) * 2007-12-26 2010-07-27 Intel Corporation Reducing external resistance of a multi-gate device by incorporation of a partial metallic fin
US8030163B2 (en) * 2007-12-26 2011-10-04 Intel Corporation Reducing external resistance of a multi-gate device using spacer processing techniques
US20090206404A1 (en) * 2008-02-15 2009-08-20 Ravi Pillarisetty Reducing external resistance of a multi-gate device by silicidation
US20090286387A1 (en) * 2008-05-16 2009-11-19 Gilmer David C Modulation of Tantalum-Based Electrode Workfunction
US7768006B2 (en) * 2008-05-29 2010-08-03 International Business Machines Corporation Field effect structure and method including spacer shaped metal gate with asymmetric source and drain regions
TWI413170B (zh) * 2008-07-30 2013-10-21 Nanya Technology Corp 半導體元件結構及其製程
US20130032886A1 (en) 2011-08-01 2013-02-07 International Business Machines Corporation Low Threshold Voltage And Inversion Oxide Thickness Scaling For A High-K Metal Gate P-Type MOSFET
TWI492334B (zh) * 2009-09-10 2015-07-11 United Microelectronics Corp 互補式金氧半導體的雙閘極結構及其製作方法
US8067806B2 (en) * 2009-09-11 2011-11-29 United Microelectronics Corp. Gate structures of CMOS device and method for manufacturing the same
KR101634748B1 (ko) 2009-12-08 2016-07-11 삼성전자주식회사 트랜지스터의 제조방법 및 그를 이용한 집적 회로의 형성방법
US8513773B2 (en) * 2011-02-02 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Capacitor and semiconductor device including dielectric and N-type semiconductor
US20120280288A1 (en) 2011-05-04 2012-11-08 International Business Machines Corporation Inversion thickness reduction in high-k gate stacks formed by replacement gate processes
US8912061B2 (en) 2011-06-28 2014-12-16 International Business Machines Corporation Floating gate device with oxygen scavenging element
US8541867B2 (en) 2011-06-28 2013-09-24 International Business Machines Corporation Metal insulator metal structure with remote oxygen scavenging
US8987080B2 (en) * 2012-04-26 2015-03-24 Applied Materials, Inc. Methods for manufacturing metal gates
US8716088B2 (en) 2012-06-27 2014-05-06 International Business Machines Corporation Scavenging metal stack for a high-K gate dielectric
US8859368B2 (en) * 2012-09-04 2014-10-14 Globalfoundries Inc. Semiconductor device incorporating a multi-function layer into gate stacks
US11908893B2 (en) * 2021-08-30 2024-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of forming the same

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US197790A (en) * 1877-12-04 Improvement in grubber and stump-extractor
US45080A (en) * 1864-11-15 Combined portable sheep rack
SG43836A1 (en) * 1992-12-11 1997-11-14 Intel Corp A mos transistor having a composite gate electrode and method of fabrication
US5468666A (en) * 1993-04-29 1995-11-21 Texas Instruments Incorporated Using a change in doping of poly gate to permit placing both high voltage and low voltage transistors on the same chip
JPH08153804A (ja) * 1994-09-28 1996-06-11 Sony Corp ゲート電極の形成方法
US5753560A (en) * 1996-10-31 1998-05-19 Motorola, Inc. Method for fabricating a semiconductor device using lateral gettering
US6010929A (en) * 1996-12-11 2000-01-04 Texas Instruments Incorporated Method for forming high voltage and low voltage transistors on the same substrate
US5891798A (en) * 1996-12-20 1999-04-06 Intel Corporation Method for forming a High dielectric constant insulator in the fabrication of an integrated circuit
US6063698A (en) * 1997-06-30 2000-05-16 Motorola, Inc. Method for manufacturing a high dielectric constant gate oxide for use in semiconductor integrated circuits
US6087261A (en) * 1997-09-30 2000-07-11 Fujitsu Limited Method for production of semiconductor device
US20020197790A1 (en) * 1997-12-22 2002-12-26 Kizilyalli Isik C. Method of making a compound, high-K, gate and capacitor insulator layer
US6130123A (en) * 1998-06-30 2000-10-10 Intel Corporation Method for making a complementary metal gate electrode technology
US6121094A (en) * 1998-07-21 2000-09-19 Advanced Micro Devices, Inc. Method of making a semiconductor device with a multi-level gate structure
US20020008257A1 (en) * 1998-09-30 2002-01-24 John P. Barnak Mosfet gate electrodes having performance tuned work functions and methods of making same
US6291282B1 (en) * 1999-02-26 2001-09-18 Texas Instruments Incorporated Method of forming dual metal gate structures or CMOS devices
FR2797999B1 (fr) * 1999-08-31 2003-08-08 St Microelectronics Sa Procede de fabrication d'une capacite integree sur un substrat de silicium
US6303418B1 (en) * 2000-06-30 2001-10-16 Chartered Semiconductor Manufacturing Ltd. Method of fabricating CMOS devices featuring dual gate structures and a high dielectric constant gate insulator layer
JP2002134739A (ja) * 2000-10-19 2002-05-10 Mitsubishi Electric Corp 半導体装置及びその製造方法
US6475874B2 (en) * 2000-12-07 2002-11-05 Advanced Micro Devices, Inc. Damascene NiSi metal gate high-k transistor
KR100387259B1 (ko) * 2000-12-29 2003-06-12 주식회사 하이닉스반도체 반도체 소자의 제조 방법
KR100401655B1 (ko) * 2001-01-18 2003-10-17 주식회사 컴텍스 ALE를 이용한 알루미나(Al₂O₃) 유전체 층 형성에 의한 스마트 공정을 이용한 유니본드형 SOI 웨이퍼의 제조방법
US6514828B2 (en) * 2001-04-20 2003-02-04 Micron Technology, Inc. Method of fabricating a highly reliable gate oxide
US6797599B2 (en) * 2001-08-31 2004-09-28 Texas Instruments Incorporated Gate structure and method
US6617209B1 (en) * 2002-02-22 2003-09-09 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric
US6617210B1 (en) * 2002-05-31 2003-09-09 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric
US7045406B2 (en) * 2002-12-03 2006-05-16 Asm International, N.V. Method of forming an electrode with adjusted work function

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288237B2 (en) 2005-01-13 2012-10-16 International Business Machines Corporation TiC as a thermally stable p-metal carbide on high k SiO2 gate stacks
CN101443918B (zh) * 2005-01-13 2011-07-06 国际商业机器公司 一种半导体结构及其形成方法
US8148787B2 (en) 2005-03-03 2012-04-03 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US7718521B2 (en) 2005-03-03 2010-05-18 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
CN100517751C (zh) * 2005-09-13 2009-07-22 株式会社东芝 半导体器件
CN101569005B (zh) * 2006-05-26 2012-07-04 飞思卡尔半导体公司 形成具有中间层的半导体器件的方法及该半导体器件的结构
CN101447421B (zh) * 2007-11-28 2010-09-22 中国科学院微电子研究所 一种制备金属栅电极的方法
CN103165666A (zh) * 2011-12-15 2013-06-19 财团法人交大思源基金会 半导体元件及其制作方法
CN103855094A (zh) * 2012-11-30 2014-06-11 中国科学院微电子研究所 半导体器件及其制造方法
CN103855014A (zh) * 2012-11-30 2014-06-11 中国科学院微电子研究所 P型mosfet及其制造方法
WO2014082337A1 (zh) * 2012-11-30 2014-06-05 中国科学院微电子研究所 半导体器件及其制造方法
CN103855013A (zh) * 2012-11-30 2014-06-11 中国科学院微电子研究所 N型mosfet的制造方法
US10056261B2 (en) 2012-11-30 2018-08-21 Institute of Microelectronics, Chinese Academy of Sciences P type MOSFET
CN104916589A (zh) * 2014-03-12 2015-09-16 中芯国际集成电路制造(上海)有限公司 一种制作半导体器件的方法

Also Published As

Publication number Publication date
KR100738711B1 (ko) 2007-07-12
US6890807B2 (en) 2005-05-10
CN1311527C (zh) 2007-04-18
WO2004105138A1 (en) 2004-12-02
KR20060004977A (ko) 2006-01-16
TW200425502A (en) 2004-11-16
TWI234880B (en) 2005-06-21
EP1620898A1 (en) 2006-02-01
AU2003304143A1 (en) 2004-12-13
US20040222474A1 (en) 2004-11-11
US7420254B2 (en) 2008-09-02
US20050158974A1 (en) 2005-07-21

Similar Documents

Publication Publication Date Title
CN1311527C (zh) 一种用于制造具有金属栅电极的半导体器件的方法
US8168547B2 (en) Manufacturing method of semiconductor device
US7919820B2 (en) CMOS semiconductor device and method of fabricating the same
CN100573851C (zh) 互补金属氧化物半导体装置及其制造方法
CN1812054B (zh) 双功函数金属栅极结构及其制造方法
US7785958B2 (en) Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode
US9281373B2 (en) Semiconductor device having tungsten gate electrode and method for fabricating the same
US7968397B2 (en) Semiconductor device and method of manufacturing the same
US9466600B2 (en) Semiconductor device and method of manufacturing the same
JP5336814B2 (ja) 半導体装置およびその製造方法
US7160779B2 (en) Method for making a semiconductor device having a high-k gate dielectric
JP4220509B2 (ja) 半導体装置の製造方法
CN101036225A (zh) 具有高k栅电介质和金属栅电极的半导体器件
CN101076888A (zh) 形成双金属互补金属氧化物半导体集成电路
US6849509B2 (en) Methods of forming a multilayer stack alloy for work function engineering
US11705336B2 (en) Method for fabricating a semiconductor device
US7125762B2 (en) Compensating the workfunction of a metal gate transistor for abstraction by the gate dielectric layer
JP2006128416A (ja) 半導体装置およびその製造方法
KR20020071959A (ko) 텅스텐 게이트 전극 및 그 제조 방법
US7800186B2 (en) Semiconductor device and method of fabricating metal gate of the same
JP2010251508A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20070418

CX01 Expiry of patent term