CN1463572A - 陶瓷多层基板的制造方法 - Google Patents

陶瓷多层基板的制造方法 Download PDF

Info

Publication number
CN1463572A
CN1463572A CN02801790.0A CN02801790A CN1463572A CN 1463572 A CN1463572 A CN 1463572A CN 02801790 A CN02801790 A CN 02801790A CN 1463572 A CN1463572 A CN 1463572A
Authority
CN
China
Prior art keywords
ceramic
adhesive linkage
conductor
raw material
material sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02801790.0A
Other languages
English (en)
Other versions
CN1224304C (zh
Inventor
桥本晃
中尾惠一
胜又雅昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1463572A publication Critical patent/CN1463572A/zh
Application granted granted Critical
Publication of CN1224304C publication Critical patent/CN1224304C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/008Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/04Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
    • C04B37/047Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4664Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders
    • H05K3/4667Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders characterized by using an inorganic intermediate insulating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/68Forming laminates or joining articles wherein at least one substrate contains at least two different parts of macro-size, e.g. one ceramic substrate layer containing an embedded conductor or electrode
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Ceramic Products (AREA)

Abstract

一种陶瓷多层基板的制造方法,由具有在陶瓷基板11的表面形成粘接层12的工序的制造方法,使陶瓷基板11和陶瓷原料片14形成一体,烧成后也大致没有面内方向的收缩,能够制造高尺寸精度的陶瓷多层电路基板。

Description

陶瓷多层基板的制造方法
技术领域
本发明涉及一种个人计算机和手机等小型部件使用的陶瓷多层基板的制造方法。
背景技术
作为目前的陶瓷多层基板,例如有刊载在特开平11-220260号公报的基板。
图11是表示根据刊载在所述公报的目前的原料片积层法制造的陶瓷多层基板。
如图11(a)所示,将导体图形13、14印刷在各层的原料片12。印刷后,如图11(b)所示,将各层的原料片12积层、加热压接、形成一体化之后烧成。但是在目前的方法中,在图11(b),由积层一体化到烧成的过程中,由脱粘合剂、烧成造成的烧成收缩现象,在多层基板的厚度方向和面内方向都产生,特别是面内方法的收缩,会对导体图形间尺寸等带来影响。一般地说,该烧成收缩量的偏差有0.2%左右。也就是说,基板尺寸为50mm正方的情况下,导体图形的尺寸精度为±100μm。
目前,要求焊盘随基板高密度化而窄间距化(150μm),所以在目前的原料片积层法中,内部导体会产生短路,难于制造具有理想性能的电子产品。
发明内容
本发明提供一种陶瓷多层基板的制造方法,其具有以下工序:至少在陶瓷基板的一面形成粘接层的工序;在粘接层上形成导体图形的工序;从导体图形之上加热加压形成陶瓷原料片(GS)的工序;在GS上形成导体图形的工序;至少多次交互积层导体图形和GS的工序;将形成的积层陶瓷基板脱去粘合剂后进行烧成的工序。
附图说明
图1(a)~图1(f)是分别表示本发明的实施形态、实施例1的陶瓷多层基板的制造方法的工序图;
图2(a)~图2(f)是分别表示在本发明的实施形态的两面将陶瓷积层的陶瓷多层基板制造方法的工序图;
图3(a)~图3(c)分别是在本发明的实施例2中烧结前后的陶瓷多层基板的状态图;
图4(a)~图4(c)是表示墨浸透测试的工序图;
图5(a)~图5(c)是分别用于说明内藏导体图形的厚度的适当范围的图;
图6是加压量和GS压缩量的关系图;
图7(a)~图7(d)分别是用于说明在脱去粘合剂之前进行的加热加压工序前,进行的加热工序的条件的图;
图8(a)~图8(c)分别是用于说明陶瓷基板和GS的大小的最佳条件的图;
图9(a)~图9(c)分别是用于说明陶瓷基板的表面粗糙度造成的陶瓷基板和GS烧结后的粘接性的图;
图10(a)、图10(b)分别是用于说明以网印法形成导体图形时的粘接层厚度的最佳范围的图;
图11(a)、图11(b)是分别表示目前的原料片积层法的工序图。
具体实施方式
以下参照附图说明本发明的实施形态。附图是示意图,不是以正确尺寸表示各位置关系的图。首先,在图1(a)中,至少在陶瓷基板11的一面形成粘接层12,之后,如图1(b)所示,在粘接层12上形成第一层导体图形13。
其次,如图1(c)所示,从形成该导体图形13的粘接层12之上开始积层第一层陶瓷原料片14(GS),利用加热加压将粘接层12与GS14粘接。然后,如图1(d)所示,在该GS14上形成导体图形15,如图1(e)所示,由其上积层GS16,进行加热加压处理。同样,反复进行导体图形、GS的形成之后,进行如图1(f)所示的脱去粘合剂、烧成。如以上这样,为了使导体图形13的尺寸精度提高,具有形成粘接层12的工序,该工序将导体图形13、GS14限定约束在陶瓷基板11上,由此抑制GS14面内方向的烧成收缩,在陶瓷基板11上烧成第一层GS14后,以良好的状态粘接。
另外,如图1(a)所示,至少在一面形成粘接层12,不仅将导体图形13、GS14积层在单面上,而且如图2所示,同样还可以将导体图形13、GS14在两面积层。
以下对构成所述各要素的材料、所述制造工序使用的装置进行说明。所述陶瓷基板11是氧化铝基板、玻璃陶瓷基板、镁橄榄石基板、和铁氧体基板等,以具有比GS14的烧结温度高的耐热温度的陶瓷材料构成。
粘接层12是丁缩醛树脂、丙烯酸树脂和脂环烃树脂等树脂,以树脂材料构成,该树脂材料具有作为GS14成分的有机粘合剂树脂的热变形温度以下的热特性。该粘接层12将所述树脂材料在由甲苯和丙酮等有机溶剂溶解的状态下,至少在陶瓷基板11的一面上,采用浸渍和喷涂等方式、用滚涂器、喷枪和旋涂器等涂敷装置形成。
在陶瓷基板11的整面形成也可以。
所述导体图形13不仅可以采用Ag系列膏(空气烧成工序用的Ag-Pd膏和Ag-Pt膏)、Au系列膏(空气烧成工序用的Au-Pd膏和Au-Pt膏)等贵金属膏,还可采用贱金属膏(Cu等),由网印法形成在粘接层12上和GS14上。但是,在采用贱金属时,必须在氮气氛围或还原氛围下烧成,形成导体图形13。
GS14采用玻璃陶瓷,该玻璃陶瓷将丁缩醛树脂和丙烯酸树脂等作为有机粘合剂使用。
所述加热加压由热压装置进行,该热压装置是在上下两张金属板分别安装0.5mm~4mm程度厚的缓冲橡胶的装置。由此可以将陶瓷多层基板均匀加热加压,能够防止陶瓷基板的裂纹。
以上,采用图1说明了实施形态,下面对各构成要素进行具体说明。
实施例1
在本实施例1中,作为陶瓷基板11,如前所述采用氧化铝基板。在此,如果GS14和陶瓷基板11的热膨胀系数差别大,则在陶瓷基板11上将GS14、16积层后的多层基板烧成后,陶瓷基板11产生弯曲,所以理想的是这些材料的热膨胀系数之差小。因此,在本实施例1中,作为原料粉采用氧化铝粉和玻璃粉,以使烧成后具有钙长石(アノ-サイト)晶体。
作为有机粘合剂采用丙烯酸树脂,采用将混炼形成膏状的物质由刮刀法等涂敷而制造的GS。另外GS14、16的有机漆料(ビヒクル)中的树脂材料使用丁缩醛树脂和丙烯酸树脂,GS14、16的厚度为50~400μm。
粘接层12的材料采用溶于甲苯、丙酮、醋酸乙酯和二甲苯等有机溶剂的物质。
导体膏13、15采用Ag膏。
以下,说明陶瓷多层基板的制造方法。
首先,如图1(a)所示,至少在陶瓷基板11的一面,采用浸渍和喷涂等方式、用滚涂器、喷枪和旋涂器等涂敷装置形成粘接层12。在此,粘接层的厚度为1μm以上而不足10μm的范围。
其次,如图1(b)所示,采用Ag膏、由网印法等,在粘接层12上形成第一层导体图形13。导体图形的干燥厚度,形成为GS14、16厚度的10~20%的程度。
其次,如图1(c)所示,在形成导体图形13的粘接层12上,积层第一层的GS14,利用加热加压将粘接层12和GS14粘接。该加热加压由具有缓冲橡胶的金属板进行,加热条件是50~100℃,加压条件是50~100kg/cm2,另外,作为加热加压时间,在本实施例中,设定为2~5分钟。该加压时间,根据向积层体进行热传导的状态设定,该积层体由所述热压装置、金属板、缓冲橡胶形成。而且,如图1(d)所示,在该GS14上采用使用了Ag膏的网印印刷形成导体图形15。然后,在其上,如图1(e)所示,积层GS16,利用具有缓冲橡胶的金属板进行加热加压处理。
同样地,反复进行导体图形、GS的形成,能使层积层数增加。利用该粘接层,提高陶瓷基板和导体图形、GS之间的粘接力,导体图形、GS被约束在陶瓷基板上。全部的积层结束后,如图1(f)所示,进行脱粘合剂、烧成。
脱去粘合剂以400~500℃、最长时间2~4个小时的程度进行、之后,烧成以GS14、16的烧结温度900~920℃、最长时间为10~20分钟进行。
脱粘合剂、烧成后,粘接层12被烧去,陶瓷基板11上的原料片14、16和导体图形13、15,利用粘接层12的烧成收缩抑制效果烧结,面内方向的尺寸几乎不变化,只在厚度方向产生烧成收缩。
因此,利用本实施例1采用的方法,能够制造面内方向的尺寸精度非常好的陶瓷多层电路基板。
实施例2
在此,采用图3、图4、表1、表2说明基于粘接层的陶瓷基板和GS的粘接性。
首先,采用图3说明在形成于陶瓷基板上的表面的粘接层上积层了GS的制品,根据GS材料、粘接层材料及加热条件,烧成后形成怎样的状态。
图3(a)是记载于实施例1的图1(e)的状态。在此,图3(b)及图3(c)是图3(a)烧成后的状态。在图3(b)中,陶瓷基板11和烧结层17是良好的粘接状态,图3(c)中粘接状态不良,在烧结层17的周边部产生剥离部37。
因此,着眼于粘接层12的树脂成分和GS的有机粘合剂的树脂成分,并结合加热条件,分析了粘接状态,其结果在表1表示。评价由墨浸透测试进行。
以下,采用图4说明墨浸透测试。
如图4(a)所示,在陶瓷基板11上以喷涂方式或用滚涂器,形成1~2μm粘接层12,在其上由热压装置积层粘接GS14。
图4(b)、图4(c)是图4(a)的烧成状态。
图4(b)是在陶瓷基板11上烧结层17具有良好的粘接状态,由烧结层17的外周部供给的墨44几乎不从间隙浸入。
但是,如图4(c)所示,如果陶瓷基板11和烧结层17的密合性不好,则由烧结层17的外周部供给的墨就从间隙浸入。
也就是说,可比较该墨浸透距离45来评价粘接状态。在此,评价作为GS14的有机粘合剂树脂采用丁缩醛树脂和丙烯酸树脂的任一种的情况,和作为粘接层12的树脂采用丁缩醛树脂、丙烯酸树脂和脂环烃树脂的任一种的情况。
其结果如表1所示。
从该结果可以看出,粘接层12的树脂是丁缩醛树脂时,在110℃以上粘接状态是良好的,而如果是丙烯酸树脂和脂环烃树脂时,在80℃以上是良好的。
墨浸透距离是1~2mm可以使用,但最好在1mm以下。
表2是本次使用的树脂材料的热变形温度,如果与表1比较可知,该热变形温度、和良好的粘接状态时的加热温度有相关关系
                              表1
  加热温度  GS的有机粘合剂                粘接层树脂材料
丁缩醛树脂 丙烯酸树脂 脂环烃树脂
  50℃   丁缩醛树脂     剥离     1~2mm   1~2mm
  丙烯酸树脂     剥离     1~2mm   1~2mm
  80℃   丁缩醛树脂   20~30mm     1mm以下   1mm以下
  丙烯酸树脂   15~20mm     1mm以下   1mm以下
  110℃   丁缩醛树脂   1~2mm     1mm以下   1mm以下
  丙烯酸树脂   1~2mm     1mm以下   1mm以下
陶瓷基板和GS的尺寸:100mm×10mmGS的厚度:400μm;粘接层厚度:1~2μm加压条件:150kg/cm2、5分钟
                                        表2
    树脂材料     热变形温度(℃)
    丁缩醛树脂     110~160
    丙烯酸树脂     70~100
    脂环烃树脂     70~100
也就是说,只要粘接层12的加热温度是在GS14的有机粘合剂树脂的热变形温度以下,并且是粘接层12的热变形温度以上,粘接型就良好。另外,如果粘接层12的树脂材料和GS14的树脂材料之间具有相溶性,那么会更好。
实施例3
在此,采用图5、图6说明内藏导体图形厚度的适当范围。图5(a)是将粘接层12形成在陶瓷基板11上,并采用导体膏以网印印刷法形成厚度为54的导体图形13的状态。图5(b)是将GS14加热加压、形成在图5(a)的状态,图5(c)是将图5(b)的积层体脱粘合剂、烧成后的状态。烧成后有时会在导体图形13的外周部附近的烧结层17产生裂纹56,这产生于导体图形13的厚度54较厚的情况下。
图6表示GS14的加热加压造成的厚度方向的压缩率。
如图6所示,如果加压增大,GS14的压缩率成比例地增大,但当达到100kg/cm2以上时,就大致形成饱和状态。
一般地说,相对于GS14的厚度,加压压缩饱和量为10%左右。如果是100μm厚的GS14,就具有10μm程度的压缩量。
本实施例3采用与实施例1相同材料的情况,是GS14的厚度为100μm,如果使导体图形13的厚度54为10μm以上,就会产生所述述裂纹。
这样,形成导体图形13时,导体图形13的厚度54如果是超过GS14的厚度方向的加压压缩量的值,压缩应力就会集中在导体图形13,在导体图形13的外周周边部附近积层的GS14就不承受压力,所以陶瓷基板11和GS14的密合性恶化,在烧结后密合性恶化的部分有时就会产生裂纹。
因此,至少使导体13的厚度54在GS14的厚度方向的加压压缩饱和量以下,可使在陶瓷基板11产生的应力分散,能够防止在GS14的导体13周边部产生的裂纹。另外,邻接的导体间在100μm以下时,如果使导体厚度为GS的厚度的10%以下,就不产生裂纹,但如果为20%,裂纹产生的概率为30%,邻接的导体间在150μm以上时,即使导体厚度为GS的厚度的20%也不产生裂纹。
实施例4
在此,用图6、表3说明将要烧结之前GS的加热加压条件。在实施例4中,采用实施例2用的墨浸透测试。
实验的加热条件为40~110℃,加压条件为50~200kg/cm2,GS有机粘合剂树脂和粘接层树脂采用丙烯酸树脂,其结果如表3所示。如表3所示,在丙烯酸树脂的热变形温度70℃以上、加压条件为100kg/cm2的情况下,墨浸透距离为1mm以下,是良好的。
由以上结果可知,在粘接层12的树脂材料及GS14的有机粘合剂树脂材料的热变形温度以上,两树脂材料相互混合,可得到良好的粘接状态。
另外,必须使温度在粘接层12的成分(树脂、溶剂、可塑剂等添加剂)和GS14有机载体(ビヒクル)(树脂、溶剂、分散剂、可塑剂等添加剂)的沸点温度以下。
这次作为粘接层12和GS14的溶剂使用了甲苯,当超过甲苯的沸点即110℃时,在加热加压工序,会从积层体产生挥发性的气体。
                                                表3
  加热(℃)                          加压(kg/cm2)
  50     70     100     150     200
    40   30~40     20~30     15~20     15~20     15~20
    50   15~20     3~4     2~3     1~2     1~2
    70   10~15     2~3     1mm以下     1mm以下     1mm以下
    80   5~10     2~3     1mm以下     1mm以下     1mm以下
    110   5~10     1~2     1mm以下     1mm以下     1mm以下
粘接层:丙烯酸树脂;粘接层厚度:1~2μmGS的尺寸:100mm×100mmGS的厚度:400μm陶瓷基板的尺寸:100mm×100mm加热加压时间:3~5分钟
如果该气体残留在GS14内部,那么,有可能导致烧结之后在烧结层17产生裂纹。因此,作为加热条件,设置在110℃以下。
关于加压条件,如图6所示,在100kg/cm2以上,压缩收缩率饱和。
也就是说,如果为100kg/cm2以上,为了使GS14的密度饱和,烧成收缩的抑制效果也达到极限。
如上所述,将要烧成之前GS14的最佳加热加压条件,作为加热条件是,温度在粘接层12成分的树脂材料及GS有机粘合剂树脂材料的热变形温度以上,并且在粘接层成分及GS14有机载体成分的沸点温度以下;作为加压条件,就是形成GS14的厚度方向压缩收缩率的饱和区域的压力。
实施例5
在此,用图6、图7说明加热工序的条件,该加热工序是在将要脱粘合剂之前进行的,直至加热加压工序的工序。
图7(a)、图7(b)是与实施例1的图1(e)相同的状态,是将粘接层12形成在陶瓷基板11上,将导体图形13和GS14进行加热积层的状态。
图7(a)是这样一种加热工序,在将要脱粘合剂之前进行的一直进行到加热加压工序为止,是在GS14的有机粘合剂树脂热变形温度以上或软化点温度以上进行加热时的状态图。
如该图所示,由于GS14的有机粘合剂成分的软化流动、及粘接层12和GS14的接触面的密接性提高,在积层的GS14的积层内会产生残留空气75。
该残留空气75在加热加压之后随即作为膨胀现象产生,但冷却后其膨胀就看不见。
但是,如图7(b)所示,在图7(a)的脱粘合剂、烧成后,由于残留空气75与GS14粘合薄弱的部分会产生裂纹76。
因此,作为加热条件,必须在不超过GS14的有机粘合剂树脂的热变形温度的温度区域,不残留空气75。
图7(c)是加热工序,在将要脱粘合剂之前进行,一直进行到加热加压工序,是在不超过GS14的有机粘合剂树脂热变形温度的条件下进行加热时的状态图。
如该图所示,在图7(a)看到的残留空气75没有出现,图7(c)的脱粘合剂、烧成后的状态如图7(d)所示,是没有残留空气75的非常良好的状态。
从该结果看,在将要脱粘合剂之前进行的直到加热加压工序进行的最佳加热条件,就是不超过GS14的有机粘合剂树脂的热变形温度的温度。
同样,最佳加压条件就是,GS14之间在到最终加压工序之前不剥离,而且GS14的厚度方向压缩量不饱和的区域内的低压,处于能将导体图形13等厚度方向的凹凸吸收的压力范围内。
由该条件,在最终加热加压工序之前,各被积层的GS14在厚度方向具有可以压缩的量,在最终加热加压工序,各积层的GS14在厚度方向被均等压缩,从而,由导体图形13等凹凸造成的积层体面内的厚度偏差也容易吸收。另外,在本实施例5中,GS14积层时(到最终加热加压工序之前)的最佳加热加压条件,是50~70℃(不超过80℃的温度),GS14厚度方向的压缩量不饱和的50~80kg/cm2
实施例6
在实施例5的加热工序中,该加热工序是在将要脱粘合剂之前进行的一直进行到加热加压工序的加热之后,在大气压中进行时,通过粘接层12,将陶瓷基板11和GS14牢固地粘接的加压条件,由于必须是GS14的有机粘合剂树脂的热变形温度以上,所以在将GS14积层时,残留在该积层内的空气被热压封闭在积层内,加压后膨胀。
因此,采用真空热压装置加热,在加压前,在将积层体形成1~5Torr程度的真空度的状态下,进行加热加压。
其结果是,在加热加压后的积层体中,看不到膨胀,烧成后也看不到残留空气75造成的裂纹76,可得到良好的积层体。这样通过采用真空热压装置,能得到与实施例5同样的效果。
实施例7
在此用图8说明陶瓷基板11和GS14大小的最佳条件。
图8是对在以实施例1说明的图1(c)~图1(e)的加热加压工序的基板裂纹进行分析的图。
图8(a)是,在陶瓷基板11形成粘接层12后,利用导体膏用网印法形成导体图形13,进而要从陶瓷基板11端层积距离小如距离85般的GS14的状态。
之后,如图8(b)所示,在安装有缓冲橡胶86的金属模具87之间,在配置图8(a)的积层体的状态下进行加热加压。其结果是,在高的加压条件时,如图8(c)所示,在陶瓷基板11产生裂纹76。
在实施例7中,作为陶瓷基板11,采用大小为63mm×52mm×0.8mmt的美橄榄石基板(抗弯强度为1000kg/cm2);作为GS14采用距所述基板11,距离85为5mm以下。
在上述条件基础上,在图8(b)中,以80C加热、150kg/cm2的加压进行5分钟的条件下,在GS14未粘和的陶瓷基板11的周边部产生裂纹76。
其原因可认为是伴随以下过程产生的。
首先,在热压时,压缩应力在GS14的整个面集中,没有GS14的陶瓷基板11的周边压力变得非常小,产生应力差。
于是,在没有GS14的陶瓷基板11的周边部不产生弯曲应力,这形成陶瓷基板11的抗弯强度以上。
为了防止这种裂纹76,就必须使GS14的大小与陶瓷基板11的大小大致为同一尺寸。
或者,设定距离85,以使GS14和陶瓷基板11的接合部的压缩应力、和没有GS14的陶瓷基板11露出部分的压缩应力之差,成为小于陶瓷基板11的抗弯强度(相信安全的值)。
实施例8
在此用图4和表4说明提高在陶瓷基板11上积层的GS14烧成后的粘接状态的方法。
在GS14添加作为无机组分的玻璃。
表4是将GS11中的非晶体质玻璃量作为参数,根据实施例2用的墨浸透测试,评价在陶瓷基板11上积层的GS14烧结后的粘接状态的表。表4中GS14中的玻璃量就是无机材料中玻璃材料成分重量的百分比,烧成后的非晶体质玻璃量,表示除去GS14烧成后的晶体化的玻璃外非晶质组分的玻璃量。
首先,图4(a)是在陶瓷基板11上形成粘接层12后,将GS14加热加压粘接在其上后的状态。关于该GS14,作为一例,如表4所示,以玻璃量45wt%~90wt%的情况进行评价。
                        表4
  GS中的玻璃量   烧结后非晶质玻璃量     墨浸透距离
    45wt%     27wt%     3~4mm
    52wt%     30wt%     1mm以下
    60wt%     37wt%     1mm以下
    90wt%     90wt%     1mm以下
加热加压条件:50℃、75kg/cm2、5分钟粘接层厚度:1~2μmGS尺寸:100mm×100mmGS厚度:400μm陶瓷基板尺寸:100mm×100mm
图4(b)、图4(c)表示图4(a)的烧成后的陶瓷基板11和烧结层17的粘合状态。
与实施例2一样,如果由墨浸透测试判断粘接状态,则如表4所示,若GS14中的玻璃量为52wt%以上,也就是说,若烧结后非晶体质玻璃量增加,则墨浸透距离变为1mm以下,陶瓷基板11和烧结层17的粘合状态就良好。即,由于使GS14中的玻璃量增加,能使陶瓷基板11和烧结层17的粘合性提高。该玻璃量的上限,可以到100wt%,但如果考虑基板强度,就必须添加10wt%以上的氧化铝和氧化锆等填充物成分。
因此,作为玻璃量的上限最好是不足100wt%,在90wt%可以得到良好的效果。
实施例9
采用图9、表5说明基于陶瓷基板11的表面粗糙度的陶瓷基板11和GS14烧结后的粘接性。图9(a)是在陶瓷基板11形成粘接层12,并层积GS14的状态,以距离94表示陶瓷基板11的外周和GS14的外周之间的距离。
图9(b)是在安装了缓冲橡胶86的上下金属模具87之间,配置图9(a)的积层体的状态,由此进一步加热加压的状态示于图9(c)。
在本实施例9中,进行5分钟80℃的加热、150kg/cm2的加压。粘接层采用丙烯酸树脂,厚度为1~2μm。图9(c)的距离97就是陶瓷基板11的外周和GS14的外周之间的距离,该距离97和图9(a)的距离94之差就是GS14的伸长量。
陶瓷基板11的平均表面粗糙度(Ra)在0.1~1.0μm的范围内,评价GS14的伸长量的结果表示在表5。
                        表5
陶瓷基板的Ra(μm) 0.11  0.15 0.32 0.81
加热加压后Gs的伸长量(μm) 100~200  50以下 50以下 50以下
加热加压条件:80℃、150kg/cm2、5分钟粘接层厚度:1~2μmGS尺寸:50mm×50mmGS厚度:200μm陶瓷基板尺寸:60mm×60mm
如该表所示,将陶瓷基板的Ra设为0.15μm以上,可以得到GS加压加热时伸长量小的、面内方向尺寸精度好的状态。这可以认为是由于随着氧化铝基板的Rd增大,由固定效果形成的粘接强度提高。
实施例10
在此用图4、图10、表6说明用网印法形成导体图形时粘接层厚度的适当范围。
                               表6
粘接层厚度(μm)   1~2   4~5   7~8   10~11
导体图形的印刷渗透状态   良好   良好   良好   渗透大
墨浸透距离(mm)   1以下   1以下   1以下   1~2
加热加压条件:80℃、150kg/cm2、5分钟GS尺寸:100mm×100mmGS厚度:200μm陶瓷基板尺寸:100mm×100mm
如图10(a)所示,导体图形13采用具有图形部106的网印掩模,被网印印刷在形成于陶瓷基板11的粘接层12上。
如图10(b)表示将粘接层12比图10(a)厚地进行网印印刷的状态。
如图10(b)所示,如果粘接层12变厚,则网印掩模的掩模部105和印刷时相接的陶瓷基板11的粘接层12的粘接性提高。
所以,与图10(a)的情况相比,随刷子107的移动的脱版变劣(掩模部105延迟离开)。
因此,如图10(b)所示,在导体图形13产生图形渗透。为了评价该图形渗透,将实验结果表示在表6,该实验结果是粘接层12的厚度在1~11μm范围内进行的结果。如表6那样,如果粘接层12的厚度为10μm以上,则图形渗透变大,形成不可用的状态。
下面,叙述粘接层12的厚度造成的陶瓷基板11和GS14的积层体烧成后的粘接性。
评价以实施例2用的墨浸透测试进行。
如表6的结果所示,如果粘接层12的厚度不足10μm,则墨浸透距离为1mm以下,粘接性良好,如果粘接层12的厚度不足1μm,烧结后收缩抑制效果低。因此,如果粘接层12的厚度在1μm以上不足10μm,则陶瓷多层基板就能以良好的状态得到。
产业上利用的可能性
如上所述本发明利用具有以下工序的制造方法,可以得到使导体图形间的尺寸精度提高的陶瓷多层基板。所述工序包括:至少在陶瓷基板的一面形成粘接层的工序;在所述粘接层上形成导体图形的工序;从所述导体图形之上层积陶瓷原料片后进行加热加压的工序;在所述陶瓷原料片上形成导体图形的工序;对由所述工序形成的积层陶瓷基板脱粘合剂后进行烧成的工序;

Claims (10)

1.一种陶瓷多层基板的制造方法,其包括:至少在陶瓷基板的一面形成粘接层的第一工序;在所述粘接层上形成导体图形的第二工序;从所述导体图形之上加热加压、形成陶瓷原料片的第三工序;在所述陶瓷原料片上形成所述导体图形的第四工序;至少将所述第三工序和所述第四工序重复多次,交互积层所述导体图形和所述陶瓷原料片的第五工序;将由所述第五工序形成的积层陶瓷基板脱粘合剂后烧结的第六工序。
2.权利要求1所述的陶瓷多层基板的制造方法,其中,所述第一工序的粘接层的树脂的热变形温度,在所述陶瓷原料片的有机粘合剂树脂的热变形温度以下。
3.权利要求1所述的陶瓷多层基板的制造方法,其中,所述第三工序和第五工序中的加热温度,小于所述粘接层树脂和所述陶瓷原料片的有机粘合剂树脂的热变形温度,其加压条件是在所述陶瓷原料片的厚度方向的压缩收缩率不饱和区域。
4.权利要求1所述的陶瓷多层基板的制造方法,其中,所述第三工序和第五工序中的加热加压用具有缓冲橡胶的热压装置和真空热压装置之任一种进行。
5.权利要求1所述的陶瓷多层基板的制造方法,其中,在所述第二工序和第四工序和第五工序中,所述导体图形的厚度在所述陶瓷原料片的压缩收缩量以下。
6.权利要求1所述的陶瓷多层基板的制造方法,其中,在所述第六工序的脱粘合剂前进行的加热条件是,在所述第一工序粘接层的树脂材料、和所述第三工序和第五工序的陶瓷原料片的有机粘合剂树脂材料的热变形温度以上,而且是所述粘接层成分和所述陶瓷原料片的有机载体沸点以下的温度,而且其加压条件就是,构成所述陶瓷原料片的厚度方向压缩收缩率饱和区域的压力。
7.权利要求1所述的陶瓷多层基板的制造方法,其中,所述第一工序的陶瓷基板和所述第三工序及第五工序的陶瓷原料片的大小大致相同。
8.权利要求1所述的陶瓷多层基板的制造方法,其中,所述第三工序和第五工序的陶瓷原料片中的玻璃量在52wt%以上而不足100wt%。
9.权利要求1所述的陶瓷多层基板的制造方法,其中,所述第一工序的陶瓷基板的平均表面粗糙度(Ra)在0.15μm以上。
10.权利要求1所述的陶瓷多层基板的制造方法,其中,所述第一工序的粘接层的厚度(t)为,1μm≤t<10μm。
CN02801790.0A 2001-05-24 2002-05-21 陶瓷多层基板的制造方法 Expired - Fee Related CN1224304C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001154958A JP4770059B2 (ja) 2001-05-24 2001-05-24 セラミック多層基板の製造方法
JP154958/01 2001-05-24
JP154958/2001 2001-05-24

Publications (2)

Publication Number Publication Date
CN1463572A true CN1463572A (zh) 2003-12-24
CN1224304C CN1224304C (zh) 2005-10-19

Family

ID=18999219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02801790.0A Expired - Fee Related CN1224304C (zh) 2001-05-24 2002-05-21 陶瓷多层基板的制造方法

Country Status (6)

Country Link
US (1) US6811634B2 (zh)
EP (1) EP1392093B1 (zh)
JP (1) JP4770059B2 (zh)
CN (1) CN1224304C (zh)
DE (1) DE60210445T2 (zh)
WO (1) WO2002096172A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103222047A (zh) * 2010-11-22 2013-07-24 株式会社东芝 用于压力接触结构的陶瓷热沉材料、使用其的半导体模块和用于制造半导体模块的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004032706A1 (de) * 2004-07-06 2006-02-02 Epcos Ag Verfahren zur Herstellung eines elektrischen Bauelements und das Bauelement
JP2008034828A (ja) * 2006-06-30 2008-02-14 Ngk Spark Plug Co Ltd Ic検査用治具に用いる多層セラミック基板及び多層セラミック基板の製造方法
US7547369B2 (en) * 2006-08-31 2009-06-16 Ferro Corporation Method of making multilayer structures using tapes on non-densifying substrates
JP5408869B2 (ja) * 2007-12-25 2014-02-05 京セラ株式会社 接着用樹脂組成物及びそれを用いたセラミック基板の製造方法
TWI416550B (zh) * 2008-06-24 2013-11-21 Chilisin Electronics Corp Composition and method of ferrite material with stable permeability
CN102468183A (zh) * 2010-11-05 2012-05-23 九豪精密陶瓷(昆山)有限公司 制造复合基板的方法
DE102015108646A1 (de) * 2015-06-01 2016-12-01 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Verfahren zur Herstellung keramischer Multilagen-Schaltungsträger auf Basis einer schlickerbasierten additiven Fertigung
DE102017208049A1 (de) * 2017-05-12 2018-11-15 Siemens Aktiengesellschaft Strukturieren einer Oberfläche eines grünen Keramikkörpers durch ein leicht veränderbares Werkzeug, Vorrichtung und Verfahren und Herstellung einer CMC-Komponente

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263298A (ja) * 1985-05-17 1986-11-21 株式会社日立製作所 多層セラミツク配線基板の製造方法
US4799984A (en) * 1987-09-18 1989-01-24 E. I. Du Pont De Nemours And Company Method for fabricating multilayer circuits
US4806188A (en) * 1988-03-04 1989-02-21 E. I. Du Pont De Nemours And Company Method for fabricating multilayer circuits
US4994302A (en) * 1989-06-27 1991-02-19 Digital Equipment Corporation Method of manufacturing thick-film devices
JPH03241789A (ja) * 1989-10-05 1991-10-28 Asahi Glass Co Ltd セラミックス多層基板及びその製造方法
US5176772A (en) * 1989-10-05 1993-01-05 Asahi Glass Company Ltd. Process for fabricating a multilayer ceramic circuit board
US5006182A (en) * 1989-11-17 1991-04-09 E. I. Du Pont De Nemours And Company Method for fabricating multilayer circuits
JPH05238853A (ja) * 1992-02-28 1993-09-17 Tokyo Electric Power Co Inc:The セラミックス基材の表面改質方法
US5609704A (en) * 1993-09-21 1997-03-11 Matsushita Electric Industrial Co., Ltd. Method for fabricating an electronic part by intaglio printing
JPH08267421A (ja) * 1995-04-01 1996-10-15 Sumitomo Kinzoku Electro Device:Kk セラミック生シート積層体の製造方法
JP3173439B2 (ja) * 1997-10-14 2001-06-04 松下電器産業株式会社 セラミック多層基板及びその製造方法
JPH11135946A (ja) 1997-10-31 1999-05-21 Kyocera Corp 多層配線基板とその製造方法
JPH11220260A (ja) 1998-02-02 1999-08-10 Sumitomo Metal Electronics Devices Inc 低温焼成セラミック多層基板の製造方法
JP3132493B2 (ja) * 1998-12-11 2001-02-05 松下電器産業株式会社 配線基板の製造方法およびそれに用いられる導体ペースト
JP2001015916A (ja) 1999-07-01 2001-01-19 Hitachi Ltd 導体回路パターン付グリーンシート及びそれを用いたセラミック多層配線基板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103222047A (zh) * 2010-11-22 2013-07-24 株式会社东芝 用于压力接触结构的陶瓷热沉材料、使用其的半导体模块和用于制造半导体模块的方法
CN103222047B (zh) * 2010-11-22 2016-01-06 株式会社东芝 用于压力接触结构的陶瓷热沉材料、使用其的半导体模块和用于制造半导体模块的方法

Also Published As

Publication number Publication date
JP2002353623A (ja) 2002-12-06
WO2002096172A1 (en) 2002-11-28
CN1224304C (zh) 2005-10-19
JP4770059B2 (ja) 2011-09-07
DE60210445D1 (de) 2006-05-18
US6811634B2 (en) 2004-11-02
EP1392093B1 (en) 2006-04-05
EP1392093A4 (en) 2004-12-15
EP1392093A1 (en) 2004-02-25
US20030183318A1 (en) 2003-10-02
DE60210445T2 (de) 2006-08-31

Similar Documents

Publication Publication Date Title
CN1305807C (zh) 包含通过烧结原料形成的烧结体的制品及其制备方法
CN1157105C (zh) 内装电路器件组件及其制造方法
CN1245728C (zh) 层叠型电子器件的制造方法
CN1101126C (zh) 布线板及其制造方法
CN1941233A (zh) 叠层型陶瓷电子部件的制造方法
CN1739173A (zh) 叠层陶瓷电子器件及制作该电子器件的方法
CN1224304C (zh) 陶瓷多层基板的制造方法
CN1128452C (zh) 电阻布线板及其制造方法
CN1183815C (zh) 玻璃陶瓷多层基板的制造方法
CN1898183A (zh) 氮化铝接合体及其制造方法
CN101049058A (zh) 陶瓷多层基板及其制造方法
CN1121499A (zh) 具有光滑镀层的金属化陶瓷基片及其制造方法
CN1397154A (zh) 陶瓷多层底板的制造方法及未烧成的复合层合体
CN1198495C (zh) 多层陶瓷基板的制造方法
CN1182764C (zh) 陶瓷基板的制造方法
CN115734994B (zh) 粘合剂转移膜及使用粘合剂转移膜制造电源模块基板的方法
CN1507634A (zh) 迭层型陶瓷电子元件的制造方法
CN101030480A (zh) 叠层型陶瓷电子部件的制造方法
CN1604247A (zh) 电介质陶瓷组合物以及电子部件
CN1968569A (zh) 复合配线基板及其制造方法
CN1754234A (zh) 叠层型电子部件的制造方法
JP2000353772A (ja) 熱伝導樹脂組成物構造体及びその製造方法、並びに、それを用いた熱伝導基板及びその製造方法
CN1207739C (zh) 层合体的制造方法及层合体加压装置
CN1839452A (zh) 印刷电路板的层叠方法和层叠陶瓷电子部件的制造方法
CN1524826A (zh) 氧化物陶瓷材料、陶瓷基片、陶瓷层压设备和功率放大器模块

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051019

Termination date: 20150521

EXPY Termination of patent right or utility model