CN103222047A - 用于压力接触结构的陶瓷热沉材料、使用其的半导体模块和用于制造半导体模块的方法 - Google Patents

用于压力接触结构的陶瓷热沉材料、使用其的半导体模块和用于制造半导体模块的方法 Download PDF

Info

Publication number
CN103222047A
CN103222047A CN2011800559068A CN201180055906A CN103222047A CN 103222047 A CN103222047 A CN 103222047A CN 2011800559068 A CN2011800559068 A CN 2011800559068A CN 201180055906 A CN201180055906 A CN 201180055906A CN 103222047 A CN103222047 A CN 103222047A
Authority
CN
China
Prior art keywords
heat sink
pressure contact
contact structures
resin bed
ceramic heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800559068A
Other languages
English (en)
Other versions
CN103222047B (zh
Inventor
宫下公哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Publication of CN103222047A publication Critical patent/CN103222047A/zh
Application granted granted Critical
Publication of CN103222047B publication Critical patent/CN103222047B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明提供了一种用于压力接触结构的陶瓷热沉材料,该陶瓷热沉材料通过在陶瓷基板上提供树脂层而配置,其中,所述树脂层具有70或更小的计示(肖氏)硬度(A型),并且存在于所述陶瓷基板与所述树脂层之间的界面中的间隙的平均值是3μm或更小。此外,优选地,通过固化热固树脂来形成所述树脂层,所述热固树脂在60°C的温度流态化。由于以上结构,可以获得陶瓷热沉和使用热沉的半导体模块,其具有相对于挤压构件的良好的紧密接触特性。

Description

用于压力接触结构的陶瓷热沉材料、使用其的半导体模块和用于制造半导体模块的方法
技术领域
本发明涉及一种用于压力接触结构的陶瓷热沉材料和使用该陶瓷热沉材料的半导体模块,还涉及一种用于制造该半导体模块的方法。 
背景技术
通常,具有绝缘和电极功能的陶瓷金属电路板已经广泛用于装配电力电子设备的领域中。在该领域中,主要由氧化铝(Al2O3)或氮化铝(AlN)作为主要成分构成的基板通常用作陶瓷基板。 
然而,由于氧化铝基板的热导率低至约18W/m·K,其散热特性(热辐射特性)不足。另一方面,尽管AlN基板的热导率高达约200W/m·K,但AlN基板的机械强度低,因此其耐热循环特性不足。 
为了应对这些问题,已经开发了高热导率氮化硅基板作为具有优异导热特性和优异机械强度特性的陶瓷材料。例如,日本专利特开No.2009-120483(专利文献1)公开了一种金属电路板,其由氮化硅陶瓷基板制成,在其中通过控制在氮化硅陶瓷基板的晶界相中形成的孔隙的直径来减小泄漏电流。 
同时,通过借助(通过)基于Ag-Cu-Ti的活性金属钎焊材料将铜电路板焊接到氮化硅基板来形成由氮化硅陶瓷烧结体制成的金属电路板。氮化硅基板包含作为其主要成分的氮化硅,因此具有高达600MPa或更高的三点弯曲强度。为此,氮化硅基板和铜板的焊接结构也具有优异的耐热循环特性,因此即使在焊接结构经受到长期的热循环时,在氮化硅基板中也几乎不会造成诸如裂纹和剥离之类的缺陷。 
例如,日本专利特开No.2003-192462(专利文献2)公开了由氮化硅基板制成并根据专利文献2获得的金属电路板能够经受住3000次循环的耐热循环测试(TCT测试)。 
另一方面,为了形成陶瓷基板与金属电路板的焊接体,焊接过程是必要的,这不可避免地导致制造成本的增加。为此,如日本专利特开(No.2003-197836)(专利文献3)中所公开的,为了改进绝缘特性,提出了使用氮化硅基板作为用于压力接触结构的间隔体。此外,由于氮化硅基板具有高机械强度和高断裂韧度值,已经证实了氮化硅基板也足以经受住在使用螺钉等将基板应用于压力接触结构的情况下产生的应力。 
构成氮化硅基板的氮化硅烧结体包含作为主相的β-氮化硅(Si3N4)。β-Si3N4颗粒(晶粒)是具有伸长形状的晶体颗粒,在其中长轴长度与短轴长度的比(长宽比)是二或更大。在所述氮化硅烧结体中,以具有约2到10μm的平均颗粒直径的大量β-Si3N4颗粒彼此错杂地纠缠(be complicatedly entangled)的方式,实现了具有高机械强度和高断裂韧度值的结构。 
如上所述,氮化硅基板包含作为主相的β-Si3N4颗粒,因此氮化硅基板的表面上存在微小凹陷和凸起。这是由β-Si3N4颗粒彼此错杂地纠缠的事实所导致的。即使在将氮化硅基板的表面镜面抛光以便具有0.05μm或更小的表面粗糙度Ra的情况下,也难以消除这些凹陷和凸起。镜面抛光过程自身也导致制造成本的增加。 
在上述具有微小凹陷和凸起的氮化硅基板中,尤其是在具有凸起部分的氮化硅基板中,会出现如下问题,当长期在施加压力接触应力的情况下使用氮化硅基板时,造成氮化硅基板中以凸起部分为起点的裂纹。 
此外,如上所述,氮化硅基板的表面上存在微小凹陷和凸起,因此在压力接触结构中,在氮化硅基板与接触到氮化硅基板的构件(接触构件)之间造成微小裂缝。接触构件通常由金属构件构成,诸如金属板。因此,当在形成压力接触结构时由于氮化硅基板表面上的微小凹陷和凸起而在氮化硅基板与金属构件之间形成间隙时,间隙阻碍了在氮化硅基板与金属构件之间的热传导,这导致作为模块的压力接触结构的散热特性(热辐射特性)劣化。 
引用文献列表 
专利文献 
专利文献1:日本专利特开No.2009-120483 
专利文献2:日本专利特开No.2003-192462 
专利文献3:日本专利特开No.2003-197836 
发明内容
技术问题 
如上所述,传统氮化硅基板的表面上存在微小凹陷和凸起。因此,当采用压力接触结构时,在氮化硅基板与接触构件(挤压构件)之间易于形成间隙。结果,当采用压力接触结构作为模块结构体时,间隙导致传热热阻增大,以至于使得模块结构体的散热特性劣化。 
此外,在使氮化硅基板与接触构件彼此挤压接触(press-contact)时,微小凸起部分导致裂纹的出现。为了避免裂纹的影响,还可以想到例如增大氮化硅基板的厚度。然而,增大氮化硅基板的厚度不是优选的,因为当氮化硅基板的厚度增大时,基板自身就充当了阻热体。 
实现本发明来解决上述的问题。本发明的目的是提供一种氮化硅绝缘基板(用于压力接触结构的陶瓷热沉材料),其可以解决由于在氮化硅基板的表面上形成的微小凹陷和凸起而在氮化硅基板与接触构件之间形成的间隙的问题,并且其可以减少起因于在氮化硅基板的表面上形成的微小凸起的裂纹的出现。 
问题的解决方案 
根据本发明的用于压力接触结构的第一陶瓷热沉材料的特征在于:在用于在陶瓷基板上提供了树脂层的压力接触结构的陶瓷热沉材料中,所述树脂层具有70或更小的计示(肖氏)硬度(A型),及存在于陶瓷基板与所述树脂层之间的界面中的间隙的平均尺寸值是3μm或更小。 
此外,优选地,在用于压力接触结构的所述第一陶瓷热沉材料中,通过固化热固树脂来形成所述树脂层,所述热固树脂在60°C的温度流态化。即,所述热固树脂在60°C的温度呈现流动性。 
此外,根据本发明的用于压力接触结构的第二陶瓷热沉材料特征在于:在用于在陶瓷基板上提供了树脂层的压力接触结构的陶瓷热沉材料中,通过固化在60°C的温度流态化的热固树脂形成所述树脂层。 
此外,优选地,在用于压力接触结构的所述第二陶瓷热沉材料中,所 述树脂层包含无机填料颗粒。此外,优选地,所述树脂层具有10或更大的计示(肖氏)硬度(A型)。此外,优选地,所述陶瓷基板是氮化硅基板、氧化铝基板和氮化铝基板中的任意一种。此外,优选地,所述树脂层的厚度是50μm或更小。此外,优选地,所述陶瓷基板的表面粗糙度Ra在0.1到5μm范围内。 
此外,根据本发明的用于压力接触结构的陶瓷热沉材料适合于半导体模块,特别适合于使挤压构件与陶瓷热沉材料挤压接触以形成压力接触结构的半导体模块。 
此外,优选地,根据本发明的半导体模块具有部分,在通过使用挤压构件形成压力接触结构时,所述挤压构件与所述陶瓷基板的表面在所述部分处直接接触。此外,优选地,所述挤压构件与所述陶瓷基板的表面直接接触所处的所述部分是点接触部分,具有1mm或更小的最大直径。此外,优选地,存在多个所述点接触部分。 
发明的有益效果 
在根据本发明的用于压力接触结构的第一陶瓷热沉材料中,在陶瓷基板上提供树脂层,其具有70或更小的计示(肖氏)硬度(A型),因此可以将存在于陶瓷基板与树脂层之间的界面中的间隙的平均(高度)值减小到3μm或更小。 
此外,根据本发明的用于压力接触结构的第二陶瓷热沉材料的特征在于:在用于在陶瓷基板上提供了树脂层的压力接触结构的陶瓷热沉材料中,通过固化在60°C的温度流态化的热固树脂形成所述树脂层。 
由此,可以避免由于间隙而增大热阻。此外,在形成压力接触结构时,以软树脂层覆盖陶瓷基板表面上的微小凹陷和凸起。从而可以避免由于作用在陶瓷基板表面上的微小凹陷和凸起上的压力而出现裂纹。 
此外,在形成压力接触结构时,借助压力使软树脂层变形,以便使挤压构件能够与陶瓷基板直接接触,从而可以有效利用陶瓷基板的优异散热特性。 
附图说明
图1是示出根据本发明的用于压力接触结构的陶瓷热沉材料的实施例 的截面图。 
图2是示出根据本发明的用于压力接触结构的陶瓷热沉材料的另一个实施例的截面图。 
图3是示出根据本发明的用于压力接触结构的陶瓷热沉材料的另一个实施例的截面图。 
图4是示出压力接触结构的实例的截面图。 
图5是示出在由陶瓷基板与挤压构件形成压力接触结构时,在陶瓷基板与挤压构件之间的接触状态的实例的截面图。 
图6是示出根据本发明的半导体封装的实施例的截面图。 
图7是示出根据本发明的半导体封装的另一个实施例的截面图。 
具体实施方式
根据本发明的实施例的用于压力接触结构的第一陶瓷热沉特征在于:在用于在陶瓷基板上提供了树脂层的压力接触结构的陶瓷热沉材料中,树脂层的计示(肖氏)硬度(A型)为70或更小,存在于陶瓷基板与树脂层之间的界面中的间隙的平均值(高度)是3μm或更小。 
图1、图2和图3是截面图,均示出根据本发明的用于压力接触结构的陶瓷热沉材料的实例。在图1、图2和图3的每一个中,附图标记1表示用于压力接触结构的陶瓷热沉材料,附图标记2表示陶瓷基板,附图标记3表示树脂层。 
至于树脂层3的布置,图1示出了在陶瓷基板2的一个表面上提供树脂层3的类型,图2示出了在陶瓷基板2的两个表面上均提供树脂层3的类型。但是每一种类型都可以采用。仅需在形成压力接触结构时必定与挤压构件紧密接触的表面上提供树脂层3。此外,如图3所示,也可以在整个陶瓷基板2上提供树脂层3,以便甚至包围陶瓷基板2的侧表面。 
此外,如图4所示,在用于压力接触结构的陶瓷热沉材料1中,仅必须在形成压力接触结构的部分(即在由挤压构件4和4挤压的部分)分别提供树脂层3和3。此外,当形成压力接触结构时,也可以在陶瓷基板2D中提供诸如螺孔的插入孔12和12,如图6所示。 
陶瓷基板2不受具体限定,而是包括诸如氧化铝(Al2O3)基板、氮化 铝(AlN)基板和氮化硅(Si3N4)基板之类的基板。由于形成压力接触结构,具有300MPa或更大的三点弯曲强度的陶瓷基板是优选的。此外,当将陶瓷基板2用作半导体模块的散(辐射)热基板等时,优选地,陶瓷基板2具有60W/m·K或更大的导热率。具有300MPa或更大的三点弯曲强度和具有60W/m·K或更大的导热率的陶瓷基板的实例可以包括氮化铝基板和氮化硅基板。此外,当将高压力施加到陶瓷基板时,具有高强度的陶瓷基板是优选的。这种陶瓷基板的具体实例包括具有600MPa或更大的三点弯曲强度的氮化硅基板。 
此外,在陶瓷基板上提供具有70或更小的计示(肖氏)硬度(A型)的树脂层。假定借助根据JIS-K-6253的方法来测量计示(肖氏)硬度(A型),在该方法中,通过在施加压力并持续一秒钟来测量肖氏硬度。将70或更小的计示(肖氏)硬度(A型)描述为“A70或更小”。 
只要树脂层的肖氏硬度为A70或更小,不具体限定树脂层的肖氏硬度的下限值。然而,优选地,树脂层的肖氏硬度是A10或更大。更优选地,树脂层的肖氏硬度在A30到A60的范围内。在树脂层的肖氏硬度小于A10的情况下,树脂层过软,因此会担心在形成压力接触结构时施加到树脂层的压力较大时,树脂层会破裂。 
不具体限定构成树脂层的树脂,只要固化的树脂具有A70或更小的肖氏硬度,热固树脂、光固化树脂等都可以用作构成树脂层的树脂。然而,优选地,构成树脂层的树脂是热固树脂,其在60°C的温度流态化。在60°C的温度流态化的热固树脂指的是在60°C或更高的温度液化以呈现流动性的糊状树脂。 
在通过使用在60°C或更高的温度流态化的热固树脂形成压力接触结构时,一旦通过加热到60°C或更高的温度来使糊状树脂流态化,从而以流态化的树脂覆盖陶瓷基板表面上的微小凹陷和凸起。结果,可以将存在于陶瓷基板与树脂层之间的界面中的间隙的平均值进一步减小到1μm或更小(包括0μm)。不具体限定树脂的成分,但呈现上述特性的树脂的实例包括相变材料等。 
此外,根据本发明的用于压力接触结构的第二陶瓷热沉材料特征在于:在用于在陶瓷基板上提供了树脂层的压力接触结构的陶瓷热沉材料中,通 过固化在60°C的温度流态化的热固树脂形成树脂层。 
如下所述,在制造提供有压力接触结构的半导体模块时,也可以通过应用一方法来制造用于压力接触结构的第二陶瓷热沉材料,在所述方法中,在通过使用挤压构件形成的压力接触结构中,借助加热来固化树脂层。 
此外,最优选地,可以应用用于压力接触结构的第一陶瓷热沉材料的结构和用于压力接触结构的第二陶瓷热沉材料的结构两者,但可以分别应用每一个结构。 
以如下方式获得存在于陶瓷基板与树脂层之间的界面中的间隙的平均值:在陶瓷热沉材料的任意截面中,观察200μm长度的陶瓷基板与树脂层之间的界面,以便获得被观察间隙的最大直径,将获得的最大直径的平均值设定为“间隙平均值”。 
此外,优选地,树脂层包含无机填料颗粒。树脂具有高绝缘特性,但具有低导热率,因此可以使用借助添加诸如金属粉末和陶瓷粉末之类的无机填料颗粒来改进其导热率的树脂。金属粉末的实例包括Cu粉末、Al粉末等。陶瓷粉末的实例包括AlN粉末、Si3N4粉末、MgO粉末等。特别优选地是使用AlN(氮化铝)粉末,其绝缘特性和导热率都很优异。 
此外,无机填料颗粒优选地具有树脂层厚度的1/2或更小的颗粒直径,更优选地,具有树脂层厚度的1/5或更小的颗粒直径。在无机填料颗粒的颗粒直径较大的情况下,填料颗粒会从树脂层突出出来,以至于在形成压力接触结构时使得树脂层的粘着特性(紧密接触特性)劣化。 
此外,优选地,含无机填料颗粒的比率(添加量)在20到60体积%的范围内。当无机填料颗粒的含量小于20体积%时,添加无机填料颗粒的效果较小。当含无机填料颗粒的比率超过60体积%时,无机填料颗粒会从树脂层的表面突出出来,以至于在压力接触操作时使得树脂层的粘着特性劣化。此外,优选地,无机填料颗粒处于粉末状态。无机填料颗粒的实例还包括尖头形的填料,诸如纤维填料和须毛状填料。取决于树脂层的厚度,可以使用诸如纤维填料和须毛状填料的尖头形的填料颗粒。然而,在通过使用尖头形的填料颗粒形成压力接触结构时,以及在使得填料从树脂层的表面突出出来时,会增大填料颗粒对挤压构件和陶瓷基板的表面的不利影响(攻击特性),从而导致裂纹。因此,优选使用粉末状态的无机填料颗粒。 
此外,优选地,树脂层的厚度是50μm或更小。即使树脂层的厚度超过50μm时,也可以使存在于树脂层与陶瓷基板之间的界面中的间隙较小。然而,在树脂层的厚度过大时,树脂层的散热(辐射)特性劣化。因此,树脂层的厚度优选地为50μm或更小,更优选地,为30μm或更小。 
此外,树脂层的厚度的下限值不受具体限定,但优选地为5μm或更大。难以薄薄地涂敷树脂糊胶以具有小于5μm的均匀厚度。从制造的观点来看,树脂层的厚度的下限值优选为5μm或更大,更优选为10μm或更大。注意,仅有必要控制在形成压力接触结构的表面上提供的树脂层的厚度。 
此外,还优选陶瓷基板的表面粗糙度Ra在0.1到5μm范围内。为了使得在陶瓷基板表面上提供的树脂层进入陶瓷基板表面上的微小凹陷与凸起之间,陶瓷基板的表面粗糙度Ra优选为5μm或更小。另一方面,当陶瓷基板的表面粗糙度Ra小于0.1μm时,陶瓷基板的表面过于平坦,因此无法获得足够的锚固作用,以至于树脂层的粘着特性(紧密接触特性)会劣化。 
此外,根据本发明的用于压力接触结构的陶瓷热沉材料适合于半导体模块,特别适合于挤压构件与用于压力接触结构的陶瓷热沉材料挤压接触的半导体模块。 
图4和图5示出了压力接触结构的实例。在图4和图5中,附图标记1表示用于压力接触结构的陶瓷热沉,附图标记4表示挤压构件。此外,附图标记5表示陶瓷基板2与挤压构件4彼此直接接触的部分。 
图4示出了压力接触结构的实例,其中,由挤压构件4和4挤压并固定用于压力接触结构的陶瓷热沉1的上下表面。当形成压力接触结构以使得陶瓷基板2的其上提供有树脂层3和3的表面如图4所示那样受挤压构件4和4挤压时,由于为根据本发明的用于压力接触结构的陶瓷热沉1提供了具有A70或更小的肖氏硬度的软树脂层,可以如图5所示地形成部分5,挤压构件4的表面与陶瓷基板2的表面在部分5处彼此直接接触。当提供了挤压构件4与陶瓷基板2彼此直接接触所处的部分5时,可以无需经由充当阻热体的树脂层3而在挤压构件4与陶瓷基板2之间传热,因此改进了陶瓷热沉1的散热特性。就是说,可以有效地利用陶瓷基板2的高导热率。 
此外,优选地,挤压构件4与陶瓷基板2彼此直接接触所处的部分5 是点接触部分,其具有1mm或更小的最大直径。随着直接接触部分5的尺寸增大,改进了散热特性。然而,当直接接触部分的尺寸过大时,就不能抑制由存在于压力接触结构中的陶瓷基板表面上的微小凹陷和凸起引起的裂纹的出现,如在传统技术中那样。 
就是说,不能获得提供树脂层的效果。为此,点接触部分优选地具有1mm或更小的最大直径,更优选地,具有0.5mm或更小的直径,进一步优选地,具有0.01mm或更小的直径。此外,点接触部分的直径的下限值不受具体限定,但优选地为0.001mm或更大(1μm或更大)。优选地,存在多个点接触部分。当存在具有小直径的多个点接触部分时,就更有可能获得结合了陶瓷基板的优异散热特性的效果和提供树脂层的效果的协同效果。 
图6和图7均示出了具有压力接触结构的半导体封装的实例。在图6和图7中,附图标记1D和1B均表示用于压力接触结构的陶瓷热沉,附图标记2和2D均表示陶瓷基板,附图标记7表示半导体元件,附图标记8和8A均表示挤压构件,附图标记9和10均表示绝缘间隔体。此外,附图标记11表示散热构件,附图标记12和13均表示插入孔,附图标记14表示紧固构件(螺钉),附图标记15表示垫圈,附图标记16表示孔部分(螺孔)。 
此外,图6示出了结构实例,其中,在陶瓷基板2D的一个表面上提供了树脂层3,图7示出了结构实例,其中,在陶瓷基板2的两个表面上都提供了树脂层3和3。 
如图6所示,半导体模块20包括:用于压力接触结构的陶瓷热沉1D,陶瓷热沉1D提供有插入孔12和12;朝向用于压力接触结构的陶瓷热沉1D的树脂层3布置的板状挤压构件8;布置在挤压构件8的表面侧上的半导体元件7,该表面侧与用于压力接触结构的陶瓷热沉1D的一侧相反;散热构件(散热片)11,其消散半导体元件7中产生的热量,并且其布置在半导体元件7的表面侧上,该表面侧与挤压构件8的一侧相反;紧固构件(螺钉)14,用于紧固用于压力接触结构的陶瓷热沉1D和散热构件11。 
此外,将板状绝缘间隔体9插入半导体元件7的一个表面与挤压构件8之间。此外,将板状绝缘间隔体10插入半导体元件7的另一个表面与散热构件11之间。此外,将半导体元件7夹置在绝缘间隔体9与绝缘间隔体10之间。此外,将绝缘间隔体9、半导体元件7和绝缘间隔体10夹置在挤压 构件8与散热构件11之间,其中,挤压构件8朝向绝缘间隔体9布置,散热构件11朝向绝缘间隔体10布置。 
通过使用紧固构件14将用于压力接触结构的陶瓷热沉1D和散热构件11彼此紧固。在此情况下将螺钉用作紧固构件14,但紧固构件14不限于螺钉,只要它可以将用于压力接触结构的陶瓷热沉1D紧固到散热构件11。 
在图6所示的半导体模块20中,当通过使用紧固构件14将用于压力接触结构的陶瓷热沉1D和散热构件11彼此紧固时,布置在用于压力接触结构的陶瓷热沉1D与散热构件11之间的挤压构件8、绝缘间隔体9、半导体元件7和绝缘间隔体10受压而彼此接触。以此方式,在将紧固构件插入用于压力接触结构的陶瓷热沉1D时,仅有必要使用提供在陶瓷基板2D中的插入孔12和12。 
注意,挤压构件8是板状构件,其与用于压力接触结构的陶瓷热沉1D的树脂层3接触。例如,将诸如铜板之类的金属板用作挤压构件8。将挤压构件8插入用于压力接触结构的陶瓷热沉1D与诸如绝缘间隔体9的另一个构件之间。当通过使用紧固构件14将用于压力接触结构的陶瓷热沉1D紧固到散热构件11时,使挤压构件8与半导体元件7经由绝缘间隔体9挤压接触。 
此外,半导体元件7是单个半导体元件或者多个半导体元件的组件。绝缘间隔体9与绝缘间隔体10分别布置在半导体元件7的上下表面上。例如,使用了诸如陶瓷基板的板状绝缘体作为绝缘间隔体9和10。 
此外,散热构件11是消散在半导体元件7中产生的热量的构件。在图6中的散热构件11的上部中提供孔部分16,其可以接合充当紧固构件的螺钉14的远端部。例如,使用散热片作为散热构件11。 
此外,紧固构件14是用于将用于压力接触结构的陶瓷热沉1D紧固到散热构件11的构件。例如,使用螺钉作为紧固构件14。 
在图6所示的半导体模块20中,以如下方式将用于压力接触结构的陶瓷热沉1D紧固到散热构件11:充当紧固构件的螺钉14的钉体插入到用于压力接触结构的陶瓷热沉1D的插入孔12中,并使得螺钉14的远端部与散热构件11的孔部分16接合。 
此外,将垫圈15插入螺钉14的头部与用于压力接触结构的陶瓷热沉 1D之间。从而在半导体模块20中,布置在用于压力接触结构的陶瓷热沉1D与散热构件11之间的挤压构件8、绝缘间隔体9、半导体元件7和绝缘间隔体10受压而彼此接触。 
当形成如图6所示的压力接触结构时,使其上提供有具有A70或更小的肖氏硬度的软树脂层3的陶瓷基板2D与挤压构件8的表面强有力地挤压接触。然而,用于压力接触结构的陶瓷热沉1D的软树脂层3覆盖存在于陶瓷基板2D表面上的微小凹陷和凸起,因此可以使用于压力接触结构的陶瓷热沉1D经由树脂层3而与挤压构件8紧密接触。 
此外,当在压力接触时将压力设定为5MPa或更大时,使软树脂层3变形从而可以使陶瓷基板与挤压构件彼此直接接触。注意,当压力过大时,陶瓷基板会破裂,因此可以将陶瓷基板2D的三点弯曲强度的5%或更小的力设定为压力的度量标准(measure)。 
在如上所述配置的压力接触结构中,在陶瓷基板2D与树脂层3之间的界面中没有提供间隙,因此可以改进绝缘特性和散热特性。 
接下来,图7示出了使用用于压力接触结构的陶瓷热沉1B的半导体模块的实例,其中,在陶瓷基板2的两侧上均提供了树脂层3和3。 
如图7所示,半导体模块30包括:用于压力接触结构的陶瓷热沉1B,其上下两表面上都分别提供了树脂层3和3;朝向用于压力接触结构的陶瓷热沉1B的一个表面上所提供的树脂层3布置的板状挤压构件8A;朝向用于压力接触结构的陶瓷热沉1B的另一个表面上所提供的树脂层3布置的半导体元件7;散热构件11,其消散半导体元件7中产生的热量,并且其布置在半导体元件7的表面侧上,该表面侧与用于压力接触结构的陶瓷热沉1B的一侧相反;及紧固构件14,用于将挤压构件8A紧固到散热构件11。 
将板状绝缘间隔体9插入半导体元件7的一个表面与挤压构件8A之间。此外,将板状绝缘间隔体10插入半导体元件7的另一个表面与散热构件11之间。 
将半导体元件7夹置在绝缘间隔体9与绝缘间隔体10之间。此外,将绝缘间隔体9、半导体元件7和绝缘间隔体10夹置在用于压力接触结构的陶瓷热沉1B与散热构件11之间,其中,用于压力接触结构的陶瓷热沉1B朝向绝缘间隔体9布置,散热构件11朝向绝缘间隔体10布置。通过使用 紧固构件14将挤压构件8A与散热构件11彼此紧固。 
在图7所示的半导体模块30中,通过使用紧固构件14将挤压构件8A紧固到散热构件11,而使得布置在挤压构件8A与散热构件11之间的用于压力接触结构的陶瓷热沉1B、绝缘间隔体9、半导体元件7和绝缘间隔体10受压而彼此接触。 
此外,如图7所示的半导体模块30与图6所示的半导体模块20的不同之处在于:使用提供有插入孔12的挤压构件8A来代替用于压力接触结构的陶瓷热沉1D,以及使用在其上下表面中的每一个上都提供有树脂层3的用于压力接触结构的陶瓷热沉1B来代替挤压构件8。 
图7所示的半导体模块30的其它部分与图6所示的半导体模块20的其它部分相同。因此图7中所示的半导体模块30和图6中所示的半导体模块20二者所共有的部件由相同的附图标记和字符来表示,省略或简化了对每一个这种部件的结构和操作的详细说明。 
此外,没有具体限定插入孔13的形状和尺寸,只要诸如螺钉之类的紧固构件14可以插入到插入孔13中或与之接合即可。此外,也没有具体限定在挤压构件8A中提供的插入孔13的位置和数量。当通过使用紧固构件14将挤压构件8A紧固到散热构件11时,使得挤压构件8A经由用于压力接触结构的陶瓷热沉1B挤压诸如绝缘间隔体9的其他构件。 
紧固构件14是将挤压构件8A紧固到散热构件11的构件。例如,将螺钉用作紧固构件14。 
在图7所示的半导体模块30中,以如下方式将用于压力接触结构的陶瓷热沉1B紧固到散热构件11:将充当紧固构件的螺钉14的钉体插入到垫圈15和挤压构件8A的插入孔13中,使螺钉14的远端部与散热构件11的孔部分16接合。此外,将垫圈15插入到螺钉14的头部与挤压构件8A之间。 
由于以上的压力接触结构,在半导体模块30中,通过如上所述那样配置的压力接触结构使得布置在挤压构件8A与散热构件11之间的用于压力接触结构的陶瓷热沉1B、绝缘间隔体9、半导体元件7和绝缘间隔体10受压而彼此接触。 
此时,使在用于压力接触结构的陶瓷热沉1B的一个表面上提供的树脂 层3强有力地与挤压构件8A的表面挤压接触,且使在用于压力接触结构的陶瓷热沉1B的另一个表面上提供的树脂层3也强有力地与绝缘间隔体9的表面挤压接触。 
然而,用于压力接触结构的陶瓷热沉1B上的软树脂层3覆盖存在于陶瓷基板表面上的微小凹陷和凸起,因此陶瓷基板可以经由树脂层3而与挤压构件8A和绝缘间隔体9中的每一个都彼此紧密接触。 
此外,当在压力接触时将压力设定为5MPa或更大时,使软树脂层变形以使得陶瓷基板与挤压构件可以彼此直接接触。注意,当压力过大时,陶瓷基板会破裂,因此可以将陶瓷基板的三点弯曲强度的5%或更小的力设定为压力的度量标准。 
在如上所述配置的压力接触结构中,在陶瓷基板与树脂层之间的界面中没有提供间隙,因此可以有效地改进绝缘特性和散热特性。 
注意,在图6和图7中所示的半导体模块中示出了用螺钉固定的实例,但用于根据本发明的半导体模块中的紧固构件不限于螺钉。作为除了螺钉以外的紧固构件,可以使用诸如夹钳的紧固构件,所述夹钳将散热构件11和用于压力接触结构的陶瓷热沉夹置在其间,或者其将散热构件11和挤压构件夹置在其间。当以此方式将夹钳用作紧固构件时,在用于压力接触结构的陶瓷热沉和挤压构件中无需提供插入孔。 
此外,在根据本发明的半导体模块中,可以消散在半导体模块中产生的热量的构件也可以用作除了散热片以外的散热构件。例如,散热板等可以用作散热构件。当以此方式将散热板用作散热构件时,可以以如下方式形成具有压力接触结构的半导体模块:使用例如充当紧固构件的夹钳将散热板和用于压力接触结构的陶瓷热沉夹置在其间,或者使用例如夹钳将散热板和挤压构件夹置在其间。在此情况下,在用于压力接触结构的陶瓷热沉和挤压构件中无需提供插入孔。 
此外,图6和图7中所示的半导体模块20和30是根据本发明的半导体模块的实例。根据本发明的半导体模块包括其中使用半导体元件和其中提供了树脂层的陶瓷基板和挤压构件可以彼此挤压接触的所有结构。 
尽管以上说明了根据本发明的一些实施例,但这些实施例是作为实例而提出的,并非旨在限制本发明的范围。可以以其他多种形式来实现这些 创新实施例,并且在不脱离本发明的本质的范围内可以进行各种省略、交换和改变。这些实施例及其变形包括在本发明的范围和本质内,并包括在权利要求及其等价范围中所描述的本发明中。 
接下来,将说明根据本发明的用于制造用于压力接触结构的陶瓷热沉的方法。没有具体限定根据本发明的用于制造用于压力接触结构的陶瓷热沉的方法,但包括以下方法作为根据本发明的用于有效地制造用于压力接触结构的陶瓷热沉的方法。 
首先,制备陶瓷基板。优选地,陶瓷基板具有500MPa或更大的三点弯曲强度,60W/m·K或更大的导热率。优选地,具有这些特性的陶瓷基板的厚度在0.2到1.0mm范围内。当陶瓷基板的厚度小于0.2mm时,陶瓷基板在形成压力接触结构时会破裂。另一方面,当陶瓷基板的厚度超过1.0mm时,陶瓷基板自身会充当阻热体,以至于使得其散热特性劣化。 
此外,优选地,陶瓷基板的表面粗糙度在0.1到5μm范围内(按照Ra标准)。因此,按需要进行诸如珩磨的抛光处理。换句话说,只要陶瓷基板的作为烧结表面的表面粗糙度Ra在0.1到5μm范围内,就不必特别进行抛光处理。 
接下来,制备用作树脂层的树脂糊胶。当将无机填料颗粒添加到树脂层时,将无机填料颗粒添加到树脂糊胶。无机填料颗粒的平均颗粒直径优选地为要形成的树脂层的厚度的1/2或更小,更优选地,为要形成的树脂层的厚度的1/5或更小。 
通过将树脂糊胶涂覆(覆盖)到陶瓷基板上并固化所涂覆的树脂糊胶来形成树脂层。当由热固树脂来制造树脂时,通过加热来固化树脂糊胶,而当由紫外线固化树脂来制造树脂时,通过以紫外线辐射来固化树脂糊胶。 
此外,当构成树脂层的树脂是在60°C的温度流态化的热固树脂时,就照原样保留树脂糊胶,以便自然干燥。在任意这些情况下,使用在固化后具有A70或更小的肖氏硬度的树脂。此外,树脂膜可以用作树脂层,只要树脂膜具有A70或更小的肖氏硬度即可,可以通过热压接合在陶瓷基板的表面上提供树脂膜。 
此外,当通过形成压力接触结构来制造半导体模块时,用于压力接触结构的陶瓷热沉由挤压构件挤压,从而被夹置在挤压构件与另一个构件之 间。 
此外,当将在60°C或更高的温度流态化的热固树脂用作树脂层时,以如下方式形成压力接触结构:在陶瓷基板上形成在60°C或更高的温度流态化的热固树脂层,随后通过对该热固树脂层进行热处理来将其固化。 
在这个方法中,由于树脂层一旦被流态化并随后固化,可以将树脂层填充到挤压构件与陶瓷基板之间的间隙中,因此也可以消除存在于陶瓷基板与树脂层之间的界面中的间隙。此外,当在半导体模块的装配过程中在真空中执行这个处理时,也可以消除在树脂层与接触构件之间的间隙。 
[实例] 
(实例1到9与比较例1) 
制备具有50mm长度、50mm宽度和0.32mm厚度的氮化硅基板(90W/m·K的导热率和600MPa的三点弯曲强度)作为陶瓷基板。接下来,使用金刚石砂轮通过诸如珩磨和抛光的表面处理改变氮化硅基板的表面粗糙度Ra。在以此方式表面处理的氮化硅基板的每一个表面上形成硬化后具有A70或更小的肖氏硬度的硅酮树脂层,从而制备根据每一个实例的用于压力接触结构的陶瓷热沉。 
此外,为比较例1制备除了提供有具有A100的肖氏硬度的树脂层以外,具有与实例1相同结构的用于压力接触结构的陶瓷热沉。 
为根据每一个实例和比较例的用于压力接触结构的陶瓷热沉获得存在于陶瓷基板与树脂层之间的界面中的间隙(空隙)的平均值。在间隙的平均值的测量方法中,观察长度200μm的在陶瓷基板与树脂层之间的任意界面,获得界面中观察到的间隙中的最大直径。随后,将所获得的间隙的最大直径的平均值设定为“间隙的平均值”。 
以下的表1中示出了测量结果。 
[表1] 
Figure BDA00003221330400151
Figure BDA00003221330400161
根据表1所示的结果显然地,当将表面粗糙度Ra设定在0.1到5μm的范围内时,有可能通过提供具有A70或更小的肖氏硬度的树脂层来将存在于陶瓷基板与树脂层之间的界面中的间隙的平均值抑制在3μm或更小。另一方面,如比较例1中所示,当提供具有A100或更小的肖氏硬度的硬树脂层时,形成了具有5.7μm的平均值的大间隙。 
(实例10到12) 
制备具有50mm长度、50mm宽度和0.32mm厚度的氮化硅基板(80W/m·K的导热率和700MPa的三点弯曲强度)作为陶瓷基板。接下来,使用金刚石砂轮通过诸如珩磨和抛光的表面处理改变氮化硅基板的表面粗糙度Ra。将在60°C的温度流态化的热固树脂涂覆(覆盖)在氮化硅基板的两个表面上。 
使所涂敷的树脂层自然干燥,以形成树脂糊层。在以2MPa的压力将充当挤压构件的铜板挤压到树脂层的状态下,通过加热到60到120°C的温度并持续15到30分钟来融化树脂糊层,随后使其自然干燥并固化以便形成为树脂层。 
对于实例10到12中的每一个,类似于实例1获得存在于陶瓷基板与树脂层之间的界面中的间隙的平均值。以下的表2示出了结果。 
[表2] 
Figure BDA00003221330400162
Figure BDA00003221330400171
根据表2所示的结果显然地,可以将存在于陶瓷基板与树脂层之间的界面中的间隙的平均值相当大地减小到1μm或更小(包括0),因为在形成压力接触结构的状态下流态化树脂并随后使其固化的方法中,使得树脂进入基板表面上端微小凹陷与凸起之间。 
(实例13到16) 
制备具有50mm长度、50mm宽度和0.635mm厚度的氧化铝基板(20W/m·K的导热率和400MPa的三点弯曲强度)作为每一个实例13和14。另一方面,制备具有50mm长度、50mm宽度和0.635mm厚度的氮化铝基板(170W/m·K的导热率和500MPa的三点弯曲强度)作为每一个实例15和16。 
在每一个基板的两个表面上提供具有A70或更小的肖氏硬度的树脂层。对于每一个实例13到16,类似于实例1获得存在于陶瓷基板与树脂层之间的界面中的间隙的平均值。以下表3中显示了结果。 
[表3] 
Figure BDA00003221330400172
根据表3所示的结果显然地,通过在树脂层固化后形成具有A70或更小的肖氏硬度的树脂层,可以将陶瓷基板与树脂层之间的界面中的间隙的平均值显著地减小到3μm或更小。 
(实例17到18) 
制备用于压力接触结构的陶瓷热沉材料,其除了将陶瓷基板的厚度改变为0.20mm或1.0mm以外,与实例2中的相同。具体地,制备具有50mm长度、50mm宽度和0.2mm厚度的氮化硅基板(90W/m·K的导热率和600MPa的三点弯曲强度)作为实例17。执行与实例2中相同的测量。以下表4中示出了测量结果。 
[表4] 
Figure BDA00003221330400181
根据表4所示的结果显然地,即使在改变陶瓷基板的厚度的情况下,也可以获得相同的特性。 
(实例1A到18A,比较例1B和比较例2到4) 
接下来,使用用于每一个实例1到18和比较例1的压力接触结构的陶瓷热沉来测量热阻。 
以如下方式执行热阻的测量:将用于每一个实例和比较例的压力接触结构的陶瓷热沉的上下表面夹置在无氧铜块之间,每一个无氧铜块都具有40mm的直径和16mm的高度;使加热器与上部铜块接触;此外使水冷冷却片与下部铜块接触。 
在此状态下,将5MPa的负荷施加到铜块,通过加热器加热将铜块的温度保持在70°C。此外,借助通过冷却片流动的冷水来将冷却片的温度保持在30°C。 
依据通过在每一个铜块的上部和下部提供温度测量孔而获得的温度来计算热通量。 
此外,出于对比的目的,为使用氮化硅基板的比较例2、使用氧化铝基 板的比较例3和使用氮化铝基板的比较例4执行类似于为实例所执行的测量的测量,所述氮化硅基板除了没有提供树脂层以外与实例1中的相同,所述氧化铝基板除了没有提供树脂层以外与实例13中的相同,高氮化铝基板除了没有提供树脂层以外与实例15中的相同。以下表5中示出了结果。 
[表5] 
样本编号 用于压力接触结构的陶瓷热沉 热阻[℃/W]
实例1A 实例1 0.07
实例2A 实例2 0.07
实例3A 实例3 0.12
实例4A 实例4 0.05
实例5A 实例5 0.06
实例6A 实例6 0.04
实例7A 实例7 0.08
实例8A 实例8 0.22
实例9A 实例9 0.30
实例10A 实例10 0.03
实例11A 实例11 0.02
实例12A 实例12 0.03
实例13A 实例13 0.08
实例14A 实例14 0.10
实例15A 实例15 0.08
实例16A 实例16 0.06
实例17A 实例17 0.05
实例18A 实例18 0.18
比较例1A 比较例1 0.51
比较例2 没有树脂层的实例1 0.15
比较例3 没有树脂层的实例13 0.15
比较例4 没有树脂层的实例15 0.13
根据表5所示的结果显然地,证实了根据每一个实例的用于压力接触 结构的陶瓷热沉具有小热阻,因此具有优异的散热特性。这是因为减小了存在于陶瓷基板与树脂层之间的界面中的间隙的尺寸。 
(实例1B到18B) 
接下来,通过使用每一个实例1到18的压力接触结构来产生半导体模块。将半导体模块设置为具有图7中所示的结构。将拧紧时的压力设定为3MPa。 
测量每一个半导体模块的耐用性。在氮化硅基板经受到半导体模块结构在100小时中以每1分钟500次频率、在50cm距离上连续往复运动时所产生的振动(振动测试)后,通过确认氮化硅基板中裂纹的出现来检验每一个半导体模块的耐用性。 
此外,获得了每一个陶瓷基板与挤压构件直接接触所处的部分的最大直径。以如下方式执行最大直径的测量:在施加3MPa的螺钉压力的情况下观察陶瓷基板的截面,以便获得间隙的平均值。以下表6中示出了结果。 
[表6] 
Figure BDA00003221330400201
Figure BDA00003221330400211
根据表6所示的结果显然地,根据每一个实例的半导体模块的耐用性都很优异。此外,陶瓷基板与挤压构件直接接触所处的部分的最大直径(mm)小至1mm或更小。注意,在任意实例中都证实了陶瓷基板与挤压构件直接接触所处的多个部分。 
附图标记列表 
1、1B、1D...用于压力接触结构的陶瓷热沉 
2、2D...陶瓷基板 
3...树脂层 
4...挤压构件 
5...陶瓷基板与挤压构件直接接触所处的部分 
7...半导体元件 
8、8A...挤压构件 
9、10...绝缘间隔体 
11...散热构件(散热片) 
12...陶瓷基板的插入孔 
13...挤压构件的插入孔 
14...螺钉(紧固构件) 
15...垫圈 
16...孔部分 
20、30...半导体模块 。

Claims (15)

1.一种用于压力接触结构的陶瓷热沉材料,该陶瓷热沉材料通过在陶瓷基板上提供树脂层而配置,其中,所述树脂层具有70或更小的计示(肖氏)硬度(A型),并且存在于所述陶瓷基板与所述树脂层之间的界面中的间隙的平均值是3μm或更小。
2.根据权利要求1所述的用于压力接触结构的陶瓷热沉材料,其中,通过固化热固树脂来形成所述树脂层,所述热固树脂在60°C的温度流态化。
3.一种用于压力接触结构的陶瓷热沉材料,该陶瓷热沉材料通过在陶瓷基板上提供树脂层而配置,其中,通过固化热固树脂形成所述树脂层,所述热固树脂在60°C的温度流态化。
4.根据权利要求1或权利要求3所述的用于压力接触结构的陶瓷热沉材料,其中,所述树脂层包含无机填料颗粒。
5.根据权利要求1至权利要求4中的任意一项所述的用于压力接触结构的陶瓷热沉材料,其中,所述树脂层具有10或更大的计示(肖氏)硬度(A型)。
6.根据权利要求1至权利要求5中的任意一项所述的用于压力接触结构的陶瓷热沉材料,其中,所述陶瓷基板是氮化硅基板、氧化铝基板和氮化铝基板中的任意一种。
7.根据权利要求1至权利要求6中的任意一项所述的用于压力接触结构的陶瓷热沉材料,其中,所述树脂层的厚度是50μm或更小。
8.根据权利要求1至权利要求7中的任意一项所述的用于压力接触结构的陶瓷热沉材料,其中,所述陶瓷基板的表面粗糙度Ra在0.1到5μm的范围内。
9.一种半导体模块,其中,挤压构件与根据权利要求1至权利要求8中的任意一项所述的用于压力接触结构的陶瓷热沉材料挤压接触。
10.根据权利要求9所述的半导体模块,其中,在通过使用所述挤压构件形成压力接触结构时,形成所述挤压构件的表面与所述陶瓷基板的表面直接接触所处的部分。
11.根据权利要求10所述的半导体模块,其中,所述挤压构件的表面与所述陶瓷基板的表面直接接触所处的所述部分是点接触部分,该点接触部分具有1mm或更小的最大直径。
12.根据权利要求11所述的半导体模块,其中,存在多个所述点接触部分。
13.一种用于制造半导体模块的方法,所述半导体模块具有挤压构件与用于压力接触结构的陶瓷热沉材料挤压接触的结构,所述方法包括:
制备用于压力接触结构的所述陶瓷热沉材料,其中,在陶瓷基板上提供具有70或更小的计示(肖氏)硬度(A型)的树脂层,并且其中,存在于所述陶瓷基板与所述树脂层之间的界面中的间隙的平均值是3μm或更小;以及
利用压力使所述挤压构件与用于压力接触结构的陶瓷热沉材料挤压接触,所述压力导致形成所述挤压构件的表面与所述陶瓷基板的表面直接接触所处的部分。
14.一种用于制造半导体模块的方法,所述半导体模块具有挤压构件与用于压力接触结构的陶瓷热沉材料挤压接触的结构,所述方法包括:
通过在陶瓷基板上形成热固树脂层来产生用于压力接触结构的所述陶瓷热沉材料的过程,其中,所述热固树脂层在60°C的温度流态化;
用于使所述挤压构件与用于压力接触结构的所述陶瓷热沉材料挤压接触的挤压接触过程;以及
固化过程,其中,通过将在60°C的温度流态化的所述热固树脂层加热到60°C或更高的温度而固化所述热固树脂层。
15.根据权利要求14所述的用于制造半导体模块的方法,其中,形成所述挤压构件的表面与所述陶瓷基板的表面直接接触所处的部分。
CN201180055906.8A 2010-11-22 2011-11-17 用于压力接触结构的陶瓷热沉材料、使用其的半导体模块和用于制造半导体模块的方法 Active CN103222047B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010260541 2010-11-22
JP2010-260541 2010-11-22
PCT/JP2011/076512 WO2012070463A1 (ja) 2010-11-22 2011-11-17 圧接構造用セラミックスヒートシンク材およびそれを用いた半導体モジュール並びに半導体モジュールの製造方法

Publications (2)

Publication Number Publication Date
CN103222047A true CN103222047A (zh) 2013-07-24
CN103222047B CN103222047B (zh) 2016-01-06

Family

ID=46145807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180055906.8A Active CN103222047B (zh) 2010-11-22 2011-11-17 用于压力接触结构的陶瓷热沉材料、使用其的半导体模块和用于制造半导体模块的方法

Country Status (5)

Country Link
US (1) US9057569B2 (zh)
JP (2) JP5996435B2 (zh)
KR (1) KR101472234B1 (zh)
CN (1) CN103222047B (zh)
WO (1) WO2012070463A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103222047B (zh) * 2010-11-22 2016-01-06 株式会社东芝 用于压力接触结构的陶瓷热沉材料、使用其的半导体模块和用于制造半导体模块的方法
WO2014010521A1 (ja) * 2012-07-07 2014-01-16 デクセリアルズ株式会社 熱伝導性シートの製造方法
CN102917574B (zh) * 2012-10-24 2015-05-27 华为技术有限公司 导热垫、制造导热垫的方法、散热装置和电子设备
JP6108802B2 (ja) * 2012-12-07 2017-04-05 株式会社Maruwa 放熱構造体
CN105684144B (zh) 2013-09-10 2019-11-12 三菱电机株式会社 半导体装置、半导体模块
US10629513B2 (en) * 2015-06-04 2020-04-21 Eaton Intelligent Power Limited Ceramic plated materials for electrical isolation and thermal transfer
JP2017050493A (ja) * 2015-09-04 2017-03-09 株式会社東芝 電子機器
JP6512644B1 (ja) 2018-01-12 2019-05-15 Necプラットフォームズ株式会社 放熱構造体、および放熱方法
CN207869432U (zh) * 2018-03-07 2018-09-14 东莞市国研电热材料有限公司 一种多温区陶瓷发热体
JP7198178B2 (ja) 2019-08-16 2022-12-28 デンカ株式会社 セラミックス基板、回路基板及びその製造方法、並びにパワーモジュール
US11876345B2 (en) * 2020-09-08 2024-01-16 Hewlett Packard Enterprise Development Lp Thermal management for hybrid lasers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079752U (ja) * 1983-11-08 1985-06-03 株式会社東芝 電力用半導体スタツク
GB2219133A (en) * 1988-05-26 1989-11-29 Bergquist Company The Thermally conductive mounting for a semiconductor component
CN1463572A (zh) * 2001-05-24 2003-12-24 松下电器产业株式会社 陶瓷多层基板的制造方法
JP2009081253A (ja) * 2007-09-26 2009-04-16 Nitto Shinko Kk 絶縁シート

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718386A (en) * 1980-07-09 1982-01-30 Mitsubishi Electric Corp Method of flattening surface of board
JPS6079752A (ja) 1983-10-06 1985-05-07 Toshiba Corp 半導体素子搭載用基板
JPH03234045A (ja) * 1990-02-09 1991-10-18 Toshiba Corp 窒化アルミニウム基板およびこれを用いた半導体モジュール
JPH0794863A (ja) * 1993-09-20 1995-04-07 Fujitsu Ltd セラミック基板の表面を平坦化する方法
JP2001196512A (ja) * 2000-01-11 2001-07-19 Mitsubishi Electric Corp 半導体装置
JP3879361B2 (ja) * 2000-03-21 2007-02-14 株式会社デンソー 半導体装置の実装構造およびその実装方法
JP5172738B2 (ja) 2000-10-27 2013-03-27 株式会社東芝 半導体モジュールおよびそれを用いた電子機器
JP3985558B2 (ja) 2001-03-19 2007-10-03 松下電器産業株式会社 熱伝導性基板の製造方法
JP2003192462A (ja) 2001-12-25 2003-07-09 Toshiba Corp 窒化珪素回路基板およびその製造方法
JP2003197836A (ja) 2001-12-27 2003-07-11 Toshiba Corp 圧接構造用スペーサおよびその製造方法
JP2003321554A (ja) * 2002-04-26 2003-11-14 Polymatech Co Ltd 熱伝導性成形体及びその製造方法
JP2005116767A (ja) * 2003-10-07 2005-04-28 Ngk Spark Plug Co Ltd 放熱部材並びに回路基板及び半導体部品
JP4451746B2 (ja) * 2004-08-31 2010-04-14 京セラ株式会社 電気素子冷却モジュール
JP5046086B2 (ja) * 2006-09-14 2012-10-10 日立金属株式会社 セラミックス基板、これを用いたセラミックス回路基板及び半導体モジュール
DE102008009510B3 (de) * 2008-02-15 2009-07-16 Danfoss Silicon Power Gmbh Verfahren zum Niedertemperatur-Drucksintern
JP4798171B2 (ja) * 2008-05-16 2011-10-19 三菱マテリアル株式会社 パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
WO2011010597A1 (ja) * 2009-07-24 2011-01-27 株式会社東芝 窒化珪素製絶縁シートおよびそれを用いた半導体モジュール構造体
JP5366859B2 (ja) * 2010-03-04 2013-12-11 株式会社東芝 窒化珪素基板およびそれを用いた半導体モジュール
US8927339B2 (en) * 2010-11-22 2015-01-06 Bridge Semiconductor Corporation Method of making thermally enhanced semiconductor assembly with bump/base/flange heat spreader and build-up circuitry
CN103222047B (zh) * 2010-11-22 2016-01-06 株式会社东芝 用于压力接触结构的陶瓷热沉材料、使用其的半导体模块和用于制造半导体模块的方法
JP5502805B2 (ja) * 2011-06-08 2014-05-28 日立オートモティブシステムズ株式会社 パワーモジュールおよびそれを用いた電力変換装置
US8569109B2 (en) * 2011-06-30 2013-10-29 Infineon Technologies Ag Method for attaching a metal surface to a carrier, a method for attaching a chip to a chip carrier, a chip-packaging module and a packaging module
JP2013167583A (ja) * 2012-02-16 2013-08-29 Tatsuya Ishibashi 衝突・反発式材料試験システム
JP6379497B2 (ja) * 2014-01-28 2018-08-29 株式会社リコー 定着部材、定着装置及び画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079752U (ja) * 1983-11-08 1985-06-03 株式会社東芝 電力用半導体スタツク
GB2219133A (en) * 1988-05-26 1989-11-29 Bergquist Company The Thermally conductive mounting for a semiconductor component
CN1463572A (zh) * 2001-05-24 2003-12-24 松下电器产业株式会社 陶瓷多层基板的制造方法
JP2009081253A (ja) * 2007-09-26 2009-04-16 Nitto Shinko Kk 絶縁シート

Also Published As

Publication number Publication date
JPWO2012070463A1 (ja) 2014-05-19
US9057569B2 (en) 2015-06-16
US20130241046A1 (en) 2013-09-19
WO2012070463A1 (ja) 2012-05-31
JP5996435B2 (ja) 2016-09-21
KR101472234B1 (ko) 2014-12-11
KR20130079601A (ko) 2013-07-10
CN103222047B (zh) 2016-01-06
JP2016181715A (ja) 2016-10-13
JP6224171B2 (ja) 2017-11-01

Similar Documents

Publication Publication Date Title
CN103222047A (zh) 用于压力接触结构的陶瓷热沉材料、使用其的半导体模块和用于制造半导体模块的方法
JP5598522B2 (ja) 回路基板及びこれを用いた半導体モジュール、回路基板の製造方法
EP3358614A1 (en) Circuit substrate and semiconductor device
CN102456640B (zh) 基板
JP2003017627A (ja) セラミックス回路基板およびそれを用いた半導体モジュール
KR20070064293A (ko) 알루미늄-탄화 규소질 복합체
EP3682475A1 (en) Packaging method and joint technology for an electronic device
TWI294175B (zh)
KR20190019174A (ko) 반도체 제조장치용 부품 및 반도체 제조장치용 부품의 제조방법
JP5366859B2 (ja) 窒化珪素基板およびそれを用いた半導体モジュール
JP3792180B2 (ja) 放熱部品の製造方法
CN108640701B (zh) 一种氮化硅陶瓷散热翅覆铜板及其制备方法
JP2006229247A (ja) 回路基板及びその製造方法
JP5467782B2 (ja) 電気絶縁性を有する放熱基板の製造方法
JP2010192717A (ja) 冷却構造
JP3913130B2 (ja) アルミニウム−炭化珪素質板状複合体
Hirao et al. Substrate
JP4407858B2 (ja) モジュール構造体
JP3898504B2 (ja) 接触加熱用ヒーター
JP2009200455A (ja) 半導体放熱用基板
EP3624182B1 (en) Power semiconductor module arrangement, substrate arrangement, and method for producing the same
JP3180100B2 (ja) 半導体モジュール
JP2006270062A (ja) 絶縁伝熱構造体及びパワーモジュール用基板
JPH10150125A (ja) 半導体モジュール
JP2001053203A (ja) 放熱板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant