CN1398300A - 新延伸酶基因以及制备多不饱和脂肪酸的方法 - Google Patents

新延伸酶基因以及制备多不饱和脂肪酸的方法 Download PDF

Info

Publication number
CN1398300A
CN1398300A CN01804692A CN01804692A CN1398300A CN 1398300 A CN1398300 A CN 1398300A CN 01804692 A CN01804692 A CN 01804692A CN 01804692 A CN01804692 A CN 01804692A CN 1398300 A CN1398300 A CN 1398300A
Authority
CN
China
Prior art keywords
seq
nucleic acid
pse
gene
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01804692A
Other languages
English (en)
Other versions
CN1247784C (zh
Inventor
E·海因茨
T·灿克
U·策林格
J·莱尔希尔
A·伦次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2000105973 external-priority patent/DE10005973A1/de
Priority claimed from DE10023893A external-priority patent/DE10023893A1/de
Priority claimed from DE10063387A external-priority patent/DE10063387A1/de
Application filed by BASF SE filed Critical BASF SE
Publication of CN1398300A publication Critical patent/CN1398300A/zh
Application granted granted Critical
Publication of CN1247784C publication Critical patent/CN1247784C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Urology & Nephrology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及具有序列SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5和SEQ ID NO:7中所述序列的新延伸酶基因或它们的同系物、衍生物或类似物,涉及包含该基因或其同系物、衍生物或类似物的基因构建体,并涉及其用途。本发明也涉及包含具有序列SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5和SEQ ID NO:7的延伸酶基因或其同系物、衍生物或类似物的载体或转基因生物体。本发明进一步涉及延伸酶基因单独或与其它的延伸酶和/或其它的脂肪酸生物合成基因联合的用途。本发明涉及具有序列SEQ ID NO:1的新延伸酶基因或其同系物、衍生物和类似物。进一步地,本发明涉及制备多不饱和脂肪酸的方法,并涉及将DNA导入产生大量油类且尤其是产生大量高含量不饱和脂肪酸的生物体的方法。而且,本发明涉及具较高含量的有至少两个双键的不饱和脂肪酸的油类和/或脂肪酸制品,和/或具较高含量的有至少两个双键的不饱和脂肪酸的三酰基甘油制品。

Description

新延伸酶基因以及制备多不饱和脂肪酸的方法
发明领域
本发明涉及具有序列SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中所示序列的新延伸酶基因或它们的同系物、衍生物或类似物,涉及包含该基因或其同系物、衍生物和类似物的基因构建体,并涉及其用途。本发明也涉及包含序列SEQ IDNO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11的延伸酶基因或其同系物、衍生物和类似物的载体或转基因生物。本发明还涉及延伸酶基因序列单独使用或与其它的延伸酶和/或其它的脂肪酸生物合成基因联合使用的用途。本发明涉及具有序列SEQ ID NO:1的新延伸酶基因或其同系物、衍生物和类似物。
进一步地,本发明涉及制备多不饱和脂肪酸的方法,并涉及将DNA导入产生大量油类,且尤其是产生具有高含量不饱和脂肪酸的油类的生物体的方法。而且,本发明涉及具有较高含量多不饱和脂肪酸(具有至少两个双键)的油和/或脂肪酸制品,和/或具有较高含量多不饱和脂肪酸(具有至少两个双键)的三酰基甘油制品。
发明背景
在细胞中天然存在的代谢过程的某些产物和副产物可用于大范围的工业中,包括动物饲料工业、食品工业、化妆品工业和制药工业。这些分子(统称为“精细化学品”)也包括脂类和脂肪酸,其中多不饱和脂肪酸构成了一类实例。将多不饱和脂肪酸(PUFAs)例如加至儿童的配方中,以增加配方的营养价值。例如PUFAs对人血液中的胆固醇水平具有积极的作用,并因此适用于抗心脏疾病的保护。可从动物源(如鱼)或微生物分离精细化学品和多不饱和脂肪酸(PUFAs)。培养这些微生物使得一种或多种目标分子可大量产生并被分离。
特别适于制备PUFAs的微生物为微生物(例如破囊壶菌(Thraustochytria)或Schizochytria菌株)、藻类(例如三角褐指藻(Phaeodactylum tricornutum)或隐甲藻类(Crypthecodinium))、纤毛虫纲(Ciliata)(例如棘尾虫(Stylonychia)或豆形虫属(Colpidium))、真菌(例如被孢霉属(Mortierella)、虫霉属(Entomophthora)或毛霉菌属(Mucor)。已通过菌株筛选开发了一些微生物的突变菌株,它们可产生一系列所希望的化合物,包括PUFAs。但筛选对某种分子具有提高产量的菌株是一个费时且艰苦的过程。同时存在的不足之处是:实际上只有特定的不饱和脂肪酸,或只有特定的脂肪酸谱可由定义的微生物产生。
作为可供选择的方法,精细化学品适于通过植物的生产大规模生产,其中所述植物已开发为可产生上述PUFAs。尤其适用于该目的的植物为油料作物,其含有大量的脂类化合物,例如油料种子油菜、芸苔、亚麻籽、大豆、向日葵、琉璃苣和月见草。但正如在本发明详述中所提到的那样,含有油类或脂类和脂肪酸的其它作物也很适用。常规的植物育种已导致了对一系列产生所希望的脂类和脂肪酸、辅因子和酶的突变植物的开发。但筛选对某种分子具有提高产量的新植物品种是一个费时且艰苦的过程,或者如果该化合物在所讨论的植物中为非天然存在的话,例如当化合物为多不饱和C20-脂肪酸和C22-脂肪酸和那些具有较长碳链的多不饱和脂肪酸时,筛选甚至是不可能的。
发明概要
本发明提供了新核酸分子,其适用于鉴定和分离PUFA生物合成的延伸酶基因,且其可用于油类、脂肪酸、脂类、脂类衍生的化合物的修饰,且最优选地,其可用于制备多不饱和脂肪酸,因为对编码参与不饱和脂肪酸生物合成的酶的新基因仍有大的需求,并且新基因可使这些酶以工业规模制备成为可能。具体地说,人们需要可使多不饱和脂肪酸的延伸变为可能的脂肪酸生物合成酶,其中所述多不饱和脂肪酸优选地在分子中具有两个或多个双键。本发明的核酸编码具有这种能力的酶。
微生物(如褐指藻、豆形虫属、被孢霉属、虫霉属、毛霉菌属、隐甲藻类)以及其它藻类、真菌和植物,尤其是油料作物,通常用于工业上大规模生产大量的精细化学品。
只要克隆载体和技术可用于对上述微生物和纤毛虫纲的遗传操作(正如在WO 98/01572和WO 00/23604中所公开的),或可用于对藻类及相关生物,如三角褐指藻的遗传操作(描述见Falciatore等人,[1999,海洋生物技术(Marine Biotechnology)1(3):239-251];和Dunahay等人,[1995,硅藻的遗传转化(Genetic transformation of diatoms),藻类学杂志(J.Phycol.)31:10004-1012]以及它们所引用的文献),那么本发明的核酸分子可用于对这些生物体进行重组修饰,使得它们成为一种或多种精细化学品尤其是不饱和脂肪酸的更好或更有效的生产者。精细化学品的这种提高的生产率或生产效率可由操作本发明的基因的直接作用引起或由这种操作的间接作用引起。
藓类植物和藻类是仅知的产生相当量的多不饱和脂肪酸如花生四烯酸(=ARA)和/或二十碳五烯酸(=EPA)和/或二十二碳六烯酸(=DHA)的植物体系。藓类植物在其膜脂中含有PUFAs,而藻类、藻类相关生物和一些真菌也在三酰基甘油部分中积聚了相当量的PUFAs。因此,从此类也在三酰基甘油部分中积聚PUFAs的种系中分离的核酸分子尤其适用于修饰宿主的脂类和PUFA的产生体系,其中所述宿主尤其是为微生物(例如上述微生物)和植物(例如油料作物,如油料种子油菜、芸苔、亚麻籽、大豆、向日葵、琉璃苣、蓖麻油植物、油棕、红花(carthamus tinctorius)、椰子、花生或可可豆)。而且,来自积聚三酰基甘油的微生物的核酸分子可用于其它种类中此类DNA序列和酶的鉴定,其中所述此类DNA序列和酶适于修饰所讨论的生物体中PUFA前体分子的生物合成。在三酰基甘油中积聚PUFAs(如ARA、EPA或DHA)的微生物尤其为如寇氏隐甲藻(Crypthecodinium cohnii)和破囊壶菌类的微生物。就系统发生而言,破囊壶菌也与Schizochytria种系密切相关。即使这些生物与藓类植物如剑叶藓(Physcomitrella)为非密切相关,仍可观察到DNA序列以及尤其是在多肽水平的序列相似性可达到如下程度,也就是说即使就进化而言DNA分子来自亲缘关系远的微生物,但在异源杂交实验、序列排列和应用聚合酶链反应的实验中仍可鉴定、分离和功能鉴定DNA分子。尤其是可推导出契合序列,其适用于在第三种类中进行异源筛选或基因功能的功能互补和预测。鉴定这些功能(例如预测酶的底物特异性)的能力因此相当重要。而且,这些核酸分子可作为参照序列,用于绘出相关的基因组图谱或用于推导出PCR引物。
新核酸分子编码本发明上下文中称为PUFA-特异性延伸酶(=PSEs或单数PSE)的蛋白质。这些PSEs例如可发挥以下的作用:参与脂类或脂肪酸合成所需的化合物如PUFAs的代谢(如生物合成或分解),或参与一种或多种脂类/脂肪酸组合物转运入细胞或转运出细胞的跨膜转运。
该新申请较详细显示了此类新延伸酶基因的分离。我们首次分离了适用于产生长链多不饱和脂肪酸的延伸酶基因,其来自于在三酰基甘油部分中含高含量PUFAs的典型生物,其中所述长链多不饱和脂肪酸优选脂肪酸的碳骨架具有多于18或20个碳原子和/或在碳链中具有至少2个双键。这意味着单数时表示一种PSE基因或PSE蛋白质,或复数时表示多种PSE基因或PSE蛋白质。其它公知的专利申请和出版物公开了或显示了无功能活性的PSE基因,即使存在显示对短的或中等链长度的饱和脂肪酸具延伸作用(WO 98/46776和US 5,475,099)或延伸或产生长链脂肪酸的多个公知的专利申请,但其中脂肪酸具有的双键不超过一个或会导致长链脂肪酸蜡酯的产生(参见WO 98/54954,WO 96/13582,WO 95/15387)。此处呈现的本发明描述了对具有新特性的新延伸酶的分离。由SEQ ID NO:1中陈述的序列开始,可能发现更多编码延伸不饱和脂肪酸的延伸酶的核酸。
WO 99/64616、WO 98/46763、WO 98/46764和WO 98/46765描述了在转基因植物中产生PUFAs,并阐述了尤其是来自真菌的对应的去饱和酶活性的克隆和功能表达,但没有阐述编码PSE的基因和功能的PSE活性。去饱和酶活性的表达导致转基因植物中脂肪酸谱的移动,但没有观察到不饱和脂肪酸含量的增高。已阐述了具C18-碳链的三烯酸的产生,并要求保护γ-亚麻酸,但至今为止尚未阐述很长链的多不饱和脂肪酸(具有C20-和更长碳链并属于三烯酸类和更高的不饱和类型)的产生。
为制备长链PUFAs,必须通过延伸酶的酶活性延伸多不饱和C16-或C18-脂肪酸至少两个碳原子。本发明的核酸序列SEQ ID NO:1编码第一种植物延伸酶,其可将脂肪酸中具有至少两个双键的C16-或C18-脂肪酸延伸至少两个碳原子。一个延伸循环后,该酶活性导致了C20-脂肪酸的产生,且在二、三和四个延伸循环后,产生了C22-、C24-或C26-脂肪酸。也可在公开的其它延伸酶(SEQ ID NO:3,SEQ ID NO:5,SEQ ID NO:7,SEQ ID NO:9 andSEQ ID NO:11)的协助下合成更长链的PUFAs。在用于制备PUFAs的一个新方法中上述延伸酶可单独使用、也可相加使用或例如加至来自藓类植物展叶剑叶藓(SEQ ID NO:1)的PUFA延伸酶之中使用,以增加PUFA的含量。本发明的延伸酶活性优选地导致脂肪酸分子中具有至少两个双键,优选地具有三个或四个双键,尤其优选脂肪酸分子中具有三个双键的C20-脂肪酸产生,和/或导致脂肪酸分子中具有至少两个双键,优选地具有四个、五个或六个双键,尤其优选分子中具有五个或六个双键的C22-脂肪酸产生。在用本发明的酶延伸后,可进行进一步的去饱和步骤,以获得高度不饱和的脂肪酸。因此延伸酶活性的产物及进一步去饱和的产物可能导致具更高去饱和度的优选PUFAs产生,例如二十二碳二烯酸、花生四烯酸、ω6-二十碳三烯双高-γ-亚麻酸、二十碳五烯酸、ω3-二十碳三烯酸、ω3-二十碳四烯酸、二十二碳五烯酸或二十二碳六烯酸。本发明的酶活性底物为例如紫杉醇酸(taxol acid)、7,10,13-十六碳三烯酸、6,9-十八碳二烯酸、亚油酸、亚麻酸,α-或γ-亚麻酸或stearidonic acid,以及花生四烯酸、二十碳四烯酸、二十二碳五烯酸、二十碳五烯酸。优选的底物为亚油酸、γ-亚麻酸和/或α-亚麻酸,以及花生四烯酸、二十碳四烯酸、二十二碳五烯酸和二十碳五烯酸。花生四烯酸、二十二碳五烯酸和二十碳五烯酸为尤其优选的。用本发明的酶活性可延伸游离脂肪酸形式或酯形式(如磷脂、糖脂、神经鞘脂类、磷酸甘油酯、单酰基甘油、二酰基甘油或三酰基甘油)的脂肪酸分子中具有至少两个双键的C16-或C18-脂肪酸。
对人类营养尤其重要的为共轭亚油酸“CLA”。应明白CLA尤其是指如C18:29顺,11反脂肪酸或其异构体C18:210反,12顺脂肪酸,它们在摄入体内后可被人类的酶系统去饱和或延伸,并且可对提高健康起作用。本发明的延伸酶也可延伸分子中具有至少两个双键的那些共轭脂肪酸并因此使此类提高健康的脂肪酸可用于人类营养。共轭脂肪酸的其它实例为α-十八碳四烯酸、桐酸和金盏花酸(calendulic acid)。
用于植物和植物转化的特定克隆载体为在例如下列文献中所公开引用的克隆载体:植物分子生物学和生物技术(Plant Molecular Biology andBiotechnology)(CRC Press,Boca Raton,弗罗里达),第6/7章,71-119页(1993);转基因植物(Transgenic Plants),第1卷,设计和应用(Engineeringand Utilization),Kung和R.Wu编辑,Academic Press,1993一书中的F.F.White,用于高等植物基因转移的载体(Vectors for Gene Transfer in HigherPlants)15-38;转基因植物,第1卷,设计和应用,Kung和R.Wu编辑,Academic Press(1993)一书中的B.Jenes等人,用于基因转移的技术(Techniques for Gene ransfer),128-143;Potrykus,植物生理学和植物分子生物学年鉴(Annu.Rev.Plant Physiol.Plant Molec.Biol.)42(1991),205-225。本发明的核酸可用于对大范围的植物进行重组修饰,这样使它们成为一种或多种脂类衍生产物如PUFAs的更好、更有效的或改良生产者。脂类衍生产物如PUFAs的这种提高的生产率或生产效率可由该操作的直接作用或由这种操作的间接作用而引起。
存在一系列通过改变本发明的PSE蛋白质而可直接影响来自油料作物或微生物的精细化学品的产量、生产率和/或生产效率的机制,这归因于改性蛋白质。可提高PSE蛋白质或PSE基因的数量或活性,这样可从头产生较大量的这些化合物,因为在导入所讨论的基因前生物缺乏这种活性和生物合成能力。还有,多种不同序列(即在DNA序列水平上不同的序列)的使用在此上下文中是有利的。
向生物或细胞中导入一种PSE基因或多种PSE基因不仅可提高生物合成流向终产物,而且提高或从头产生对应的三酰基甘油组合物。同样,正如下述的那样,可提高其它参与输入一种或多种精细化学品(例如脂肪酸、极性和中性脂类)生物合成所需营养物质的基因的活性数量,这样这些前体、辅因子或中间体在细胞内或存贮区室内的浓度升高,从而进一步提高了细胞产生PUFAs的能力。希望脂肪酸和脂类自身为精细化学品;对参与这些化合物生物合成的一种或多种PSEs的活性进行优化或提高它们的数量,或对参与这些化合物分解的一种或多种PSEs的活性进行破坏,可能使来自植物或微生物的脂肪酸分子和脂类分子的产量、生产率和/或生产效率提高。
本发明PSE基因的诱变也可导致具有改变活性的PSE蛋白质产生,后者直接或间接影响一种或多种目标精细化学品的产生。例如可提高本发明PSE基因的数量或活性,这样细胞的正常代谢废物或副产物(其量会因为目标精细化学品的超量产生而增加)可在它们破坏细胞内其它分子或加工(这可降低细胞的成活力)之前或在它们可能会妨碍精细化学品生物合成途径(这可降低目标精细化学品的产量、生产率和/或生产效率)之前以有效方式输出。而且,目标精细化学品自身相当大的胞内数量可能对细胞具有毒性,并可能妨碍酶反馈机制如变构调节;例如由于PUFA途径下游的其它酶或解毒酶的活性或数量提高,可提高PUFA在三酰基甘油部分中的定位;种子细胞的成活力可提高,其接下来可导致培养物中细胞的较好发育,或导致产生目标精细化学品的种子。另外,本发明的PSE基因可以某种方式操作,以产生对应数量的多种脂类分子和脂肪酸分子。这可对细胞膜的脂类组成起决定性作用并产生除存在的已从头合成的PUFAs外的新油类。由于每种脂类具有不同的物理特性,膜的脂类组成变化可基本上改变膜的流动性。膜流动性的改变会影响分子的跨膜转运并且会影响细胞的完整性,这两者均对精细化学品的产生有决定性的影响。而且在植物中的这些变化会影响其它特性,如对非生物和生物应激情况的耐受性。
生物和非生物应激耐受性是一种通性,其在大范围植物中的存在是为人们所希望的,其中所述植物例如玉米、小麦、裸麦、燕麦、黑小麦、稻米、大麦、大豆、花生、棉花、油料种子油菜和芸苔、木薯、胡椒、向日葵和万寿菊属、茄科植物(如马铃薯、烟草、茄子和番茄)、野豌豆类、豌豆、苜蓿、灌木植物(咖啡树、可可树、茶树)、柳属、树(油棕、椰子)和多年生草和饲料作物。作为本发明的一个进一步的实施方案,这些作物也为优选的用于基因工程的目标植物。本发明非常尤其优选的植物为油料作物例如大豆、花生、油料种子油菜、芸苔、向日葵、红花、树(油棕、椰子)或作物如玉米、小麦、裸麦、燕麦、黑小麦、稻米、大麦、苜蓿,或灌木植物(咖啡树、可可树、茶树)。
因此,本发明一方面涉及分离的核酸分子(如cDNAs)或适于作为引物或杂交探针的核酸片段,其中所述分离的核酸分子包括编码一种PSE或多种PSEs或其生物活性部分的核苷酸序列,其中所述引物或杂交探针用于检测或扩增编码PSE的核酸(如DNA或mRNA)。在一个尤其优选的实施方案中,核酸分子包含SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ IDNO:7、SEQ ID NO:9和SEQ ID NO:11中所示核苷酸序列之一,或这些核苷酸序列之一的编码区或其互补序列。在其它尤其优选的实施方案中,本发明的分离核酸分子包含这样的核酸序列,其可与序列SEQ ID NO:1、SEQID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中所示核苷酸序列或所示序列的一部分杂交,或其与所示序列具有至少约50%,优选地至少约60%,更优选地至少约70%、80%或90%,且甚至更优选地至少约95%、96%、97%、98%、99%或更高的同源性。在其它优选的实施方案中,该分离的核酸分子编码序列SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12中所示的氨基酸序列之一。优选地,本发明的优选PSE基因也具有此处所述的PSE活性之一。
在一个进一步的实施方案中,该分离的核酸分子编码一种蛋白质或其一部分,该蛋白质或其一部分包含这样的氨基酸序列,其与序列SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ IDNO:10和SEQ ID NO:12中所示的氨基酸序列具有足够的同源性,以至于该蛋白质或其一部分保留了PSE的活性。优选地,由该核酸分子编码的该蛋白质或其一部分保留了参与植物细胞膜合成所需的化合物的代谢能力或保留了参与分子通过这些膜的转运能力。在一个实施方案中,由该核酸分子编码的蛋白质与序列SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ IDNO:8、SEQ ID NO:10和SEQ ID NO:12中所示的氨基酸序列具有至少约50%,优选地至少约60%且更优选地至少约70%、80%或90%且最优选地至少约95%、96%、97%、98%、99%或更高的同源性。在一个进一步优选的实施方案中,该蛋白质为全长蛋白质,其部分与SEQ ID NO:2、SEQ IDNO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的全长氨基酸序列基本同源,(这归因于在SEQ ID NO:1、SEQ ID NO:3、SEQID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中所示的开放读码框)且其可通过技术人员用所熟悉的方法和实验以全长形式分离出来。
在另一个优选的实施方案中,该分离的核酸分子来自致病疫霉(Phytophthora infestans)、展叶剑叶藓(Physcomitrella patens)、寇氏隐甲藻或破囊壶菌,且其编码的蛋白质(如PSE融合蛋白质)包含生物活性结构域且还包含编码异源多肽或调节蛋白的异源核酸序列,其中所述生物活性结构域与序列SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12中所示的氨基酸序列具有至少约50%或更高的同源性,且其保留了参与植物细胞膜合成所需的化合物的代谢能力或保留了参与分子通过这些膜的转运能力,或其具有至少一种导致PUFAs(例如ARA、EPA或DHA或它们的前体分子)形成的延伸活性,或其具有至少一种表1所列出的活性。
表1:以mol%表示的五株转基因酵母的脂肪酸特性。已添加和摄入的γ-亚麻酸比例以粗体打印的数字强调,对延伸产物下划线并对延伸的γ-亚麻酸用粗体打印的数字强调(最后一行)。
  脂肪酸[mol%] pYES2 pY2PSE1a pY2PSE1b pY2PSE1c pY2PSE1d
 16:016:1Δ918:018:1Δ918:3Δ6,9,1220:3Δ8,11,14     17.028.06.525.922.6     17.626.86.023.515.710.3     16.428.06.427.013.29.0     16.327.95.625.216.48.6     17.625.16.121.422.87.1
 18:3Δ6,9,12-延伸     39.6     40.5     34.4     23.7
在另一个实施方案中,该分离的核酸分子至少为15个核苷酸长,且在严格条件下可与包含SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ IDNO:7、SEQ ID NO:9和SEQ ID NO:11的核苷酸序列的核酸分子杂交。该分离的核酸分子优选地对应于天然存在的核酸分子。更优选地,该分离的核酸分子编码天然存在的隐甲藻类、疫霉属(Phytophthora)或破囊壶菌PSE或其生物活性部分。
本发明的又一个方面涉及包含至少一种本发明的核苷酸分子的载体(如重组表达载体)及这些载体所导入的宿主细胞,其中宿主细胞尤其为微生物、植物细胞、植物组织、植物器官或整株植物。在一个实施方案中,此类宿主细胞可贮存精细化学品,尤其是PUFAs;为了分离目标化合物,可收获这些细胞。然后可从培养基或从宿主细胞分离该化合物(油类、脂类、三酰基甘油酯、脂肪酸)或PSE,其中在为植物时所述宿主细胞为包含或贮存精细化学品的细胞,最优选贮藏组织(如种皮、块茎)的细胞、表皮细胞和种子细胞。
本发明的另外又一个方面涉及已导入了PSE基因的遗传改性植物,其中所述植物优选上面提及的油料作物,尤其优选油菜籽、亚麻籽或展叶剑叶藓。在一个实施方案中,已通过导入(即转基因)编码野生型或突变PSE序列的本发明之核酸分子而改变油料种子油菜、亚麻籽或展叶剑叶藓的基因组。在另一个实施方案中,供体生物展叶剑叶藓、致病疫霉、隐甲藻类或破囊壶菌基因组中的内源PSE基因例如通过用改性PSE基因同源重组或通过诱变且通过DNA序列检测表明已被改变,也就是说内源PSE基因功能已被破坏。在一个优选的实施方案中,植物体属于剑叶藓、角齿藓属(Ceratodon)、葫芦藓属(Funaria)、油料种子油菜或亚麻籽,其中优选剑叶藓、油料种子油菜或亚麻籽。在一个优选的实施方案中,也使用剑叶藓、油料种子油菜或亚麻籽产生目标化合物如脂类或脂肪酸,其中尤其优选PUFAs。
在另外又一个优选的实施方案中,用藓类植物展叶剑叶藓通过基于本发明中所述核酸的同源重组来阐述延伸酶基因的功能。
本发明的另外又一个方面涉及分离的PSE基因或其一部分(如生物活性部分)。在一个优选的实施方案中,分离的PSE基因或其一部分可参与微生物或植物细胞细胞膜合成所需的化合物的代谢,或参与分子的跨膜转运。在一个进一步优选的实施方案中,该分离的PSE或其一部分与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ IDNO:10和SEQ ID NO:12中的氨基酸序列具有足够的同源性,以使该蛋白质或其一部分保留了参与微生物或植物细胞细胞膜合成所需化合物的代谢能力,或保留了参与分子通过这些膜的转运能力。
本发明也提供了PSE的分离制品。在优选的实施方案中,该PSE包含SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ IDNO:10和SEQ ID NO:12的氨基酸序列。在一个进一步优选的实施方案中,本发明涉及分离的全长蛋白质,其与SEQ ID NO:2、SEQ ID NO:4、SEQ IDNO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的全部氨基酸序列(它们由SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQID NO:9和SEQ ID NO:11中所示的开放读码框编码)基本上同源。在一个进一步的实施方案中,该蛋白质与序列SEQ ID NO:2、SEQ ID NO:4、SEQ IDNO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12中所示的氨基酸序列具有至少约50%,优选地至少约60%,更优选地至少约70%、80%或90%且最优选地至少约95%、96%、97%、98%、99%或更高的同源性。在另一些实施方案中,该分离的PSE包含的氨基酸序列与SEQ ID NO:2、SEQID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12中的氨基酸序列之一具有至少约50%的同源性,且该分离的PSE可参与微生物或植物细胞脂肪酸合成所需化合物的代谢,或参与分子通过这些膜的转运,或具有一种或多种PUFA-延伸活性,该延伸有利地涉及在至少两个位置具有双键的去饱和C16-或C18-或C20-碳链。
另外,分离的PSE可包含这样的氨基酸序列,其由例如在严格条件下与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ IDNO:9和SEQ ID NO:11的核苷酸序列杂交的核苷酸序列编码,或者其还具有至少约50%,优选地至少约60%,更优选地至少约70%、80%或90%且甚至更优选地至少约95%、96%、97%、98%、99%或更高的同源性。也优选同样具有此处描述的PSE活性之一的优选PSE形式。
可将PSE多肽或其生物活性部分功能性连接至非PSE多肽以形成融合蛋白质。在一个优选的实施方案中,该融合蛋白质具有的活性不同于PSE单独所具有的活性。在另一个优选的实施方案中,该融合蛋白质参与微生物或植物中脂类和脂肪酸、辅因子和酶合成所需的化合物的代谢,或参与分子通过这些膜的转运。在尤其优选的实施方案中,将该融合蛋白质导入宿主细胞可调节该细胞产生目标化合物的量。在一个优选的实施方案中,这些融合蛋白质单独或联用时也包含Δ4-、Δ5-或Δ6-、Δ8-、Δ15-、Δ17-或Δ19-去饱和酶活性。
本发明的另一方面涉及产生精细化学品的方法。该方法包括培养含有本发明的SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11的核苷酸序列或其同系物、衍生物或类似物的合适微生物或植物细胞、植物组织、植物器官或整株植物,或培养含有包含SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ IDNO:9和SEQ ID NO:11或其同系物、衍生物或类似物的基因构建体的合适微生物或植物细胞、植物组织、植物器官或整株植物,或培养含有包含这些序列或基因构建体的、可表达本发明PSE核酸分子的载体的合适微生物或植物细胞、植物组织、植物器官或整株植物,从而产生精细化学品。在一个优选的实施方案中,该方法进一步包括收获含有本发明的此类延伸酶核酸序列的细胞的步骤,其中所述细胞用可表达本发明PSE核酸的延伸酶核酸序列、基因构建体或载体转化。在一个进一步优选的实施方案中,该方法还包括从培养物中获得精细化学品的步骤。在一个尤其优选的实施方案中,细胞属于纤毛虫纲、微生物(如真菌)或植物王国(尤其是油料作物),其中尤其优选微生物或油料作物。
本发明的又一个方面涉及调节微生物分子产量的方法。这些方法包含将细胞与调节PSE活性或调节PSE核酸表达的物质结合,这样细胞相关活性相对于缺乏该物质时的同样活性而言是改良了的。在一个优选的实施方案中,细胞的脂类和脂肪酸、辅因子和酶的一条代谢途径或两条代谢途径被调节,或跨过这些膜的化合物的转运被调节,从而提高了由这种微生物产生的目标精细化学品的产量或产率。调节PSE活性的物质可为刺激PSE活性或刺激PSE核酸表达的物质,或其可用作脂肪酸生物合成的中间体。刺激PSE活性或刺激PSE核酸表达的物质的实例尤其为:小分子、活性PSEs和已导入细胞的编码PSEs的核酸。抑制PSE活性或PSE表达的物质的实例尤其为小分子和/或反义PSE核酸分子。
本发明的又一个方面涉及调节来自细胞的目标化合物产量的方法,其包含将野生型或突变型PSE基因导入细胞,其中所述野生型或突变型PSE基因可仍然存在于独立的质粒上或整合入宿主基因组。在整合入基因组的情况下,整合可为随机的或以天然基因被所导入的拷贝取代的方式重组进行,从而调节细胞产生的目标化合物量,或通过使用基因内含子,从而使该基因功能性连接至功能表达单位,其中所述功能表达单位包含至少一个确保基因表达的序列和至少一个确保功能转录基因聚腺苷酸化的序列。
在一个优选的实施方案中,产量被改变。在一个进一步的实施方案中,目标化学品被增加,它可能减少具有副作用的不想要的化合物。在一个尤其优选的实施方案中,该目标精细化学品为脂类或脂肪酸、辅因子或酶。在一个尤其优选的实施方案中,该化学品为多不饱和脂肪酸。更优选地,它选自花生四烯酸(=ARA)、二十碳五烯酸(=EPA)或二十二碳六烯酸(=DHA)。发明详述
本发明提供了PSE核酸和PSE蛋白质分子,其中PSE蛋白质分子参与藓类植物展叶剑叶藓、致病疫霉、隐甲藻类或破囊壶菌的脂类和脂肪酸、PUFA辅因子和酶的代谢,或其参与亲脂化合物的跨膜转运。本发明的化合物可用于调节来自生物体的精细化学品的产量,其中所述生物体例如微生物(如纤毛虫、真菌、酵母、细菌、藻类)和/或植物(如玉米、小麦、裸麦、燕麦、黑小麦、稻米、大麦、大豆、花生、棉花、芸苔类(如油料种子油牙、芸苔和芜菁油芽)、胡椒、向日葵、琉璃苣、月见草和万寿菊属、茄科植物(如马铃薯、烟草、茄子和番茄)、野豌豆类、豌豆、木薯、苜宿、灌木植物(咖啡树、可可树、茶树)、柳属、树(油棕、椰子)和多年生草和饲料作物),本发明的化合物可具有直接(例如当脂肪酸生物合成蛋白质的过表达或优化对来自改性生物的脂肪酸产量、生产率和/或生产效率有直接影响)或间接作用,该间接作用最终导致目标化合物的产量、生产率和/或生产效率提高或导致不想要的化合物降低(例如当对脂类和脂肪酸、辅因子和酶代谢的调节导致细胞内目标化合物的产量、生产率和/或生产效率的改变或组成改变,其本身又可影响一种或多种精细化学品的产量)。对本发明诸方面较详细的阐述如下。
I.精细化学品和PUFAs
术语”精细化学品”为本领域公知,其包含由生物产生的分子且其用于多种工业中,例如(以举例方式而非以限制性方式)制药工业、农业工业、食品工业和化妆品工业。这些化合物包含脂类、脂肪酸、辅因子和酶等(如在生物技术(Biotechnology)第6卷,Rehm等人,VCH Weinheim编辑一书中的Kuninaka,A.(1996)核苷酸及相关化合物(Nucleotides and relatedcompounds),561-612页及其中引用的参考文献中所描述的)、脂类、饱和脂肪酸和不饱和脂肪酸(如花生四烯酸)、维生素和辅因子(如Ullmann’s工业化学百科全书(Ullmann’s Encyclopedia of Industrial Chemistry),第A27卷,维生素,443-613页(1996):VCH Weinheim,及其中引用的参考文献中所描述的;以及Ong,A.S.,Niki,E.和Packer,L.(1995)联合国教科文组织/马来西亚科学和技术协会及亚洲自由基研究学会联盟的营养、脂类、健康和疾病”论文集(Nutrition,Lipids,Health and Disease Proceedings ofUNESCO/Confederation of Scientific and Technological Associations inMalaysia and the Society for Free Radical Research-Asia),于1994年9月1-3日在马来西亚的槟榔屿举办,Press(1995))、酶和所有其它Gutcho(1983)在通过发酵的化学品(Chemicals by Fermentation),Noyes DataCorporation,ISBN:0818805086及其中所引用的参考文献中描述的化学品。对某些精细化学品的代谢和用途的较详细阐述如下。
多种前体分子和生物合成酶的结合导致了多种脂肪酸分子的产生,其中所述多种脂肪酸分子对膜的组成有决定性作用。可推定PUFAs不仅只掺入三酰基甘油,也掺入膜脂。
膜的合成是一个被充分描写了其特性的过程,其中涉及到一些成分,包括作为双层膜一部分的脂类。新脂肪酸如PUFAs的产生因此会在细胞或生物体中产生新的膜功能特性。
在细胞中细胞膜具有多种功能。首先,膜将细胞内含物与环境定界清楚,从而赋予细胞完整性。膜也可起到屏障作用以防止危险或不想要的化合物的流入,或防止目标化合物的流出。
涉及到膜和其相关机制的较详细描述见Bamberg,E.等人(1993)脂双层膜上离子泵的电荷转运(Charge transport of ion pumps on lipid bilayermembranes),生物物理季刊(Q.Rev.Biophys.)26:1-25;在生物膜、分子结构和功能(Biomembranes,Molecular Structure and Function),Springer:Heidelberg一书中的Gennis,R.B.(1989)孔道、通道和转运蛋白(Pores,Channels and Transporters),270-322页;和Nikaido,H.,und Saier,H.(1992)细菌中的转运蛋白:它们结构中的共同主题(Transport proteinsin bacteria:common themes in their design),科学(Science)258:936-942,以及这些文献的每一篇中的引用文献。
脂类合成可分为两部分:脂肪酸的合成和它们与sn-甘油-3-磷酸酯的结合,以及极性首基的添加或修饰。常用于膜的脂类包括磷脂、糖脂、神经鞘脂类、磷酸甘油酯。脂肪酸合成起始于将乙酰辅酶A用乙酰辅酶A羧化酶转化为丙二酸单酰辅酶A,或用乙酰酰基转移酶转化为乙酰-ACP。经过缩合反应后,这两个产物分子一起形成乙酰乙酰基-ACP,其通过一系列缩合、还原和脱水反应转化,产生具所希望链长度的饱和脂肪酸分子。用特异的去饱和酶通过分子氧有氧催化或通过无氧催化这些分子而产生不饱和脂肪酸(关于微生物中脂肪酸的合成参见F.C.Neidhardt等人(1996)大肠杆菌和沙门氏菌(E.coli and Salmonella.)ASM Press:华盛顿特区,612-636页和其中所含有的参考文献;Lengeler等人(编辑)(1999)原核生物生物学(Biology of Procaryotes).Thieme:斯图加特,纽约和其中所含有的参考文献,以及Magnuson,K.等人(1993)微生物学评论(MicrobiologicalReviews)57:522-542和其中所含有的参考文献)。
用于PUFA生物合成的前体的实例为亚油酸和亚麻酸。这些C18-碳脂肪酸必须延伸至C20或C22,以产生二十和二十二链型的脂肪酸。多种去饱和酶如具有Δ6-去饱和酶、Δ5-和Δ4-去饱和酶活性的酶可导致花生四烯酸、二十碳五烯酸和二十二碳六烯酸以及多种其它长链PUFAs的产生,它们可被提取或用于食物和饲料、化妆品或药学应用多种目的。
为产生长链PUFAs,多不饱和C16-或C18-或C20-脂肪酸必须如上所述通过延伸酶的酶活性延伸至少两个碳原子。本发明的核酸序列编码了第一种微生物延伸酶,后者来自三酰基甘油部分中含有PUFA的典型生产者,该延伸酶可对脂肪酸中具有至少两个双键的C16-或C18-或C20-脂肪酸延伸至少两个碳原子,或其将它们例如顺序地连续转换,将C16-或C18-脂肪酸转换为C20-脂肪酸,然后将C20-转换为C22-或更高的包含2C原子单元的偶数脂肪酸。在一轮延伸循环后,该酶活性导致C20-脂肪酸的产生,在两轮、三轮和四轮延伸循环后产生C22-、C24-或C26-脂肪酸。也可用本发明的延伸酶合成较长的PUFAs。本发明的延伸酶活性优选地产生在脂肪酸分子中具有至少两个双键的C20-和/或C22-脂肪酸,其中所述C20-脂肪酸优选地在脂肪酸分子中具有三个、四个或五个双键,尤其优选在脂肪酸分子中具有三个双键,其中所述C22-脂肪酸优选地在脂肪酸分子中具有三个、四个、五个或六个双键,尤其优选在脂肪酸分子中具有五个或六个双键。在用本发明的酶延伸后,可进行进一步的去饱和步骤。这样,延伸酶活性的产物及进一步去饱和的产物可能产生具有较高不饱和度的优选PUFAs,例如二十二碳二烯酸、花生四烯酸、ω6-二十碳三烯双高-γ-亚麻酸、二十碳五烯酸、ω3-二十碳三烯酸、ω 3-二十碳四烯酸、二十二碳五烯酸或二十二碳六烯酸。本发明的该酶活性底物的实例为紫杉醇酸、7,10,13-十六碳三烯酸,6,9-十八碳二烯酸,亚油酸,γ-亚麻酸、皮诺林酸、α-亚麻酸、花生四烯酸、二十碳五烯酸或stearidonic acid。优选的底物为亚油酸,γ-亚麻酸和/或α-亚麻酸或花生四烯酸、二十碳四烯酸或二十碳五烯酸。在脂肪酸分子中具有至少两个双键的C16-或C18-或C20-脂肪酸可用本发明的酶活性以游离脂肪酸形式或酯的形式延伸,其中所述酯形式如磷脂、糖脂、神经鞘脂类、磷酸甘油酯、单酰基甘油、二酰基甘油或三酰基甘油。
此外,脂肪酸接下来必须被转运至多个位置并掺入三酰基甘油储存脂类。脂类合成的另一重要步骤是例如通过甘油脂肪酸酰基转移酶将脂肪酸转移至极性首基(参见Frentzen,1998,脂类,100(4-5):161-166)。
关于植物脂肪酸生物合成、去饱和、脂类代谢和脂肪化合物的膜转运、β-氧化、脂肪酸修饰和辅因子、三酰基甘油储存和装配的出版物(包括其中引用的参考文献)参见下列文章:Kinney,1997,基因工程(GeneticEngineering),JK Setlow编辑,19:149-166;Ohlrogge和Browse,1995,植物细胞(Plant Cell)7:957-970;Shanklin和Cahoon,1998,植物生理学和植物分子生物学年鉴(Annu.Rev.Plant Physiol.Plant Mol.Biol.)49:611-641;Voelker,1996,基因工程,JK Setlow编辑,18:111-13;Gerhardt,1992,脂类研究进展(Prog.Lipid R.)31:397-417;Gühnemann-Schfer和Kindl,1995,生物化学与生物物理学学报(Biochim.Biophys Acta)1256:181-186;Kunau等人,1995,脂类研究进展34:267-342;Stymne等人,1993,植物的膜和储存脂类的生物化学和分子生物学(Biochemistry andMolecular Biology of Membrane and Storage Lipids of Plants),Murata和Somerville编辑,Rockville,美国植物生理学家学会(American Society ofPlant Physiologists),150-158;Murphy和Ross 1998,植物杂志(PlantJournal.)13(1):1-16。
维生素、辅因子和“滋补药”(如PUFAs)中包含一组高等动物不能合成且因此必须摄取的分子,或高等动物自身不能足够合成且因此必须额外摄入的分子,即使这些分子易于被其它生物(如细菌)合成。已或多或少地对这些分子在可产生它们的生物(如细菌)中的生物合成特性进行了描述(Ullmann’s工业化学百科全书,“维生素”(“Vitamins”),第A27卷,443-613页,VCH Weinheim,1996;Michal,G.(1999)生物化学途径:生物化学和分子生物学文集(Biochemical Pathways:An Atlas ofBiochemistry and Molecular Biology),John Wiley和Sons;Ong,A.S.,Niki,E.和Packer,L.(1995)联合国教科文组织/马来西亚科学和技术协会及亚洲自由基研究学会联盟“营养、脂类、健康和疾病”论文集,于1994年9月1-3日在马来西亚的槟榔屿举办,AOCS Press,Champaign,IL X,374页)。
上述分子或者自身为生物活性分子,或者为生物活性物质的前体,它们在多种代谢途径中起电子载体或者起中间体的作用。除了它们的营养价值外,这些化合物也有重要的工业价值如作为着色料、抗氧化剂和催化剂或其它加工辅助物(对这些化合物的结构、活性和工业应用的综述参见例如Ullmann’s工业化学百科全书,“维生素”,第A27卷,443-613页,VCHWeinheim,1996)。多不饱和脂肪酸具有多种功能,并且例如在冠心病、炎症机制、儿童营养等情况下具有促进健康的作用。对于出版物和参考文献(包括其中引用的参考文献)参见:Simopoulos,1999,美国临床营养学杂志(Am.J.Clin.Nutr.)70(增刊3):560-569;Takahata等人,生物科学、生物技术与生物化学(Biosc.Biotechnol.Biochem.)1998,62(11):2079-2085,Willich和Winther,1995,Deutsche Medizinische Wochenschrift 120(7):229等。
II.本发明要点和方法
本发明至少部分基于对此处称为PSE核酸和PSE蛋白质分子的新分子的发现,其中所述的新分子对展叶剑叶藓、寇氏隐甲藻、致病疫霉、破囊壶菌和/或角齿藓(Ceratodon purpureus)的细胞膜的产生有影响,并且例如对分子跨过这些膜的运动有影响。在一个实施方案中,PSE分子参与生物(如微生物和植物)细胞膜合成所需的化合物的代谢或间接影响分子跨过这些膜的转运。在一个优选的实施方案中,用于调节膜成分的产生和膜转运的本发明PSE分子的活性对该生物体的目标精细化学品的产生有影响。在一个尤其优选的实施方案中,本发明PSE分子的活性被调节,从而对调节本发明PSEs的微生物或植物代谢途径的产量、生产率和/或生产效率起调节作用并对化合物跨膜的转运效率起调节作用,后者直接或间接调节由微生物和植物产生的目标精细化学品的产量、生产率和/或生产效率。
术语PSE或PSE多肽包含这样的蛋白质,其参与生物体(如微生物和植物)细胞膜合成所需的化合物的代谢或参与分子跨过这些膜的转运。PSEs的实例公开为SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ IDNO:7、SEQ ID NO:9和SEQ ID NO:11或它们的同系物、衍生物或类似物。术语PSE或PSE核酸序列包含编码PSE的核酸序列,且其一部分为编码区以及另一部分对应于5’-和3’-非翻译序列区。PSE基因的实例为SEQ IDNO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQID NO:11中所示序列。术语生产率为本领域公知并包含发酵产物(如目标精细化学品)的浓度,其中发酵产物在某期间形成并以某个发酵体积表示(如kg产物/小时/升)。术语生产效率包含达到具体的产生量所需的时间(例如细胞建立精细化学品的特定生产率所需的时间)。术语产量或产物/碳产量为本领域公知且包含碳源转化为产物(即精细化学品)的效率。它通常表达为如kg产物/kg碳源。提高化合物的产量或产生可提高在特定量的培养物中经过所指定的阶段所获得的分子的量或所获得的该化合物的合适分子的量。术语生物合成或生物合成途径为本领域公知并包含细胞从中间体例如在强调节下以多步骤合成化合物,优选地合成有机化合物。术语分解代谢或分解代谢途径为本领域公知并包含由细胞例如在强调节下以多步骤分解化合物(优选有机化合物)产生分解代谢物(通常为较小或较不复杂的分子)。术语代谢为本领域公知并包含在生物体内发生的全部生物化学反应。某个化合物的代谢(例如脂肪酸的代谢)因此包含细胞内与该化合物相关的所有该化合物生物合成、修饰和分解代谢途径。
在另一个实施方案中,本发明的PSE分子可调节微生物或植物中目标分子如精细化学品的产生。存在一系列这样的机制,通过这些机制修饰本发明的PSE可直接影响含有该经修饰蛋白质的微生物株或植物植株中精细化学品的产量、生产率和/或生产效率。在细胞内或细胞外参与精细化学品分子转运的PSEs的数目或活性均增加,这样较大量的这些化合物通过膜转运,由此可获得它们且它们相互间很容易转换。此外,脂肪酸、三酰基甘油和/或脂类本身为所想要的精细化学品;优化参与这些化合物生物合成的一种或多种本发明PSEs的活性或增加它们的数量,或通过干扰参与这些化合物分解代谢的一种或多种PSEs的活性可增加生物体如微生物或植物中脂肪酸分子和脂类分子的产量、生产率和/或生产效率。
诱变本发明的PSE基因也可产生活性改变的PSEs,其间接影响微生物或植物中一种或多种目标精细化学品的产生。例如参与废物输出的本发明的PSEs可显示较大的数量或较高的活性,这样在正常代谢废物(其量可因为目标精细化学品的超量产生而增加)损害细胞内的分子(其会降低细胞成活力)或干扰精细化学品的生物合成途径(其会降低目标精细化学品的产量、生产率和/或生产效率)前有效输出它们。目标精细化学品自身相对大的细胞内含量还可对细胞有毒性,这样增加可从细胞输出这些化合物的转运蛋白的活性或数量可导致培养物中细胞的成活力提高,接下来导致培养物中有更大量的产生目标精细化学品的细胞。也可以某种方式操作本发明的PSEs,以产生对应量的不同脂类分子和脂肪酸分子。这对细胞膜的脂类组成有相当大的影响。由于每种脂类型有不同的物理特性,改变膜的脂类组成可明显改变膜的流动性。膜流动性的改变可影响分子的跨膜转运和细胞的完整性,其中所述每一种影响对大规模发酵培养物中的微生物和植物的精细化学品的产生都有相当大的影响。植物膜具有特异的性质,如对高温和低温、盐、干旱的耐性以及对病原体如细菌和真菌的耐性。膜成分的调变因此对植物在上述压力参数下的存活能力具有关键性的作用。调变可通过信号级联的改变或直接通过改变的膜组成(参见例如Chapman,1998,植物科学趋势(Trends in Plant Science),3(11):419-426)和信号级联(参见Wang 1999,植物生理学(Plant Physiology),120:645-651)或如在WO95/18222中所公开的影响低温耐性而进行。
本发明分离的核酸序列存在于例如破囊壶菌菌株的基因组,其中破囊壶菌菌株可从美国典型培养物保藏中心(the American Type CultureCollection)(ATCC)获得,菌株号为ATCC26185(破囊壶菌),或存在于例如隐甲藻类的基因组时,可从Provasoli-Guillard National Center forCulture of Marine Phytoplankton((CCMP)West Boothbay Harbour,ME,美国)获得,株培养物号为No.CCMP316。在为致病疫霉时,所陈述的核酸分子分离自菌株ATCC 48886。
分离的剑叶藓、隐甲藻类、致病疫霉或破囊壶菌cDNA的核苷酸序列和推断的展叶剑叶藓PSEs的氨基酸序列为SEQ ID NO:1至SEQ ID NO:12所示。通过进行计算机分析来将这些核苷酸序列分类和/或鉴定为编码下列蛋白质的序列,它们所编码的蛋白质参与细胞膜成分的代谢或参与化合物通过细胞膜的转运或PUFA生物合成的代谢。在发明者的数据库中具有数据库输入号No.PP001019019F、CC001042041R、PI001002014R、TC002034029R、TC002034029R-11和TC002014093R的ESTs构成了在SEQID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中的本发明序列。以类似方式,部分多肽被称为PP001019019F、CC001042041R、PI001002014R、TC002034029R、TC002034029R-11和TC002014093R并构成表2的在SEQ ID NO:2、SEQ IDNO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12中的本发明序列。对ESTs TC002034029R的全片段插入物测序并得到TC002034029R的全序列SEQ ID NO:3。TC002034029R-11描述了来自破囊壶菌的延伸酶的全长序列。对其它克隆的命名也是相似的。也对不同的克隆赋予了对应的基因名称。缩写:Tc=破囊壶菌,Cc=隐甲藻类,Pp=展叶剑叶藓,Pi:致病疫霉。表2
名称/EST名称     基因名称 多肽SEQ ID NO 核酸SEQ ID NO
 PP001019019F     Pp_PSE1     2     1
 TC002034029R     Tc_PSE1     4     3
 TC002014093R     Tc_PSE2     6     5
 CC001042041R     Cc_PSE1     8     7
 TC002034029R-11     Tc_PSE1_1     10     9
 PI001002014R     Pi_PSE1     12     11
本发明也涉及这样的蛋白质,其具有的氨基酸序列与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ IDNO:12的氨基酸序列基本上同源。如本发明上下文中所用的,具有与一个所选择的氨基酸序列基本上同源的氨基酸序列的蛋白质与该选择的氨基酸序列例如所选择的全部氨基酸序列具有至少约50%的同源性。具有与一个所选择的氨基酸序列基本上同源的氨基酸序列的蛋白质与所选择的氨基酸序列也可具有至少约50至60%,优选地至少约60至70%,更优选地至少约70至80%、80至90%或90至95%,且最优选地至少约96%、97%、98%、99%或更高的同源性。
本发明的PSE或其生物活性部分或其片段可参与微生物或植物细胞膜合成所需的化合物的代谢或参与分子跨过这些膜的转运或具有延伸C16-或C18-或C20-PUFAs所需的一种或多种活性,从而获得C20-、C22-或C24-PUFAs以及相关PUFAs。
在下列子段落中较详细描述了本发明的多个方面。
A.分离的核酸分子
本发明的一个实施方案包含来自产生PUFA的微生物的分离核酸和编码的多肽,其中所述编码的多肽对在脂肪酸中具有至少两个双键的C16-或C18-脂肪酸延伸至少两个碳原子或其对在脂肪酸中具有至少两个双键的C20-脂肪酸延伸至少两个碳原子。
本发明进一步的实施方案包含含有编码多肽的核苷酸序列的分离核酸,其中所述多肽可延伸在脂肪酸中具有至少两个双键的C16-、C18-或C20-脂肪酸,且分离的核酸选自
a)在SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11所示的核酸序列,
b)按照遗传密码的简并性而衍生自SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中所示序列之一的核酸序列,或
c)编码具在SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ IDNO:8、SEQ ID NO:10和SEQ ID NO:12中所示氨基酸序列的多肽的SEQ IDNO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQID NO:11中所示序列的衍生物,其在氨基酸水平上具至少50%的同源性并基本上不降低多肽的酶活性。
作为C16-、C18-或C20-延伸酶的上述本发明的核酸来自可合成PUFAs的生物体如纤毛虫、真菌、藻类、植物或沟鞭藻,优选地来自植物或藻类,尤其优选地来自疫霉属、剑叶藓、隐甲藻类、破囊壶菌或Schizochytrium,最优选地来自致病疫霉、展叶剑叶藓、寇氏隐甲藻或破囊壶菌sp.、Schizochytrium sp.或与它们紧密相关的生物体。
本发明的一方面涉及编码PSE多肽或其生物活性部分的分离核酸分子,并涉及足以用作杂交探针或引物用于鉴定或扩增编码PSE的核酸(例如PSE DNA)的核酸片段。用在本发明上下文中的术语“核酸分子”包括DNA分子(例如cDNA或基因组DNA)、RNA分子(例如mRNA)和通过核苷酸类似物产生的DNA或RNA类似物。该术语另外包括在编码基因区3′和5′末端的非翻译序列:在编码区5′末端上游有至少约100个核苷酸序列和在编码基因区3′末端下游有至少约20个核苷酸序列。核酸分子可为单链或双链,但优选双链DNA。“分离的”核酸分子为将该核酸从存在于其天然来源中的其它核酸分子分离。“分离的”核酸优选地不具有在生物体基因组DNA中天然位于核酸侧翼的序列(例如位于该核酸5’和3’末端的序列),其中所述核酸来自该生物体。在多个实施方案中,分离的PSE核酸分子可含有在细胞基因组DNA中天然位于该核酸侧翼的例如小于约5kb、4kb、3kb、2kb、1kb、0.5kb或0.1kb的核苷酸序列,其中所述核酸来自该细胞(例如展叶剑叶藓细胞)。此外,“分离的”核酸分子(如cDNA分子)如果是通过重组技术产生的,则可基本上不含其它细胞材料或培养基,或如果是通过化学合成的,则可基本上不含化学前体或其它化学品。
可用标准的分子生物学技术和此处提供的序列信息分离本发明的核酸分子,例如具有SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11的核苷酸序列或其一部分的核酸分子。同样,可借助于排列算法鉴定例如在DNA水平或氨基酸水平的同源序列或同源保守序列区。例如通过使用杂交探针和标准的杂交技术(例如Sambrook等人,在分子克隆:实验室手册,第二版(Molecular Cloning:A LaboratoryManual,2nd Ed.),冷泉港实验室,冷泉港实验室出版社,冷泉港,纽约,1989一书中所描述的)从疫霉属、剑叶藓、隐甲藻类或Thraustochtrium文库分离疫霉属、剑叶藓、隐甲藻类或破囊壶菌cDNA,其中所述杂交探针为全长的SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和/或SEQ ID NO:11或其一部分。而且,当使用的寡核苷酸引物是基于SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11的序列或其部分而产生的时,尤其是基于SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ IDNO:10和SEQ ID NO:12或它们各自的明确氨基酸变体的His-盒基序周围的区域而产生的时,可用聚合酶链反应分离包含SEQ ID NO:1、SEQ IDNO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11的全序列或其一部分的核酸分子(例如,可用基于同样的SEQ ID NO:1、SEQ IDNO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11序列产生的寡核苷酸引物通过聚合酶链反应分离包含SEQ ID NO:1、SEQ IDNO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11的全序列或其一部分的核酸分子)。而且,尤其适用于该目的的为那些在图10中所示的部分序列。例如可从细胞分离mRNA(例如通过Chirgwin等人,(1979)生物化学(Biochemistry)18:5294-5299所描述的硫氰酸胍提取法),并且可借助于反转录酶(例如可用从Gibco/BRL,Bethesda,MD获得的莫洛尼鼠类白血病病毒(Moloney MLV)反转录酶或可用从Seikagaku America,Inc.,St.Petersburg,FL获得的AMV反转录酶)产生cDNA。用于聚合酶链反应进行扩增反应的合成寡核苷酸引物可基于SEQ ID NO:1、3、5、7、9或11所示的核苷酸序列之一或通过图10中所示的氨基酸序列产生。可用cDNA或另外地用基因组DNA作为模板并用合适的寡核苷酸引物,按照标准的PCR扩增技术来扩增本发明的核酸。可将这样扩增的核酸克隆入合适的载体并通过DNA序列分析了解其特性。可通过标准的合成方法,例如用自动DNA合成仪产生对应于PSE核苷酸序列的寡核苷酸。
在SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQID NO:9和SEQ ID NO:11中所示的cDNA包含编码PSEs的序列(即“编码区”)、5′-非翻译序列和3′-非翻译序列。另外核酸分子可仅包含SEQ IDNO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQID NO:11所示序列之一的编码区,或核酸分子可包含从基因组DNA分离的全基因组片段。
为便于对应,可通过输入与SEQ ID NO:1、SEQ ID NO:3、SEQ IDNO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11相同的EST数据代码来鉴别SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQID NO:10和SEQ ID NO:12。
在一个进一步优选的实施方案中,本发明的分离的核酸分子包含这样的核酸分子,其为在SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ IDNO:7、SEQ ID NO:9和SEQ ID NO:11中所示的核苷酸序列之一或其一部分的互补序列。如果核酸分子可与在SEQ ID NO:1、SEQ ID NO:3、SEQ IDNO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中所述序列之一杂交产生稳定的双链,则互补于SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中所示的核苷酸序列之一的核酸分子是充分互补的。
具有序列SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11的新延伸酶核酸序列的同系物是指例如与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中所示的核苷酸序列之一具有至少约50至60%,优选地至少约60至70%,更优选地至少约70至80%、80至90%或90至95%,以及甚至更优选地至少约95%、96%、97%、98%、99%或更高同源性的等位基因变体或它们的同系物、衍生物或类似物或其部分。在一个进一步优选的实施方案中,本发明的分离的核酸分子包含这样的核苷酸序列,其在严格条件下可与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中所示的核苷酸序列之一或其一部分杂交。等位基因变体尤其包含可通过从/对SEQ ID NO:1、SEQ ID NO:3、SEQID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中所示序列的核苷酸的删除、插入或替换而获得的功能变体,但对于合成所获得的蛋白质的酶活性,规定为有利地保留一个或多个基因的插入。保留延伸酶酶活性的蛋白质指的是与由SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ IDNO:8、SEQ ID NO:10和SEQ ID NO:12编码的蛋白质相比,具有原始酶活性至少10%,优选地20%,尤其优选地30%,非常特别优选40%的蛋白质。保留上述活性的延伸酶为酶活性基本上不降低的延伸酶。
SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ IDNO:9和SEQ ID NO:11的同系物也指例如编码和非编码DNA序列的细菌、真菌和植物同系物、截短序列、单链DNA或RNA。
SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ IDNO:9和SEQ ID NO:11的同系物也指如启动子变体衍生物。可通过一个或多个核苷酸的替换、插入和/或删除改变所述核苷酸序列上游的启动子,但不妨碍启动子的功能或活性。而且,通过改变启动子的序列或甚至用来自异种生物的更具活性的启动子完全替代它们,可增强启动子的活性。
而且,本发明的核酸分子可只包含SEQ ID NO:1、SEQ ID NO:3、SEQID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11的序列之一的编码区的一部分,例如可用作探针或引物的片段或编码PSE生物活性部分的片段。所测定的来自展叶剑叶藓、致病疫霉、破囊壶菌和隐甲藻类PSE基因克隆的核苷酸序列使得可产生这样的探针和引物,其用来鉴定和/或克隆在其它细胞种类和生物中的PSE同系物以及来自其它藓类植物或相关种类的PSE同系物。该探针/引物通常包含基本上纯化的寡核苷酸。该寡核苷酸通常包含这样的核苷酸序列区域,其在严格条件下与在SEQ IDNO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQID NO:11中所述序列之一的有义链或与在SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中所述序列之一的反义链或其同系物、衍生物和类似物或其天然存在的突变体的至少约12个,优选地约16个,更优选地约25个、40个、50个或75个连续的核苷酸杂交。基于SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11的核苷酸序列的引物可用于PCR反应以克隆PSE同系物。基于PSE核苷酸序列的探针可用于检测编码相同或同源蛋白质的转录本或基因组序列。在优选的实施方案中,该探针另外还包含与其结合的标记基团例如放射性同位素、荧光化合物、酶或酶的辅因子。这些探针可用作试验试剂盒的一部分,用作鉴定错表达PSE的细胞的基因组标记物,例如通过测定细胞样本中编码PSE的核酸量(如测定PSE mRNA水平),或用于确定基因组的PSE基因是否被突变或被删除。
在一个实施方案中,本发明的核酸分子编码这样的蛋白质或其一部分,所述蛋白质或其一部分包含与SEQ ID NO:2、SEQ ID NO:4、SEQ IDNO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的氨基酸序列具有充分同源性的氨基酸序列,该蛋白质或其一部分保留了参与微生物或植物的细胞膜合成所需的化合物的代谢或保留了参与分子通过这些膜的转运。正如在本发明的上下文中所用,术语“充分的同源性”涉及这样的蛋白质或其一部分,其氨基酸序列具有等同于或等值于SEQ ID NO:2、SEQ IDNO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的氨基酸序列的最小数目的氨基酸残基(例如具有相似侧链的氨基酸残基,其中所述氨基酸残基如在SEQ ID NO:2至12序列之一中的氨基酸残基),这样蛋白质或其一部分可参与微生物或植物的细胞膜合成所需的化合物的代谢或参与分子通过这些膜的转运。如此处所述,用于膜成分或膜转运系统的这些代谢途径的蛋白质成分可在产生和分泌一种或多种精细化学品中起作用。也在此处描述了这些活性的实例。因此“PSE的功能”对一种或多种精细化学品的产量、生产率和/或生产效率起直接或间接作用。表1中陈述了催化活性的PSE底物特异性的实例。
在一个进一步的实施方案中,本发明的核酸分子的衍生物编码这样的蛋白质,其与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12中的全部氨基酸序列具有至少约50至60%,优选地至少约60至70%,且更优选地至少约70至80%、80至90%、90至95%,且最优选地至少约96%、97%、98%、99%或更高的同源性。用程序PileUp(分子进化杂志(J.Mol.Evolution.),25,351-360,1987,Higgins等人,CABIOS,5,1989:151-153)或BESTFIT或GAP(Henikoff,S.和Henikoff,J.G.(1992)蛋白质模块中的氨基酸替换矩阵。美国国家科学院院报(Proc.Natl.Acad.Sci.USA)89:10915-10919)测定了整个序列区氨基酸序列的同源性。
本发明的PSE核酸分子编码的蛋白质的一部分优选地为PSEs之一的生物活性部分。如此处所用,术语“PSE的生物活性部分”是指包含PSE的片断(例如结构域/基序),其可参与微生物或植物细胞膜合成所需的化合物的代谢或参与分子通过这些膜的转运,或其具有表1中所述的活性。可进行酶活性测定,以确定PSE或其生物活性片段是否可参与微生物或植物细胞膜合成所需的化合物的代谢或参与分子通过这些膜的转运。这些测定方法如实施例部分的实施例8中所详述的,为技术人员公知。
其它编码PSE生物活性部分的核酸片段可通过分离序列SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ IDNO:10和SEQ ID NO:12之一的一部分、表达PSE或肽的编码部分(例如通过体外重组表达)并测定PSE或肽的编码部分的活性而产生。
而且,因为遗传密码的简并性,本发明包含不同于SEQ ID NO:1、SEQID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11(以及其部分)中所示的核苷酸序列之一的核酸分子,且该核酸分子编码的PSE与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中所示核苷酸编码的相同。在另一个实施方案中,本发明分离的核酸分子具有这样的核苷酸序列,其编码的蛋白质具有在SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ IDNO:10和SEQ ID NO:12中所示的氨基酸序列。在一个进一步的实施方案中,本发明的核酸分子编码基本上与SEQ ID NO:2、SEQ ID NO:4、SEQ IDNO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的氨基酸序列(其由在SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ IDNO:9和SEQ ID NO:11中所示的开放读码框编码)同源的全长PSE蛋白质且可用常规方法鉴定和分离该核酸分子。
除了在SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中所示的PSE核苷酸序列外,技术人员知道可存在DNA序列的多态现象,后者会导致群体内(例如剑叶藓、疫霉属、隐甲藻类或破囊壶菌群体)的PSEs氨基酸序列的改变。由于自然变异,PSE基因中的这些遗传多态性可在群体内的个体间存在。如在本上下文中所用,术语“基因”和“重组基因”指具有编码PSE开放读码框的核酸分子,优选地编码疫霉属、剑叶藓、隐甲藻类或破囊壶菌PSE开放读码框的核酸分子。这些天然变体通常引起PSE基因核苷酸序列的1至5%的差异。PSE中的所有这些核苷酸变异和所导致的氨基酸多态现象(其为自然变异的结果且不改变PSEs的功能活性)均在本发明的范围内。
可用标准的杂交技术在严格的杂交条件下,用剑叶藓、疫霉属、隐甲藻类或破囊壶菌cDNA或其一部分作为杂交探针,分离对应的天然变体的核酸分子以及分离非剑叶藓、非疫霉属、非隐甲藻类或非破囊壶菌的疫霉属、剑叶藓、隐甲藻类或破囊壶菌cDNA同系物、衍生物和类似物,因为它们与此处公开的疫霉属、剑叶藓、隐甲藻类或破囊壶菌PSE核酸的同源性。在另一个实施方案中,本发明的分离的核酸分子具有15个核苷酸的最小长度,并且在严格条件下其与包含SEQ ID NO:1、SEQ ID NO:3、SEQ IDNO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11核苷酸序列的核酸分子杂交。在另一个实施方案中,该核酸的最小长度具有25个、50个、100个、250个或更多的核苷酸。在本上下文中所用的术语“在严格条件下杂交”是描述杂交和洗涤条件,在所描述的条件下,相互间具有至少60%同源性的核苷酸序列通常仍然与另一方杂交。条件优选地为可使相互间具有至少约65%,更优选地至少约70%,且甚至更优选地至少约75%或更高同源性的序列通常仍然与另一方杂交的条件。这些严格的杂交条件为技术人员公知且可在分子生物学最新方法(Current Protocols in Molecular Biology),John Wiley & Sons,纽约(1989),6.3.1-6.3.6一书中找到。严格的杂交条件的优选非限制性实例为在约45℃时,于6×氯化钠/柠檬酸钠(氯化钠/柠檬酸钠=SSC)中杂交,然后在约50至65℃时,于0.2×SSC、0.1%SDS中进行一次或多次洗涤步骤。技术人员公知这些杂交条件依据核酸类型的不同而不同,且如当存在有机溶剂时,缓冲液的温度和浓度也不同。在“标准杂交条件下”温度依核酸类型的不同而为在具有0.1至5×SSC(pH7.2)的含水缓冲液中的42℃和58℃之间。如果在上述缓冲液中存在有机溶剂,例如50%甲酰胺,标准条件下的温度为约42℃。对DNA:DNA杂交体,杂交条件优选例如0.1×SSC以及20℃至45℃,优选地在30℃和45℃之间。对DNA:RNA杂交体,杂交条件优选例如0.1×SSC以及30℃至55℃,优选地在45℃和55℃之间。上述杂交温度是例如在缺乏甲酰胺时对核酸长度在约100 bp(=碱基对)且G+C含量为50%时进行的测定。技术人员公知如何参考课本确定所需的杂交条件,例如参考上面提及的课本或以下课本:Sambrook等人,“分子克隆”(“Molecular Cloning”),冷泉港实验室,1989;Hames和Higgins(编辑)1985,“核酸杂交:实用方法”(“Nucleic Acids Hybridization:A PracticalApproach”),在牛津大学出版社的IRL Press,牛津;Brown(编辑)1991,“基本分子生物学:实用方法”(“Essential Molecular Biology:A PracticalApproach”),在牛津大学出版社的IRL Press,牛津。
优选地,在严格条件下与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11的序列杂交的本发明分离的核酸分子对应于天然存在的核酸分子。如在本上下文中所用的,“天然存在的”核酸分子指在自然界中存在的具有核苷酸序列的RNA或DNA分子(例如其编码天然蛋白质)。在一个实施方案中,核酸编码天然存在的展叶剑叶藓PSE、致病疫霉PSE、寇氏隐甲藻PSE或破囊壶菌PSE。
除了可在群体中具有的、天然PSE序列变体外,技术人员还意识到通过突变也可将变化导入SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ IDNO:7、SEQ ID NO:9和SEQ ID NO:11的核苷酸序列,其导致所编码的PSE氨基酸序列的变化,而对PSE蛋白质的功能没有不利影响。例如可在SEQID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11的序列中产生这样的核苷酸替换,其导致“非必需”氨基酸残基上的氨基酸替换。“非必需”氨基酸残基为这样的残基,可对在PSEs之一的野生型序列(SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ IDNO:8、SEQ ID NO:10和SEQ ID NO:12)中改变该残基,而并不改变PSE的活性,但“必需”氨基酸残基为PSE活性所需要。但其它氨基酸残基(例如那些在PSE活性结构域中不保守或只是半保守的残基)可能不是必需的,因此可改变之且同时不改变PSE活性。
因此,本发明的又一方面涉及这样的核酸分子,其编码包含改变了的、对PSE活性为非必需的氨基酸残基的PSEs。这些PSEs在氨基酸序列上不同于SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ IDNO:10和SEQ ID NO:12的序列,但仍保留了此处描述的至少一种PSE活性。在一个实施方案中,分离的核酸分子包含编码蛋白质的核苷酸序列,其中所述蛋白质包含的氨基酸序列与SEQ ID NO:2、SEQ ID NO:4、SEQID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的氨基酸序列具有至少约50%的同源性,且蛋白质可参与疫霉属、剑叶藓、隐甲藻类或破囊壶菌的细胞膜合成所需的化合物的代谢或可参与分子通过这些膜的转运。该核酸分子所编码的蛋白质与SEQ ID NO:2、SEQ ID NO:4、SEQ IDNO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的序列之一优选地具有至少约50至60%的同源性,更优选地与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的序列之一具有至少约60至70%的同源性,甚至更优选地与SEQ ID NO:2、SEQ IDNO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的序列之一具有至少约70至80%、80至90%、90至95%的同源性,且最优选地与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ IDNO:10和SEQ ID NO:12的序列之一具有至少约96%、97%、98%或99%的同源性。
为确定两个氨基酸序列(例如SEQ ID NO:2、SEQ ID NO:4、SEQ IDNO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的序列之一和其突变形式)或两个核苷酸序列的百分同源性,将一个序列写在另一个序列下面使得可进行最佳比较(例如可在蛋白质或核酸序列中导入间隔,以产生与其它蛋白质或其它核酸的最佳排列)。然后比较对应氨基酸位置或核苷酸位置的氨基酸残基或核苷酸。如果在一个序列(例如SEQ ID NO:2、SEQ IDNO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的序列之一)中的某个位置占据着如另一序列(例如选自SEQ ID NO:2、SEQID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12序列的突变形式)对应位置处的同样的氨基酸残基或同样的核苷酸,那么该分子在此位置处为同源的(即如本上下文中所用的氨基酸或核酸的“同源性”对应于氨基酸或核酸的“同一性”)。两个序列间的百分同源性为序列于同一位置处共有氨基酸或核酸数目的函数(即%同源性=同一位置的数目/位置总数×100)。
可通过将一个或多个核苷酸的替换、添加或删除导入SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ IDNO:11的核苷酸序列而产生编码与SEQ ID NO:2、SEQ ID NO:4、SEQ IDNO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的蛋白质序列同源的PSE的分离核酸分子,这样在所编码的蛋白质中导入了一个或多个氨基酸的替换、添加或删除。可通过标准技术如定点诱变和PCR-介导的诱变在SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11的序列之一中导入突变。优选地,在一个或多个预测的非必需氨基酸残基处进行保守的氨基酸替换。在“保守的氨基酸替换”中,将氨基酸残基与具有相似侧链的氨基酸残基交换。已在专门领域中对具有相似侧链的氨基酸残基的分类进行了定义。分类中包括具有碱性侧链的氨基酸(例如赖氨酸、精氨酸、组氨酸),酸性侧链的氨基酸(例如天冬氨酸、谷氨酸),不带电荷的极性侧链氨基酸(例如甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸),非极性侧链氨基酸(例如丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸),β-分支侧链氨基酸(例如苏氨酸、缬氨酸、异亮氨酸)和芳香族侧链氨基酸(例如酪氨酸、苯丙氨酸、色氨酸、组氨酸)。预测的PSE中非必需氨基酸残基因此优选地用来自同一侧链分类的另一个氨基酸残基互换。另外,在另一实施方案中,于所有或部分PSE-编码序列中可随机导入突变,例如通过饱和诱变并对所得到的突变体筛选此处描述的PSE活性,以鉴定保留了PSE活性的突变体。在对SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ IDNO:7、SEQ ID NO:9和SEQ ID NO:11的序列之一诱变后,可重组表达所编码的蛋白质并用如此处描述的测定法(参见实施例部分)确定蛋白质的活性。
除了编码上述PSEs的核酸分子外,本发明的又一方面涉及与其“反义”的分离核酸分子。”反义”核酸包含这样的核苷酸序列,其与编码蛋白质的“有义”核酸互补,例如互补于双链cDNA分子的编码链或互补于mRNA序列。因此,反义核酸可通过氢键与有义核酸结合。反义核酸可互补于整个PSE-编码链或仅仅互补于其一部分。在一个实施方案中,反义核酸分子“反义”于编码PSE的核苷酸序列的编码链的“编码区”。术语“编码区”指这样的核苷酸序列区,其包括翻译为氨基酸残基的密码子(例如起始并终止于终止密码子的全部编码区,即在终止密码子前的最后一个密码子)。在又一个实施方案中,反义核酸分子“反义”于编码PSE的核苷酸序列的编码链的“非编码区”。术语“非编码区”指在编码区的侧翼且不翻译为氨基酸的5′和3′序列(即,其也称为5’-和3’-非翻译区)。
考虑到编码链的此处公开的PSE-编码序列(例如在SEQ ID NO:1、SEQID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中所示的序列),可根据Watson-Crick碱基配对原则设计本发明的反义核酸。反义核酸分子可互补于全部的PSE mRNA编码区,但更优选仅”反义”于PSE mRNA编码区或非编码区的一部分的寡核苷酸。例如,反义寡核苷酸可互补于PSE mRNA翻译起始的周围区域。反义寡核苷酸可具有长度为例如约5、10、15、20、25、30、35、40、45或50个以及更多的核苷酸。反义寡核苷酸有利地为15至25个核苷酸长。可通过本领域公知的方法使用化学合成和酶连接反应构建本发明的反义核酸。例如,可用天然存在的核苷酸或多种修饰的核苷酸化学合成反义核酸(如反义寡核苷酸),其中所述修饰的核苷酸可提高分子的生物稳定性或提高反义和有义核酸之间形成的双螺旋的物理稳定性;例如可使用硫代磷酸酯衍生物和吖啶取代的核苷酸。可用于产生反义核酸的修饰核苷酸的实例尤其为5-氟尿嘧啶、5-溴尿嘧啶、5-氯尿嘧啶、5-碘尿嘧啶、次黄嘌呤、黄嘌吟、4-乙酰胞嘧啶、5-(羧基羟甲基)尿嘧啶、5-羧甲基氨甲基-2-硫代尿苷、5-羧甲基氨甲基尿嘧啶、二氢尿嘧啶、β-D-galactosylqueosine、次黄嘌呤核苷、N6-异戊烯腺嘌呤、1-甲基鸟嘌呤、1-甲基次黄嘌呤核苷、2,2-二甲基鸟嘌呤、2-甲基腺嘌呤、2-甲基鸟嘌呤、3-甲基胞嘧啶、5-甲基胞嘧啶、N6-腺嘌呤、7-甲基鸟嘌呤、5-甲基氨甲基尿嘧啶、5-甲氧基氨甲基-2-硫尿嘧啶、β-D-mannosylqueosine、5′-甲氧基羧甲基尿嘧啶、5-甲氧基尿嘧啶、2-甲硫基-N6-异戊基腺嘌吟、尿嘧啶-5-羟基乙酸(v)、wybutoxosine、假尿嘧啶、queosine、2-硫胞嘧啶、5-甲基-2-硫尿嘧啶、2-硫尿嘧啶、4-硫尿嘧啶、5-甲基尿嘧啶、甲基尿嘧啶-5-羟基乙酸、尿嘧啶-5-羟基乙酸(v)、5-甲基-2-硫尿嘧啶、3-(3-氨基-3-N-2-羧丙基)尿嘧啶、(acp3)w和2,6-二氨基嘌吟。另外,可用表达载体以生物方式产生反义核酸,在表达载体中核酸以反义方向亚克隆(即由所导入的核酸转录的RNA相对于目标靶核酸为反义方向,下面将对此进更详细的描述)。
通常将本发明的反义核酸分子施与细胞或在原位产生,这样它们与编码PSE的细胞mRNA和/或基因组DNA杂交或结合,从而例如通过抑制转录和/或翻译来抑制该蛋白质的表达。可通过与稳定的双螺旋形成体的常规核苷酸互补性实现杂交,或例如在为结合DNA双螺旋的反义核酸分子的情况下,通过在双螺旋大沟中的特异相互作用实现杂交。可以某种方式修饰反义分子,例如通过将反义核酸分子结合至肽或抗体,以使修饰的反义分子特异性与受体结合或与所选择的细胞表面表达的抗原结合,其中所述肽或抗体各自与细胞表面受体或抗原结合。也可使用此处描述的载体提供具有反义核酸分子的细胞。载体构建体中优选反义核酸分子在强的原核、病毒或真核启动子(包括植物启动子)控制下的载体构建体,以得到足够浓度的胞内反义分子。
在又一个实施方案中,本发明的反义核酸分子为α-差向异构体的核酸分子。α-差向异构体的核酸分子与互补的RNA形成特殊的双链杂交体,这些链相互平行,与常见的β-单元相反[Gaultier等人(1987)核酸研究15:6625-6641]。而且,反义核酸可包含2’-o-甲基核糖核苷酸[Inoue等人(1987)核酸研究15:6131-6148]或嵌合RNA-DNA类似物(analogon)[Inoue等人(1987)FEBS Lett.215:327-330]。
在又一个实施方案中,本发明的反义核酸分子为核酶。核酶为具核糖核酸酶活性的催化RNA分子,其可切割与其有互补区的单链核酸如mRNA。因此,核酶例如锤头状核酶[描述见Haselhoff和Gerlach(1988)自然(Nature)334:585-591]可用于PSE mRNA转录本的催化切割,以抑制PSEmRNA的翻译。基于此处公开的PSE cDNA序列(即在SEQ ID NO:1、SEQID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11中的38℃k21_g07fwd)或基于欲分离的异源序列,按照本发明所教的方法,可设计对编码PSE的核酸具特异性的核酶。例如可构建四膜虫-L-19-IVSRNA,其中活性位点的核苷酸序列互补于欲切割的编码PSE的mRNA的核苷酸序列。参见例如Cech等人,US 4,987,071和Cech等人,US 5,116,742。另外,可用PSE mRNA从一堆RNA分子中选择具特异核糖核酸酶活性的催化RNA[参见例如Bartel,D.和Szostak,J.W.(1993)科学261:1411-1418]。
另外,通过指导互补于PSE核苷酸序列调节区(例如PSE启动子和/或增强子)的核苷酸序列,以形成三股螺旋结构,从而抑制PSE基因表达,其中所述三股螺旋结构可抑制PSE基因在靶细胞中的转录[通常参见Helene,C.(1991)抗癌药研究(Anticancer Drug Res.)6(6)569-84;Helene,C.等人(1992)Ann.N.Y.Acad.Sci.660:27-36;以及Maher.L.J.(1992)生物鉴定(Bioassays)14(12):807-815]。
B.基因构建体
本发明的又一个实施方案为新的基因构建体,其包含衍生自剑叶藓、疫霉属、隐甲藻类或破囊壶菌的分离核酸并编码对脂肪酸分子中具有至少两个双键的C16-、C18-或C20-脂肪酸延伸至少两个碳原子的多肽,或其包含功能性与一个或多个调节信号(优选地可提高基因表达的调节信号)连接的SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ IDNO:9和SEQ ID NO:11的基因序列、其同系物、衍生物或类似物。这些调节信号的实例为结合诱导者或阻遏物的序列,并以这种方式调节核酸的表达。除了这些新的调节序列外,还存在对实际的结构基因之前的这些序列的天然调节,且如果合适的话,这些序列的天然调节已被遗传修饰,这样关闭了天然调节并增强了基因的表达。但是基因构建体也可具有较简单的结构,即在序列SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11或它们的同系物之前没有插入其它调节信号且未删除具有调节作用的天然启动子。取而代之的是,以某种方式突变天然调节序列,以使调节不再发生且基因表达被增强。而且,基因构建体可有利地包含一种或多种功能性与启动子连接的、可提高核酸序列表达的称为增强子的序列。在DNA序列的3’末端也可另外插入有利的序列,如进一步的调节元件或终止子。在基因构建体中可存在一个或多个延伸酶基因拷贝。如果在基因构建体中存在更多的基因,将更多的基因插入生物体是有利的。
对新方法有利的调节序列例如存在于启动子中,如cos、tac、trp、tet、trp-tet、lpp、lac、lpp-lac、lacIq、T7、T5、T3、gal、trc、ara、SP6、λ-PR或λ-PL启动子,且有利地用于革兰氏阴性细菌。更有利的调节序列例如存在于革兰氏阳性启动子amy和SPO2中、存在于酵母或真菌启动子ADC1、MFα、AC、P-60、CYC1、GAPDH、TEF、rp28、ADH中或存在于植物启动子CaMV/35S[Franck等人,细胞(Cell)21(1980)285-294]、PRP1[Ward等人,植物分子生物学(Plant.Mol.Biol.)22(1993)]、SSU、OCS、lib4、usp、STLS1、B33、nos中或存在于遍在蛋白或菜豆蛋白启动子中。在此上下文中也优选诱导型启动子,如在EP-A-0 388 186(苄基氨磺酰可诱导的)、植物杂志(Plant J.)2,1992:397-404(Gatz等人,四环素-可诱导的)、EP-A-0 335 528(脱落酸-可诱导的)或WO 93/21334(乙醇-或环已醇-可诱导的)中描述的启动子。其它合适的植物启动子为胞质FBPase或马铃薯ST-LSI启动子(Stockhaus等人、EMBO J.8,1989,2445)、甘氨酸max磷酸核糖焦磷酸氨基转移酶启动子(Genbank登录号U87999)或EP-A-0 249676中描述的结节特异的启动子。尤其有利的启动子为使得在参与脂肪酸生物合成的组织中表达的启动子。非常尤其有利的是种子特异的启动子,如usp、LEB4、菜豆蛋白或napin启动子。进一步尤其有利的启动子为可用于单子叶植物或双子叶植物的种子特异启动子,其在US 5,608,152(油料种子油菜napin启动子)、WO 98/45461(拟南芥的菜豆蛋白启动子)、US 5,504,200(菜豆(Phaseolus vulgaris)的菜豆蛋白启动子)、WO 91/13980(芸苔属Bce4-启动子)、Baeumlein等人,植物杂志,2,2,1992:233-239(豆科LEB4启动子)中描述的启动子,这些启动子适用于双子叶植物。下列启动子适用于单子叶植物,大麦lpt-2或lpt-1启动子(WO 95/15389和WO95/23230)、大麦的大麦醇溶蛋白启动子以及在WO 99/16890中描述的其它合适启动子。
大体而言,可使用所有的具调节序列的天然启动子以用于新方法,如上述的那些启动子。也可以并方便地额外使用合成启动子。
如上所述,基因构建体也可包含更多的欲导入生物体的基因。可以并方便地将基因构建体导入宿主生物并在其中表达,其中的调节基因如针对诱导者、阻遏物或酶的基因(因为它们的酶活性)参与生物合成途径的一个或多个基因的调节。这些基因可为异源或同源起源。插入基因可有它们自身的启动子,或在序列SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQID NO:7、SEQ ID NO:9和SEQ ID NO:11或其同系物、衍生物或类似物的启动子控制下。
为了表达其它存在的基因,基因构建体有利地包含进一步的用于促进表达的3’-和/或5’-末端调节序列,并对它们进行选择,用于所选择的宿主生物功能和基因的最佳表达。
如上所述,这些调节序列使基因的特异性表达和蛋白质表达成为可能。根据宿主生物的不同,这意味着例如基因只是在诱导后表达或过表达,或基因立即表达和/或过表达。
而且,调节序列或调节因子优选地对所导入基因的表达具有有利的作用,从而促进基因的表达。以这种方式,可使用强转录信号如启动子和/或增强子在转录水平有利地增强调节元件。但是,进一步也可通过例如提高mRNA的稳定性来增强翻译。有利地将本发明的核酸序列与至少一个报告基因一同克隆入基因构建体(=表达盒,核酸构建体),且将该基因构建体通过载体导入生物体或直接导入基因组。报告基因通过生长、荧光、化学发光、生物发光或抗性测试或通过光度测定法应易于检测到。可提及的报告基因的实例为抗生素或除草剂抗性基因、水解酶基因、荧光蛋白基因、生物发光基因、糖或核苷酸代谢基因或生物合成基因如Ura3基因、Ilv2基因、萤光素酶基因、β-半乳糖苷酶基因、gfp基因、2-脱氧葡萄糖-6-磷酸磷酸酯基因、β-葡糖苷酸酶基因、β-内酰胺酶基因、新霉素磷酸转移酶基因、潮霉素磷酸转移酶基因或BASTA(=草铵膦抗性)基因。这些基因具有转录活性,且因此易于测定和定量基因的表达。这使得可确定在基因组中显示不同产量的位置。
编码延伸酶的、具有SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11的本发明的核酸序列可以一个拷贝或多个拷贝存在于表达盒(=基因构建体)中。
表达盒(=基因构建体,核酸构建体)可额外地包含至少另一个编码基因的、欲导入宿主生物体的核酸,其优选地来自脂肪酸生物合成。这些基因可位于本发明的延伸酶基因分别的调节或位于同一调节区。这些基因为例如另外的生物合成基因,有利地为脂肪酸生物合成基因,其使得合成增加成为可能。可以实例方式提及的基因为那些用于Δ19-、Δ17-、Δ15-、Δ12-、Δ9-、Δ8-、Δ6-、Δ5-、Δ4-去饱和酶、多种羟化酶、Δ12-乙炔酶(acetylenase)、酰基-ACP硫酯酶、β-酮脂酰基-ACP合成酶或β-酮脂酰基-ACP还原酶。有利地将去饱和酶基因用于核酸构建体。再者,这些基因可以一个拷贝或多个拷贝存在于基因构建体。
C.重组表达载体和宿主细胞
本发明的又一方面涉及载体,优选地涉及表达载体,其包含编码PSE(或其一部分)的本发明的核酸或本发明的基因构建体。如在此上下文中所用,术语”载体”指这样的核酸分子,其可转移另一个与其结合的核酸。载体的一种类型是”质粒”,其代表可连接入其它DNA片段的环状双链DNA环。载体的又一类型为病毒载体,它使其它DNA片段连接入病毒基因组成为可能。某些载体可在它们所导入的宿主细胞中自主复制(例如具有细菌复制起点的细菌载体和游离型哺乳动物载体)。其它载体(例如非游离型哺乳动物载体)在导入宿主细胞后被整合入宿主细胞基因组且如此与宿主基因组一起复制。此外,某些载体可支配与其功能性连接的基因的表达。这些载体此处称为“表达载体”。通常,适用于重组DNA技术的表达载体采用质粒。在本描述中,“质粒”和“载体”可互换使用,因为质粒是最常用的载体形式。但本发明还包含其它形式的表达载体,例如发挥类似功能的病毒载体(如复制缺陷的逆转录病毒、腺病毒和腺伴随病毒)。而且,术语载体也包含为技术人员所公知的其它载体,例如噬菌体、病毒(如SV40、CMV、杆状病毒、腺病毒)、转座子、插入序列、噬菌粒、噬粒、粘粒、线状或环状DNA和RNA。
本发明的重组表达载体包含本发明的核酸或本发明的基因构建体,其中重组表达载体为适于在宿主细胞中表达核酸的形式,这意味着重组表达载体包含一种或多种调节序列,调节序列是根据用于表达的宿主细胞而选择的,其与欲表达的核酸序列功能性连接。在重组表达载体中,“功能性连接”指目标核苷酸序列与调节序列以某种方式连接,从而使核苷酸序列的表达是可能的,且它们被相互连接,从而(例如在体外转录/翻译系统中,或当载体被导入宿主细胞在宿主细胞中时)使这两种序列完成序列所具有的预定功能。术语“调节序列”指包含启动子、增强子和其它表达控制元件(如聚腺苷酸化信号)。这些调节序列例如见Goeddel:基因表达技术:酶学方法(Gene Expression Technology:Methods in Enzymology)185,学术出版社(Academic Press),San Diego,CA(1990),或见:Gruber和Crosby,在:植物分子生物学和生物技术中的方法(Methods in Plant MolecularBiology and Biotechnolgy),CRC Press,Boca Raton,佛罗里达,编辑:Glick和Thompson,第7章,89-108中的描述,包括其中的参考文献。调节序列包含那些在许多宿主细胞类型中控制核苷酸序列组成型表达的序列和那些只在某些宿主细胞中控制核苷酸序列在某些条件下直接表达的序列。技术人员公知表达载体的设计可依赖于一些因素如欲转化宿主细胞的选择、目标蛋白质表达程度等。可将本发明的表达载体导入宿主细胞,以产生此处所述核酸编码的蛋白质或肽,其中包括融合蛋白质或融合肽(例如PSEs、PSEs的突变形式、融合蛋白质等)。
可设计用于在原核或真核细胞中表达PSEs的本发明的重组表达载体。例如可使用载体并按WO 98/01572中所述的转化方法在细菌细胞(如谷氨酸棒杆菌(C.glutamicum))、昆虫细胞(使用杆状病毒表达载体)、酵母和其它真菌细胞[参见Romanos,M.A.等人,(1992)“外源基因在酵母中的表达:综述”(“Foreign gene expression in yeast:a review”),酵母(Yeast)8:423-488;van den Hondel,C.A.M.J.J.等人,(1991)真菌中更多的基因操作(More Gene Manipulations in Fungi),J.W.Bennet & L.L.Lasure编辑的“异源基因在丝状真菌中的表达”(“Heterologous gene expression infilamentous fungi”),396-428页:学术出版社:San Diego;以及van denHondel,C.A.M.J.J.,&Punt,P.J.(1991)在真菌应用分子遗传学(AppliedMolecular Genetics of Fungi),Peberdy,J.F.等人编辑的“开发用于丝状真菌的基因转移系统和载体”(“Gene transfer systems and vectordevelopment for filamentous fungi”),1-28页,剑桥大学出版社:剑桥]、藻类[Falciatore等人,1999,海洋生物技术(Marine Biotechnology.)1,3:239-251]、下列类型的纤毛虫:全毛亚纲(Holotrichia)、缘毛亚纲(Peritrichia)、旋唇亚纲(Spirotrichia)、吸管亚纲(Suctoria)、四膜虫属、草履虫、豆形虫属、瞬目虫(Glaucoma)、匙口虫(Platyophrya)、Potomacus、假康纤虫属(Pseudocohnilembus)、游仆虫(Euplotes)、Engelmaniella和棘尾虫,尤其是Stylonychia lemnae,以及多细胞植物的细胞[参见Schmidt,R.和Willmitzer,L.(1988)“高效根癌土壤杆菌介导的拟南芥菜叶和子叶外植体的转化”(“High efficiency Agrobacterium tumefaciens-mediatedtransformation of Arabidopsis thaliana leaf and cotyledon explants”),植物细胞报告(Plant Cell Rep.):583-586;植物分子生物学和生物技术(PlantMolecular Biology and Biotechnology),C Press,Boca Raton,Florida,第6/7章,71-119页(1993);F.F.White,B.Jenes等人,基因转移技术(Techniques for Gene Transfer),在:转基因植物(Transgenic Plants),Bd.1,工程和应用(Engineering and Utilization),编辑:Kung和R.Wu,Academic Press(1993),128-43;Potrykus,植物生理学和植物分子生物学年鉴(Annu.Rev.Plant Physiol.Plant Molec.Biol.)42(1991),205-225(以及其中引用的参考文献)]或哺乳动物细胞中表达PSE基因。另外在Goeddel,基因表达技术:酶学方法(Gene Expression Technology:Methods inEnzymology)185,Academic Press,San Diego,CA(1990)中描述了合适的宿主细胞。另外,例如用T7启动子调节序列和T7聚合酶可体外转录和翻译重组表达载体。
在原核生物中,通常用含有组成型或诱导型启动子的载体表达蛋白质,其中所述组成型或诱导型启动子控制融合蛋白质或非融合蛋白质的表达。融合载体向其中编码的蛋白质添加了一系列氨基酸,通常在重组蛋白质的氨基末端,但也可在C末端,或融合入蛋白质中的合适区域。这些融合载体通常具有三个作用:1)增强重组蛋白质的表达;2)提高重组蛋白质的可溶性;以及3)通过在亲和纯化中作为配体(例如通过称为his的标签)支持重组蛋白质的纯化。在为融合表达载体的情况下,通常在融合单元和重组蛋白质连接位点处导入原核切割位点,这样在纯化了融合蛋白质后,可将重组蛋白质从融合单元分离出来。这些酶和它们对应的识别序列包含Xa因子、凝血酶和肠激酶。
典型的融合表达载体尤其为pGEX[Pharmacia Biotech Inc;Smith,D.B.和Johnson,K.S.(1988)基因(Gene)67:31-40]、pMAL[New EnglandBiolabs,Beverly,MA]和pRIT5[Pharmacia,Piscataway,NJ],其中将谷胱甘肽S-转移酶(GST)、麦芽糖-E-结合蛋白质或蛋白A融合至重组的目标蛋白质。在一个实施方案中,将PSE-编码序列克隆入pGEX表达载体,以产生编码融合蛋白质的载体,其中所述融合蛋白质包含:从N末端至C末端依次为GST-凝血酶切割位点-X-蛋白质。可用谷胱甘肽-琼脂糖树脂通过亲和层析纯化融合蛋白质。通过用凝血酶切割融合蛋白质可获得不与GST融合的重组PSE。
合适的诱导型非融合大肠杆菌(E.coli)表达系统的实例特别为pTrc(Amann等人(1988)基因69:301-315)和pET 11d(Studier等人,基因表达技术:酶学方法(Gene Expression Technology:Methods in Enzymology)185,Academic Press,San Diego,California(1990)60-89)。PTrc载体的靶基因表达是基于宿主RNA聚合酶从杂合的trp-lac融合启动子进行的转录。pET 11d载体的靶基因表达是基于由共表达的病毒RNA聚合酶(T7 gn1)介导的从T7-gn10-lac融合启动子进行的转录。宿主菌BL21(DE3)或HMS174(DE3)通过位于其中的带有在lacUV 5启动子转录控制下的T7 gn1基因的λ噬菌体提供该病毒聚合酶。
其它适用于原核生物的载体为技术人员公知;这些载体例如为在大肠杆菌中的pLG338、pACYC184、pBR系列(如pBR322)、pUC系列(如pUC18或pUC19)、M113mp系列、pKC30、pRep4、pHS1、pHS2、pPLc236、pMBL24、pLG200、pUR290、pIN-III113-B1、pgt11或pBdCI,在链霉菌中的pIJ101、pIJ364、pIJ702或pIJ361,在芽孢杆菌中的pUB110、pC194或pBD214,在棒状杆菌中的pSA77或pAJ667。
最佳的重组蛋白表达策略为在蛋白酶剪切重组蛋白质的能力被破坏的宿主菌中表达蛋白质[Gottesman,S.,基因表达技术:酶学方法185,Academic Press,圣地亚哥,加利福利亚(1990)119-128]。还有一个策略是修饰欲插入表达载体的核酸序列,以使每个氨基酸单独的密码子为细菌如谷氨酸棒杆菌优先使用的、选择用于表达的密码子[Wada等人(1992)核酸研究(Nucleic Acids Res.)20:2111-2118]。通过标准的DNA合成技术进行本发明的这些核酸序列的修饰。
又在一个实施方案中,PSE表达载体为酵母表达载体。用于在酿酒酵母(酿酒酵母)中表达的载体的实例包括pYepSec1[Baldari等人(1987)Embo J.6:229-234]、pMFa[Kurjan和Herskowitz(1982)细胞(Cell)30:933-943]、pJRY88[Schultz等人(1987)基因(Gene)54:113-123]和pYES2[Invitrogen Corporation,圣地亚哥,CA]。适用于其它真菌如丝状真菌的载体和构建载体的方法包括那些在van den Hondel,C.A.M.J.J.和Punt,P.J.(1991)开发的用于丝状真菌的基因转移系统和载体(Genetransfer systems and vector development for filamentous fungi),在:真菌的应用分子遗传学(Applied Molecular Genetics of fungi),J.F.Peberdy等人编辑,1-28页,剑桥大学出版社:剑桥,或在:真菌中更多的基因操作(More Gene Manipulations in Fungi)[J.W.Bennet & L.L.Lasur编辑,396-428页:Academic Press:圣地亚哥]中所详述的。其它合适的酵母载体为例如pAG-1、YEp6、YEp13或pEMBLYe23。
另外,可使用杆状病毒表达载体在昆虫细胞中表达本发明的PSEs。在培养的昆虫细胞(如Sf9细胞)中有用的表达蛋白质的杆状病毒载体包括pAc系列[Smith等人(1983)分子细胞生物学(Mol.Cell Biol.)3:2156-2165]和pVL系列[Lucklow和Summers(1989)病毒学(Virology)170:31-39]。
上述载体只是对可能的合适载体进行的一段短综述。另外的质粒为技术人员公知且在例如克隆载体(Cloning Vectors)(Pouwels,P.H.等人编辑,Elsevier,Amsterdam-New York-Oxford,1985,ISBN 0 444 904018)中进行了描述。
又在一个进一步的实施方案中,用哺乳动物表达载体在哺乳动物细胞中表达本发明的核酸。哺乳动物表达载体的实例包括pCDM8[Seed,B.(1987)自然(Nature)329:840]和pMT2PC[Kaufman等人(1987)EMBO J.6:187-195]。当用于在哺乳动物细胞中表达时,通常由病毒的调节元件提供表达载体的调控功能。常用的启动子衍生于例如多形瘤、腺病毒2、巨细胞病毒和猿猴病毒40。可在Sambrook,J.,Fritsch,E.F.和Maniatis,T.,分子克隆:实验室手册,第二版(Molecular Cloning:A Laboratory Manual,2ndEdition),冷泉港实验室,冷泉港实验室出版社,冷泉港,纽约,1989一书的第16和17章中找到其它适用于原核和真核细胞的表达系统。
在另一个实施方案中,重组哺乳动物表达载体优选地在特定细胞类型中可控制核酸的表达(例如用组织特异的调节元件表达核酸)。组织特异的调节元件为本领域所公知。合适的组织特异启动子的非限制性实例尤其为白蛋白启动子[肝特异的;Pinkert等人(1987)基因进展(Genes Dev.)1:268-277]、淋巴样特异的启动子[Calame和Eaton(1988)免疫学进展(Adv.Immunol.)43:235-275](尤其是T细胞受体的启动子[Winoto和Baltimore(1989)EMBO J.8:729-733]和免疫球蛋白启动子[Banerji等人(1983)细胞33:729-740;Queen和Baltimore(1983)细胞33:741-748])、神经元特异的启动子[如神经丝启动子;Byrne和Ruddle(1989)PNAS 86:5473-5477]、胰腺特异的启动子[Edlund等人(1985)科学(Science)230:912-916]和乳房特异的启动子[如乳清启动子;US 4,873,316和EP-A-0 264 166]。也包括调节发育的启动子,如小鼠hox启动子[Kessel和Gruss(1990)科学249:374-379]和胎儿球蛋白启动子[Campes和Tilghman(1989)基因进展3:537-546]。
在又一个实施方案中,可在单细胞的植物细胞(如藻类)中表达本发明的PSEs,参见Falciatore等人,1999,海洋生物技术(Marine Biotechnology)1(3):239-251及其中引用的文献,以及可在高等植物的植物细胞(如种子植物(如作物))中表达本发明的PSEs。植物表达载体的实例包括那些在Becker,D.,Kemper,E.,Schell,J.和Masterson,R.(1992)“具有位于接近左边界的选择性标记的新植物双元载体”(“New plant binary vectors with selectablemarkers located proximal to the left border”),植物分子生物学(Plant Mol.Biol.)20:1195-1197以及Bevan,M.W.(1984)”用于植物转化的双元土壤杆菌载体”(”Binary Agrobacterium vectors for plant transformation”),核酸研究(Nucl.Acids Res.)12:8711-8721;在转基因植物(Transgenic Plants),第1卷,工程和应用(Engineering and Utilization),Kung和R.Wu编辑,Academic Press,1993中的高等植物中用于基因转移的载体(Vectors forGene Transfer in Higher Plants),15-38页中详述的载体。在“植物分子生物学和生物技术中的方法”(“Methods in Plant Molecular Biology andBiotechnology”)(CRC Press),第6/7章,71-119页等中描述了更多合适的植物载体。有利的载体为在大肠杆菌和土壤杆菌中复制的称为穿梭载体或二元载体。
植物表达盒优选地包含可控制植物细胞中的基因表达并被功能性连接的调节序列,这样每个序列可履行其作用,如转录终止由例如聚腺苷酸化信号履行。优选的聚腺苷酸化信号为衍生自根癌土壤杆菌(Agrobacteriumtumefaciens)的T-DNA,如Ti质粒pTiACH5的基因3,其公知为章鱼碱合成酶[Gielen等人,EMBO J.3(1984)835以及下列等等]或其功能等同物,但所有其它植物中的功能活性终止子也是适用的。
由于植物基因表达往往不限于转录水平,植物表达盒优选地包含其它功能性连接的序列,如翻译增强子,例如超驱动序列,其包含增加蛋白质/RNA比值的5’-非翻译烟草花叶病毒前导序列[Gallie等人,1987,核酸研究15:8693-8711]。
必须将植物基因表达功能性连接至合适的影响基因以具正确时序的细胞或组织特异性方式表达的启动子上。优选的启动子为那些导致组成型表达的启动子[Benfey等人,EMBO J.8(1989)2195-2202],如那些衍生自植物病毒的启动子(如35S CAMV[Franck等人,细胞(Cell)21(1980)285-294]、19S CaMV(也参见US 5,352,605和WO 84/02913)或植物启动子(如在US 4,962,028中描述的核酮糖二磷酸羧化酶-加氧酶小亚单位启动子)。
在植物基因表达盒中优选用于功能连接的其它序列为引导肽,其为将基因产物靶向在其对应的细胞区室中所必需[综述可参见Kermode,植物科学评论(Crit.Rev.Plant Sci.)15,4(1996)285-423及其中引用的文献],如进入液泡、核、各种类型的质体(如造粉体、叶绿体、色质体)、胞外空间、线粒体、内质网、油质体、过氧化物酶体以及进入植物细胞的其它区室。
也可通过化学诱导型启动子促进植物基因表达[综述参见Gatz 1997,植物生理学和植物分子生物学年鉴(Annu.Rev.Plant Physiol.Plant Mol.Biol.),48:89-108]。当希望基因表达以与时序有关的特定方式进行时,化学诱导型启动子尤其适用。此类启动子的实例为水杨酸-诱导型启动子(WO95/19443)、四环素-诱导型启动子[Gatz等人,(1992)植物杂志(Plant J.)2,397-404]和乙醇-诱导型启动子。
其它合适的启动子为对生物或非生物压力条件反应的启动子,如病原体-诱导的PRP1基因启动子[Ward等人,植物分子生物学(Plant.Mol.Biol.)22(1993)361-366]、热诱导的番茄hsp80启动子(US 5,187,267)、低温诱导的马铃薯α淀粉酶启动子(WO 96/12814)或创伤诱导的pinII启动子(EP-A-0 375 091)。
尤其优选的启动子为那些导致基因在进行脂类和油合成的组织和器官、种子细胞(如胚乳细胞和发育中的胚芽细胞)中表达的启动子。合适的启动子为油料种子油菜napin基因启动子(US 5,608,152)、蚕豆(Viciafaba)USP启动子[Baeumlein等人,分子普通遗传学(Mol Gen Genet),1991,225(3):459-67]、鼠耳芥油质蛋白启动子(WO 98/45461)、菜豆(Phaseolusvulgaris)的云扁豆蛋白启动子(US 5,504,200)、芸苔Bce4启动子(WO91/13980)或豆球蛋白B4启动子[LeB4;Baeumlein等人,1992,植物杂志(Plant Journal),2(2):233-9],以及导致在单子叶植物如玉米、大麦、小麦、稻米等中进行种子特异性表达的启动子。值得注意的合适启动子为大麦lpt2或lpt1基因启动子(WO 95/15389和WO 95/23230),或在WO 99/16890中描述的启动子(来自大麦的大麦醇溶蛋白基因、稻米谷蛋白基因、稻米的oryzin基因、稻米醇溶谷蛋白基因、小麦麦醇溶基因、小麦谷蛋白基因、玉米的玉米蛋白基因、燕麦的谷蛋白基因、高梁kasirin基因和裸麦的裸麦醇溶蛋白基因的启动子)。
也尤其适用的启动子为那些导致质体-特异性表达的启动子,因为质体为脂类生物合成的前体和一些终产物在其中合成的区室。合适的启动子如病毒RNA聚合酶启动子于WO 95/16783和WO 97/06250中进行了描述,以及鼠耳芥clpP启动子于WO 99/46394中进行了描述。
本发明还提供了包含本发明的DNA分子的重组表达载体,其中DNA分子以反义方向克隆入表达载体,即DNA分子以某种方式功能性连接至调节序列,可使得与PSE mRNA“反义”的RNA分子(通过转录该DNA分子)表达。可选择功能性连接至以反义方向克隆的核酸且控制该反义RNA分子在多种细胞类型中连续表达的的调节序列,例如病毒启动子和/或增强子,或可选择控制反义RNA的组成型、组织特异的或细胞类型特异的表达的调节序列。反义表达载体可以重组质粒、噬菌粒或减毒病毒的形式存在,其中在高效调节区的控制下产生反义核酸,可通过测定载体所导入的细胞类型确定反义核酸的活性。对于通过反义基因调节基因表达的说明参见Weintraub,H.等人,反义RNA作为分子工具用于基因分析,综述—遗传学趋势(Antisense-RNA as a molecular tool for genetic analysis,Reviews-Trends in Genetics),1卷(1)1986。
本发明的又一方面涉及本发明的重组表达载体导入的宿主细胞。术语“宿主细胞”和“重组宿主细胞”在本上下文中可互换使用。当然,这些术语不仅仅指具体的靶细胞,也指该细胞的子代或潜在的子代。因为突变或环境的影响,在接下来的代中可产生特定的改变,因此该子代不必与亲代细胞同一,但仍位于如本上下文中所用的术语范围内。
宿主细胞可为原核或真核细胞。例如可在细菌细胞(如谷氨酸棒杆菌)、昆虫细胞、真菌细胞或哺乳动物细胞(如中国仓鼠卵巢细胞(CHO)或COS细胞)、藻类、纤毛虫、植物细胞、真菌或其它微生物(如谷氨酸棒杆菌)中表达PSE。其它合适的宿主细胞为本领域技术人员公知。
通过常规转化或转染技术,可将载体DNA导入原核或真核细胞。如在本上下文中所用的术语“转化”和“转染”、接合和转导意在包含多种本领域公知的用于将外源核酸(如DNA)导入宿主细胞的方法,包括磷酸钙或氯化钙共沉淀、DEAE-葡聚糖-介导的转染、脂质转染、天然的感受态、化学介导的转移、电穿孔或粒子轰击。可在Sambrook等人,(分子克隆:实验室手册,第二版(Molecular Cloning:A Laboratory Manual.,2nd Ed.),冷泉港实验室,冷泉港实验室出版社,冷泉港,纽约,1989)和其它实验室教科书(如分子生物学方法(Methods in Molecular Biology),1995,44卷,土壤杆菌方法(Agrobacterium protocols),Gartland和Davey编辑,HumanaPress,Totowa,新泽西)中找到用于转化或转染宿主细胞(包括植物细胞)的合适方法。
人们公知在哺乳动物细胞的稳定转染中仅有一小部分细胞将外源DNA整合入其基因组中,这取决于所用的表达载体和所用的转染技术。为了鉴定和选择这些整合体,通常将编码选择性标记物(例如抗生素抗性)的基因与目的基因一同导入宿主细胞。优选的选择性标记物包含那些赋予对药物(如G418、潮霉素和氨甲蝶吟)抗性的选择性标记物,或在植物中为赋予对除草剂(草甘膦或草铵膦)抗性的选择性标记物。其它合适的标记物为例如编码参与如糖类或氨基酸生物合成途径的基因,例如β-半乳糖苷酶、ura3或ilv2。由萤光素酶基因、gfp基因或其它荧光基因编码的标记物也是适用的。这些标记物可用于这些基因不起作用的突变体中,因为它们已被例如通过常规方法删除了。而且,可将编码选择性标记的核酸标记物与编码PSE的核酸于同一载体上导入宿主细胞,或者也可在分别的载体上导入宿主细胞。可通过例如药物选择鉴定已被所导入核酸稳定转染的细胞(例如,已整合有选择性标记物的的细胞存活,而其它细胞死亡)。
为了产生同源重组微生物,所产生的载体包含至少一段已导入了删除、添加或替换的PSE基因,以借此改变PSE基因,例如功能性破坏它。该PSE基因优选地为剑叶藓、疫霉属、隐甲藻类或破囊壶菌PSE基因,但也可用来自其它生物,甚至来自哺乳动物、真菌或昆虫来源的同系物或类似物。在一个优选的实施方案中,以使内源PSE基因在同源重组后被功能性破坏的方式设计载体(即不再编码功能蛋白质,也称为敲除载体)。另外,也可这样设计载体,使内源PSE基因在同源重组后突变或以其它方式被改变同时仍编码功能蛋白质(例如可以某种方式修饰上游调节区,以导致内源PSE表达的改变)。也可使用DNA-RNA杂交体通过同源重组产生点突变,其也公知为嵌合修复术,并从Cole-Strauss等人,1999,核酸研究27(5):1323-1330和Kmiec,基因治疗(Gene therapy),1999,美国科学家(American Scientist),87(3):240-247公知。
在用于同源重组的载体中,PSE基因之改性片段的5′和3′末端侧翼为其它的PSE基因核酸,从而使位于载体上的外源PSE基因和微生物或植物中的内源PSE基因之间的同源重组可进行。该其它的侧翼PSE核酸是足够长的,以便与内源基因成功地进行同源重组。通常在载体中存在几百个碱基对至上千个碱基的侧翼DNA(在5′和3′末端均存在)[有关用于同源重组的载体的描述参见如Thomas,K.R.和Capecchi,M.R.(1987)细胞(Cell)51:503或对于展叶剑叶藓的基于cDNA的重组参见Strepp等人,1998,美国国家科学院院报(Proc.Natl.Acad.Sci.USA)95(8):4368-4373]。用本领域公知的方法将载体(例如通过聚乙二醇介导的DNA方法)导入微生物或植物细胞,以及选择已导入了PSE基因的、经历了与内源PSE基因同源重组的细胞。
在另一个实施方案中,可产生包含选择系统的、允许对导入基因的表达进行调节的重组生物如植物或微生物。PSE基因包含在一个载体中,其中PSE基因位于lac-操纵子的控制下,允许例如只有在存在IPTG时表达该PSE基因。这些调节系统为本领域公知。
本发明的宿主细胞如原核或真核宿主细胞,或培养生长或在田间生长,可用于产生(即表达)PSE。在植物中,可另外使用其它方法,所述其它方法为通过电穿孔或土壤杆菌介导的基因转移将DNA直接转移入正在发育的花中。因此,本发明还提供了用本发明的宿主细胞产生PSEs的方法。在一个实施方案中,方法包括在合适的培养基中培养本发明的宿主细胞(编码PSE的重组表达载体已导入其中,或编码野生型或修饰PSE的基因已导入其基因组中)直至产生PSE。在进一步的一个实施方案中,方法包含从培养基或宿主细胞分离PSEs。
原则上适于摄入本发明的核酸、本发明的新基因产物或本发明的载体的宿主细胞为所有的原核或真核生物。所用宿主生物有利地为如细菌、真菌、酵母、动物细胞或植物细胞生物。更有利的生物为动物或优选地植物或其一部分。应明白此处的术语“动物”不包括人类。优选地使用真菌、酵母或植物,尤其优选地为真菌或植物,非常尤其优选植物,如含有大量脂类化合物的油料作物如油料种子油菜、月见草、蓖麻油植物、芸苔、花生、亚麻籽、大豆、红花、向日葵、琉璃苣、油棕、椰子或以下植物(如玉米、小麦、裸麦、燕麦、黑小麦、稻米、大麦、棉花、木薯、胡椒、万寿属)、茄科植物(如马铃薯、烟草、茄子和番茄)、野豌豆类、豌豆、苜蓿、灌木植物(咖啡树、可可树、茶树)、柳属、树(油棕、椰子)和多年生草和饲料作物。本发明尤其优选的植物为油料作物,如大豆、花生、油料种子油菜、芸苔、蓖麻油植物、亚麻籽、月见草、向日葵、红花、树(油棕、椰子)。
本发明尤其优选的方面涉及包含本发明的多核苷酸或本发明的载体的植物细胞。进一步地优选包含本发明植物细胞的转基因植物或植物组织。本发明的又一个方面涉及本发明的那些可收获的植物部分,并涉及适用于繁殖本发明的转基因植物的材料,其中所述繁殖材料含有表达本发明核酸的本发明的植物细胞或含有提高水平的本发明蛋白质的细胞。原则上可收获植物的所有部分,尤其是花、花粉、果实、秧苗、根、叶、种子、块茎、茎等。繁殖材料包括例如种子、果实、秧苗、块茎、插条和根状茎。
D.分离的PSE
本发明的又一方面涉及分离的PSEs及其生物活性部分。”分离的”或”纯化的”蛋白质或其生物活性部分当通过重组DNA技术产生时,基本上不含细胞物质,或当它通过化学合成时,不含化学前体或其它化学品。术语”基本上不含细胞材料”包含从天然或重组产生该PSE蛋白质的细胞的细胞成分中分离该蛋白质得到的PSE制品。在一个实施方案中,术语“基本上不含细胞材料”包含少于约30%(基于干重)非PSE(此处也称为“污染蛋白质”)的PSE制品,更优选地包含少于约20%的非PSE,甚至更优选地包含少于约10%的非PSE,且最优选地包含少于约5%的非PSE。当已通过重组技术产生了PSE或其生物活性部分,它也基本上不含培养基,即培养基占少于约20%,更优选地少于约10%,且最优选地少于约5%的蛋白质制品体积。术语“基本上不含化学前体或其它化学品”包含从参与PSE蛋白质合成的化学前体或其它化学品中分离该蛋白质而得到的PSE制品。在一个实施方案中,术语“基本上不含化学前体或其它化学品”包含化学前体或非PSE化学品少于约30%(基于干重)的PSE制品,更优选地包含化学前体或非PSE化学品少于约20%的PSE制品,甚至更优选地包含化学前体或非PSE化学品少于约10%的PSE制品,且最优选地包含化学前体或非PSE化学品少于约5%的PSE制品。在优选的实施方案中,分离的蛋白质或其生物活性部分显示了没有来自产生PSE的相同生物的污染蛋白质。当本发明的蛋白质为含有SEQ ID NO:10所示序列时,或其是由包含SEQ ID NO:9的基因编码时,则必须考虑到序列由两个Met起始。当对应的编码核酸序列翻译时,这会导致本发明蛋白质起始于第一个或第二个Met的两种衍生物的表达。两种衍生物的表达比率在0和1之间变化,这取决于表达的类型或宿主生物。本发明因此包含含有所提及的两种衍生物的PSE,或只含有衍生物之一的PSE。这两种衍生物可具有不同的活性、定位、半衰期、调节机制等。这些蛋白质如剑叶藓、疫霉属、隐甲藻类或破囊壶菌PSE通常通过在植物中(如展叶剑叶藓或上面提及的植物)或在微生物如细菌(诸如大肠杆菌、枯草芽孢杆菌(Bacillus subtilis)、谷氨酸棒杆菌)、真菌(诸如被孢霉属)、酵母(诸如酵母属(Saccharomyces))、或纤毛虫(诸如豆形虫属)或藻类(如褐指藻)中重组表达产生。
本发明的分离PSE或其部分也可参与剑叶藓、疫霉属、隐甲藻类或破囊壶菌的细胞膜合成所需化合物的代谢或参与分子跨过这些膜的转运。在优选的实施方案中,该蛋白质或其部分包含与SEQ ID NO:2、SEQ IDNO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的氨基酸序列具有足够同源性的氨基酸序列,以使该蛋白质或其部分保留参与剑叶藓、疫霉属、隐甲藻类或破囊壶菌的细胞膜合成所需化合物的代谢能力或保留参与分子跨过这些膜的转运能力。该蛋白质的部分优选地为此处所述的生物活性部分。又在一个优选的实施方案中,本发明的PSE具有SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ IDNO:10和SEQ ID NO:12中所示的氨基酸序列之一。又在一个优选的实施方案中,PSE具有由与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ IDNO:7、SEQ ID NO:9和SEQ ID NO:11的核苷酸序列例如在严格的杂交条件下杂交的核苷酸序列编码的氨基酸序列。还在另一个优选的实施方案中,PSE具有这样的由核苷酸序列编码的氨基酸序列,该氨基酸序列与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ IDNO:10和SEQ ID NO:12的氨基酸序列之一具有至少约50至6O%,优选地至少约60至70%,更优选地至少约70至80%、80至90%、90至95%,且更优选地至少约96%、97%、98%、99%或更高的同源性。根据本发明优选的PSE优选地也具有至少一个此处描述的PSE活性。例如,本发明优选的一种PSE包含由与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ IDNO:7、SEQ ID NO:9和SEQ ID NO:11的核苷酸序列例如在严格的杂交条件下杂交的核苷酸序列编码的氨基酸序列,且该PSE可参与剑叶藓、疫霉属、隐甲藻类或破囊壶菌的细胞膜合成所需化合物的代谢或参与分子跨过这些膜的转运,并能延伸一种或多种具有至少两个双键且链长为C16或C18的多不饱和脂肪酸。
在另一个实施方案中,PSE基本上与SEQ ID NO:2、SEQ ID NO:4、SEQID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12的氨基酸序列同源,并保留SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12序列之一的蛋白质的功能活性,正如上述部分I所详述的,由于自然变异或诱发突变,它们的氨基酸序列是不同的。在一个进一步的实施方案中,PSE因此为包含这样的氨基酸序列的蛋白质,该氨基酸序列与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ IDNO:8、SEQ ID NO:10和SEQ ID NO:12的全长氨基酸序列具有至少约50至6O%,优选地至少约60至70%,更优选地至少约70至80%、80至90%、90至95%,且最优选地至少约96%、97%、98%、99%或更高的同源性,且具有至少一种此处描述的PSE活性。在另一个实施方案中,本发明涉及全长的剑叶藓、疫霉属、隐甲藻类或破囊壶菌蛋白质,它们基本上与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ IDNO:10和SEQ ID NO:12的全长氨基酸序列同源。
PSE的生物活性部分包含含有这样的氨基酸序列的肽,其中所述氨基酸序列衍生于PSE的氨基酸序列,例如在SEQ ID NO:2、SEQ ID NO:4、SEQID NO:6、SEQ ID NO:8、SEQ ID NO:10和SEQ ID NO:12中所示的氨基酸序列,PSE的生物活性部分或包含与PSE同源的蛋白质的氨基酸序列,其中肽具有的氨基酸少于全长的PSE或者肽为全长的与PSE同源的蛋白质且具有至少一种PSE活性。生物活性部分(肽,例如具有长为如5个、10个、15个、20个、30个、35个、36个、37个、38个、39个、40个、50个、100个或更多氨基酸的肽)通常包含具有至少一种PSE活性的一个结构域或一个基序。而且,可通过重组技术产生蛋白质的其它区被删除的其它生物活性部分,并研究有关的此处描述的一种或多种活性。PSE的生物活性部分优选地包含具有生物活性的一个或多个所选择结构域/基序或其一部分。
此类结构域和基序中的一些结构域和基序可通过如使用计算机辅助方法进行序列分析而鉴定。
发现本发明的序列包含如KK基序。
Kermode 1996,植物科学评论(Critical Reviews in Plant Sciences)15(4):285-423,描述了KK基序,其为两个赖氨酸,发现其主要为KKXX或KX K XXX基序且其影响从ER至高尔基体的再循环并因此影响蛋白质及其酶活性在特定位置尤其是在ER的滞留时间。
例如在Δ12-去饱和酶中也发现了双赖氨酸基序(Arondel等人1992,科学  258:1353),并且它们也存在于本发明的延伸酶中。已描述了可定位于C-末端的特定基序。在本发明的序列中,C-末端存在明显的赖氨酸聚集。
藓类植物延伸酶PSE1:C-末端    KQKGAKTE
SEQ ID NO 2:                 KTKKA
SEQ ID NO 4                   KKSTPAAKKTN
SEQ ID NO 6:                 KHLK
这些可为可能的基因变异。
存在影响在ER或于ER中靶向、寻址或定位的Lys基团。在C-末端的末端附近遮蔽、修饰或空间修饰该序列,如与GFP“绿色荧光蛋白”融合可用于影响区室化。
优选地通过重组DNA技术产生PSEs。例如将编码蛋白质的核酸分子克隆入表达载体(如上所述),将该表达载体导入宿主细胞(如上所述),并在宿主细胞中表达该PSE。然后通过合适的纯化方案,用标准的蛋白质纯化技术可从细胞分离PSE。作为重组表达的替代方法,可通过标准的肽合成技术化学合成PSE、PSE多肽或PSE肽。而且,可用如抗PSE抗体从细胞(如内皮细胞)中分离天然的PSE,其中所述抗PSE抗体可利用本发明的PSE或其片段通过标准技术产生。
本发明也提供了嵌合的PSE蛋白质或PSE融合蛋白质。如在本上下文中所用,“嵌合的PSE蛋白质”或“PSE融合蛋白质”包含与非PSE多肽功能性连接的PSE多肽。”PSE多肽”指具有对应于PSE的氨基酸序列的多肽,而“非PSE多肽”指具有对应于基本上不与PSE同源的蛋白质的氨基酸序列的多肽,例如不同于PSE的且来自同一生物或另一生物的蛋白质。在融合蛋白质中,应明白术语“功能性连接”是指PSE多肽和非PSE多肽以某种方式相互连接,从而使两种序列执行预测的功能,其中所述功能是所用序列所具有的。可将非PSE多肽融合至PSE多肽的N末端或C末端。在一个实施方案中融合蛋白质为例如GST-PSE融合蛋白质,其中PSE序列融合在GST序列的C末端。这些融合蛋白质可使重组PSEs的纯化变得容易。在又一个实施方案中,融合蛋白质为在其N末端具有异源信号序列的PSE。在某些宿主细胞中(如哺乳动物宿主细胞),通过使用异源信号序列可提高PSE的表达和/或分泌。
通过标准的重组DNA技术产生本发明的嵌合PSE蛋白质或PSE融合蛋白质。例如用常规技术将编码不同多肽序列的DNA片段以正确的阅读框架相互连接,其中所述常规技术如通过使用平末端或粘性末端用于连接,限制性酶切割以提供合适的末端,补平粘末端,如所需要的用碱性磷酸酶处理以避免不想要的连接,并进行酶连接反应。在又一个实施方案中,可用常规技术包括DNA合成仪合成融合基因。另一种方法是,用锚定引物进行基因片段的PCR扩增,这样在连续的基因片段之间产生互补的突出端,它们接下来可杂交并再次扩增以产生嵌合的基因序列(参见例如,分子生物学最新方法(Current Protocols in Molecular Biology),Ausubel等人编辑,JohnWiley & Sons:1992)。并且大量的编码融合单元(如GST多肽)的表达载体可通过商业途径获得。可将编码PSE的核酸克隆入此类表达载体,从而将融合单元以正确的阅读框连接至PSE蛋白质。
可通过诱变(如通过特定的点突变)或截短PSE产生PSE同系物。在本上下文中所用术语“同系物”是指PSE的变体形式,其为PSE活性的激动剂或拮抗剂。PSE激动剂可基本上保留与PSE相同的活性或保留PSE的一些生物活性。PSE拮抗剂可抑制天然存在的PSE形式的一种或多种活性,如通过竞争性结合用于包含PSE的细胞膜成分的代谢级联的上游或下游因子,或通过结合于介导化合物通过细胞膜转运的PSE,从而抑制转运。
在另一个实施方案中,可通过筛选PSE突变体(如截短的突变体)的组合文库来鉴定与PSE激动剂或PSE拮抗剂活性相关的PSE同系物。在一个实施方案中,通过组合诱变在核酸水平产生PSE变体的多样化文库并且该文库由多样化基因文库编码。可例如通过将合成的寡核苷酸混合物酶连接为基因序列从而产生PSE变体的多样化文库,这样可以单一多肽或另外地以一组较大的融合蛋白质(如用于噬菌体展示)表达一系列简并的可能的PSE序列,其中所述一组较大的融合蛋白质包含该组PSE序列。有多种方法可用于产生来自简并寡核苷酸序列的潜在PSE同系物的文库。可用DNA合成仪化学合成简并的基因序列,然后将合成的基因连接入合适的表达载体。一系列简并基因的使用使得在混合物中提供了编码目标系列的潜在PSE序列的所有序列。合成简并寡核苷酸的方法为本领域公知[参见如Narang,S.A.(1983)四面体(Tetrahedron)39:3;Itakura等人.(1984)生物化学年鉴(Annu.Rev.Biochem.)53:323;Itakura等人,(1984)科学198:1056;Ike等人(1983)核酸研究11:477]。
此外,可使用PSE片段的文库来产生PSE片段的多样化群体,用于筛选和用于接下来PSE同系物的选择。在一个实施方案中,编码序列的片段文库可通过用核酸酶处理编码PSE序列的双链PCR片段,其中核酸酶的处理条件为每分子约只发生一次双链断裂,然后变性该双链DNA,重新复性DNA,形成包含多种双链断裂产物的有义/反义对双链DNA,对新形成的双链通过用S1核酸酶处理去除单链部分,并将所得的片段文库连接入表达载体。该方法使得可得到编码PSEs的N-末端、C-末端和多种大小内在片段的表达文库。
一些用于在已通过点突变或截短产生的组合文库中筛选基因产物的技术以及一些用于筛选cDNA文库,以获得具选择特性的基因产物的技术为本领域公知。可采用这些技术以快速筛选通过对PSE同系物重组诱变产生的基因文库。用于筛选大基因库的、可进行高通量分析的最常用技术通常包含将基因文库克隆入可复制表达载体,用所得的载体文库转化合适的细胞,以及在一定条件下表达组合基因,在此期间对目标活性的检测促进了对编码该基因的、已检测其产物的载体的分离。递归整体诱变(REM)为一项在文库中增加功能突变体频率的新技术,可与筛选测试法结合用于鉴定PSE同系物[Arkin和Yourvan(1992)美国国家科学院院报89:7811-7815;Delgrave等人(1993)蛋白质工程(Protein Engineering)6(3):327-331]。也可有利地使用上述方法的结合。
改变酶的催化活性或编码它们的基因的其它公知技术为基因改组(参见例如WO 97/20078或WO 98/13487),该技术为基因片段的组合,其中这种新的组合可另外地通过错误聚合酶链反应而变化,从而产生欲测试序列的高多样性。然而,使用此类方法的先决条件是用于测试所得基因功能上具多样性的合适筛选系统。
确定一种或多种PUFA-依赖的酶活性的筛选方法尤其是筛选延伸酶活性的先决条件。至于具PUFAs特异性的延伸酶活性,可在通过公知的转化技术用目标基因构建体转化的毛霉菌属中利用在存在有毒代谢物(此处为水杨酸或水杨酸衍生物)时花生四烯酸的毒性(Eroshin等人,Mikrobiologiya,第65卷,第1章,1996,31-36页),以进行基于生长的初次筛选。然后通过气相色谱法和质谱法分析所得克隆的脂类组成,以鉴定起始材料和产物的性质和数量。
在一个进一步的实施方案中,可使用基于细胞测试法,用本领域公知的其它方法来分析多样化PSE文库。
在一个进一步的实施方案中,本发明涉及特异性结合至本发明的多肽或其此类蛋白质的一部分(如表位)的抗体。本发明的抗体可用于鉴定和分离其它延伸酶,尤其是PSEs。这些抗体可为单克隆抗体、多克隆抗体或合成抗体,也可为这些抗体的片段,如Fab、Fv或scFV片段等。如通过Khler和Milstein在自然256(1975),485,以及Galfr在酶学方法(Meth.Enzymol.)73(1981)中最早描述的那些方法可制备单克隆抗体。也可根据如Harlow & Lane,“抗体,实验室手册”(“Antibodies,a LaboratoryManual”),CSH Press,冷泉港,1988来制备抗体及其片段。这些抗体可用于参与和定位如本发明的蛋白质,或用于如在重组生物体中监测这些蛋白质的合成,以及用于鉴定与本发明蛋白质相互作用的化合物。在许多情况下,抗体与抗原的结合等同于与其它配体和抗配体的结合。
本发明还涉及用于鉴定延伸酶(尤其是PSEs)的激动剂或拮抗剂的方法,具体地说包含
a)将表达本发明多肽的细胞与侯选物质结合;
b)测试PSE活性;
c)将PSE活性与缺少侯选物质时的标准活性比较,当PSE活性高于标准活性表明侯选物质为激动剂,PSE活性低于标准活性表明侯选物质为拮抗剂。
所提及的侯选物质可为化学合成的物质或为微生物学地产生的物质,后者存在于如植物、动物或微生物的细胞提取物中。所提及的侯选物质进一步地可为现有技术所公知的但至今对其增加或抑制PSEs活性还为未知。反应混合物可为无细胞提取物或可包含细胞或细胞培养物。合适的方法为本领域技术人员公知并以综合的方式进行了描述,如Alberts,细胞的分子生物学(Molecular Biology of the cell),第三版(1994),第17章。可将所提及物质如加至反应混合物或培养介质,或注射入细胞或喷洒在植物上。
根据本发明的方法,如果已鉴定出包含有活性物质的样本,接下来可直接从最初的样本中直接分离该物质,或当样本由大量不同成分组成时,可将该样本分成多组,以减少每个样本中的不同物质数,然后用最初样本的此类“子样本”重复本发明的方法。根据样本的复杂性,可多次重复上述步骤,优选地直至用本发明的方法鉴定的样本只包含少量的物质或只包含一种物质。用本发明的方法鉴定的物质或其衍生物优选地进一步制备,以使它们适用于植物繁育或植物细胞或组织培养。
用本发明的方法可鉴定和测试的物质为:表达文库(如cDNA表达文库)、肽、蛋白质、核酸、抗体、小的有机物、激素、PNAs等(Milner,自然医药(Nature Medicin)1(1995),879-880;Hupp,细胞(Cell)83(1995),237-245;Gibbs,细胞79(1994),193-198以及其中所应用的文献)。这些物质也可为公知的抑制剂或活化剂的功能衍生物或类似物。制备化学衍生物或类似物的方法为本领域技术人员公知。可用当前技术中的方法测试公知的衍生物和类似物。进一步可使用计算机辅助设计或肽模拟物来制备合适的衍生物和类似物。用于本发明方法的细胞或组织优选地为如上述实施方案中所描述的本发明的宿主细胞、植物细胞或植物组织。
对应地,本发明也涉及用上述的本发明方法所鉴定的物质。该物质为如本发明PSE的同系物。可通过诱变如PSE的点突变或删除产生PSEs的同系物。此处术语“同系物”用于指PSEs的变体形式,其起PSE活性的激动剂或拮抗剂作用。激动剂可基本上具有相同的或一部分的PSEs生物活性。PSEs的拮抗剂可抑制天然存在的PSEs形式的一种或多种活性,如竞争性与脂肪酸合成(包括PSEs)代谢途径的下游或上游分子结合或与PSEs结合,并减少或抑制该过程中的活性。
因此,本发明也涉及此处描述的抑制本发明PSEs活性的抗体或其片段。
本发明的一方面涉及特异性识别或结合至本发明的上述激动剂或拮抗剂的抗体。
另一方面涉及包含用本发明方法鉴定的抗体、终止分子或反义分子的组合物。
E.本发明的用途和方法
此处所述的核酸分子、蛋白质、蛋白质同系物、融合蛋白质、抗体、引物、载体和宿主细胞可用于下列一种或多种方法:鉴定展叶剑叶藓、隐甲藻类、致病疫霉或破囊壶菌及相关生物;与剑叶藓、疫霉属、隐甲藻类或破囊壶菌相关的生物的基因组图谱;鉴定和定位剑叶藓、疫霉属、隐甲藻类或破囊壶菌的目标序列;进化研究;确定发挥功能所需的PSE蛋白质区域;调节PSE活性;调节一种或多种细胞膜成分的代谢;调节一种或多种化合物的跨膜转运,以及调节目标化合物如精细化学品的细胞产量。本发明的PSE核酸分子具有多种用途。首先,它们可用于鉴定生物如剑叶藓、疫霉属、隐甲藻类或破囊壶菌或它们的近亲。它们也可用于在微生物混合群体中鉴定剑叶藓、隐甲藻类、疫霉属或破囊壶菌或它们的亲缘生物体的存在。本发明提供了剑叶藓、疫霉属、隐甲藻类或破囊壶菌的一系列基因的核酸序列;通过在严格条件下用探针筛选提取自微生物的均一或混合群体培养物的基因组DNA,可确定这类生物体的存在或缺乏,其中所述探针对这类生物体是独特的、覆盖了剑叶藓、隐甲藻类、疫霉属或破囊壶菌基因的一个区域或该基因的部分区域。剑叶藓、隐甲藻类、疫霉属或破囊壶菌本身可用作多不饱和脂肪酸的商业生产。而且,本发明的核酸也适用于于其它生物中生产PUFAs,尤其当所得到的PUFAs掺入三酰基甘油部分时。
进一步地,本发明的核酸和蛋白质分子可用作基因组特定区域的标记物。它们不仅适用于绘制基因组图谱,也适用于剑叶藓、疫霉属、隐甲藻类或破囊壶菌蛋白质的功能研究。为鉴定剑叶藓、隐甲藻类、疫霉属或破囊壶菌的某个DNA-结合蛋白质结合的基因组区域,如可将剑叶藓、隐甲藻类、疫霉属或破囊壶菌的基因组片断化并将片段与DNA-结合蛋白质孵育。那些结合蛋白质的片段可另外用本发明的核酸分子筛选,优选地用易于检测的标记物;此类核酸分子与基因组片断的结合使得在剑叶藓、疫霉属、隐甲藻类或破囊壶菌的基因组图谱上定位该片段成为可能,如果该过程是用不同的酶反复进行的话,则使得蛋白质结合的核酸序列易于快速确定。而且,本发明的核酸分子可与相关种类的序列具有足够的同源性,这些核酸分子可作为标记物用于在相关的真菌或藻类构建基因组图谱。
本发明的PSE核酸分子也适用于进化研究和蛋白质结构研究。大量的原核和真核细胞利用本发明分子所参与的代谢和转运过程;可通过将本发明核酸分子的序列与来自其它生物的编码相似酶的核酸分子序列比较来确定生物相关性的进化程度。另外,此类比较使得可确定哪些序列区域保守和哪些序列区域不保守,这对于确定酶功能必需的蛋白质区域是有用的。这种确定对蛋白质工程研究是有价值的,且可提供多大程度的诱变是蛋白质可耐受的且不丧失其功能的线索。
对本发明PSE核酸分子的操作可导致与野生型PSEs功能不同的PSEs产生。可提高这些蛋白质的效率或活性;它们可在细胞内以较通常大的量存在;或可降低它们的效率或活性。提高的效率或活性是指:如酶具有较高的选择性和/或活性,优选地与原始酶比较活性至少高10%,非常特别地活性至少高20%,非常特别优选地活性至少高30%。
存在一系列这样的机制,对本发明PSE的改变通过这些机制可直接影响包含此类改性蛋白质的精细化学品的产量、生产率和/或生产效率。当纤毛虫、藻类或真菌的细胞分泌目标化合物时,从它们的培养物中大规模获得的精细化学品明显提高,因为这些化合物易于从培养介质中分离(与从单位体积的培养细胞的提取大不相同)。另外,当细胞在体内以一种浓缩机制于特异区贮存化合物时,可提高纯化。在表达PSEs的植物中,提高的转运可导致在植物组织和植物器官中较好的分布。提高将精细化学品转运出细胞的转运蛋白分子的数量或活性可导致在胞外介质中存在的精细化学品的产生量提高,从而促进收获和纯化,或在为植物的情况下,促进更有效的分布。与之相比,合适生物合成途径的辅因子、前体分子和中间体的量的增加为一种或多种精细化学品的有效超量产生所需要。增加参与营养物质如碳源(即糖类)、氮源(即氨基酸、铵盐)磷酸盐和硫输入的转运蛋白的数量和/或活性可提高精细化学品的产量,因为它去除了对生物合成过程中可利用的营养物质的所有限制。希望脂肪酸如PUFAs和包含PUFAs的脂类为精细化学品自身。优化参与这些化合物生物合成的本发明的一种或多种PSEs的活性或增加其量或破坏参与这些化合物分解的一种或多种PSEs的活性可因此增加纤毛虫、藻类、植物、真菌、酵母或其它微生物中脂肪酸和脂类分子的产量、生产率和/或生产效率。
对本发明的一种或多种PSE基因的操作同样可导致活性改变的PSEs,其间接影响一种或多种来自藻类、植物、纤毛虫或真菌的目标精细化学品的产生。正常的生物化学代谢过程导致如多种废物的产生(如过氧化氢和其它反应性氧类),它们可活跃地破坏这些代谢过程[如已知过亚硝酸盐硝化酪氨酸侧链,因此灭活一些在活性中心具酪氨酸的酶;Groves,J.T.(1999)化学与生物学最新观点(Curr.Opin.Chem.Biol.)3(2);226-235]。虽然这些废物为正常分泌的,但用于大规模发酵生产的细胞是被优化用于使一种或多种精细化学品超量产生的,故可产生较野生型细胞多的废物。优化参与废物分子输出的本发明的一种或多种PSEs的活性使得细胞的存活力提高,并维持有效的代谢活性。同样,目标精细化学品的高胞内量的存在实际上对细胞是毒性的,因此可通过提高细胞分泌这些化合物的能力来提高细胞的存活力。
进一步地,本发明的PSEs可以某种方式操作,使多种脂类和脂肪酸分子的相对量改变。这对细胞膜的脂类组成有决定性影响。因为每种脂类的类型具有不同的物理性质,膜脂类组成的改变可显著影响膜的流动性。膜流动性的改变可影响分子跨过这些膜的转运,如上所说明的那样这可改变所产生的废物或精细化学品的输出或所需要的营养物质的输入。膜流动性的这些改变也可对细胞的完整性具有决定性影响;具有相对较弱的膜的细胞对可损坏或杀死细胞的非生物和生物应激条件较易感。操作参与用于膜合成的脂肪酸和脂类产生的PSEs,以使所得的膜具有对在培养中占优势的、用于产生精细化学品的环境条件较易感的膜组成,使得更多的细胞存活和增殖。较大量的生产细胞应表观为在培养物中具有较高的精细化学品的产量、较高的生产率或较高的生产效率。
意在导致精细化学品产量提高的上述PSEs诱变策略不是用于构成限制;这些策略的变化对技术人员是很明显的。使用这些机制,并在此处公开的机制的辅助下,本发明的核酸和蛋白质分子可用于产生表达突变PSE核酸和蛋白质分子的藻类、纤毛虫、植物、动物、真菌或其它微生物如谷氨酸棒杆菌,以提高目标化合物的产量、生产率和/或生产效率。该目标化合物可为藻类、纤毛虫、植物、动物、真菌或细菌的任一天然产物,后者包含生物合成途径的终产物和天然存在的代谢途径的中间体,或也可为在这些细胞的代谢中非天然存在的、但由本发明的细胞产生的分子。
本发明的进一步的实施方案是用于产生PUFAs的方法,其包含培养含有本发明的核酸、本发明的基因构建体或本发明的载体的生物,其中所述本发明的核酸、本发明的基因构建体或本发明的载体在生物体产生PUFAs的条件下编码对脂肪酸分子中具有至少两个双键的C16-、C18-或C20-脂肪酸延伸至少两个碳原子的多肽。该方法制备的PUFAs可通过从生物体所生长的培养物中或从田间收获生物体而分离,并用有机溶剂破坏和/或提取收获的材料。可从该溶剂中分离含有较高PUFA含量的脂类、磷脂、神经鞘脂类、糖脂、三酰基甘油和/或游离脂肪酸的油。可通过碱或酸水解脂类、磷脂、神经鞘脂类、糖脂和三酰基甘油来分离具有较高PUFA含量的游离脂肪酸。较高含量的PUFAs是指与原始的不具有其它的编码本发明延伸酶的核酸的生物体相比,PUFAs多出至少5%,优选地10%,尤其优选地20%,非常尤其优选地40%。
通过该方法产生的PUFAs优选地在脂肪酸分子中具有至少两个双键的C18-、C20-或C22-脂肪酸分子,优选地具有三个、四个、五个或六个双键,尤其优选地三个或五个双键。这些C18-、C20-或C22-脂肪酸分子可从生物中以油、脂类或游离脂肪酸形式分离。合适生物的实例为上述提及的那些。优选的生物为微生物、动物或植物,尤其优选植物或藻类,非常尤其优选转基因植物。
本发明的一个实施方案为通过上述方法制备的油类、脂类或脂肪酸或其部分,尤其优选包含PUFAs并产生自转基因植物的油、脂类或脂肪酸组合物。
本发明的一个实施方案为通过本发明的方法制备的油类、脂类或脂肪酸。本发明的其它实施方案为包含通过本发明的方法产生的PUFAs并衍生自含有本发明的核酸、基因构建体或载体的转基因植物的油、脂类或脂肪酸组合物。
本发明进一步的实施方案是油、脂类或脂肪酸组合物在饲料、食品、化妆品或药品中的用途。
本发明进一步的实施方案涉及试剂盒,其包含本发明的核酸、本发明的基因构建体、本发明的氨基酸序列、本发明的反义核酸分子、本发明的抗体和/或组合物、通过本发明的方法制备的拮抗剂或激动剂和/或本发明的油类、脂类和/或脂肪酸或其部分。该试剂盒也可包含本发明的宿主细胞、生物体或植物或其一部分,本发明的植物的一部分可收获或为繁殖材料,或为本发明的拮抗剂或激动剂。可将本发明之试剂盒的成分例如一起或在缓冲液或其它溶液中包装在合适的容器中。可将所提及的一种或多种成分包装入同一个容器中。另外,可将所提及的一种或多种成分例如吸附在固体表面,其中所述固体如硝酸纤维素滤膜、玻璃平板、小片、尼龙膜或微滴定板。该试剂盒可用于此处描述的任一方法和实施方案,如用于产生宿主细胞、转基因植物,用于检测同源序列,用于鉴定拮抗剂或激动剂等。而且试剂盒可包含如何使用该试剂盒用于所提及的应用之一的说明书。
本发明将在下面通过实施例进行更详细的阐述,其不用于构成对本发明的限制。在此专利申请中所引用的所有文献、专利申请、专利和公开的专利申请的内容并入此文中作为参考。实施例实施例1:一般方法
a)一般克隆方法
克隆方法例如限制性切割、琼脂糖凝胶电泳、DNA片段纯化、将核酸转移至硝酸纤维素膜和尼龙膜、DNA片段的连接、转化大肠杆菌和酵母细胞、细菌培养及重组DNA的序列分析如Sambrook等人[(1989),冷泉港实验室出版社:ISBN 0-87969-309-6]或Kaiser、Michaelis和Mitchell[(1994),“酵母遗传学方法”(“Methods in Yeast Genetics”),冷泉港实验室出版社:ISBN 0-87969-451-3]所述进行。藻类如小球藻属(Chlorella)或褐指藻的转化和培养如El-Sheekh[(1999),植物生物学(Biologia Plantarum)42:209-216]或Apt等人[(1996)分子和普通遗传学(Molecular and GeneralGenetics)252(5):872-9]所述进行。
b)化学药品
除非在文中特别指出,所用化学药品为从Fluka(Neu-Ulm)、Merck(Darmstadt)、Roth(Karlsruhe)、Serva(Heidelberg)和Sigma(Deisenhofen)获得的分析级质量。用纯的无热原水制备溶液,其中纯的无热原水在下文中用H2O表示,其来自Milli-Q水系统水纯化单元(Millipore,Eschborn)。限制性内切酶、DNA-修饰酶和分子生物学试剂盒从AGS(Heidelberg)、Amersham(Brunswick)、Biometra(Gttingen)、Boehringer(Mannheim)、Genomed(Bad Oeynhausen)、New England Biolabs(Schwalbach/Taunus)、Novagen(Madison,Wisconsin,USA)、Perkin-Elmer(Weiterstadt)、Pharmacia(Freiburg)、Qiagen(Hilden)和Stratagene(Amsterdam,Netherlands)获得。除非特别指出,按厂商的说明书使用它们。
c)细胞材料
用破囊壶菌菌株进行本研究时,所述菌株可由美国典型培养物保藏中心(ATCC)获得,其菌株编号为ATCC26185(破囊壶菌),或当用隐甲藻类进行本研究时,所述菌株可由Provasoli-Guillard National Center forCulture of Marine Phytoplankton((CCMP)West Boothbay Harbour,ME,USA)获得,其菌株培养物编号为No.CCMP316。藻类在摄氏25度下、暗处培养于从底部通入空气的玻璃管中。另外,破囊壶菌可在Singh & Ward(1997,微生物学进展(Advances in Microbiology),45,271-311)中详述的条件下培养。
用于隐甲藻类的培养基为Guillard,R.R.L.的补充有10%有机介质的f/2培养基[1975;在Smith,W.L.和Chanley,M.H.(编辑)海中无脊椎动物的培养(Culture of marine Invertebrate animals),NY Plenum Press一书中的培养浮游植物用于喂养海中无脊椎动物(Culture of phytoplankton forfeeding marine invertebrates),29-60页]。它含有995.5ml(人工)盐水、1mlNaNO3(75g/l)、1ml NaH2PO4(5g/l)、1ml痕量金属溶液、1ml Tris/ClpH8.0、0.5ml f/2维生素溶液。
痕量金属溶液:Na2EDTA(4.36g/l)、FeCl3(3.15g/l),
主要痕量金属:CuSO4(10g/l)、ZnSO4(22g/l)、CoCl2(10g/l)、MnCl2(18g/l)、NaMoO4(6.3g/l)
f/2维生素溶液:生物素10mg/l、硫胺素200mg/l、维生素B12 0.1mg/l
有机培养基:醋酸钠(1g/l)、葡萄糖(6g/l)、琥珀酸钠(3g/l)、细菌用胰蛋白胨(4g/l)、酵母提取物(2g/l)
d)藓类植物材料(=植物材料)
本研究使用了展叶剑叶藓剑叶藓属(Physcomitrella patens(Hedw.)B.S.G.)植物,其来自汉堡大学(University of Hamburg)的遗传研究室的收藏物。它们衍生自16/14株,后者已由H.L.K.Whitehouse收藏在GransdenWood,Huntingdonshire(英国)并由Engel(1968,Am J Bot 55,438-446)进行了始于孢子的传代培养。植物借助于孢子和配子体的再生繁殖。原丝体从单倍体孢子发育为富含叶绿体的绿丝体和耗竭叶绿体的茎丝体,它们在约12天后发芽。这些芽长成具有造精器和造卵器的配子托。受精产生具有短刚毛和孢子囊的二倍体孢子体,减数分裂后的孢子在其中成熟。
e)植物培养
在人工气候箱中于空气温度为25℃,光强度为55μmol.s-1.m-2(白光;Philips TL 65W/25荧光管)以及16/8小时的光照/黑暗时段下培养植物。藓类植物用Reski和Abel改良克诺普培养基于液体培养物中培养(1985,Planta165,354-358)或用1% Oxoid琼脂(Unipath,Basingstoke,英国)在固体克诺普培养基上培养。
在充满空气的液体培养物中培养用于RNA和DNA分离的原丝体。每隔9天将原丝体捣碎并转移至新鲜培养基中。
f)致病疫霉的培养
首先,制备致病疫霉cDNA文库。为此可从美国典型培养物保藏中心(Rockville,美国)得到ATCC 48886株。作为已描述的ATCC 48886株培养方法的变更,其为用冷的双蒸水洗涤疫霉属的孢子,并于冰箱放置6小时以诱导孢子形成。然后将材料转移至豌豆培养基。为此将150g深度冷冻豌豆(Iglu,从本地超市得到)和1升水在灭菌条件下高压灭菌20分钟。在定轨摇床(200转/分钟)上将材料室温下于100-ml-烧瓶中培养。两天后,过滤2个烧瓶并将过滤残余物于液氮中用研钵和研杵捣碎,在接下来的4天,重复该操作,每次2个烧瓶实施例2:从植物和微生物如破囊壶菌和隐甲藻类分离总DNA用于杂交实验
分离总DNA的详情参见对1克鲜重的植物材料的处理。
CTAB缓冲液:2%(w/v)N-乙酰-N,N,N-三甲基溴化铵(CTAB);100mM Tris-HCl,pH 8.0;1.4 M NaCl;20 mM EDTA。
N-十二烷基肌氨酸缓冲液:10%(w/v)N-十二烷基肌氨酸;100 mMTris-HCl,pH 8.0;20 mM EDTA。
于液氮下,在研钵内将植物材料或隐甲藻类或破囊壶菌细胞材料捣碎,以给出细粉,并转移入2ml微量离心管。然后用一层1ml分解缓冲液(1mlCTAB缓冲液、100ml N-十二烷基肌氨酸缓冲液、20ml β-巯基乙醇和10ml蛋白酶K溶液,10mg/ml)覆于冻结的植物材料上并在不断振摇下于60℃温育1小时。将所获得的匀浆分配至两个微量离心管2ml)并用等体积的氯仿/异戊醇(24:1)通过振摇提取两次。每管于8000xg及RT(=室温=~23℃)下离心15分钟,以进行相的分离。然后用冰冷的异丙醇于-70℃沉淀DNA30分钟。于4℃10,000g离心沉淀已沉淀的DNA并重悬于180mlTE缓冲液(Sambrook等人,1989,冷泉港实验室出版社:ISBN 0-87969-309-6)。用NaCl(终浓度为1.2M)处理该DNA并用两倍体积的无水乙醇于-70℃再次沉淀30分钟,以进一步纯化。在用70%乙醇洗涤一次后,干燥该DNA并接下来置于50ml H2O+RNase(终浓度为50mg/ml)。于4℃过夜溶解该DNA,接下来于37℃进行1小时的RNase切割。将该DNA保存在4℃。实施例3:从植物和微生物(隐甲藻类和破囊壶菌)分离总RNA和poly(A)+-RNA
用Logemann等人(1987,生物化学纪事Anal.Biochem.163,21)描述的方法从植物如亚麻籽和油料种子油菜分离总RNA。用GTC法可从原丝体组织获得来自藓类植物的总RNA(Reski等人,1994,分子普通遗传学(Mol.Gen.Genet.),244:352-359)。
从隐甲藻类和破囊壶菌分离RNA:
用冰冷的研钵于液氮中研碎藻类冻结样本(-70℃),以得到细的粉末。于40-50℃向该冻结的细胞粉末中加入2体积均化介质(12.024g山梨醇、40.0ml 1M Tris-HCl,pH 9(0.2M);12.0ml 5M NaCl(0.3M),8.0ml 250mMEDTA、761.0mg EGTA、40.0ml 10% SDS,加水至200ml,并将pH调节至8.5)和4体积含有0.2%巯基乙醇的酚,同时充分混合。然后,加入2体积氯仿并剧烈搅拌该混合物15分钟。于10,000g离心该混合物10分钟,并用酚/氯仿(2体积/2体积)、然后用氯仿提取水相。
所得的水相体积用1/20体积的4M醋酸钠(pH6)和1体积的(冰冷)异丙醇处理,并于-20℃沉淀核酸。于10,000g离心该混合物30分钟,并抽吸取出上清。然后是用70%EtOH的洗涤步骤和又一次的离心步骤。将沉淀置于Tris硼酸盐缓冲液(80mM Tris硼酸盐缓冲液,10mM EDTA,pH7.0)。然后将上清用1/3体积的8M LiCl处理,混合并于4℃孵育30分钟。再次离心后,用70%乙醇洗沉淀、离心,并将沉淀溶于不含RNase的水中。
用Dyna Beads(Dynal,Oslo,芬兰)按照厂商方法中的说明书分离Poly(A)+-RNA。
在测定完RNA或poly(A)+-RNA浓度后,加入1/10体积的3M醋酸钠,pH4.6和2体积的乙醇沉淀RNA并贮存于-70℃。
用甲醛-1.5%强度的琼脂糖凝胶分离20μg RNA并转移至尼龙膜(Hybond,Amersham)以进行分析。如Amasino((1986)生物化学纪事(Anal.Biochem.)152,304))所述检测特异的转录本。
从致病疫霉分离总RNA和poly-(A)+RNA:
用RNeasy Plant Total RNA试剂盒(Quiagen,Milden)和其中含有的缓冲液,按照厂商的说明书获得总RNA。用来自Promega(Heidelberg)的RNAIsolation System III中的Poly Attract,按照厂商的说明书从这样获得的总RNA分离poly-(A)+RNA。实施例4:构建cDNA文库
分别构建来自剑叶藓、隐甲藻类和破囊壶菌的cDNA文库,用鼠白血病病毒逆转录酶(Roche,Mannheim,德国)和oligo-d(T)引物进行第一链合成,而通过与DNA聚合酶I克列诺酶孵育并用RNAse H于12℃(2小时)、16℃(1小时)和22℃(1小时)切割进行第二链合成。通过于65℃(10分钟)孵育然后转移至冰中终止反应。用T4 DNA聚合酶(Roche,Mannheim)于37℃(30分钟)使双链DNA分子成为平端。用酚/氯仿提取并用Sephadex G50离心柱去除核苷酸。用T4 DNA连接酶(Roche,12℃,过夜)将EcoRI/XhoI接头(Pharmacia,Freiburg,德国)连接至cDNA末端,再用XhoI切割,并与多核苷酸激酶(Roche,37℃,30分钟)孵育磷酸化。于低熔点琼脂糖凝胶分离该混合物。从凝胶上洗脱超过300个碱基对的DNA分子,用酚提取,在Elutip D柱(Schleicher和Schiill,Dassel,德国)上浓缩,用Gigapack Gold试剂盒(Stratagene,Amsterdam,荷兰)使用厂商的材料并按照他们的说明书连接至载体臂上并包装入λ-ZAPII噬菌体或λ-ZAP-表达噬菌体。
如上所述进行致病疫霉cDNA文库的构建。实施例5:DNA测序和计算机分析
实施例4中所述cDNA文库用于通过标准方法进行DNA测序,尤其是使用ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit(Perkin-Elmer,Weiterstadt,德国)的链终止法。在从cDNA文库制备质粒后,对琼脂平板上的单个随机克隆通过DH10B体内大量切除和再转化测序(详见材料和方法:Stratagene,Amsterdam,荷兰)。于补充有氨苄青霉素的Luria肉汤(参见Sambrook等人(1989)(冷泉港实验室出版社:ISBN0-87969-309-6))中过夜生长的大肠杆菌培养物中,用Qiagen DNA制备试剂盒(Qiagen,Hilden)按照厂商的方法制备质粒DNA。使用具有以下核苷酸序列的测序引物:
5’-CAGGAAACAGCTATGACC-3’
5’-CTAAAGGGAACAAAAGCTG-3’
5’-TGTAAAACGACGGCCAGT-3’
使用可从Bio-Max(Munich,德国)购得的EST-MAX标准软件包处理并记录序列。利用比较算法和使用搜索序列,用BLAST程序(Altschul等人(1997)“间隔BLAST和PSI-BLAST:新一代蛋白质数据库搜索程序”(“Gapped BLAST and PSI-BLAST:a new generation of protein databasesearch programs”),核酸研究25:3389-3402)搜寻同源基因。对与展叶剑叶藓藓类植物延伸酶的搜索序列具有同源性的来自隐甲藻类和破囊壶菌的一个序列进行了较详细的鉴定。实施例6a:通过与展叶剑叶藓Pp_PSE1基因比较,鉴定Tc_PSE1和Tc_PSE2基因(Tc=破囊壶菌)以及鉴定Cc_PSE1和Cc_PSE2基因(Cc=寇氏隐甲藻)。
本发明的Pp_PSE1藓类植物延伸酶的全长序列(名称:又见表2)用于TBLASTN搜寻算法的序列比较:MEVVERFYGE LDGKVSQGVN ALLGSFGVEL TDTPTTKGLP LVDSPTPIVL GVSVYLTIVI GGLLWIKARDLKPRASEPFL LQALVLVHNL FCFALSLYMC VGIAYQAITW RYSLWGNAYN PKHKEMAILV YLFYMSKYVEFMDTVIMILK RSTRQISFLH VYHHSSISLI WWAIAHHAPG GEAYWSAALN SGVHVLMYAY YFLAACLRSSPKLKNKYLFW GRYLTQFQMF QFMLNLVQAY YDMKTNAPYP QWLIKILFYY MISLLFLFGN FYVQKYIKPSDGKQKGAKTE.
藓类植物延伸酶Pp_PSE1 cDNA的全部核苷酸序列含有约1200 bp。它含有873 bp的开放读码框,其编码290个氨基酸,计算的分子量为33.4kDa。该蛋白质序列与酿酒酵母(Saccharomyces cerevisiae)的一种基因产物(如酿酒酵母PSE1基因产物)只有38.5%的同一性和48.3%的相似性,其中所述酿酒酵母PSE1基因产物为酵母延伸中等链长的脂肪酸所需要(Toke &Martin,1996,分离和鉴定酿酒酵母中影响脂肪酸延伸的基因(Isolation andcharacterization of a gene affecting fatty acid elongation in Saccharomycescerevisiae),生物化学杂志(Journal of Biological Chemistry)271,18413-18422)。
在其它侯选基因中,首次将EST序列CC001042041R、TC002034029R和TC002014093R作为靶基因考虑,最初因为它们与展叶剑叶藓延伸酶(参见表2)PSE1基因的弱同源性而未考虑。图5给出了Pp_PSE1肽序列与所发现序列的比较结果。所比较序列是本发明Seq ID NO:3的核酸的一部分(基因名称:TcPSE1,创建者的数据库号为TC002034029R)。字母表示相同的氨基酸,而加号代表化学上相似的氨基酸。从表3的总结中可看出本发明中所有序列的同一性和同源性。
对克隆TC002034029R的全长cDNA片段的测序得到了693个碱基对的序列,其第一个起始碱基位于开放读码框中。该序列编码Seq ID NO:4所示的195个氨基酸的多肽,其终止密码子在碱基对中的位置为Seq ID NO:3碱基对位置586-588的翻译。克隆TC002014093R包含真正的全部延伸酶多肽,这一点可从图7的序列排列看出。线条代表相同的氨基酸,而冒号和点代表化学可互换的,即化学等同的氨基酸。用Henikoff & Henikoff的BLOSUM62氨基酸替换矩阵(amino acid substitution matrix)((1992)蛋白质模块中的氨基酸替换矩阵美国国家科学院院报89:10915-10919)进行排列,所用参数为:间隔权重:8;平均匹配:2.912,长度权重:2,平均失配:-2.003。
而且,通过序列排列鉴定了第二个EST。Pp_PSE1肽序列与已发现的序列排列如图6所示。尽管在所选择的参数中同源性限制在几个氨基酸,这表示了PUFA特异性延伸酶的高度保守区。因此确定了全长克隆片段的序列。
克隆TC002014093R的全长cDNA片段的测序得到了955个碱基对的序列,其第一个起始碱基位于开放读码框中。参照本发明的SEQ ID NO:5。该序列编码297个氨基酸的多肽,其终止密码子在碱基对中的位置为对应于本发明Seq ID NO:6碱基对位置892-894。
在序列PpPSE1的协助下鉴定了编码Cc_PSE1基因的寇氏隐甲藻ESTCC001042041R。分离的EST CC001042041R(显示与本发明的SEQ IDNO:7一致)为708个碱基对长,且具有从第一个碱基开始的642个碱基对的开放读码框,编码214个氨基酸,其终止密码子的位置为643-645。直至终止子的该氨基酸序列显示为与本发明的SEQ ID NO:8一致。
除了与PSE1基因产物的相似性外,也可求助于与酿酒酵母延伸酶(sceelo 1P)的相似性,其中所述酿酒酵母延伸酶为酵母延伸中等链长的脂肪酸所需要(Toke & Martin,1996,分离和鉴定影响酿酒酵母中脂肪酸延伸的基因,生物化学杂志271,18413-18422)。表3显示本发明的延伸酶相互间及与展叶剑叶藓和酵母延伸酶的同一性和同源性。数据是在GAP程序的协助下获得的,其中所述GAP程序是作为下列软件的子程序:WisconsinPackage Version 10.0(Genetics Computer Group(GCG),Madison,Wisc.,美国).表3:
同一性/同源性 Tc_PSE1 TC_PSE2 Pp_PSE1 Sce elo 1P
Cc_PSE1  47.1%/40.2% 50.6%/43.5% 38.5%/29.4% 45.1%/33.5%
Tc_PSE1  100/100 n.d. 43.2%/32.7% 41.9%/29.9%
Tc_PSE2  41.7%/29.5% 100/100 39.2%/30.0 35.4%/27.8%
具体地说,图5至10可用于得到作为高同源性区的下列序列基序且通过将氨基酸反向翻译为三碱基对密码子可从其推导出对应的共有序列,从而产生了可用于通过聚合酶链反应分离新延伸酶的寡核苷酸。它们具体地为图10中所示的序列基序。这些基序可用于推导寡核苷酸,其与两个寡核苷酸组合可用在PCR实验中,用于分离另外的延伸酶片段。为做到这一点,构建和合成一条与通常定义的5’-3’链匹配的寡核苷酸并构建和合成第二条具有与3’-5’链下游匹配的寡核苷酸是有利的。这导致可确定数量的引物组合,其由可能的变体排列所限制。
在此上下文中,也可使用oligo-dT引物及其变体,例如最后一个碱基的变体如oligo dT(12-20)X,其中X可为G、C或T使得转录库具特异性。也可使用另一碱基oligo dT(12-20)XY,其中X可为G、C或A,Y可为A、G、C或T。
上述定义的序列使得可衍生出17-至20mer的寡核苷酸,其可用于通过改变引物的组合和实验参数如温度程序、镁离子浓度等来分离基因片段。所得片段可克隆入合适的载体并通过当前方法测定所得克隆的序列,以鉴定新延伸酶。实施例6b:从致病疫霉分离cDNA克隆
利用与来自藓类植物展叶剑叶藓(ATCCC 48886)之PUFA延伸酶的同源性,从随机测序的cDNAs鉴定了来自致病疫霉的名为PI001002014R的cDNA克隆,该克隆包含图8中所示的共有基序MyxYYF,其中不同于至今已鉴定的PUFA延伸酶,发现可变氨基酸x为苏氨酸基团。该进一步的变异可用于推导PCR引物。实施例7:通过杂交鉴定基因(TC002034029R-11 iGenTc-PCE1)
可用于鉴定同源或异源基因的基因序列来自cDNA文库或基因组文库。
可用如cDNA文库通过核酸杂交分离同源基因(即同源的全长cDNA克隆或同系物):尤其可用该方法来分离具功能活性的SEQ ID NO:1、SEQ IDNO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9和SEQ ID NO:11全长基因。依赖于目的基因的出现率,将100,000至1,000,000个重组细菌噬菌体铺板并转移至尼龙膜。用碱变性后,将DNA例如通过紫外交联固定在膜上。在高度严格的条件下杂交。在温度为68℃、离子强度为1M NaCl的水溶液中进行杂交和洗涤步骤。例如通过标记放射活性(32P-)的切口转录(HighPrime,Roche,Mannheim,德国)产生杂交探针。通过放射自显影检测信号。
使用低严格的杂交和洗涤条件用类似于上述的方法可鉴定相关但不相同的部分同源或异源基因。对于含水杂交,离子强度通常保持在1M NaCl,并将温度慢慢从68℃降至42℃。
可用合成的或放射性标记的寡核苷酸探针分离只显示与如具10至20个氨基酸的单个结构域有同源性的基因序列。通常用T4多核苷酸激酶在两条互补寡核苷酸的5’末端磷酸化产生放射性标记的寡核苷酸探针。将互补的寡核苷酸杂交并相互连接,以产生串联体。如通过切口转录放射性标记双链串联体。杂交通常在低严格条件下使用高浓度的寡核苷酸进行。
寡核苷酸杂交液:
6×SSC
0.01 M磷酸钠
1mM EDTA(pH 8)
0.5%SDS
100μg/ml变性鲑鱼精DNA
0.1%无水低脂奶
在杂交过程中,温度逐步降低至低于所计算的寡核苷酸温度5至10℃或至室温(除非特别指出,在所有实验中RT=~23℃),然后是洗涤步骤和放射自显影。在极低严格条件下进行洗涤步骤,如用4×SSC洗涤3次。进一步的详述见Sambrook,J.等人(1989),“分子克隆:实验室手册”,冷泉港实验室出版社,或Ausubel,F.M.等人(1994)“分子生物学最新方法”,JohnWiley & Sons。
具有基因名为Tc_PCE1_1的克隆TC002034029R-11为来自破囊壶菌的延伸酶之全长序列,因此较来自Seq.ID No.3和Seq.ID No.4的克隆TC002034029R要长。用如上所述的杂交方法分离该克隆(实施例7)。它的DNA序列长为1050碱基对,编码271个氨基酸,其中起始密码子位于碱基对位置的43-45位,终止密码子位于碱基对位置的856-858位。实施例8:通过用抗体筛选表达文库鉴定靶基因
使用cDNA序列以在如大肠杆菌中产生重组蛋白质(如QiagenQIAexpress pQE系统)。然后通常通过Ni-NTA亲和层析以亲和纯化该重组蛋白质(Qiagen)。然后该重组蛋白质如用标准技术免疫兔子,用于产生特异性抗体。然后如Gu等人,(1994)生物技术(BioTechniques)17:257-262中所述,用重组抗原预置饱和的Ni-NTA柱亲和纯化该抗体。然后使用抗体通过免疫筛选法筛选表达cDNA文库(Sambrook,J.等人(1989),“分子克隆:实验室手册”,冷泉港实验室出版社,或Ausubel,F.M.等人(1994)“分子生物学最新方法”,John Wiley & Sons)。实施例9:用于植物转化的质粒
双元载体如pBinAR可用于植物转化(Hfgen和Willmitzer,植物科学(Plant Science)66(1990)221-230)。该双元载体可通过将cDNA以有义或反义方向连接入T-DNA而构建。该cDNA的5’(植物启动子)激活cDNA转录。聚腺苷酸化序列位于该cDNA的3’。
可使用组织特异性启动子进行组织特异性表达。如种子特异性表达可通过克隆入该cDNA 5’的napin或LeB4或USP启动子而完成。也可使用任一其它的种子特异性启动子元件。CaMV-35S启动子可用于所有植物中的组成型表达。
表达的蛋白质可用信号肽靶向细胞区室,如靶向质体、线粒体或内质网(Kermode,植物科学评论15,4(1996)285-423)。信号肽以正确的读码框克隆在cDNA的5’,以获得融合蛋白质的亚细胞定位。实施例10:土壤杆菌的转化
可用如根癌土壤杆菌菌株GV3101(pMP90)(Koncz和Schell,分子普通遗传学(Mol.Gen.Genet.)204(1986)383-396)或LBA4404(Clontech)进行土壤杆菌介导的植物转化。可用标准的转化技术进行转化(Deblaere等人,Nucl.Acids.Tes.13(1984),4777-4788)。实施例11:植物转化
可用标准的转化和再生技术进行土壤杆菌介导的植物转化(Gelvin,Stilton B.,Schilperoort,Robert A.,植物分子生物学手册(Plant MolecularBiology Manual),第二版,Dordrecht:Kluwer Academic Publ.,1995,所在部分为Ringbuc Zentrale Signatur:BT11-P ISBN 0-7923-2731-4;Glick,Bernard R.,Thompson,John E.,植物分子生物学和生物技术方法(Methods in Plant Molecular Biology and Biotechnology),Boca Raton:CRC Press,1993,360页ISBN 0-8493-5164-2)。
例如,可通过转化子叶或下胚轴而转化油料种子油菜(Moloney等人,植物细胞报告8(1989)238-242;De Block等人,植物生理学(Plant Physiol.)91(1989)694-701)。用于土壤杆菌和植物选择的抗生素取决于用于转化的双元载体和土壤杆菌菌株。通常用卡那霉素作为可选择标记物来选择油料种子油菜。
可使用Mlynarova等人(1994)植物细胞报告13:282-285描述的技术于亚麻籽(亚麻(Linum usitatissimum))中进行土壤杆菌介导的基因转移。
大豆的转化例如可用在EP-A-0 0424 047(Pioneer Hi-BredInternational)或EP-A-0 0397 687,US 5,376,543,US 5,169,770(Universityof Toledo)描述的技术进行。
如Freeling和Walbot“玉米手册”(“The maize handbook”)(1993)ISBN3-540-97826-7,Springer Verlag New York)描述了使用粒子轰击、聚乙二醇介导的DNA摄入或通过硅碳酸盐纤维技术进行的植物转化。实施例12:用于植物转化的质粒
双元载体如pBinAR可用于植物转化(Hfgen和Willmitzer,植物科学(Plant Science)66(1990)221-230)。可通过将cDNA以有义或反义方向连接入T-DNA而构建双元载体。cDNA的5’为植物启动子,其活化cDNA转录。聚腺苷酸化序列位于cDNA的3’。
可使用组织特异性启动子达到组织特异性表达的目的。如可通过将cDNA的5’克隆入napin或LeB4或USP启动子而达到种子特异性表达的目的。也可使用任一其它种子特异性启动子元件。CaMV-35S启动子可用于所有植物的组成型表达。
具体地说,可通过构建连续的多表达盒将编码延伸酶和去饱和酶的基因克隆入双元载体,以模拟在植物中的代谢途径。
在一个表达盒内,可用信号肽将表达的蛋白质靶向进入细胞区室,如质体、线粒体或内质网(Kermode,植物科学评论15,4(1996)285-423)。信号肽以正确的读码框克隆于cDNA的5’,以达到对融合蛋白质的亚细胞定位。实施例13:体内诱变
可将质粒DNA(或任一其它载体DNA)在大肠杆菌(E.coli)或其它微生物(如芽孢杆菌属或酵母如酿酒酵母)中传代而进行微生物的体内诱变,其中所述大肠杆菌或其它微生物保留它们遗传信息完整性的能力被破坏。常规的突变株在用于DNA修复系统的基因中具有突变(如mutHLS、mutD、mutT等;作为参考,参见Rupp,W.D.(1996)大肠杆菌和沙门氏菌(Escherichia coli and Salmonella)一书中的DNA修复机制(DNA repairmechanisms),2277-2294页,ASM:华盛顿)。这些菌株为技术人员公知。这些菌株的用途例如于Greener,A.和Callahan,M.(1994)策略(Strategies)7:32-34中进行了阐述。突变的DNA分子优选地在微生物经选择和测试后转移入植物。根据在本文实施例部分的多种实施例产生转基因植物。实施例14:研究重组基因产物在转化生物体中的表达
于转化的宿主生物体中,在转录和/或翻译水平测定重组基因产物的活性。
用于测定基因转录量的合适方法(其代表可用于翻译基因产物的的RNA量)为用以下说明的northern印迹法(至于参考文献,参见Ausubel等人(1988)分子生物学最新方法,Wiley:纽约,或上述实施例部分),其中将所设计的与目标基因结合的引物用可检测标记物(通常为放射活性或化学发光)标记,这样,在提取了生物体培养物的总RNA、在凝胶上分离、转移至稳定的基质并与该探针孵育后,探针的结合和结合程度表示基因mRNA的存在及量。该信息表示转化基因的转录程度。可通过多种方法从细胞、组织或器官制备细胞总RNA,其中所述多种方法均为本领域公知,如Bormann,E.R.等人(1992)分子微生物学(Mol.Microbiol.)6:317-326中的方法。
Northern杂交:
为进行RNA杂交,如Amasino(1986,生物化学纪事152,304)所述,将20μg总RNA或1μg poly(A)+-RNA用甲醛于1.25%强度的琼脂糖凝胶上通过凝胶电泳分离,用10×SSC通过毛细管引力转移至带正电荷的尼龙膜(Hybond N+,Amersham,Brunswick),紫外线固定并用杂交缓冲液(10%葡聚糖硫酸酯w/v,1M NaCl,1%SDS,100mg鲱精DNA)于68℃预杂交3小时。在预杂交期间,使用α-32P-dCTP(Amersham,Brunswick,德国)通过Highprime DNA标记试剂盒(Roche,Mannheim,德国)标记DNA探针。加入标记的DNA探针后,于同样的缓冲液中68℃过夜杂交。于68℃用2×SSC洗涤两次,每次15分钟,并用1×SSC、1%SDS洗涤两次,每次30分钟。密封的滤器于-70℃曝光1至14天。
可使用标准技术如Western印迹(参见如Ausubel等人(1988)分子生物学最新方法,Wiley:纽约)用于研究由该mRNA翻译的蛋白质的存在或相对数量。在该方法中,提取细胞总蛋白质,通过凝胶电泳分离,转移至基质如硝酸纤维素膜,并与探针如特异性结合目标蛋白质的抗体温育。该探针通常用易于检测的化学发光或比色标记。所观察到的标记的存在和数量表示在细胞中的目标突变蛋白质的存在和数量。实施例15:重组蛋白质对产生目标产物的作用分析
植物、真菌、藻类或纤毛虫的遗传修饰对产生目标产物(如脂肪酸)的影响可通过在合适条件下(如上所述)培养改性微生物或改性植物而测定,并分析培养基和/或细胞成分,以分析目标产物(即脂类或脂肪酸)增加的产量。这些分析技术为技术人员公知并包括光谱学、薄层层析、多种染色技术、酶学和微生物学方法以及分析色谱如高效液相色谱(参见如Ullman,工业化学百科全书(Encyclopedia of Industrial Chemistry),A2卷,89-90页和443-613页,VCH Weinheim(1985);Fallon,A.等人,(1987)生物化学和分子生物学实验室技术(Laboratory Techniques in Biochemistry andMolecular Biology)一书中的“HPLC在生物化学中的应用”(“Applicationsof HPLC in Biochemistry”),第17卷;Rehm等人(1993)生物技术(Biotechnology),第3卷,第III章“产物回收和纯化”(“Product recoveryand purification”),469-714页,VCH Weinheim;Belter,P.A.等人(1988)生物分离:用于生物技术的下游加工方法(Bioseparations:downstreamprocessing for Biotechnology),John Wiley和Sons;Kennedy,J.F.和Cabral,J.M.S.(1992)生物材料的回收方法(Recovery processes for biologicalMaterials),John Wiley和Sons;Shaeiwitz,J.A.和Henry,J.D.(1988)生物化学分离(Biochemical Separations),在Ullmann’s工业化学百科全书(Ullmann’s Encyclopedia of Industrial Chemistry),Bd.B3中;第11章,1-27卷,VCH Weinheim;以及Dechow,F.J.(1989)生物技术中的分离和纯化技术(Separation and purification techniques in biotechnology),Noyes出版社)。
除了上述方法外,Cahoon等人(1999)美国国家科学院院报96(22):12935-12940,以及Browse等人(1986)分析生物化学(AnalyticBiochemistry)152:141-145描述了从植物材料提取植物脂类。Christie,William W.,脂类方法学进展(Advances in Lipid Methodology),Ayr/Scotland:Oily Press(Oily Press Lipid Library;2);Christie,WilliamW.,气相色谱和脂类.实践指南(Gas Chromatography and Lipids.APractical Guide)-Ayr,Scotland:Oily Press,1989,1992年再版,IX,307页(Oily Press Lipid Library;1);脂类研究进展(Progress in Lipid Research),Oxford:Pergamon Press,1(1952)-16(1977)中Progress in the Chemistryof Fats and Other Lipids CODEN标题下描述了定性和定量脂类或脂肪酸分析。
除了测定发酵终产物,也可分析用于产生目标化合物的代谢途径中的其它成分,如中间体和副产品,以测定该化合物的总体生产效率。分析方法包括测定培养基中的营养物的量(如糖类、碳水化合物、氮源、磷酸盐和其它离子)、生物量组成和生长测定,分析生物合成途径的常规代谢产物,以及测定发酵过程中产生的气体。应用微生物生理学;实践方法(AppliedMicrobial Physiology;A Practical Approach),P.M.Rhodes和P.F.Stanbury编辑,IRL Press,131-163页和165-192页(ISBN:0199635773)以及其中陈述的参考文献中描述了这些测定的标准方法。
一个实例是分析脂肪酸(缩略语:FAME,脂肪酸甲酯;GC-MS,气-液色谱/质谱;TAG,三酰基甘油;TLC,薄层色谱)。
可通过用标准方法:GC、GC-MS或TLC分析重组生物得到对脂肪酸产物存在的明确检测,如一些情况下Christie及其中的参考文献中所描述的(1997,在脂类方法学进展(Advances on Lipid Methodology),第四版:Christie,Oily Press,Dundee,119-169;1998,气相色谱/质谱法,Lipide33:343-353)。
可通过超声法、在玻璃磨机及液氮中碾磨的碾磨法,或通过其它可实施的方法破碎欲分析材料。破碎后,必须离心该材料。将沉淀重悬在蒸馏水中,于100℃加热10分钟,冰上冷却并离心,然后于90℃用0.5M硫酸在具2%二甲氧丙烷的甲醇中的溶液萃取1小时,导致水解的油和脂类化合物,得到甲基转移的脂类。在石油醚中萃取这些脂肪酸甲基酯,并最后用毛细管柱进行GC分析(Chrompack,WCOT Fused Silica,CP-Wax-52CB,25μm,0.32mm),在170℃和240℃之间的温度梯度进行20分钟以及在240℃ 5分钟。对所得脂肪酸甲基酯的鉴定必须用市售的标准品(即Sigma)确定。
对于没有可得到标准品的脂肪酸,鉴定必须通过衍生作用后再进行GC/MS分析显示。例如,具三键的脂肪酸的定位必须用4,4-二甲氧噁唑啉衍生物衍生后通过GC/MS显示(Christie,1998,见上)。实施例16:在异源微生物系统中表达构建体
菌株、培养条件和质粒
用大肠杆菌菌株XL1 Blue MRF’kan(Stratagene)亚克隆该新的展叶剑叶藓延伸酶,如PpPSE1。为功能性表达该基因,我们使用了酿酒酵母株INVSc 1(Invitrogen Co.)。在Luria-Bertini肉汤(LB,Duchefa,Haarlem,theNetherlands)中37℃培养大肠杆菌。如果需要的话,加入氨苄青霉素(100mg/升),以及加入1.5%的琼脂(w/v)用于固体LB培养基。在含2%(w/v)棉子糖或葡萄糖的YPG培养基或无尿嘧啶的完全最小培养基中30℃培养酿酒酵母(CMdum;参见:Ausubel,F.M.,Brent,R.,Kingston,R.E.,Moore,D.D.,Seidman,J.G.,Smith,J.A.,Struhl,K.,Albright,L.B.,Coen,D.M.和Varki,A.(1995)分子生物学最新方法,John Wiley & Sons,纽约)。对于固体培养基,加入2%(w/v)的BactoTM琼脂(Difco)。用于克隆和表达的质粒为pUC18(Pharmacia)和pYES2(Invitrogen Co.)。实施例17:PUFA-特异的剑叶藓、隐甲藻类和破囊壶菌延伸酶的克隆与表达
可如实施例7所述分离本发明序列的全长基因,并如以下所示加工。显示了与用途有关的具体表达实施例。
A)用藓类延伸酶Pp_PSE1延伸脂肪酸:
为在酵母中表达,首先对展叶剑叶藓cDNA克隆PpPSE1(较早的数据库序列名称为08_ck19_b07,新名称为:pp001019019f)(其编码PUFA-特异的延伸酶(PSE1)基因)加以改变,使得在起始密码子附近得到BamHI限制性位点和酵母用于高效翻译的共有序列(Kozak,M.(1986)用点突变确定AUG起始密码子侧翼调节真核核糖体翻译的序列,细胞44,283-292)并在终止密码子的侧翼得到BamHI限制性位点。为了扩增该开放读码框,合成了互补于其5’和3’末端的引物对。
通过聚合酶链反应,将SEQ ID NO:1所示的、根据本发明序列的基因克隆入pYES,产生质粒PYPp_PSE1:
将下列寡核苷酸用于PCR实验:
Ppex6:     ggatccacataatggaggtcgtggagagattc
Ppex6r:    ggatcctcactcagttttagctccttttgc
用克隆PP001019019F的质粒DNA作为模板于热循环仪(Biometra)进行PCR反应,反应使用了Pfu DNA(Stratagene)聚合酶和下列温度程序:96℃3分钟,然后96℃ 30秒、55℃ 30秒和72℃ 1分钟进行25个循环,72℃ 10分钟进行一个循环。
通过琼脂糖TBE凝胶电泳鉴定所扩增DNA片段的正确大小。用QIAquick凝胶提取试剂盒(QIAGEN)从凝胶中提取扩增的DNA,并用SureClone Ligation Kit(Pharmacia)首先克隆入pUC18。所克隆的片段用BamHI酶切并连接入pYES,得到pYPp_PSE1。通过HindIII检查片段的方向。转化大肠杆菌XL1 Blue MRF’kan后,进行转化子的DNA小型制备(Riggs,M.G.和McLachlan,A.(1986)用于大量质粒小型制备的简化筛选步骤,生物技术(BioTechniques)4,310-313),并通过BamHI限制性分析来鉴定阳性克隆。用ABI PRISM Big Dye Terminator Cycle SequencingReady Reaction Kit(Perkin-Elmer,Weiterstadt)反复测序证实克隆的PCR产物序列。
培养一个克隆,用NucleobondAX 500质粒DNA提取试剂盒(Macherey-Nagel,Düringen)进行DNA的大量制备。
通过改良的PEG/醋酸锂法(Ausubel等人,1995),用pYPp_PSE1或用pYES2作为对照转化酵母属INVSc1。在具2%葡萄糖的CMdum-琼脂平板上选择后,如已陈述的并在培养基中提供多种脂肪酸,选择多个转化子和一个pYES2转化子以进行进一步的培养和功能表达。
i)在提供250微克十六碳三烯酸(16:3Δ7c,10c,13c)后,用无插入片段的pYES质粒转化的酵母或表达Pp-PSE1基因的酵母(数据用mol%表示)的脂类模式表4:
    PYES2     PYES2     pYPp_PSE1     PYPp_PSE1
    16:0     11.8%     16:0     11.1%
    16:1     28.7%     16:1     23.9%
    16:3Δ7c,10c,13c     9.2%     16:3Δ7c,10c,13c     12.0%
    18:0     10.6%     18:0     8.6%
    18:1Δ9c     34.9%     18:1Δ9c     20.6%
    18:1Δ11c     1.1%     18:1Δ11c     1.4%
    18:3Δ9c,12c,15c     3.7%     18:3 Δ 9c,12c,15c     21.4%
ii)在提供500微克十八碳三烯酸(18:3Δ6c,9c,12c)后,用无插入片段的pYES质粒转化的酵母或表达Pp-PSE1基因的酵母(数据用mol%表示)的脂类模式。表5:
    PYES2     PYES2  pYPp_PSE1     PYPp_PSE1
    16:0     18.3%     16:0     16.9%
    16:1Δ9c     16.0%     16:1Δ9c     15.3%
    18:0     8.6%     18:0     8.4%
    18:1Δ9c     16.7%     18:1Δ9c     17.5%
    18:1Δ11c     0.7%     18:1Δ11c     2.0%
    18:3Δ5c,9c,12c     39.8%     18:3Δ5c,9c,12c     32.6%
    20:3Δ7c.11c,14c     0%     20:3Δ7c,11c,14c     5.1%
iii)在提供500微克stearidonic acid(18:4Δ6c,9c,12c,15c)后,用无插入片段的pYES质粒转化的酵母或表达Pp-PSE1基因的酵母(数据用mol%表示)的脂类模式。表6:
    PYES2     pYES2     pYPp_PSE1     PYPp_PSE1
    16:0     15.2%     16:0     15.6%
    16:1Δ9c     13.1%     16:1Δ9c     14.9%
    18:0     12.3%     18:0     10.7%
    18:1Δ9c     12.9%     18:1Δ9c     14.0%
    18:1Δ11c     0.7%     18:1Δ11c     1.2%
    18:3Δ6c,9c,12c,15c     45.4%     18:3Δ6c,9c,12c,15c     23.8%
    20:4Δ8c,11c,14c,17c     0.4%     20:4Δ8c,11c,14c,17c     19.8%
iv)  在提供500微克亚油酸(18:2Δ9c,12c)后,用无插入片段的pYES质粒转化的酵母或表达Pp-PSE1基因的酵母(数据用mol%表示)的脂类模式。表7:
    pYES2     pYES2     pYPp_PSE1     PYPp_PSE1
    16:0     7.9%     16:0     8.7%
    16:1Δ9c     1.2%     16:1Δ9c     1.3%
    18:0     5.3%     18:0     5.1%
    18:1Δ9c     1.3%     18:1Δ9c     1.3%
    18:2Δ9c,12c     83.9%     18:2Δ9c,12c     80.4%
    20:2Δ11c,14c     0.5%     20:2Δ11c,14c     3.2%
B)  用破囊壶菌延伸酶延伸脂肪酸
为了在酵母中表达,首先改变SEQ ID NO:3的破囊壶菌cDNA克隆(Tc_PSE2)(其编码PUFA-特异的延伸酶(PSE)基因),以使其组成功能活性多肽。为此,该蛋白质的N-末端在DNA水平以几乎没有与展叶剑叶藓延伸酶错配的碱基延伸42个碱基对。但是,也可对序列只添加对序列而言读码框正确的起始密码子。
下列寡核苷酸用于PCR实验:
pTCPSE2-5’:
aaaggatccacataatggaggtcgtggagagattctacggtgagttggatggga
agGTCATTTCGGGCCTCGACC
pTCPSE2-3’:aaggatccctgagttttagctcccttttgctttcc
此外,两个寡核苷酸含有BamHI限制性位点和酵母用于高效翻译的共有序列(Kozak,M.(1986)用点突变确定AUG起始密码子侧翼调节真核核糖体翻译的序列,细胞44,283-292)。
用质粒DNA作为模板于热循环仪(Biometra)进行PCR反应,反应使用了Pfu DNA(Stratagene)聚合酶和下列温度程序:96℃ 3分钟,然后96℃30秒、55℃ 30秒和72℃ 3分钟进行25个循环,72℃ 10分钟进行一个循环,并于4℃停止反应。
通过琼脂糖TBE凝胶电泳鉴定所扩增DNA片段的正确大小。用QIAquick凝胶提取试剂盒(QIAGEN)从凝胶中提取扩增的DNA,并用SureClone Ligation Kit(Pharmacia)连接入去磷酸化载体pUC18的SmaI限制性位点,得到pUC-杂合-Tc PSE2。转化大肠杆菌XL1 Blue MRF’kan后,对24个氨苄青霉素抗性的转化子进行DNA小型制备(Riggs,M.G.和McLachlan,A.(1986)用于大量质粒小型制备的简化筛选步骤,生物技术4,310-313),并通过BamHI限制性分析鉴定阳性克隆。用ABI PRISM Big DyeTerminator Cycle Sequencing Ready Reaction Kit(Perkin-Elmer,Weiterstadt)反复测序证实克隆的PCR产物序列。
pUC-PSE1和pUC-杂合-Tc_PSE2的质粒DNA首先用BamHI酶切,并将所得到的片段连接入去磷酸化的酵母/大肠杆菌穿梭载体pYES2的BamHI限制性位点,得到pY2杂合-Tc_PSE2。转化大肠杆菌并从转化子进行DNA小型制备后,通过HindIII酶切检查DNA片段在载体中的方向。培养一个克隆,用Nucleobondò AX 500质粒DNA提取试剂盒(Macherey-Nagel,Diiringen)进行DNA的大量制备。用改良的PEG/醋酸锂法(Ausubel等人,1995),将pY2PSE1、pYES2、pY2-杂合-Tc_PSE2和pYES2转化酵母属INVSc1。在含2%葡萄糖的CMdum-琼脂平板上选择后,对每种转化而言,选择四个pY2PSE1转化子(pY2PSE1a-d)、四个pY2-杂合-Tc_PSE2转化子(pY2-杂合-Tc_PSE2 1a-d)和一个pYES2转化子以进行进一步的培养和功能表达。
延伸酶活性在酵母中的功能表达
预培养:
20ml含2%(w/v)棉子糖的CMdum液体培养基与转基因酵母克隆(pY2-杂合-Tc_SE2 1a-d,pYES2)培养,于30℃,200转/分钟培养3天,直至在600nm处的光密度(OD600)达到1.5-2。
主培养:
为了表达,向20ml含2%(w/v)棉糖和1%(v/v)表面活性剂NP-40的CMdum液体培养基补充终浓度为0.003%(w/v)的脂肪酸底物。将该培养基与预培养物培养至OD600为0.05。在OD600为0.2时,用2%(w/v)半乳糖诱导表达16小时,然后在OD600为0.8-1.2时收获培养物。
脂肪酸分析
从酵母培养物中提取总脂肪酸,并用气相色谱分析。为此,离心(1000×g,10分钟,4℃)收获5ml培养物中的细胞并用100mM NaHCO3,pH8.0洗涤一次,以去除残余的培养基和脂肪酸。为制备脂肪酸甲酯(FAMEs),于80℃用1M methanolic H2SO4和2%(v/v)二甲氧基丙烷处理细胞沉淀1小时。用2ml石油醚提取FAMEs两次,100mM NaHCO3,pH8.0洗涤一次,并用蒸馏水洗涤一次,Na2SO4干燥。在氩流下蒸发有机溶剂,并将FAMEs溶于50μl石油醚。用装备有火焰电离检测器的Hewlett Packard 6850气相色谱仪中的ZEBRON ZB Wax毛细管柱(30m,0.32mm,0.25μm;Phenomenex)上分离样本。烘箱温度程序为以20℃/分钟的速率从70℃(维持1分钟)升高到200℃,然后以5℃/分钟的速率升高到250℃(维持5分钟)并最终以5℃/分钟的速率升高到260℃。用氮气作为载体气体(于70℃以4.5ml/分钟)。通过与FAME标准品(SIGMA)的滞留时间比较鉴定脂肪酸。
五株转基因酵母菌株的脂肪酸模式如表1所示,以mol%表示。
添加和摄入的γ-亚麻酸之比用粗体的印刷数值强调,那些延伸产物用红色数值强调,且那些延伸的γ-亚麻酸用粗体的印刷数值(最后一行)强调。
图2a-e显示了来自pYES2(i/对照)和pY2PSE1(ii-iv c+d/用pY2PSE1A、pY2PSE1B、pY2PSE1C、pY2PSE1D转化的情况下)转化的酵母总脂类的FAMEs的GC分析。为了进行分析,在存在γ-18:3时培养转基因酵母。表1以mol%显示了它们的脂肪酸模式。γ-18:3的摄入用粗体印刷的数值强调,延伸产物dihomo-γ-亚麻酸(20:3Δ8,11,14)用下划线且γ-18:3-延伸产物之比(也以mol%表示)用粗体印刷的数值强调(最后一行)。顺-Δ6,9,12C18:3的DMOX衍生物的结构和质谱见图3a+b。Δ8,11,14 C20:3的DMOX衍生物的结构和质谱见图4a+b。
结果表明γ-18:3大量掺入至所有的转基因酵母中。在气相色谱中所有四个用pY2PSE1转化的转基因酵母克隆显示了一个额外的峰,通过滞留时间的比较其被鉴定为20:3Δ8,11,14。气相色谱/质谱可提供其它证据证实其身份。如表1所示延伸的γ-18:3的百分率为23.7至40.5%。而且,未观察到棕榈酸(16:0)、棕榈油酸(16:1)、硬脂酸(18:0)或油酸(18:1 Δ9)显著的延伸作用。
所鉴定的产物表明来自藓类展叶剑叶藓之PpPSE1的核苷酸序列编码Δ6-选择性脂肪酸延伸酶,其导致在转基因酵母中新脂肪酸的形成。
可如上确定添加和摄入脂肪酸底物之比,从而可检测延伸酶反应的量和质。
DMOX衍生物的结构和质谱也揭示了双键分别的位置。
可进行进一步提供大范围的其它脂肪酸(如花生四烯酸、二十碳五烯酸等)的加料实验,以更详细地证实该延伸酶的底物选择性。实施例18:从常用的转化生物体中分离目标产物
可用本领域公知的多种方法从植物或真菌、藻类、纤毛虫、动物细胞,或从上述的培养物上清中获得目标产物。如果目标产物不从细胞中分泌,可通过低速离心从培养物中收获细胞,并将细胞用标准技术如机械力或超声法裂解。可从其它组织或其它器官机械分离植物器官。匀浆化后,离心去除细胞碎片,并保留包含可溶性蛋白质的上清部分,用于进一步分离目标化合物。如果产物从目标细胞中分泌,可通过低速离心从培养物中去除细胞,并保留上清部分用于进一步的分离。
对来自每一分离步骤的上清部分用合适的树脂进行层析,使目标分子保留在层析树脂上而样本中的许多污染物则不保留在层析树脂上,或污染物保留在层析树脂上而样本则不保留在层析树脂上。如果需要的话,可用相同或其它层析树脂重复这些层析步骤。技术人员熟知选择合适的层析树脂并熟知它们用于待分离的具体分子的最有效用途。分离产物可通过过滤或超过滤浓缩,并保存在产物稳定性最高的温度下。
大量的分离方法为本领域公知,且上述分离方法不用于限制的目的。这些分离方法如在Bailey,J.E.和Ollis,D.F.,生物化学工程基础(BiochemicalEngineering Fundamentals),McGraw-Hill:纽约(1986)中进行了描述。
可用本领域的标准技术确定所分离化合物的性质和纯度。它们包括高效液相色谱(HPLC)、分光镜分析法、染色法、薄层层析、NIRS、酶测定法或微生物学方法。对这些分析方法的综述参见:Patek等人(1994)应用与环境微生物学(Appl.Environ.Microbiol.)60:133-140;Malakhova等人(1996)生物技术(Biotekhnologiya)11:27-32;以及Schmidt等人(1998)生物加工工程(Bioprocess Engineer.)19:67-70.Ulmann’s工业化学百科全书(1996)第A27卷,VCH Weinheim,89-90页、521-540页、540-547页、559-566页、575-581页和581-587页;Michal,G(1999)生物化学途径:生物化学和分子生物学图集(Biochemical Pathways:An Atlas ofBiochemistry and Molecular Biology),John Wiley和Sons;Fallon,A.等人(1987)在生物化学和分子生物学实验室技术(Laboratory Techniques inBiochemistry and Molecular Biology)一书中第17卷:HPLC在生物化学中应用(Applications of HPLC in Biochemistry)。
等同物
技术人员公知或只需借助常规的实验可鉴定于此处描述的本发明特定实施方案的大量等同物。本专利的权利要求包括这些等同物。
                     序列表序列表<110>巴斯福股份有限公司<120>新延伸酶基因以及制备多不饱和脂肪酸的方法<130>0050/51159<140>20000081<141>2000-02-09<160>12<170>PatentIn Vers.2.0<210>1<211>1192<212>DNA<213>展叶剑叶藓<220><221>CDS<222>(58)..(930)<400>1ctgcttcgtc tcatcttggg ggtgtgattc gggagtgggt tgagttggtg gagcgca   57atg gag gtc gtg gag aga ttc tac ggt gag ttg gat ggg aag gtc tcg  105Met Glu Val Val Glu Arg Phe Tyr Gly Glu Leu Asp Gly Lys Val Ser1               5                  10                  15cag ggc gtg aat gca ttg ctg ggt agt ttt ggg gtg gag ttg acg gat  153Gln Gly Val Asn Ala Leu Leu Gly Ser Phe Gly Val Glu Leu Thr Asp
         20                  25                  30acg ccc act acc aaa ggc ttg ccc ctc gtt gac agt ccc aca ccc atc  201Thr Pro Thr Thr Lys Gly Leu Pro Leu Val Asp Ser Pro Thr Pro Ile
     35                  40                  45gtc ctc ggt gtt tct gta tac ttg act att gtc att gga ggg ctt ttg  249Val Leu Gly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu
 50                  55                  60tgg ata aag gcc agg gat ctg aaa ccg cgc gcc tcg gag cca ttt ttg  297Trp Ile Lys Ala Arg Asp Leu Lys Pro Arg Ala Ser Glu Pro Phe Leu65                  70                  75                  80ctc caa gct ttg gtg ctt gtg cac aac ctg ttc tgt ttt gcg ctc agt  345Leu Gln Ala Leu Val Leu Val His Asn Leu Phe Cys Phe Ala Leu Ser
             85                  90                  95ctg tat atg tgc gtg ggc atc gct tat cag gct att acc tgg cgg tac   393Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln Ala Ile Thr Trp Arg Tyr
        100                 105                 110tct ctc tgg ggc aat gca tac aat cct aaa cat aaa gag atg gcg att   441Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala Ile
    115                 120                 125ctg gta tac ttg ttc tac atg tct aag tac gtg gaa ttc atg gat acc   489Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr
130                 135                 140gtt atc atg ata ctg aag cgc agc acc agg caa ata agc ttc ctc cac   537Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His145                 150                 155                 160gtt tat cat cat tct tca att tcc ctc att tgg tgg gct att gct cat   585Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His
            165                 170                 175cac gct cct ggc ggt gaa gca tat tgg tct gcg gct ctg aac tca gga   633His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly
        180                 185                 190gtg cat gtt ctc atg tat gcg tat tac ttc ttg gct gcc tgc ctt cga   681Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg
    195                 200                 205agt agc cca aag tta aaa aat aag tac ctt ttt tgg ggc agg tac ttg   729Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu
210                 215                 220aca caa ttc caa atg ttc cag ttt atg ctg aac tta gtg cag gct tac   777Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr225                 230                 235                 240tac gac atg aaa acg aat gcg cca tat cca caa tgg ctg atc aag att   825Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile
            245                 250                 255ttg ttc tac tac atg atc tcg ttg ctg ttt ctt ttc ggc aat ttt tac   873Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr
        260                 265                 270gta caa aaa tac atc aaa ccc tct gac gga aag caa aag gga gct aaa   921Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys
    275                 280                 285act gag tga gctgtatcaa gccatagaaa ctctattatg ttagaacctg           970Thr Glu
290aagttggtgc tttcttatct ccacttatct tttaagcagc atcagttttg aaatgatgtg 1030tgggcgtggt ctgcaagtag tcatcaatat aatcggcctg agcacttcag atggattgtt 1090agaacatgag taaaagcggt tattacggtg tttattttgt accaaatcac cgcacgggtg 1150aattgaaata tttcagattt gatcaatttc atctgaaaaa aa                    1192<210>2<211>290<212>PRT<213>展叶剑叶藓<400>2Met Glu Val Val Glu Arg Phe Tyr Gly Glu Leu Asp Gly Lys Val Ser1               5                  10                  15Gln Gly Val Asn Ala Leu Leu Gly Ser Phe Gly Val Glu Leu Thr Asp
         20                  25                  30Thr Pro Thr Thr Lys Gly Leu Pro Leu Val Asp Ser Pro Thr Pro Ile
     35                  40                  45Val Leu Gly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu
 50                  55                  60Trp Ile Lys Ala Arg Asp Leu Lys Pro Arg Ala Ser Glu Pro Phe Leu65                  70                 75                   80Leu Gln Ala Leu Val Leu Val His Asn Leu Phe Cys Phe Ala Leu Ser
             85                  90                  95Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln Ala Ile Thr Trp Arg Tyr
        100                 105                 110Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala Ile
    115                 120                 125Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr
130                 135                 140Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His145                 150                 155                 160Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His
            165                 170                 175His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly
        180                 185                 190Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg
    195                 200                 205Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu
210                 215                 220Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr225                 230                 235                 240Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile
            245                 250                 255Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr
        260                 265                 270Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys
    275                 280                 285Thr Glu
290<210>3<211>687<212>DNA<213>破囊壶菌<220><221>CDS<222>(1)..(588)<400>3cgc agc gtg cat aac ctc ggg ctc tgc ctc ttc tcg ggc gcc gtg tgg  48Arg Ser Val His Asn Leu Gly Leu Cys Leu Phe Ser Gly Ala Val Trp1               5                  10                  15atc tac acg agc tac ctc atg atc cag gat ggg cac ttt cgc agc ctc  96Ile Tyr Thr Ser Tyr Leu Met Ile Gln Asp Gly His Phe Arg Ser Leu
         20                  25                  30gag gcg gca acg tgc gag ccg ctc aag cat ccg cac ttc cag ctc atc  144Glu Ala Ala Thr Cys Glu Pro Leu Lys His Pro His Phe Gln Leu Ile
     35                  40                  45agc ttg ctc ttt gcg ctg tcc aag atc tgg gag tgg ttc gac acg gtg   192Ser Leu Leu Phe Ala Leu Ser Lys Ile Trp Glu Trp Phe Asp Thr Val
 50                  55                  60ctc ctc atc gtc aag ggc aac aag ctc cgc ttc ctg cac gtc ttg cac   240Leu Leu Ile Val Lys Gly Asn Lys Leu Arg Phe Leu His Val Leu His65                  70                  75                  80cac gcc acg acc ttt tgg ctc tac gcc atc gac cac atc ttt ctc tcg   288His Ala Thr Thr Phe Trp Leu Tyr Ala Ile Asp His Ile Phe Leu Ser
             85                  90                  95tcc atc aag tac ggc gtc gcg gtc aat gct ttc atc cac acc gtc atg   336Ser Ile Lys Tyr Gly Val Ala Val Asn Ala Phe Ile His Thr Val Met
        100                 105                 110tac gcg cac tac ttc cgc cca ttc ccg aag ggc ttg cgc ccg ctt att   384Tyr Ala His Tyr Phe Arg Pro Phe Pro Lys Gly Leu Arg Pro Leu Ile
    115                 120                 125acg cag ttg cag atc gtc cag ttc atc ttc agc atc ggc atc cat acc   432Thr Gln Leu Gln Ile Val Gln Phe Ile Phe Ser Ile Gly Ile His Thr
130                 135                 140gcc atc tac tgg cac tac gac tgc gag ccg ctc gtg cat acc cac ttt   480Ala Ile Tyr Trp His Tyr Asp Cys Glu Pro Leu Val His Thr His Phe145                 150                 155                 160tgg gaa tac gtc acg ccc tac ctc ttc gtc gtg ccc ttc ctc atc ctc   528Trp Glu Tyr Val Thr Pro Tyr Leu Phe Val Val Pro Phe Leu Ile Leu
            165                 170                 175ttt ctc aat ttc tac ctg cag cag tac gtc ctc gcg ccc gca aaa acc   576Phe Leu Asn Phe Tyr Leu Gln Gln Tyr Val Leu Ala Pro Ala Lys Thr
        180                 185                 190aag aag gca tag ccacgtaaca gtagaccagc agcgccgagg acgcgtgccg       628Lys Lys Ala
    195cgttatcgcg aagcacgaaa taaagaagat catttgattc aaaaaaaaaa aaaaaaaaa  687<210>4<211>195<212>PRT<213>破囊壶菌<400>4Arg Ser Val His Asn Leu Gly Leu Cys Leu Phe Ser Gly Ala Val Trp1               5                  10                  15Ile Tyr Thr Ser Tyr Leu Met Ile Gln Asp Gly His Phe Arg Ser Leu
         20                  25                  30Glu Ala Ala Thr Cys Glu Pro Leu Lys His Pro His Phe Gln Leu Ile
     35                  40                  45Ser Leu Leu Phe Ala Leu Ser Lys Ile Trp Glu Trp Phe Asp Thr Val
 50                  55                  60Leu Leu Ile Val Lys Gly Asn Lys Leu Arg Phe Leu His Val Leu His65                  70                  75                  80His Ala Thr Thr Phe Trp Leu Tyr Ala Ile Asp His Ile Phe Leu Ser
             85                  90                  95Ser Ile Lys Tyr Gly Val Ala Val Asn Ala Phe Ile His Thr Val Met
        100                 105                 110Tyr Ala His Tyr Phe Arg Pro Phe Pro Lys Gly Leu Arg Pro Leu Ile
    115                 120                 125Thr Gln Leu Gln Ile Val Gln Phe Ile Phe Ser Ile Gly Ile His Thr
130                 135                 140Ala Ile Tyr Trp His Tyr Asp Cys Glu Pro Leu Val His Thr His Phe145                 150                 155                 160Trp Glu Tyr Val Thr Pro Tyr Leu Phe Val Val Pro Phe Leu Ile Leu
            165                 170                 175Phe Leu Asn Phe Tyr Leu Gln Gln Tyr Val Leu Ala Pro Ala Lys Thr
        180                 185                 190Lys Lys Ala
    195<210>5<211>955<212>DNA<213>破囊壶菌<220><221>CDS<222>(1)..(894)<400>5gtc att tcg ggc ctc gac ctt ctc ccc gtg ctc tcg tgg gag act atg   48Val Ile Ser Gly Leu Asp Leu Leu Pro Val Leu Ser Trp Glu Thr Met1               5                  10                  15aag ttc gac act gcc gaa gtt gtc tcg gtc tgg ctg cgc acg cac atg   96Lys Phe Asp Thr Ala Glu Val Val Ser Val Trp Leu Arg Thr His Met
         20                  25                  30tgg gtc ccc ttc ctg atg tgc ttc atc tac ctg gtc gtc atc ttc ggc   144Trp Val Pro Phe Leu Met Cys Phe Ile Tyr Leu Val Val Ile Phe Gly
     35                  40                  45atc cag tac tac atg gag gac cgc aag gag ttc gat ctg cgc aag ccg   192Ile Gln Tyr Tyr Met Glu Asp Arg Lys Glu Phe Asp Leu Arg Lys Pro
 50                  55                  60ctg gcc gcc tgg agc gcc ttc ttg gcc att ttc agc atc ggc gcc tcc   240Leu Ala Ala Trp Ser Ala Phe Leu Ala Ile Phe Ser Ile Gly Ala Ser65                  70                  75                  80atc cgc acc gtg ccc gtc ctg ctc aag atg ctc tac gaa aag ggc acg   288Ile Arg Thr Val Pro Val Leu Leu Lys Met Leu Tyr Glu Lys Gly Thr
             85                  90                  95cac cac gtg ctc tgc ggc gac acg cgc aac gac tgg gtc att gac aac   336His His Val Leu Cys Gly Asp Thr Arg Asn Asp Trp Val Ile Asp Asn
        100                 105                 110ccg gcc ggc gtc tgg acc atg gcc ttt atc ttt tcc aag att ccc gag   384Pro Ala Gly Val Trp Thr Met Ala Phe Ile Phe Ser Lys Ile Pro Glu
    115                 120                 125ctc atc gac acc ctc ttt atc gtg ctc cgc aag cgc aag ctc atc acc   432Leu Ile Asp Thr Leu Phe Ile Val Leu Arg Lys Arg Lys Leu Ile Thr
130                 135                 140ctc cac tgg tac cac cac gtg acc gtg ctc ctg ttc tgc tgg cac gcc   480Leu His Trp Tyr His His Val Thr Val Leu Leu Phe Cys Trp His Ala145                 150                 155                 160tgg gcc acc ttt gcg ctc acc ggc atc gtc ttt gcc gcc atc aac gcc   528Trp Ala Thr Phe Ala Leu Thr Gly Ile Val Phe Ala Ala Ile Asn Ala
            165                 170                 175tcg gtg cac gcc atc atg tac gcc tat tac gcc ttc acg gcc ctc ggc   576Ser Val His Ala Ile Met Tyr Ala Tyr Tyr Ala Phe Thr Ala Leu Gly
        180                 185                 190tac cga cca acc tcg tac gcc atc tac att acg ctc att cag atc atg  624Tyr Arg Pro Thr Ser Tyr Ala Ile Tyr Ile Thr Leu Ile Gln Ile Met
    195                 200                 205cag atg gtc gtc ggc acc gcc gtc acc ttt tac att ggc tac gac atg  672Gln Met Val Val Gly Thr Ala Val Thr Phe Tyr Ile Gly Tyr Asp Met
210                 215                 220gcc ttt gtc acg ccg cag ccc ttc cgc ctt gac atg aaa ctc aac tgg  720Ala Phe Val Thr Pro Gln Pro Phe Arg Leu Asp Met Lys Leu Asn Trp225                 230                 235                 240gac ccg ctc agc aag ggc gag aac acc gag ccc acc tgc aag ggc gcc  768Asp Pro Leu Ser Lys Gly Glu Asn Thr Glu Pro Thr Cys Lys Gly Ala
            245                 250                 255aac tcc tcc aac gcc atc ttc ggc gtc atc atg tac gcc tcg tac ctc  816Asn Ser Ser Asn Ala Ile Phe Gly Val Ile Met Tyr Ala Ser Tyr Leu
        260                 265                 270tac ctc ttc tgc ctc ttc ttc tac atg gcc tac ctg cgc ccg aag aag  864Tyr Leu Phe Cys Leu Phe Phe Tyr Met Ala Tyr Leu Arg Pro Lys Lys
    275                 280                 285tcg acg ccc gcg gcc aag aag aca aac taa tcgcacacta ccaaacaatc    914Ser Thr Pro Ala Ala Lys Lys Thr Asn
290                 295ttccactcga cctagaaaaa aaaaaaaaaa aaaaactcga g                    955<210>6<211>297<212>PRT<213>破囊壶菌<400>6Val Ile Ser Gly Leu Asp Leu Leu Pro Val Leu Ser Trp Glu Thr Met1               5                  10                  15Lys Phe Asp Thr Ala Glu Val Val Ser Val Trp Leu Arg Thr His Met
         20                  25                  30Trp Val Pro Phe Leu Met Cys Phe Ile Tyr Leu Val Val Ile Phe Gly
     35                  40                  45Ile Gln Tyr Tyr Met Glu Asp Arg Lys Glu Phe Asp Leu Arg Lys Pro
 50                  55                  60Leu Ala Ala Trp Ser Ala Phe Leu Ala Ile Phe Ser Ile Gly Ala Ser65                  70                  75                  80Ile Arg Thr Val Pro Val Leu Leu Lys Met Leu Tyr Glu Lys Gly Thr
             85                  90                  95His His Val Leu Cys Gly Asp Thr Arg Asn Asp Trp Val Ile Asp Asn
        100                 105                 110Pro Ala Gly Val Trp Thr Met Ala Phe Ile Phe Ser Lys Ile Pro Glu
    115                 120                 125Leu Ile Asp Thr Leu Phe Ile Val Leu Arg Lys Arg Lys Leu Ile Thr
130                 135                 140Leu His Trp Tyr His His Val Thr Val Leu Leu Phe Cys Trp His Ala145                 150                 155                 160Trp Ala Thr Phe Ala Leu Thr Gly Ile Val Phe Ala Ala Ile Asn Ala
            165                 170                 175Ser Val His Ala Ile Met Tyr Ala Tyr Tyr Ala Phe Thr Ala Leu Gly
        180                 185                 190Tyr Arg Pro Thr Ser Tyr Ala Ile Tyr Ile Thr Leu Ile Gln Ile Met
    195                 200                 205Gln Met Val Val Gly Thr Ala Val Thr Phe Tyr Ile Gly Tyr Asp Met
210                 215                 220Ala Phe Val Thr Pro Gln Pro Phe Arg Leu Asp Met Lys Leu Asn Trp225                 230                 235                 240Asp Pro Leu Ser Lys Gly Glu Asn Thr Glu Pro Thr Cys Lys Gly Ala
            245                 250                 255Asn Ser Ser Asn Ala Ile Phe Gly Val Ile Met Tyr Ala Ser Tyr Leu
        260                 265                 270Tyr Leu Phe Cys Leu Phe Phe Tyr Met Ala Tyr Leu Arg Pro Lys Lys
    275                 280                 285Ser Thr Pro Ala Ala Lys Lys Thr Asn
290                 295<210>7<211>708<212> DNA<213> 隐甲藻<220><221> CDS<222> (1)..(645)<400> 7cgg cac gag gta cac atg acc gag aag agg gga ctg cag ttc acg atc   48Arg His Glu Val His Met Thr Glu Lys Arg Gly Leu Gln Phe Thr Ile1               5                  10                  15tgc ggc tct act ggt gag ttg gtg cag aat ctc cag gat ggt ccc act   96Cys Gly Ser Thr Gly Glu Leu Val Gln Asn Leu Gln Asp Gly Pro Thr
         20                  25                  30gcc ttg gcg ttg tgc ctc ttt tgc ttc agc aaa att ccc gag ttg atg   144Ala Leu Ala Leu Cys Leu Phe Cys Phe Ser Lys Ile Pro Glu Leu Met
     35                  40                  45gac acg gtc ttt ctc atc ttg aag ggc aag aag gtt cgc ttt ttg cag   192Asp Thr Val Phe Leu Ile Leu Lys Gly Lys Lys Val Arg Phe Leu Gln
 50                  55                  60tgg tac cac cac gct acc gtg atg ctc ttc tgc tgg ttg gca ctg gct   240Trp Tyr His His Ala Thr Val Met Leu Phe Cys Trp Leu Ala Leu Ala65                  70                  75                  80acg gag tac acc ccg ggc ctc tgg ttc gcg gcc act aac tac ttc gtg   288Thr Glu Tyr Thr Pro Gly Leu Trp Phe Ala Ala Thr Asn Tyr Phe Val
             85                  90                  95cac tcc atc atg tac atg tac ttc ttc ttg atg acc ttc aag acg gcc   336His Ser Ile Met Tyr Met Tyr Phe Phe Leu Met Thr Phe Lys Thr Ala
        100                 105                 110gca aag gtc gtg aag ccc att gcc cct ctc atc acc atc atc cag atc   384Ala Lys Val Val Lys Pro Ile Ala Pro Leu Ile Thr Ile Ile Gln Ile
    115                 120                 125gcc cag atg gtc tgg ggt ctc atc gtc aac ggc atc gcg atc acc act   432Ala Gln Met Val Trp Gly Leu Ile Val Asn Gly Ile Ala Ile Thr Thr
130                 135                 140ttc ttc acc acg ggc gcc tgc cag atc cag tcc gtg acg gtc tac tcg   480Phe Phe Thr Thr Gly Ala Cys Gln Ile Gln Ser Val Thr Val Tyr Ser145                 150                 155                 160gcc att gtg atg tac gct tcg tac ttc tac ctc ttc tcc cag ctc ttc   528Ala Ile Val Met Tyr Ala Ser Tyr Phe Tyr Leu Phe Ser Gln Leu Phe
            165                 170                 175ctg gag gca tac gga tcc gct ggc aag aac aag aag aag ctc gcc cgc  576Leu Glu Ala Tyr Gly Ser Ala Gly Lys Asn Lys Lys Lys Leu Ala Arg
        180                 185                 190gag ctc tcc cga aag atc tcc gag gct ctc ctg aat agt ggc gac gag  624Glu Leu Ser Arg Lys Ile Ser Glu Ala Leu Leu Asn Ser Gly Asp Glu
    195                 200                 205gta gcc aag cac ctc aag tga actgagcgac ctcatcttgg tctggtccgc     675Val Ala Lys His Leu Lys
210                 215caaattgccg cgtgcatgtg catgagatgc tgt                             708<210>8<211>214<212>PRT<213>隐甲藻<400>8Arg His Glu Val His Met Thr Glu Lys Arg Gly Leu Gln Phe Thr Ile1               5                  10                  15Cys Gly Ser Thr Gly Glu Leu Val Gln Asn Leu Gln Asp Gly Pro Thr
         20                  25                  30Ala Leu Ala Leu Cys Leu Phe Cys Phe Ser Lys Ile Pro Glu Leu Met
     35                  40                  45Asp Thr Val Phe Leu Ile Leu Lys Gly Lys Lys Val Arg Phe Leu Gln
 50                  55                  60Trp Tyr His His Ala Thr Val Met Leu Phe Cys Trp Leu Ala Leu Ala65                  70                  75                  80Thr Glu Tyr Thr Pro Gly Leu Trp Phe Ala Ala Thr Asn Tyr Phe Val
             85                  90                  95His Ser Ile Met Tyr Met Tyr Phe Phe Leu Met Thr Phe Lys Thr Ala
        100                 105                 110Ala Lys Val Val Lys Pro Ile Ala Pro Leu Ile Thr Ile Ile Gln Ile
    115                 120                 125Ala Gln Met Val Trp Gly Leu Ile Val Asn Gly Ile Ala Ile Thr Thr
130                 135                 140Phe Phe Thr Thr Gly Ala Cys Gln Ile Gln Ser Val Thr Val Tyr Ser145                 150                 155                 160Ala Ile Val Met Tyr Ala Ser Tyr Phe Tyr Leu Phe Ser Gln Leu Phe
            165                 170                 175Leu Glu Ala Tyr Gly Ser Ala Gly Lys Asn Lys Lys Lys Leu Ala Arg
        180                 185                 190Glu Leu Ser Arg Lys Ile Ser Glu Ala Leu Leu Asn Ser Gly Asp Glu
    195                 200                 205Val Ala Lys His Leu Lys
210<210>9<211>1054<212>DNA<213>破囊壶菌<220><221>CDS<222>(43)..(858)<400>9gaattcggca cgagagcgcg cggagcggag acctcggccg cg atg atg gag ccg   54
                                           Met Met Glu Pro
                                             1ctc gac agg tac agg gcg ctg gcg gag ctc gcc gcg agg tac gcc agc  102Leu Asp Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser5                  10                  15                  20tcg gcg gcc ttc aag tgg caa gtc acg tac gac gcc aag gac agc ttc  150Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala Lys Asp Ser Phe
             25                  30                  35gtc ggg ccc ctg gga atc cgg gag ccg ctc ggg ctc ctg gtg ggc tcc  198Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu Leu Val Gly Ser
         40                  45                  50gtg gtc ctc tac ctg agc ctg ctg gcc gtg gtc tac gcg ctg cgg aac  246Val Val Leu Tyr Leu Ser Leu Leu Ala Val Val Tyr Ala Leu Arg Asn
     55                  60                  65tac ctt ggc ggc ctc atg gcg ctc cgc agc gtg cat aac ctc ggg ctc  294Tyr Leu Gly Gly Leu Met Ala Leu Arg Ser Val His Asn Leu Gly Leu
 70                  75                  80tgc ctc ttc tcg ggc gcc gtg tgg atc tac acg agc tac ctc atg atc   342Cys Leu Phe Ser Gly Ala Val Trp Ile Tyr Thr Ser Tyr Leu Met Ile85                  90                  95                 100cag gat ggg cac ttt cgc agc ctc gag gcg gca acg tgc gag ccg ctc   390Gln Asp Gly His Phe Arg Ser Leu Glu Ala Ala Thr Cys Glu Pro Leu
            105                 110                 115aag cat ccg cac ttc cag ctc atc agc ttg ctc ttt gcg ctg tcc aag   438Lys His Pro His Phe Gln Leu Ile Ser Leu Leu Phe Ala Leu Ser Lys
        120                 125                 130atc tgg gag tgg ttc gac acg gtg ctc ctc atc gtc aag ggc aac aag   486Ile Trp Glu Trp Phe Asp Thr Val Leu Leu Ile Val Lys Gly Asn Lys
    135                 140                 145ctc cgc ttc ctg cac gtc ttg cac cac gcc acg acc ttt tgg ctc tac   534Leu Arg Phe Leu His Val Leu His His Ala Thr Thr Phe Trp Leu Tyr
150                 155                 160gcc atc gac cac atc ttt ctc tcg tcc atc aag tac ggc gtc gcg gtc   582Ala Ile Asp His Ile Phe Leu Ser Ser Ile Lys Tyr Gly Val Ala Val165                 170                 175                 180aat gct ttc atc cac acc gtc atg tac gcg cac tac ttc cgc cca ttc   630Asn Ala Phe Ile His Thr Val Met Tyr Ala His Tyr Phe Arg Pro Phe
            185                 190                 195ccg aag ggc ttg cgc ccg ctt att acg cag ttg cag atc gtc cag ttc   678Pro Lys Gly Leu Arg Pro Leu Ile Thr Gln Leu Gln Ile Val Gln Phe
        200                 205                 210att ttc agc atc ggc atc cat acc gcc att tac tgg cac tac gac tgc   726Ile Phe Ser Ile Gly Ile His Thr Ala Ile Tyr Trp His Tyr Asp Cys
    215                 220                 225gag ccg ctc gtg cat acc cac ttt tgg gaa tac gtc acg ccc tac ctt   774Glu Pro Leu Val His Thr His Phe Trp Glu Tyr Val Thr Pro Tyr Leu
230                 235                 240ttc gtc gtg ccc ttc ctc atc ctc ttt ttc aat ttt tac ctg cag cag   822Phe Val Val Pro Phe Leu Ile Leu Phe Phe Asn Phe Tyr Leu Gln Gln245                 250                 255                 260tac gtc ctc gcg ccc gca aaa acc aag aag gca tag ccacgtaaca        868Tyr Val Leu Ala Pro Ala Lys Thr Lys Lys Ala
            265                 270gtagaccagc agcgccgagg acgcgtgccg cgttatcgcg aagcacgaaa taaagaagat 928catttgattc aacgaggcta cttgcggcca cgagaaaaaa aaaaaaaaaa aaaaaaaaaa 988aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1048ctcgag                                                            1054<210>10<211>271<212>PRT<213>破囊壶菌<400>10Met Met Glu Pro Leu Asp Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala1               5                  10                  15Arg Tyr Ala Ser Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala
         20                  25                  30Lys Asp Ser Phe Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu
     35                  40                  45Leu Val Gly Ser Val Val Leu Tyr Leu Ser Leu Leu Ala Val Val Tyr
 50                  55                  60Ala Leu Arg Asn Tyr Leu Gly Gly Leu Met Ala Leu Arg Ser Val His65                  70                  75                  80Asn Leu Gly Leu Cys Leu Phe Ser Gly Ala Val Trp Ile Tyr Thr Ser
             85                  90                  95Tyr Leu Met Ile Gln Asp Gly His Phe Arg Ser Leu Glu Ala Ala Thr
        100                 105                 110Cys Glu Pro Leu Lys His Pro His Phe Gln Leu Ile Ser Leu Leu Phe
    115                 120                 125Ala Leu Ser Lys Ile Trp Glu Trp Phe Asp Thr Val Leu Leu Ile Val
130                 135                 140Lys Gly Asn Lys Leu Arg Phe Leu His Val Leu His His Ala Thr Thr145                 150                 155                 160Phe Trp Leu Tyr Ala Ile Asp His Ile Phe Leu Ser Ser Ile Lys Tyr
            165                 170                 175Gly Val Ala Val Asn Ala Phe Ile His Thr Val Met Tyr Ala His Tyr
        180                 185                 190Phe Arg Pro Phe Pro Lys Gly Leu Arg Pro Leu Ile Thr Gln Leu Gln
    195                 200                 205Ile Val Gln Phe Ile Phe Ser Ile Gly Ile His Thr Ala Ile Tyr Trp
210                 215                 220His Tyr Asp Cys Glu Pro Leu Val His Thr His Phe Trp Glu Tyr Val225                 230                 235                 240Thr Pro Tyr Leu Phe Val Val Pro Phe Leu Ile Leu Phe Phe Asn Phe
            245                 250                 255Tyr Leu Gln Gln Tyr Val Leu Ala Pro Ala Lys Thr Lys Lys Ala
        260                 265                 270<210>11<211>421<212>DNA<213>致病疫霉<220><221>CDS<222>(1)..(279)<400>11cac acc atc atg tac act tac tac ttc gtc agc gcc cac acg cgc aac  48His Thr Ile Met Tyr Thr Tyr Tyr Phe Val Ser Ala His Thr Arg Asn1               5                  l0                  15att tgg tgg aag aag tac ctc acg cgc att cag ctt atc cag ttc gtg  96Ile Trp Trp Lys Lys Tyr Leu Thr Arg Ile Gln Leu Ile Gln Phe Val
         20                  25                  30acc atg aac gtg cag ggc tac ctg acc tac tct cga cag tgc cca ggc  144Thr Met Asn Val Gln Gly Tyr Leu Thr Tyr Ser Arg Gln Cys Pro Gly
     35                  40                  45atg cct cct aag gtg ccg ctc atg tac ctt gtg tac gtg cag tca ctc  192Met Pro Pro Lys Val Pro Leu Met Tyr Leu Val Tyr Val Gln Ser Leu
 50                  55                  60ttc tgg ctc ttc atg aat ttc tac att cgc gcg tac gtg ttc ggc ccc  240Phe Trp Leu Phe Met Asn Phe Tyr Ile Arg Ala Tyr Val Phe Gly Pro65                  70                  75                  80aag aaa ccg gcc gtg gag gaa tcg aag aag aag ttg taa cggcgcttgt   289Lys Lys Pro Ala Val Glu Glu Ser Lys Lys Lys Leu
             85                  90taaaaagtct aacctcgctg taacagctta aaacacacac acacacaacg ctttgtagag 349gaggtaagta gtggcaactc gtgtagaaat gcagcatgcc catcaaatac atcccgtatg 409attcatacta ct                                                     421<210>12<211>92<212>PRT<213>致病疫霉<400>12His Thr Ile Met Tyr Thr Tyr Tyr Phe Val Ser Ala His Thr Arg Asn1               5                  10                  15Ile Trp Trp Lys Lys Tyr Leu Thr Arg Ile Gln Leu Ile Gln Phe Val
         20                  25                  30Thr Met Asn Val Gln Gly Tyr Leu Thr Tyr Ser Arg Gln Cys Pro Gly
     35                  40                  45Met Pro Pro Lys Val Pro Leu Met Tyr Leu Val Tyr Val Gln Ser Leu
 50                  55                  60Phe Trp Leu Phe Met Asn Phe Tyr Ile Arg Ala Tyr Val Phe Gly Pro65                  70                  75                  80Lys Lys Pro Ala Val Glu Glu Ser Lys Lys Lys Leu
             85                 90

Claims (28)

1.一种分离的核酸,其来自植物或藻类并编码对脂肪酸分子中具有至少两个双键的C16-、C18-或C20-脂肪酸延伸至少两个碳原子的多肽。
2.一种分离的核酸,其包含编码对脂肪酸分子中具有至少两个双键的C16-、C18-或C20-脂肪酸延伸至少两个碳原子的多肽的核苷酸序列,核苷酸序列选自:
a)SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5或SEQ ID NO:7所示的核酸序列,
b)按照遗传密码的简并性而衍生于SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5或SEQ ID NO:7所示序列的核酸序列,
c)SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5或SEQ ID NO:7所示序列的衍生物,其编码SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6或SEQ ID NO:8所示氨基酸序列的多肽,且在氨基酸水平具有至少50%的同源性而基本上不降低多肽的酶活性。
3.如权利要求2所述的分离核酸序列,其中序列衍生于植物、藻类或真菌。
4.如权利要求2或3所述的分离核酸序列,其中序列衍生于剑叶藓、破囊壶菌或隐甲藻类。
5.包含如权利要求1至4中任意一项所述的分离核酸的基因构建体,其中核酸功能性连接至一个或多个调节信号。
6.如权利要求5中所述的基因构建体,其基因表达通过调节信号增强。
7.基因构建体,其包含如权利要求1至4中任意一项所述的核酸序列和至少另一种编码脂肪酸生物合成基因的核酸,或其包含如权利要求5或6中所述的基因构建体和至少另一种编码脂肪酸生物合成基因的核酸。
8.如权利要求7所述的基因构建体,其中核酸编码的脂肪酸生物合成酶选自Δ19-、Δ17-、Δ15-、Δ12-、Δ9-、Δ8-、Δ6-、Δ5-、Δ4-去饱和酶、多种羟化酶、Δ12-乙炔酶、酰基-ACP硫酯酶、β-酮脂酰基-ACP合成酶或β-酮脂酰基-ACP还原酶。
9.氨基酸序列,其由权利要求1至4中任意一项所述的分离核酸序列编码,或其由权利要求5至8中任意一项所述的基因构建体编码。
10.载体,其包含如权利要求1至4中任意一项所述的核酸或包含如权利要求5至8中任意一项所述的基因构建体。
11.生物体,其包含至少一种如权利要求1至4中任意一项所述的核酸、如权利要求5至8中任意一项所述的基因构建体或如权利要求10所述的载体。
12.如权利要求11所述的生物体,其中该生物体为微生物、动物或植物。
13.如权利要求11或12中所述的生物体,其中该生物体为转基因植物。
14.特异性结合多肽的抗体,其中多肽由权利要求1至4中任意一项所述的核酸之一编码。
15.反义核酸分子,其包含权利要求1至4中任意一项所述的核酸的互补序列。
16.制备PUFAs的方法,其包括培养包含如权利要求1中所述的核酸、如权利要求6中所述的基因构建体或如权利要求10中所述的载体的生物体,其中上述核酸、基因构建体或载体在该生物体中形成PUFAs的条件下编码对脂肪酸分子中具有至少两个双键的C16-、C18-或C20-脂肪酸延伸至少两个碳原子的多肽。
17.如权利要求16中所述的方法,其中由该方法制备的PUFAs为在脂肪酸分子中具有至少两个双键的C18-、C20-或C22-脂肪酸分子。
18.如权利要求16或17中所述的方法,其中C18-、C20-或C22-脂肪酸分子以油、脂类或游离脂肪酸形式分离自生物体。
19.如权利要求16至18中任意一项所述的方法,其中生物体为微生物、动物或植物。
20.如权利要求16至19中任意一项所述的方法,其中生物体为转基因植物。
21.如权利要求16至20中任意一项所述的方法,其中C16-、C18-或C20-脂肪酸为分子中具有三个双键的脂肪酸。
22.油、脂类或脂肪酸或其一部分,其由权利要求16至21中任意一项所述的方法制备。
23.油、脂类或脂肪酸组合物,其包含PUFAs且其来自转基因植物。
24.如权利要求23中所述的油、脂类或脂肪酸组合物,其中PUFAs来自转基因植物,所述转基因植物包含如权利要求1至4中任意一项所述的核苷酸序列、如权利要求5至8中任意一项中所述的基因构建体、如权利要求15中所述的反义核酸分子或如权利要求10中所述的载体。
25.权利要求22至24中任意一项所述的油、脂类或脂肪酸组合物的用途,其用于饲料、食品、化妆品或药品。
26.一种组合物,其包含权利要求14中所述的抗体、权利要求15中所述的反义核酸构建体或权利要求28中所鉴定的拮抗剂或激动剂。
27.试剂盒,其包含如权利要求1至4中任意一项所述的核酸、如权利要求5至8中任意一项中所述的基因构建体、如权利要求15中所述的反义核酸分子、如权利要求14中所述的抗体、如权利要求28中所鉴定的拮抗剂或激动剂、如权利要求26中所述的组合物、权利要求9中所述的氨基酸序列和/或如权利要求22至25中任意一项所述的油、脂类和/或脂肪酸或其一部分。
28.鉴定延伸酶的拮抗剂或激动剂的方法,其包括
a)将表达本发明多肽的细胞与侯选物质接触;
b)测试PSE活性;
c)将PSE活性与缺少侯选物质时的标准活性比较,当PSE活性高于标准活性表明侯选物质为激动剂,当PSE活性低于标准活性表明侯选物质为拮抗剂。
CNB018046924A 2000-02-09 2001-02-08 新延伸酶基因以及制备多不饱和脂肪酸的方法 Expired - Fee Related CN1247784C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE10005973.2 2000-02-09
DE2000105973 DE10005973A1 (de) 2000-02-09 2000-02-09 Neues Elongasegen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren
DE10023893.9 2000-05-17
DE10023893A DE10023893A1 (de) 2000-05-17 2000-05-17 Neues Elongasegen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren
DE10063387A DE10063387A1 (de) 2000-12-19 2000-12-19 Neues Elongasegen und Verfahren zur Herstellung mehrfach ungestättigter Fettsäuren
DE10063387.0 2000-12-19

Publications (2)

Publication Number Publication Date
CN1398300A true CN1398300A (zh) 2003-02-19
CN1247784C CN1247784C (zh) 2006-03-29

Family

ID=27213647

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018046924A Expired - Fee Related CN1247784C (zh) 2000-02-09 2001-02-08 新延伸酶基因以及制备多不饱和脂肪酸的方法

Country Status (22)

Country Link
US (2) US7544859B2 (zh)
EP (1) EP1254238B1 (zh)
JP (1) JP4547122B2 (zh)
KR (1) KR20020073580A (zh)
CN (1) CN1247784C (zh)
AR (1) AR030051A1 (zh)
AT (1) ATE443146T1 (zh)
AU (2) AU3924401A (zh)
BR (1) BR0108198A (zh)
CA (1) CA2399349C (zh)
CZ (1) CZ20022502A3 (zh)
DE (1) DE50115107D1 (zh)
DK (1) DK1254238T3 (zh)
EE (1) EE200200443A (zh)
ES (1) ES2331228T3 (zh)
HU (1) HUP0300081A3 (zh)
IL (2) IL150414A0 (zh)
MX (1) MXPA02007078A (zh)
NO (1) NO20023757L (zh)
PL (1) PL207026B1 (zh)
PT (1) PT1254238E (zh)
WO (1) WO2001059128A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074312B (zh) * 2007-07-13 2015-01-07 帝斯曼营养品股份公司 D4去饱和酶和d5延伸酶
CN105051189A (zh) * 2013-01-16 2015-11-11 Reg生命科学有限责任公司 具有改善特性的酰基-acp还原酶
CN105368726A (zh) * 2009-09-24 2016-03-02 国立大学法人九州大学 原生藻菌的转化方法

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677145B2 (en) * 1998-09-02 2004-01-13 Abbott Laboratories Elongase genes and uses thereof
US6913916B1 (en) 1998-09-02 2005-07-05 Abbott Laboratories Elongase genes and uses thereof
US20030163845A1 (en) 1998-09-02 2003-08-28 Pradip Mukerji Elongase genes and uses thereof
US7070970B2 (en) 1999-08-23 2006-07-04 Abbott Laboratories Elongase genes and uses thereof
GB0107510D0 (en) 2001-03-26 2001-05-16 Univ Bristol New elongase gene and a process for the production of -9-polyunsaturated fatty acids
US7705202B2 (en) 2002-03-16 2010-04-27 The University Of York Transgenic plants expressing enzymes involved in fatty acid biosynthesis
DE10219203A1 (de) 2002-04-29 2003-11-13 Basf Plant Science Gmbh Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen
US7482116B2 (en) 2002-06-07 2009-01-27 Dna Genotek Inc. Compositions and methods for obtaining nucleic acids from sputum
WO2004076617A2 (de) * 2003-02-27 2004-09-10 Basf Plant Science Gmbh Verfahren zur herstellung mehrfach ungesättigter fettsäuren
CA2868312A1 (en) * 2003-03-31 2004-10-14 University Of Bristol Novel plant acyltransferases specific for long-chained, multiply unsaturated fatty acids
US8008545B2 (en) * 2003-04-15 2011-08-30 Basf Plant Science Gmbh Process for the production of fine chemicals
BRPI0413073A (pt) * 2003-08-01 2006-10-03 Basf Plant Science Gmbh processo para a produção de compostos, óleo, lipìdeo ou ácido graxo, ou uma fração dos mesmos, composição de óleo, lipìdeo ou ácido graxo, processo para a produção de óleos, lipìdeos ou composições de ácido graxo, uso de óleo, lipìdeo ou ácidos graxos ou de composições de óleo, lipìdeo ou ácido graxo ou de óleos, lipìdeos ou composições de ácido graxo, seqüência de ácido nucleico isolado, seqüência de aminoácidos, construção de gene, vetor, e, organismo não humano transgênico
CN1852985A (zh) * 2003-08-01 2006-10-25 巴斯福植物科学有限公司 产生精细化学品的方法
US11952581B2 (en) 2003-08-01 2024-04-09 Basf Plant Science Gmbh Process for the production of polyunsaturated fatty acids in transgenic organisms
MY140210A (en) * 2003-12-22 2009-11-30 Suntory Holdings Ltd Marchantiales-derived unsaturated fatty acid synthetase genes and use of the same
JP4567047B2 (ja) 2004-02-27 2010-10-20 ビーエーエスエフ プラント サイエンス ゲーエムベーハー トランスジェニック植物における多価不飽和脂肪酸の製造方法
ATE528403T1 (de) 2004-02-27 2011-10-15 Basf Plant Science Gmbh Verfahren zur herstellung von ungesättigten omega-3-fettsäuren in transgenen organismen
US7807849B2 (en) * 2004-04-22 2010-10-05 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
CA2563875C (en) 2004-04-22 2015-06-30 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
BRPI0511236A (pt) * 2004-06-04 2007-11-27 Fluxome Sciences As método para a produção de ácidos graxos poliinsaturados com quatro ou mais ligações duplas, saccharomyces cerevisiae geneticamente modificado que tem capacidade de produzir ácidos graxos poliinsaturados com quatro ou mais ligações duplas quando desenvolvido em um substrato que não de ácido graxo, composição, uso da composição e uso de um saccharomyces cervisiae geneticamente modificado
US7588931B2 (en) 2004-11-04 2009-09-15 E. I. Du Pont De Nemours And Company High arachidonic acid producing strains of Yarrowia lipolytica
US8685679B2 (en) * 2004-11-04 2014-04-01 E I Du Pont De Nemours And Company Acyltransferase regulation to increase the percent of polyunsaturated fatty acids in total lipids and oils of oleaginous organisms
US20090040249A1 (en) * 2004-12-17 2009-02-12 Agfa Graphics Nv Ink Circulation System For Inkjet Printing
DE102004063326A1 (de) * 2004-12-23 2006-07-06 Basf Plant Science Gmbh Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
DE102005013779A1 (de) * 2005-03-22 2006-09-28 Basf Plant Science Gmbh Verfahren zur Herstellung von mehrfach ungesättigten C20- und C22-Fettsäuren mit mindestens vier Doppelbindungen in transgenen Pflanzen
CA2609367C (en) * 2005-05-23 2014-08-19 Arcadia Biosciences, Inc. Safflower with elevated gamma-linolenic acid
DE102005038036A1 (de) 2005-08-09 2007-02-15 Basf Plant Science Gmbh Verfahren zur Herstellung von Arachidonsäure und/oder Eicosapentaensäure in transgenen Nutzpflanzen
US7645604B2 (en) * 2005-11-23 2010-01-12 E.I. Du Pont De Nemours And Company Delta-9 elongases and their use in making polyunsaturated fatty acids
EP1966602A1 (en) * 2005-12-28 2008-09-10 DSMIP Assets B.V. Method for the prediction of consumer acceptance of food containing oils
GB0603160D0 (en) 2006-02-16 2006-03-29 Rothamsted Res Ltd Nucleic acid
AR059376A1 (es) 2006-02-21 2008-03-26 Basf Plant Science Gmbh Procedimiento para la produccion de acidos grasos poliinsaturados
US8629195B2 (en) 2006-04-08 2014-01-14 Bayer Materialscience Ag Production of polyurethane foams
US7943823B2 (en) 2006-04-28 2011-05-17 E.I. Du Pont De Nemours And Company Delta-8 desaturase and its use in making polyunsaturated fatty acids
WO2008025068A1 (en) 2006-08-29 2008-03-06 Commonwealth Scientific And Industrial Research Organisation Synthesis of fatty acids
EP2054509A2 (de) 2006-10-06 2009-05-06 BASF Plant Science GmbH Verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen organismen
US8916361B2 (en) 2006-11-17 2014-12-23 Abbott Laboratories Elongase gene and uses thereof
US20080125487A1 (en) * 2006-11-17 2008-05-29 Tapas Das Elongase gene and uses thereof
KR100747151B1 (ko) * 2007-01-11 2007-08-13 대한민국 곰팡이 유래 델타-6 불포화효소 유전자
CA2675207A1 (en) 2007-02-12 2008-07-21 E. I. Du Pont De Nemours And Company Production of arachidonic acid in oilseed plants
EP2176416B1 (de) * 2007-07-31 2016-03-16 BASF Plant Science GmbH Elongasen und verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen organismen
WO2009076559A1 (en) * 2007-12-11 2009-06-18 Synthetic Genomics, Inc. Secretion of fatty aicds by photosynthetic microorganisms
JP5757870B2 (ja) 2008-08-26 2015-08-05 ビーエーエスエフ プラント サイエンス ゲーエムベーハー デサチュラーゼをコードする核酸および改変植物油
BR122021003835B1 (pt) 2008-11-18 2022-02-08 Grains Research And Development Corporation Polinucleotídeo isolado e/ou exógeno que não ocorre de forma natural, vetor compreendendo o referido polinucleotídeo e método de produção de óleo contendo ácidos graxos insaturados
US9212371B2 (en) 2009-05-13 2015-12-15 Basf Plant Science Company Gmbh Acyltransferases and uses thereof in fatty acid production
WO2010142522A2 (en) 2009-06-08 2010-12-16 Basf Plant Science Company Gmbh Novel fatty acid elongation components and uses thereof
WO2011006948A1 (en) 2009-07-17 2011-01-20 Basf Plant Science Company Gmbh Novel fatty acid desaturases and elongases and uses thereof
EP3178937B1 (en) 2009-08-31 2018-11-07 BASF Plant Science Company GmbH Regulatory nucleic acid molecules for enhancing seed-specific gene expression in plants promoting enhanced polyunsaturated fatty acid synthesis
US9347049B2 (en) 2009-11-24 2016-05-24 Basf Plant Science Company Gmbh Fatty acid elongase and uses thereof
EP2504427B1 (en) 2009-11-24 2018-06-27 BASF Plant Science Company GmbH Novel fatty acid desaturase and uses thereof
US11236351B2 (en) 2010-05-17 2022-02-01 Dow Agrosciences Llc Production of DHA and other LC PUFAs in plants
CA2804925A1 (en) 2010-06-25 2011-12-29 Basf Plant Science Company Gmbh Acyltransferases from thraustochytrium species and uses thereof in fatty acid production
EP2630235B1 (en) 2010-10-21 2017-04-05 BASF Plant Science Company GmbH Novel fatty acid desaturases, elongases, elongation components and uses therof
JP6193850B2 (ja) 2011-06-19 2017-09-06 アボゲン,インコーポレイティド サンプル収集のためのデバイス、溶液及び方法
TW201307553A (zh) 2011-07-26 2013-02-16 Dow Agrosciences Llc 在植物中生產二十二碳六烯酸(dha)及其他長鏈多元不飽和脂肪酸(lc-pufa)之技術
SG11201408362SA (en) 2012-06-15 2015-01-29 Commw Scient Ind Res Org Production of long chain polyunsaturated fatty acids in plant cells
EP2880050B1 (en) 2012-08-03 2018-07-04 BASF Plant Science Company GmbH Novel enzymes, enzyme components and uses thereof
US10731169B2 (en) 2013-07-05 2020-08-04 Basf Plant Science Company Gmbh Gene expression or activity enhancing elements
WO2015196250A1 (en) 2014-06-27 2015-12-30 Commonwealth Scientific And Industrial Research Organisation Lipid comprising docosapentaenoic acid
CN111154724B (zh) 2013-12-18 2024-02-06 联邦科学技术研究组织 包含二十二碳六烯酸的提取的植物脂质
RU2717644C2 (ru) 2014-03-07 2020-03-24 ДиЭнЭй ГЕНОТЕК ИНК. Способ, композиция и набор для стабилизации дезоксирибонуклеиновых кислот в биологических образцах
US11613761B1 (en) 2014-11-14 2023-03-28 Bioriginal Food & Science Corporation Materials and methods for PUFA production, and PUFA-containing compositions
US10920238B2 (en) 2016-06-01 2021-02-16 National Research Council Of Canada Winter aconite fatty acid elongase and uses thereof in the production of fatty acids
WO2019003441A1 (ja) * 2017-06-30 2019-01-03 日本電気株式会社 予測装置、予測方法、予測プログラムが記録された記録媒体、及び、遺伝子推定装置
US20220127630A1 (en) 2019-02-14 2022-04-28 Cargill, Incorporated Brassica Plants Producing Elevated Levels of Polyunsaturated Fatty Acids
WO2022098631A1 (en) 2020-11-04 2022-05-12 Cargill, Incorporated Harvest management
AU2022246152A1 (en) 2021-03-25 2023-10-05 Basf Plant Science Company Gmbh Fertilizer management

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714349B2 (ja) 1983-01-17 1995-02-22 モンサント カンパニ− 植物細胞での発現に適したキメラ遺伝子
US5504200A (en) * 1983-04-15 1996-04-02 Mycogen Plant Science, Inc. Plant gene expression
US5420034A (en) * 1986-07-31 1995-05-30 Calgene, Inc. Seed-specific transcriptional regulation
DK162399C (da) 1986-01-28 1992-03-23 Danisco Fremgangsmaade til ekspression af gener i baelgplanteceller, dna-fragment, rekombineret dna-fragment samt plasmid til brug ved udoevelsen af fremgangsmaaden
ATE141646T1 (de) 1986-04-09 1996-09-15 Genzyme Corp Genetisch transformierte tiere, die ein gewünschtes protein in milch absondern
US5116742A (en) 1986-12-03 1992-05-26 University Patents, Inc. RNA ribozyme restriction endoribonucleases and methods
US4987071A (en) 1986-12-03 1991-01-22 University Patents, Inc. RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods
US4873316A (en) * 1987-06-23 1989-10-10 Biogen, Inc. Isolation of exogenous recombinant proteins from the milk of transgenic mammals
GB8714772D0 (en) * 1987-06-24 1987-07-29 Efamol Ltd Essential fatty acid compositions
US4827591A (en) 1987-08-07 1989-05-09 Delaware Capital Formation, Inc. Manually operated clip attachment apparatus with movable gate and die
DE3889546T2 (de) * 1987-12-21 1994-09-08 Univ Toledo Transformation von keimenden pflanzensamen mit hilfe von agrobacterium.
US5614395A (en) 1988-03-08 1997-03-25 Ciba-Geigy Corporation Chemically regulatable and anti-pathogenic DNA sequences and uses thereof
NZ228320A (en) 1988-03-29 1991-06-25 Du Pont Nucleic acid promoter fragments of the promoter region homologous to the em gene of wheat, dna constructs therefrom and plants thereof
DE3843628A1 (de) 1988-12-21 1990-07-05 Inst Genbiologische Forschung Wundinduzierbare und kartoffelknollenspezifische transkriptionale regulation
HU218717B (hu) 1989-03-17 2000-11-28 E. I. Du Pont De Nemours And Co. Nukleinsav-termelést fokozó növényi eredetű génfragmentek és eljárás előállításukra
US5322783A (en) 1989-10-17 1994-06-21 Pioneer Hi-Bred International, Inc. Soybean transformation by microparticle bombardment
JPH04506155A (ja) 1990-03-16 1992-10-29 カルジーン,インコーポレイティド 初期種子形成において優先的に発現される新規配列およびそれに関連する方法
US5187267A (en) * 1990-06-19 1993-02-16 Calgene, Inc. Plant proteins, promoters, coding sequences and use
US5679881A (en) 1991-11-20 1997-10-21 Calgene, Inc. Nucleic acid sequences encoding a plant cytoplasmic protein involved in fatty acyl-CoA metabolism
AU3901993A (en) 1992-04-13 1993-11-18 Zeneca Limited Dna constructs and plants incorporating them
GB9324707D0 (en) 1993-12-02 1994-01-19 Olsen Odd Arne Promoter
US5576198A (en) 1993-12-14 1996-11-19 Calgene, Inc. Controlled expression of transgenic constructs in plant plastids
BR9408435A (pt) 1993-12-28 1997-08-05 Kirin Brewery Gene para dessaturase de ácido graxo vetor contendo o dito gene planta transformada com o dito gene e processo para criar a dita planta
US6117679A (en) 1994-02-17 2000-09-12 Maxygen, Inc. Methods for generating polynucleotides having desired characteristics by iterative selection and recombination
GB9403512D0 (en) 1994-02-24 1994-04-13 Olsen Odd Arne Promoter
SE501350C2 (sv) 1994-02-28 1995-01-23 Svenska Rotor Maskiner Ab Skruvkompressor med axialbalanseringsorgan, som utnyttjar olika trycknivåer samt förfarande för drift av en sådan kompressor
GB9421286D0 (en) 1994-10-21 1994-12-07 Danisco Promoter
EP0788542B1 (en) 1994-10-26 2004-09-15 Cargill Incorporated Fae1 genes and their uses
JPH11511015A (ja) 1995-08-10 1999-09-28 ラトガーズ・ユニバーシティ 高等植物のプラスチドにおける核コード転写系
DE19626564A1 (de) 1996-07-03 1998-01-08 Hoechst Ag Genetische Transformation von Ciliatenzellen durch Microcarrier-Bombardement mit DNA beladenen Goldpartikeln
JP3792309B2 (ja) * 1996-08-30 2006-07-05 サントリー株式会社 不飽和脂肪酸含有油脂の製造方法
AU4503797A (en) 1996-09-27 1998-04-17 Maxygen, Inc. Methods for optimization of gene therapy by recursive sequence shuffling and selection
US5977436A (en) 1997-04-09 1999-11-02 Rhone Poulenc Agrochimie Oleosin 5' regulatory region for the modification of plant seed lipid composition
ATE297994T1 (de) * 1997-04-11 2005-07-15 Calgene Llc Verfahren und zusammensetzungen für die synthese von langkettigen, mehrfach ungesättigten fettsäuren in pflanzen.
AR013633A1 (es) 1997-04-11 2001-01-10 Calgene Llc METODO PARA LA ALTERACIoN DE LA COMPOSICIoN DE ÁCIDOS GRASOS DE CADENA MEDIA EN SEMILLAS VEGETALES QUE EXPRESAN UNA TIOESTERASA QUE PREFIERE CADENA MEDIA VEGETAL HETERoLOGA.
US5968809A (en) 1997-04-11 1999-10-19 Abbot Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids
US5972664A (en) 1997-04-11 1999-10-26 Abbott Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids
US6307128B1 (en) 1997-06-03 2001-10-23 Miami University Fatty acid elongases
ATE346944T1 (de) 1997-09-30 2006-12-15 Univ California Herstellung von proteinen in pflanzensamen
KR20010072555A (ko) 1998-03-11 2001-07-31 한스 루돌프 하우스, 헨리테 브룬너, 베아트리체 귄터 신규한 식물 색소체 프로모터 서열
WO1999064616A2 (en) 1998-06-12 1999-12-16 Abbott Laboratories Polyunsaturated fatty acids in plants
US6403349B1 (en) * 1998-09-02 2002-06-11 Abbott Laboratories Elongase gene and uses thereof
WO2000023604A1 (de) 1998-10-21 2000-04-27 Celanese Ventures Gmbh Expressionsvektoren enthaltend regulative sequenzen aus stylonychia lemnae zur heterologen proteinexpression in eukaryontischen protisten und ein verfahren zur identifizierung solcher regulativen sequenzen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074312B (zh) * 2007-07-13 2015-01-07 帝斯曼营养品股份公司 D4去饱和酶和d5延伸酶
US9441212B2 (en) 2007-07-13 2016-09-13 Dsm Nutritional Products Ag Nucleic acids encoding D4 desaturases and D5 elongases
CN105368726A (zh) * 2009-09-24 2016-03-02 国立大学法人九州大学 原生藻菌的转化方法
CN105051189A (zh) * 2013-01-16 2015-11-11 Reg生命科学有限责任公司 具有改善特性的酰基-acp还原酶
CN105051189B (zh) * 2013-01-16 2019-08-06 Reg生命科学有限责任公司 具有改善特性的酰基-acp还原酶

Also Published As

Publication number Publication date
NO20023757D0 (no) 2002-08-08
US7544859B2 (en) 2009-06-09
CZ20022502A3 (cs) 2002-10-16
ES2331228T3 (es) 2009-12-28
IL150414A0 (en) 2002-12-01
HUP0300081A3 (en) 2005-11-28
DK1254238T3 (da) 2009-11-30
PL362905A1 (en) 2004-11-02
EP1254238B1 (de) 2009-09-16
KR20020073580A (ko) 2002-09-27
US20080160054A1 (en) 2008-07-03
JP2003523746A (ja) 2003-08-12
JP4547122B2 (ja) 2010-09-22
CN1247784C (zh) 2006-03-29
PT1254238E (pt) 2009-11-20
BR0108198A (pt) 2003-03-25
NO20023757L (no) 2002-10-08
ATE443146T1 (de) 2009-10-15
WO2001059128A3 (de) 2001-12-20
CA2399349A1 (en) 2001-08-16
AR030051A1 (es) 2003-08-13
CA2399349C (en) 2017-04-04
US8933300B2 (en) 2015-01-13
PL207026B1 (pl) 2010-10-29
HUP0300081A2 (en) 2003-05-28
IL150414A (en) 2011-03-31
AU3924401A (en) 2001-08-20
MXPA02007078A (es) 2003-03-27
US20040111763A1 (en) 2004-06-10
EE200200443A (et) 2003-12-15
AU2001239244B2 (en) 2006-06-08
WO2001059128A2 (de) 2001-08-16
DE50115107D1 (de) 2009-10-29
EP1254238A2 (de) 2002-11-06

Similar Documents

Publication Publication Date Title
CN1247784C (zh) 新延伸酶基因以及制备多不饱和脂肪酸的方法
CN1537166A (zh) 新延长酶基因以及△9-多不饱和脂肪酸的生产
US8088974B2 (en) Production of polyunsaturated fatty acids, novel biosynthesis genes, and novel plant expression constructs
CN1625597A (zh) 新的延长酶基因及多不饱和脂肪酸的制备方法
DE10102338A1 (de) Verfahren zur Expression von Biosynthesegenen in pflanzlichen Samen unter Verwendung von neuen multiplen Expressionskonstrukten
AU2002310891A1 (en) New elongase gene and production of delta9-polyunsaturated fatty acids
CN101076594A (zh) 参与糖和脂质代谢的蛋白质的拟南芥编码基因及使用方法
AU2003232512A1 (en) Method for producing multiple unsaturated fatty acids in plants
CN1898389A (zh) 植物中的糖及脂质代谢调节剂vi
CN1894405A (zh) 含有花生四烯酸的植物体及其利用
CN1729293A (zh) 生产多不饱和脂肪酸的方法
CN1882684A (zh) 细小裸藻的ter基因

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060329

Termination date: 20200208

CF01 Termination of patent right due to non-payment of annual fee