CN105051189A - 具有改善特性的酰基-acp还原酶 - Google Patents

具有改善特性的酰基-acp还原酶 Download PDF

Info

Publication number
CN105051189A
CN105051189A CN201480004992.3A CN201480004992A CN105051189A CN 105051189 A CN105051189 A CN 105051189A CN 201480004992 A CN201480004992 A CN 201480004992A CN 105051189 A CN105051189 A CN 105051189A
Authority
CN
China
Prior art keywords
polypeptide
modification
fatty alcohol
sudden change
host cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480004992.3A
Other languages
English (en)
Other versions
CN105051189B (zh
Inventor
M·鲁德
N·特里安
A·席尔默
J·加诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genomatica Inc
Original Assignee
LS9 Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS9 Inc filed Critical LS9 Inc
Priority to CN201910169609.4A priority Critical patent/CN109897834A/zh
Priority to CN201910693927.0A priority patent/CN110387352A/zh
Publication of CN105051189A publication Critical patent/CN105051189A/zh
Application granted granted Critical
Publication of CN105051189B publication Critical patent/CN105051189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/0108Long-chain acyl-[acyl-carrier-protein] reductase (1.2.1.80)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Fats And Perfumes (AREA)

Abstract

公开内容涉及酰基-ACP还原酶(AAR)酶变体,当在重组宿主细胞中表达时,其导致改善的脂肪醛和脂肪醇生产。公开内容进一步涉及制备且使用此类AAR变体用于生产具有特定特征的脂肪醇组合物的方法。

Description

具有改善特性的酰基-ACP还原酶
本申请要求于2013年1月16日提交的美国临时申请号61/753,273的利益,所述美国临时申请的内容通过引用在此整体并入。
序列表
本申请含有序列表,其已以ASCII形式电子提交且通过引用在此整体并入。所述ASCII拷贝于2014年1月13日创建,命名为LS00046PCT_SL.txt,并且大小为155,731字节。
发明领域
公开内容涉及酰基-ACP还原酶(AAR)酶变体,当在重组宿主细胞中表达时,其导致改善的脂肪醛和/或脂肪醇生产。公开内容进一步涉及制备且使用此类AAR变体用于生产具有特定特征的脂肪醇组合物的方法。
发明背景
脂肪醇表示工业生物化学品的重要范畴。例如,全世界每年的脂肪醇及其衍生物销售超过10亿美元。这些分子及其衍生物具有众多应用,包括作为表面活性剂、润滑剂、增塑剂、溶剂、乳化剂、软化剂(emollient)、增稠剂、调味料、香料和燃料的用途。由于它们的两亲性质,脂肪醇表现为非离子型表面活性剂,其用于个人护理和家用产品例如去污剂中。较短链的脂肪醇作为乳化剂、软化剂和增稠剂用于化妆品和食品工业中。
在自然界中,脂肪醇由酶制备,所述酶能够将多种酰基-ACP或酰基-CoA分子还原为相应伯醇(例如通过引用并入本文的美国专利号8,323,924;8,268,599和8,097,439;以及美国专利公开号20120282663和20100105963)。然而,目前技术主要涉及无机催化剂介导的脂肪酸还原为相应的伯醇。这些脂肪醇经由脂肪酸的催化氢化而产生,所述脂肪酸由天然来源例如椰子油、棕榈油、棕榈仁油、牛油和猪油产生,或通过由石油化学原料产生的α-烯烃的化学水合而产生。衍生自天然来源的脂肪醇具有不同链长,其与特定应用相关且对特定应用特异。脂肪醇脱水为α-烯烃可以通过化学催化来完成。
脂肪醛可以用于生产工业特种化学品。例如,醛常用于生产聚合物、树脂、染料、调味剂、增塑剂、香精和药物。醛也可以用作溶剂、防腐剂和消毒剂。某些天然和合成化合物例如维生素和激素是醛,并且许多糖含有醛基。脂肪醇可以通过化学或酶促还原而转换为脂肪醇。
脂肪醛和脂肪醇生产的更绿色和更清洁的替代方案是经由可发酵的糖和/或生物质。然而,为了使由可发酵的糖或生物质生产脂肪醇和脂肪醇成为商业上可行的,工业过程必须对于最终产物的有效转换和回收进行优化。本公开内容通过提供组合物和方法而解决了该需要,所述组合物和方法通过使用经改造的宿主细胞作为生物催化剂用于脂肪醛和脂肪醇的改善生产。
发明概述
本公开内容提供了光合和异养宿主细胞,其直接生产特定链长的脂肪醛和/或脂肪醇,从而使得不需要纯化的脂肪酸的催化转换。这种生物学途径提供了更高质量的产品,显著的成本下降和对环境的更少影响。更具体而言,本公开内容提供了新型酰基-ACP还原酶(AAR)酶变体,所述酶变体产生脂肪醛和/或脂肪醇及其组合物。还提供的是特定AAR变体核酸和蛋白质序列,以及包含此类经改造的AAR酶变体的新型重组宿主细胞和细胞培养物。公开内容还提供了使用表达重组AAR变体的宿主细胞的方法,以便制备具有特定特征的脂肪醛和/或脂肪醇组合物。
公开内容的一个方面提供了变体酰基-ACP还原酶(AAR)多肽,其催化酰基-ACP转换为脂肪醛,其中所述AAR多肽与下述所示的相应野生型AAR多肽序列具有至少90%序列同一性:SEQIDNO:28、SEQIDNO:30、SEQIDNO:32、SEQIDNO:34、SEQIDNO:36、SEQIDNO:38、SEQIDNO:40、SEQIDNO:42或SEQIDNO:44,以及在重组宿主细胞中表达变体AAR多肽的方法,导致与通过野生型AAR多肽在相应宿主细胞中的表达而产生的脂肪醛和/或脂肪醇组合物的滴度相比较,脂肪醛和/或脂肪醇组合物的更高滴度。在一个实施方案中,遗传改造的变体AAR多肽与SEQIDNO:28所示的相应野生型AAR多肽序列具有至少90%序列同一性,并且与通过野生型AAR多肽在相应宿主细胞中的表达而产生的滴度相比较,变体AAR多肽在重组宿主细胞中的表达导致脂肪醛和/或脂肪醇组合物的更高滴度,或者C12、C14或C16脂肪醇的更高滴度。
在一个方面,变体AAR多肽具有在SEQIDNO:28的氨基酸18、24、31、34、35、43、50、63、86、112、113、116、118、120、135、148、153、155、157、159、168、172、187、188、191、209、210、211、236、277、283、285、291、324、328、335、337和338的一个或多个氨基酸位置处的突变。在一个优选实施方案中,遗传改造的变体AAR多肽具有S18W突变。在另一个优选实施方案中,遗传改造的变体AAR多肽具有S18W突变,并且进一步包含突变例如M21L、D24E、D24Y、L31V、W34F、W35F、D43E、A50Q、C63A、C63G、C63Y、S86G、A112R、S113K、Q116G、R118Q、T120S、A135S、T148C、T148E、T148V、I153P、Q155C、Q155L、T157V、A159V、I168V、C172L、T187V、T188H、T188V、Q191A、L209R、E210Y、A211W、T236C、Q277V、E283G、E283S、A285V、M291V、A324T、A328S、Q335N、L337V和/或L338W。
在另一个方面,变体AAR多肽与SEQIDNO:34所示的相应野生型AAR多肽序列具有至少90%序列同一性,并且与通过野生型AAR多肽在相应宿主细胞中的表达而产生的滴度相比较,变体AAR多肽在重组宿主细胞中的表达导致脂肪醛和/或脂肪醇的更高滴度,或者C12脂肪醇的更高滴度。变体AAR多肽具有在氨基酸位置处的突变,所述氨基酸位置包括SEQIDNO:34的氨基酸40、52、58、61、273、303、339、340、344、345、346和588。在一个优选实施方案中,变体AAR多肽具有在氨基酸位置Q40V、G52V、S58V、D61E、G273E、K303G、K339L、H340P、L344A、L344D、L344S、L344T、L345R、V346P、V346G和/或S588V处的突变。
公开内容的另一个方面提供了具有如上所述的一个或多个突变的重组宿主细胞,并且其中宿主细胞改造为表达SEQIDNO:28或SEQIDNO:34的变体AAR多肽。当在含有碳源的培养基中在有效表达变体AAR多肽的条件下进行培养时,与通过表达相应野生型AAR多肽的宿主细胞产生的脂肪醛和/或脂肪醇组合物的滴度相比较,这种重组宿主细胞产生滴度大至少10%、大至少15%、大至少20%、大至少25%、或大至少30%的脂肪醛和/或脂肪醇组合物。在一个实施方案中,脂肪醛和或脂肪醇组合物以30g/L-250g/L的滴度,例如至少100mg/L的滴度产生。在另一个实施方案中,脂肪醇组合物细胞外产生。
公开内容进一步包含包括如上所述的重组宿主细胞的细胞培养物,其中所述脂肪醇组合物包括C6、C8、C10、C12、C13、C14、C15、C16、C17和C18脂肪醇,例如C10:1、C12:1、C14:1、C16:1或C18:1不饱和脂肪醇中的一种或多种。在另外一个实施方案中,脂肪醇组合物包含饱和脂肪醇。
公开内容的另一个方面提供了与SEQIDNO:57具有至少90%序列同一性的变体酰基-ACP还原酶(AAR)多肽,其中所述AAR多肽催化酰基-ACP转换为脂肪醛。在一个实施方案中,与通过野生型AAR多肽在相应的野生型宿主细胞中的表达而产生的脂肪醛或脂肪醇组合物的滴度相比较,变体AAR多肽在重组宿主细胞中的表达导致脂肪醛或脂肪醇组合物的更高滴度。在另一个实施方案中,与通过野生型AAR多肽在相应的野生型宿主细胞中的表达而产生的脂肪醛或脂肪醇组合物的滴度相比较,变体AAR多肽在重组宿主细胞中的表达导致脂肪醛或脂肪醇组合物的更高滴度,所述脂肪醛或脂肪醇组合物是C12、C14和/或C16脂肪醇组合物。在另一个实施方案中,变体AAR多肽具有在氨基酸位置18处的突变,其中所述突变是S18W。
公开内容的另一个方面提供了与SEQIDNO:57具有至少90%序列同一性的变体酰基-ACP还原酶(AAR)多肽,其中所述AAR多肽具有在氨基酸8、16、21、24、31、34、35、43、50、63、86、112、113、116、118、120、135、148、153、154、155、157、159、168、172、187、188、191、209、210、211、236、277、281、283、285、291、324、328、335、337和/或338处的氨基酸位置处的另一个突变。在一个实施方案中,突变选自L8A、D16L、M21L、D24E、D24Y、D24V、D24P、L31V、L31M、W34F、W35F、D43E、A50Q、C63A、C63G、C63Y、S86G、A112R、S113K、Q116G、R118Q、T120S、A135S、T148C、T148E、T148V、I153P、T154A、Q155C、Q155L、T157V、A159V、I168V、C172L、T187V、T188H、T188V、Q191A、L209R、E210Y、A211W、T236C、Q277V、A281L、E283G、E283S、A285V、M291V、A324T、A328S、Q335N、L337V和/或L338W。在一个优选实施方案中,变体AAR多肽具有M21L突变、C63G突变、S113K突变、T154A和A281L突变(SEQIDNO:58)。在另一个优选实施方案中,变体AAR多肽具有L8A突变、M21L突变、C63G突变、S113K突变、T154A突变和A281L突变(SEQIDNO:59)。在另一个优选实施方案中,变体AAR多肽具有D16L突变、M21L突变、C63G突变、S113K突变、T154A和A281L突变(SEQIDNO:60)。在另一个优选实施方案中,变体AAR多肽具有L8A突变、D24V突变、C63G突变、S113K突变、Q155L突变和A281L突变(SEQIDNO:61)。在另一个优选实施方案中,变体AAR多肽具有D24P突变、L31M突变、C63G突变、S113K突变、T154A突变和A281L突变(SEQIDNO:62)。在另一个优选实施方案中,变体AAR多肽具有L8A突变、D16L突变、D24V突变、C63G突变、S113K突变、T154A突变和A281L突变(SEQIDNO:63)。在另一个优选实施方案中,变体AAR多肽具有D24E突变、C63G突变、S113K突变、T154A突变和A281L突变(SEQIDNO:64)。
本公开内容的另一个方面提供了表达如上所述的变体AAR多肽(同上)的重组宿主细胞。在一个实施方案中,当在含有碳源的培养基中在有效表达变体AAR多肽的条件下进行培养时,与通过表达相应野生型AAR多肽的宿主细胞产生的脂肪醛或脂肪醇组合物的滴度相比较,重组宿主细胞产生滴度大至少10%、大至少15%、大至少20%、大至少25%、或大至少30%的脂肪醛或脂肪醇组合物。在一个实施方案中,由重组宿主细胞产生的脂肪醛或脂肪醇组合物以约30g/L-约250g/L的滴度产生。在另一个实施方案中,脂肪醛或脂肪醇组合物细胞外产生。
本公开内容进一步考虑了包括重组宿主细胞的细胞培养物,所述重组宿主细胞表达如上所述的变体AAR多肽(同上)。在一个实施方案中,脂肪醇组合物包括饱和和/或不饱和脂肪醇。在一个实施方案中,细胞培养物包括脂肪醇组合物,其包括C6、C8、C10、C12、C13、C14、C15、C16、C17和C18脂肪醇中的一种或多种。在另一个实施方案中,脂肪醇组合物包括C10:1、C12:1、C14:1、C16:1和C18:1不饱和脂肪醇中的一种或多种。在另外一个实施方案中,脂肪醇组合物包括具有在距离脂肪醇的还原端的C7和C8之间的碳链中的第7位处的双键的脂肪醇。
公开内容进一步包含产生具有滴度增加的脂肪醇组合物的方法,其包括用碳源培养表达变体AAR的宿主细胞(如上所述);并且收获脂肪醇组合物。在一个实施方案中,与通过表达相应野生型AAR的宿主细胞产生的脂肪醇组合物的滴度相比较,脂肪醇的滴度大至少20%-30%。
公开内容的另一个方面提供了与SEQIDNO:65具有至少90%序列同一性的变体酰基-ACP还原酶(AAR)多肽,其中所述多肽催化酰基-ACP转换为脂肪醛。在一个实施方案中,与通过野生型AAR多肽在相应的野生型宿主细胞中的表达而产生的脂肪醛或脂肪醇组合物的滴度相比较,变体AAR多肽在重组宿主细胞中的表达导致脂肪醛或脂肪醇组合物的更高滴度。在另一个实施方案中,与通过野生型AAR多肽在相应的野生型宿主细胞中的表达而产生的脂肪醛或脂肪醇组合物的滴度相比较,变体AAR多肽在重组宿主细胞中的表达导致C12、C14和/或C16脂肪醇组合物的更高滴度。在一个特定方面,公开内容提供了与SEQIDNO:65具有至少90%序列同一性的变体酰基-ACP还原酶(AAR)多肽,其中所述多肽具有在氨基酸位置61处的突变。在一个优选实施方案中,突变是D61E。
公开内容进一步包含了与SEQIDNO:34具有至少90%序列同一性的变体酰基-ACP还原酶(AAR)多肽,其中与通过野生型AAR多肽在相应的野生型宿主细胞中的表达而产生的脂肪醇组合物的滴度相比较,变体AAR多肽在重组宿主细胞中的表达导致脂肪醛或脂肪醇组合物的更高滴度,或者C12、C14和/或C16脂肪醇组合物的更高滴度,并且其中AAR多肽具有在氨基酸位置40、52、273、303、340、344、345或346处的突变。在一个实施方案中,变体AAR多肽具有选自Q40V、G52V、G273E、K303G、H340P、L344A、L344D、L344S、L344T、L345R、V346P和V346G的突变。在一个优选实施方案中,变体AAR多肽具有在V346P(SEQIDNO:66)处的突变。在另一个优选实施方案中,变体AAR多肽具有在Q40V(SEQIDNO:67)处的突变。在另一个优选实施方案中,变体AAR多肽具有突变A345R(SEQIDNO:68)。在另一个优选实施方案中,变体AAR多肽具有在L344S(SEQIDNO:69)处的突变。在另一个优选实施方案中,变体AAR多肽具有在V346G(SEQIDNO:70)处的突变。在另一个优选实施方案中,变体AAR多肽具有在L344D(SEQIDNO:71)处的突变。在另一个优选实施方案中,变体AAR多肽具有在G52V(SEQIDNO:72)处的突变。在另一个优选实施方案中,变体AAR多肽具有在L344T(SEQIDNO:73)处的突变。在另一个优选实施方案中,变体AAR多肽具有在K303G(SEQIDNO:74)处的突变。在另一个优选实施方案中,变体AAR多肽具有在L344A(SEQIDNO:75)处的突变。在另一个优选实施方案中,变体AAR多肽具有在H340P(SEQIDNO:76)处的突变。在另一个优选实施方案中,变体AAR多肽具有在G273E(SEQIDNO:77)处的突变。
公开内容的另外一个方面提供了表达如上所述的变体AAR多肽(同上)的重组宿主细胞。在一个实施方案中,当在含有碳源的培养基中在有效表达变体AAR多肽的条件下进行培养时,与通过表达相应野生型AAR多肽的宿主细胞产生的脂肪醛或醇组合物的滴度相比较,重组宿主细胞产生滴度大至少10%、大至少15%、大至少20%、大至少25%、或大至少30%的脂肪醛或脂肪醇组合物。在另一个实施方案中,脂肪醇组合物以约30g/L-约250g/L的滴度产生。在另一个实施方案中,脂肪醇组合物细胞外产生。
本公开内容进一步考虑了具有重组宿主细胞的细胞培养物,所述重组宿主细胞表达如上所述的变体AAR多肽(同上)。在一个实施方案中,脂肪醇组合物包括C6、C8、C10、C12、C13、C14、C15、C16、C17和C18脂肪醇中的一种或多种。在另一个实施方案中,脂肪醇组合物包括不饱和或饱和脂肪醇。在另一个实施方案中,脂肪醇组合物包括C10:1、C12:1、C14:1、C16:1和C18:1不饱和脂肪醇中的一种或多种。在另一个实施方案中,脂肪醇组合物包括具有在距离脂肪醇的还原端的C7和C8之间的碳链中的第7位处的双键的脂肪醇。
公开内容的另一个方面提供了产生具有滴度增加的脂肪醇组合物的方法,其包括用碳源培养表达AAR的宿主细胞(如上所述);并且收获脂肪醇组合物。在一个实施方案中,与通过表达相应野生型AAR的宿主细胞产生的脂肪醇组合物的滴度相比较,脂肪醇多至少20%-30%。
附图简述
当与附图结合阅读时,本公开内容得到更佳理解,所述附图作用于举例说明优选实施方案。然而,应当理解公开内容并不限于附图中公开的具体实施方案。
图1是用于在重组宿主细胞中生产作为脂肪酸衍生物的前体的酰基-CoA的示例性生物合成途径的示意图。循环通过丙二酰-ACP和乙酰-CoA的缩合而起始。
图2是示例性脂肪酸生物合成循环的示意图,其中延伸循环以由β-酮脂酰-ACP合酶I(fabB)和β-酮脂酰-ACP合酶II(fabF)催化的丙二酰-ACP和酰基-ACP的缩合起始,以产生β-酮脂酰-ACP,随后β-酮脂酰-ACP通过NADPH依赖性β-酮脂酰-ACP还原酶(fabG)还原,以产生β-羟基-酰基-ACP,其由β-羟基酰基-ACP脱水酶(fabA或fabZ)脱水为反式-2-烯脂酰-ACP。FabA还可以将反式-2-烯脂酰-ACP异构化为顺式-3-烯脂酰-ACP,其可以绕过fabI,且可以由fabB(通常用于最高达C16的脂肪族链长)用于产生β-酮脂酰-ACP。每个循环中的最后一步由NADH或NADHPH依赖性烯酰-ACP还原酶(fabI)催化,所述酶将反式-2-烯脂酰-ACP转换为酰基-ACP。在本文描述的方法中,脂肪酸合成的终止通过硫酯酶从酰基-ACP中去除酰基而发生,以释放游离脂肪酸(FFA)。硫酯酶(例如tesA)水解硫酯键,其通过硫氢基键在酰基链和ACP之间发生。
图3举例说明了乙酰-CoA羧化酶(accABCD)酶复合物的结构和功能。生物素羧化酶由accC基因编码,而生物素羧基载体蛋白质(BCCP)由accB基因编码。涉及羧基转移酶活性的两个亚基由accA和accD基因编码。BCCP的共价结合的生物素携带羧化物部分。birA基因使holo-accB生物素化。
图4显示了以酰基-ACP开始的用于生产脂肪醇的示例性生物合成途径的示意图,其中脂肪醛的生产由酰基-ACP还原酶(AAR)或硫酯酶和羧酸还原酶(Car)的酶促活性催化。脂肪醛由醛还原酶(也称为醇脱氢酶)转换为脂肪醇。该途径不包括脂肪酰-CoA合成酶(fadD)。
图5显示了在大肠杆菌(E.coli)DV2中的脂肪醇生产,所述大肠杆菌DV2表达细长聚球藻(Synechococcuselongatus)酰基-ACP还原酶(AAR_7942),且共表达多种蓝细菌酰基载体蛋白质(ACP)。
图6显示了在大肠杆菌(E.coli)DV2中的脂肪醇生产,所述大肠杆菌DV2表达细长聚球藻酰基-ACP还原酶(AAR_7942),且共表达来自谷氨酸棒状杆菌(Corynebacteriumglutamicum)(pSL9-185-D+)的乙酰羧化酶复合物(显示了三种个别菌株,参见D+1、D+2和D+3)。
图7示出了举例说明重组宿主细胞的改善脂肪醇生产的结果,所述重组宿主细胞依赖由ifab和ifadR过表达介导的AAR。
图8示出显示在重组宿主细胞中升高的脂肪醇水平的结果,所述重组宿主细胞表达衍生自组合文库(AAR_Com2a-d)的AAR_7942变体,其与ACP、AlrA(醇脱氢酶(ADH))和合成acc操纵子一起在菌株Shu2中共表达。许多醇脱氢酶多肽依照公开内容是有用的,并且包括但不限于不动杆菌属(Acinetobacter)物种M-1的AlrA(SEQIDNO:52)和AlrA同系物例如AlrAadp1(SEQIDNO:53)。
图9A和9B示出了来自AAR_7942变体S18W的罐发酵的结果,其举例说明了以葡萄糖为生的FALC滴度(9A)和得率(9B),显示AAR_7942变体S18W的表达导致改变的活性和链长分布。
图10示出了当MED4_AAR的D61E变体在重组宿主细胞中表达时,举例说明FALC的链长分布从C16到C14的转变的结果。
发明详述
一般概述
消除我们对石油化学品的依赖的一种方法是通过环境友好的微生物产生脂肪酸衍生物,例如脂肪醛和脂肪醇,所述微生物充当微型生产宿主。此类细胞宿主(即重组宿主细胞或生产菌株)已改造为由可再生资源,例如可再生原料(例如可发酵糖、碳水化合物、生物质、纤维素、甘油、CO、CO2等)生产脂肪醛和/或脂肪醇。这些脂肪醛和脂肪醇是用于许多工业产品包括去污剂和燃料的原材料。
本公开内容涉及酰基-ACP还原酶(AAR)酶变体,当在重组宿主细胞中表达时,其导致脂肪醛和/或脂肪醇组合物的改善滴度、得率和/或生产率。此处,增强的脂肪醛和/或脂肪醇生物合成通过下述完成:转化宿主细胞,从而使得它们表达变体酰基-ACP还原酶(AAR)蛋白质,其催化酰基-ACP至脂肪醛和/或脂肪醇的反应。公开内容进一步涉及表达AAR酶变体的重组宿主细胞或生产菌株。
定义
如本说明书和所附权利要求中使用的,单数形式“一个”、“一种”和“该/所述”包括复数参考,除非上下文另有明确说明。因此,例如,提及“宿主细胞”包括两种或更多种此类宿主细胞,提及“脂肪酯”包括一种或多种脂肪酯,或酯的混合物,提及“核酸序列”包括一种或多种核酸序列,提及“酶”包括一种或多种酶等等。
本说明书自始至终的登录号得自通过美国国立卫生研究院维持的由NCBI(美国国家生物技术信息中心)提供的数据库(其在本文中鉴定为“NCBI登录号”或备选地“GenBank登录号”),并且得自由瑞士生物信息研究所(SwissInstituteofBioinformatics)提供的UniProtKnowledgebase(UniProtKB)和Swiss-Prot数据库(其在本文中鉴定为“UniProtKB登录号”)。
酶分类(EC)编号由国际生物化学与分子生物学联盟命名委员会(NomenclatureCommitteeoftheInternationalUnionofBiochemistryandMolecularBiology,IUBMB)建立,其描述在万维网上的IUBMB酶命名法网站上可获得。EC编号根据它们催化的反应分类酶。例如,酰基-ACP还原酶(AAR)酶促活性分类在E.C.1.2.1.80(也称为长链酰基-[酰基载体蛋白质]还原酶)或EC1.2.1.42下。AAR的功能性在大多数原核生物中从一个物种到下一个是保守的。因此,不同微生物物种可以进行分类在E.C.1.2.1.80或EC1.2.1.42下的相同AAR酶促活性。
如本文使用的,术语“核苷酸”指多核苷酸的单体单元,其由杂环碱基、糖和一个或多个磷酸基组成。天然存在的碱基(鸟嘌呤(G)、腺嘌呤(A)、胞嘧啶(C)、胸腺嘧啶(T)和尿嘧啶(U))通常是嘌呤或嘧啶的衍生物,尽管应当理解还包括天然和非天然存在的碱基类似物。天然存在的糖是戊糖(五碳糖)脱氧核糖(其形成DNA)或核糖(其形成RNA),尽管应当理解还包括天然和非天然存在的糖类似物。核酸通常经由磷酸键连接,以形成核酸或多核苷酸,尽管许多其他连接是本领域已知的(例如硫代磷酸酯、硼烷磷酸酯(boranophosphate)等等)。
术语“多核苷酸”指核糖核苷酸(RNA)或脱氧核糖核苷酸(DNA)的聚合物,其可以是单链或双链的,并且可以含有非天然或改变的核苷酸。术语“多核苷酸”、“核酸序列”和“核苷酸序列”在本文中可互换使用,并且指任何长度的核苷酸聚合形式,或RNA或DNA。这些术语指分子的一级结构,并且因此包括双链和单链DNA,以及双链和单链RNA。该术语包括由例如核苷酸类似物和经修饰的多核苷酸制备的RNA或DNA类似物作为等价物,尽管并不限于甲基化和/或封端(capped)多核苷酸。多核苷酸可以采用任何形式,包括但不限于质粒、病毒、染色体、EST、cDNA、mRNA和rRNA。
如本文使用的,术语“多肽”和“蛋白质”可互换使用,以指氨基酸残基的聚合物。术语“重组多肽”指通过重组技术产生的多肽,其中一般将编码所表达蛋白质的DNA或RNA插入合适的表达载体内,所述表达载体进而用于转化宿主细胞,以产生多肽。类似地,术语“重组多核苷酸”或“重组核酸”或“重组DNA”通过本领域技术人员已知的重组技术而产生。
如本文使用的,术语“同系物”和“同源的”指包含与相应的多核苷酸或多肽序列至少约50%等同的序列的多核苷酸或多肽。优选地,同源多核苷酸或多肽具有多核苷酸序列或氨基酸序列,其与相应的氨基酸序列或多核苷酸序列具有至少约80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少约99%同源性。如本文使用的,术语序列“同源性”和序列“同一性”可互换使用。本领域普通技术人员充分意识到测定两种或更多种序列之间的同源性的方法。简言之,两种序列之间的“同源性”计算可以如下执行。序列就最佳比较目的进行比对(例如可以在第一种和第二种氨基酸或核酸序列之一或两者中引入缺口用于最佳比对,并且非同源序列对于比较目的可以弃去)。在一个优选实施方案中,就比较目的进行比对的第一种序列的长度是第二种序列长度的至少约30%、优选至少约40%、更优选至少约50%、甚至更优选至少约60%,且甚至更优选至少约70%、至少约80%、至少约85%、至少约90%、至少约95%、至少约98%或约100%。随后比较在第一种和第二种序列的相应氨基酸位置或核苷酸位置处的氨基酸残基或核苷酸。当第一种序列中的位置由与第二种序列中的相应位置相同的氨基酸残基或核苷酸占据时,则分子在该位置处是等同的。两种序列之间的同源性百分比是由序列共享的等同位置数目的函数,考虑到需要引入用于两种序列的最佳比对的缺口数目和每个缺口的长度。两种序列之间的序列比较和同源性百分比测定可以使用数学算法来完成,所述数学算法例如BLAST(Altschul等人(1990)J.Mol.Biol.215(3):403-410)。两种氨基酸序列之间的同源性百分比还可以使用Needleman和Wunsch算法进行测定,所述Needleman和Wunsch算法已并入GCG软件包中的GAP程序内,使用Blossum62矩阵或PAM250矩阵,以及16、14、12、10、8、6或4的缺口权和1、2、3、4、5或6的长度权(Needleman和Wunsch(1970)J.Mol.Biol.48:444-453)。两种核苷酸序列之间的同源性百分比还可以使用GCG软件包中的GAP程序进行测定,使用NWSgapdna.CMP矩阵以及40、50、60、70或80的缺口权和1、2、3、4、5或6的长度权。本领域普通技术人员可以执行初始同源性计算且相应地调整算法参数。优选参数集(和如果从业者不确定何种参数应应用于确定分子是否在请求保护的同源性限制内,则应使用的参数)是Blossum62评分矩阵,其中缺口罚分12,缺口延伸罚分4和移码缺口罚分5。另外的序列比对方法是生物技术领域中已知的(参见例如Rosenberg(2005)BMCBioinformatics6:278;Altschul等人(2005)FEBSJ.272(20):5101-5109)。
术语“在低严格、中等严格、高严格或极高严格条件下杂交”描述用于杂交和洗涤的条件。用于执行杂交反应的指导可以在CurrentProtocolsinMolecularBiology,JohnWiley&Sons,N.Y.(1989),6.3.1-6.3.6中找到。水性和非水性方法在该参考文献中描述,并且可以使用任一方法。本文提及的具体杂交条件如下:(1)低严格杂交条件--在约45℃下的6X氯化钠/柠檬酸钠(SSC),随后为至少在50℃下在0.2XSSC、0.1%SDS中的两次洗涤(对于低严格条件,洗涤温度可以增至55℃);(2)中等严格杂交条件--在约45℃下的6XSSC,随后为在60℃下在0.2XSSC、0.1%SDS中的一次或多次洗涤;(3)高严格杂交条件--在约45℃下的6XSSC,随后为在65℃下在0.2XSSC、0.1%SDS中的一次或多次洗涤;和(4)极高严格杂交条件--在65℃下的0.5M磷酸钠、7%SDS,随后为在65℃下在0.2XSSC、1%SDS中的一次或多次洗涤。极高严格杂交条件(4)是优选条件,除非另有说明。
“内源”多肽指由亲本细胞(或宿主细胞)的基因组编码的多肽。“外源”多肽指不由亲本细胞的基因组编码的多肽。变体或突变型多肽是外源多肽的例子。因此,一旦引入细胞内,非天然存在的核酸分子就视为对于细胞是外源的。非天然存在的核酸分子对于特定细胞也可以是外源的。例如,即使X和Y是相同细胞类型,一旦从细胞X中分离的整个编码序列引入细胞Y内,该编码序列也就是关于细胞Y的外源核酸。
术语“过表达的”意指与基因的内源转录速率相比较,促使该基因以升高的速率转录。在一些例子中,过表达另外包括与基因的内源翻译速率相比较,该基因的翻译速率升高。测试过表达的方法是本领域众所周知的,例如转录的RNA水平可以使用rtPCR进行评价,并且蛋白质水平可以使用SDSpage凝胶分析进行评价。
术语“异源的”意指衍生自不同生物体、不同细胞类型或不同物种。如本文使用的,它指非天然存在于给定生物体中的核苷酸、多核苷酸、多肽或蛋白质序列。例如,对蓝细菌天然的多核苷酸序列可以通过重组方法引入大肠杆菌的宿主细胞内,并且来自蓝细菌的多核苷酸随后对大肠杆菌细胞(例如重组细胞)是异源的。术语“异源”还可以就核苷酸、多核苷酸、多肽或蛋白质序列而言使用,所述核苷酸、多肽或蛋白质序列以非天然状态存在于重组宿主细胞中。例如,“异源”核苷酸、多核苷酸、多肽或蛋白质序列可以相对于天然存在于相应的野生型宿主细胞中的野生型序列进行修饰,例如表达水平或者核苷酸、多核苷酸、多肽或蛋白质序列中的修饰。
如本文使用的,术语多肽的“片段”指全长多肽或蛋白质的更短部分,大小范围为两个氨基酸残基到整个氨基酸序列减去一个氨基酸残基。在公开内容的某些实施方案中,片段指多肽或蛋白质的结构域(例如底物结合结构域或催化结构域)的整个氨基酸序列。
术语“诱变”指通过其以稳定方式改变生物体的遗传信息的过程。蛋白质编码核酸序列的诱变产生突变蛋白质。诱变还指非编码核酸序列中的变化,其导致经修饰的蛋白质活性。
如本文使用的,“突变”指基因的核酸位置或者多肽或蛋白质的氨基酸位置中的永久变化。突变包括置换、添加、插入和缺失。例如,氨基酸位置中的突变可以是一类氨基酸由另一类氨基酸的置换(例如丝氨酸(S)可以由丙氨酸(A)置换;赖氨酸(L)可以由T(苏氨酸)置换;等)。像这样,多肽或蛋白质可以具有其中一种氨基酸由另一种氨基酸置换的一个或多个突变。
术语“酰基-ACP还原酶(AAR)变体”和“变体酰基-ACP还原酶(AAR)”在本文中可互换使用,并且意指在其氨基酸序列中具有一个或多个突变的AAR相关多肽或蛋白质。AAR指催化酰基-ACP还原为脂肪醛和/或脂肪醇的酶。AAR变体可以包含在其多肽序列的一个或多个氨基酸中的突变。当细胞已用AAR变体进行转化时,它是表达AAR变体的细胞(例如重组细胞)。在一个实施方案中,由表达AAR变体的细胞产生的脂肪醇的滴度和/或得率是相应野生型细胞(即不表达AAR变体的相应细胞)的至少两倍。在异源宿主例如大肠杆菌中,脂肪醛可以通过内源醇脱氢酶转换为脂肪醇。在另一个实施方案中,与相应野生型细胞的脂肪醇的滴度和/或得率相比较,由表达AAR变体的细胞产生的脂肪醇的滴度和/或得率大至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍或至少约10倍。在一个实施方案中,与相应野生型细胞的脂肪醇的滴度和/或得率相比较,由表达AAR变体的细胞产生的脂肪醇的滴度和/或得率大至少约1百分比、至少约2百分比、至少约3百分比、至少约4百分比、至少约5百分比、至少约6百分比、至少约7百分比、至少约8百分比、至少约9百分比或约10百分比。在另一个实施方案中,与野生型细胞的脂肪醇的滴度和/或得率相比较,由于AAR变体的表达在重组细胞中产生的脂肪醇的滴度和/或得率大至少约20百分比-至少约100百分比。在一个特定实施方案中,与相应野生型细胞的脂肪醇的滴度和/或得率相比较,由细胞产生的脂肪醇的滴度和/或得率大至少约20百分比、至少约25百分比、至少约30百分比、至少约35百分比、至少约40百分比、至少约45百分比至少约50百分比、至少约55百分比、至少约60百分比、至少约65百分比、至少约70百分比、至少约75百分比、至少约80百分比、至少约85百分比、至少约90百分比、至少约95百分比、至少约97百分比、至少约98百分比或至少约100百分比。
如本文使用的,术语“基因”指编码RNA产物或蛋白质产物的核酸序列,以及影响RNA或蛋白质表达的、可操作地连接的核酸序列(例如此类序列包括但不限于启动子或增强子序列),或影响RNA或蛋白质表达的、可操作地连接的核酸序列编码序列(例如此类序列包括但不限于核糖体结合位点或翻译控制序列)。
表达控制序列是本领域已知的,并且包括例如启动子、增强子、多腺苷酸化信号、转录终止子、内部核糖体进入位点(IRES)等等,其提供了多核苷酸序列在宿主细胞中的表达。表达控制序列与涉及转录的细胞蛋白质特异性相互作用(Maniatis等人(1987)Science236:1237-1245)。示例性表达控制序列在例如Goeddel,GeneExpressionTechnology:MethodsinEnzymology,第185卷,AcademicPress,SanDiego,Calif.(1990)中描述。在公开内容的方法中,表达控制序列可操作地连接至多核苷酸序列。“可操作地连接的”意指多核苷酸序列和表达控制序列以这样的方式连接,以便允许当适当分子(例如转录激活蛋白)与表达控制序列结合时的基因表达。可操作地连接的启动子位于就转录和翻译方向而言的所选多核苷酸序列上游。可操作地连接的增强子可以位于所选多核苷酸上游、其内或下游。
如本文使用的,术语“载体”指能够转运已与之连接的另一种核酸即多核苷酸序列的核酸分子。一类有用的载体是附加体(即,能够染色体外复制的核酸)。有用的载体是能够自主复制和/或表达与之连接的核酸的那些。能够指导与之可操作地连接的基因的表达的载体在本文中被称为“表达载体”。一般而言,在重组DNA技术中有用的表达载体通常采取“质粒”的形式,其一般指环状双链DNA环,以其载体形式不结合染色体。其他有用的表达载体以线性形式提供。还包括的是此类其他形式的表达载体,其发挥等价功能且其后已变得本领域已知的。在一些实施方案中,重组载体进一步包括可操作地连接至多核苷酸序列的启动子。在一些实施方案中,启动子是发育调节启动子、器官特异性启动子、组织特异性启动子、诱导型启动子、组成型启动子或细胞特异性启动子。重组载体通常包含选自下述的至少一种序列:可操作地偶联至多核苷酸序列的表达控制序列;可操作地偶联至多核苷酸序列的选择标记;可操作地偶联至多核苷酸序列的标记序列;可操作地偶联至多核苷酸序列的纯化部分;可操作地偶联至多核苷酸序列的分泌序列;和可操作地偶联至多核苷酸序列的靶向序列。在某些实施方案中,核苷酸序列稳定掺入宿主细胞的基因组DNA内,并且核苷酸序列的表达处于调节的启动子区的控制下。如本文使用的表达载体包括以适合于在宿主细胞中表达多核苷酸序列的形式的如本文描述的特定多核苷酸序列。本领域技术人员应当理解表达载体的设计可以取决于此类因素如待转化的宿主细胞的选择、所需多肽表达水平等。本文描述的表达载体可以引入宿主细胞内,以产生由如本文描述的多核苷酸序列编码的多肽,包括融合多肽。编码多肽的基因在原核生物例如大肠杆菌中的表达最通常用含有组成型或诱导型启动子的载体进行,所述组成型或诱导型启动子指导融合或非融合多肽的表达。融合载体对其中编码的多肽添加多个氨基酸,通常是对重组多肽的氨基或羧基末端添加。此类融合载体通常发挥下述三个目的中的一个或多个,包括增加重组多肽的表达;增加重组多肽的可溶性;和通过充当亲和纯化中的配体来帮助重组多肽的纯化。通常,在融合表达载体中,将蛋白酶解切割位点引入融合部分和重组多肽的连接处。这允许在融合多肽纯化后,使重组多肽与融合部分分离。在某些实施方案中,公开内容的多核苷酸序列可操作地连接至衍生自细菌噬菌体T5的启动子。
在某些实施方案中,宿主细胞是酵母细胞,并且表达载体是酵母表达载体。用于在酿酒酵母(S.cerevisiae)中表达的载体的例子包括pYepSec1(Baldari等人(1987)EMBOJ.6:229-234);pMFa(Kurjan等人(1982)Cell30:933-943);pJRY88(Schultz等人(1987)Gene54:113-123);pYES2(InvitrogenCorp.,SanDiego,CA),和picZ(InvitrogenCorp.,SanDiego,CA)。在其他实施方案中,宿主细胞是昆虫细胞,并且表达载体是杆状病毒表达载体。可用于在培养的昆虫细胞(例如Sf9细胞)中表达蛋白质的可用的杆状病毒载体包括例如,pAc系列(Smith等人(1983)Mol.CellBiol.3:2156-2165)和pVL系列(Lucklow等人(1989)Virology170:31-39)。在另外一个实施方案中,使用哺乳动物表达载体,可以在哺乳动物细胞中表达本文描述的多核苷酸序列。用于原核和真核细胞两者的其他合适表达系统是本领域众所周知的;参见例如,Sambrook等人,“MolecularCloning:ALaboratoryManual,”第二版,ColdSpringHarborLaboratory,(1989)。
如本文使用的,术语“CoA”或“酰基-CoA”指在烷基链的羰基碳和辅酶A(CoA)的4’-磷酸泛酰巯基乙胺基(phosphopantethionyl)部分的硫氢基之间形成的酰基硫酯,其具有式R-C(O)S-CoA,其中R为具有至少4个碳原子的任何烷基。
术语“ACP”意指酰基载体蛋白质。ACP是在脂肪酸生物合成期间的酰基中间产物的高度保守的载体,其中生长链在合成期间作为硫酯在4'-磷酸泛酰巯基乙胺部分的远侧硫醇处结合。该蛋白质以两种形式存在,即apo-ACP(在脂肪酸生物合成中失活)和ACP或holo-ACP(在脂肪酸生物合成中活性)。术语“ACP”和“holo-ACP”在本文中可互换使用,并且指蛋白质的活性形式。称为磷酸泛酰巯基乙胺基转移酶的酶涉及失活apo-ACP转换为活性holo-ACP。更具体而言,ACP以失活的apo-ACP形式表达,并且通过holo-酰基载体蛋白质核酶(ACPS)(磷酸泛酰巯基乙胺基转移酶)的作用,4'-磷酸泛酰巯基乙胺部分必须翻译后附着至ACP上的保守丝氨酸残基,以便产生holo-ACP。
如本文使用的,术语“酰基-ACP”指在烷基链的羰基碳和酰基载体蛋白(ACP)的磷酸泛酰巯基乙胺基部分的硫氢基之间形成的酰基硫酯。在一些实施方案中,ACP是完全饱和的酰基-ACP合成中的中间产物。在其他实施方案中,ACP是不饱和酰基-ACP合成中的中间产物。在一些实施方案中,碳链具有约5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25或26个碳。
如本文使用的,术语“脂肪酸衍生物”意指“脂肪酸”或“脂肪酸衍生物”,其可以被称为“脂肪酸或其衍生物”。术语“脂肪酸”意指具有式RCOOH的羧酸。R表示脂肪族基团,优选烷基。R可以包括约4-约22个碳原子。脂肪酸可以是饱和、单不饱和或多不饱和的。“脂肪酸衍生物”是部分由生产宿主生物体的脂肪酸生物合成途径制备的产物。“脂肪酸衍生物”包括部分由ACP、酰基-ACP或酰基-ACP衍生物制备的产物。示例性脂肪酸衍生物包括例如酰基-CoA、脂肪酸、脂肪醛、短和长链醇、脂肪醇、烃类、酯类(例如、蜡、脂肪酸酯或脂肪酯)、末端烯烃、内烯烃和酮。
如本文使用的,术语“脂肪酸生物合成途径”意指产生脂肪酸及其衍生物的生物合成途径。脂肪酸生物合成途径可以包括另外的酶,以产生具有所需特征的脂肪酸衍生物。
如本文使用的,“脂肪醛”意指具有式RCHO的醛,其特征在于羰基(C=O)。在一些实施方案中,脂肪醛是由脂肪醇制备的任何醛。在某些实施方案中,R基团是长度至少5、至少6、至少7、至少8、至少9、至少10、至少11、至少12、至少13、至少14、至少15、至少16、至少17、至少18或至少19个碳。备选地或另外地,R基团是长度20或更少、19或更少、18或更少、17或更少、16或更少、15或更少、14或更少、13或更少、12或更少、11或更少、10或更少、9或更少、8或更少、7或更少、或6或更少个碳。因此,R基团可以具有由上述端点中的任何两个约束的R基团。例如,R基团可以是长度6-16个碳、长度10-14个碳、或长度12-18个碳。在一些实施方案中,脂肪醛是C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20、C21、C22、C23、C24、C25或C26脂肪醛。在某些实施方案中,脂肪醛是C6、C8、C10、C12、C13、C14、C15、C16、C17或C18脂肪醛。
如本文使用的,“脂肪醇”意指具有式ROH的醇。在一些施方案中,R基团是长度至少5、至少6、至少7、至少8、至少9、至少10、至少11、至少12、至少13、至少14、至少15、至少16、至少17、至少18或至少19个碳。备选地或另外地,R基团是长度20或更少、19或更少、18或更少、17或更少、16或更少、15或更少、14或更少、13或更少、12或更少、11或更少、10或更少、9或更少、8或更少、7或更少、或6或更少个碳。因此,R基团可以具有由上述端点中的任何两个约束的R基团。例如,R基团可以是长度6-16个碳、长度10-14个碳、或长度12-18个碳。在一些实施方案中,脂肪醇是C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20、C21、C22、C23、C24、C25或C26脂肪醇。在某些实施方案中,脂肪醇是C6、C8、C10、C12、C13、C14、C15、C16、C17或C18脂肪醇。
如本文提及的,“脂肪醇组合物”由重组宿主细胞产生,并且通常包含脂肪醇的混合物。在一些情况下,混合物包括超过一类产物(例如脂肪醇和脂肪酸)。在其他情况下,脂肪酸衍生物组合物可以包含例如具有不同链长和饱和度或分支特征的脂肪醇混合物。在另外其他情况下,脂肪醇组合物包含超过一类产物以及具有不同链长和饱和度或分支特征的产物两者的混合物。
改造为产生脂肪醛的宿主细胞通常将一些脂肪醛转换为脂肪醇。在一个示例性实施方案中,酰基-ACP经由AAR的作用转换为脂肪醛。脂肪醛至脂肪醇的转换可以例如经由脂肪醇生物合成多肽得到进一步促进。在一些实施方案中,编码脂肪醇生物合成多肽的基因在宿主细胞中表达或过表达。在某些实施方案中,脂肪醇生物合成多肽具有醛还原酶或醇脱氢酶活性。
依照公开内容有用的醇脱氢酶多肽的例子包括但不限于不动杆菌属物种M-1的AlrA(SEQIDNO:52)或AlrA同系物例如AlrAadp1(SEQIDNO:53),以及内源大肠杆菌醇脱氢酶例如YjgB、(AAC77226)、DkgA(NP_417485)、DkgB(NP_414743)、YdjL(AAC74846)、YdjJ(NP_416288)、AdhP(NP_415995)、YhdH(NP_417719)、YahK(NP_414859)、YphC(AAC75598)、YqhD(446856)和YbbO[AAC73595.1]。另外的例子在国际专利申请公开号WO2007/136762、WO2008/119082和WO2010/062480中描述。在某些实施方案中,脂肪醇生物合成多肽具有醛还原酶或醇脱氢酶活性(EC1.1.1.1)。
脂肪酸、脂肪醛或脂肪醇的R基团可以是直链或支链。支链可以具有超过一个分支点,并且可以包括环状分支。在一些实施方案中,分支脂肪酸、分支脂肪醛或分支脂肪醇是C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20、C21、C22、C23、C24、C25或C26分支脂肪酸、分支脂肪醛或分支脂肪醇。在特定实施方案中,分支脂肪酸、分支脂肪醛或分支脂肪醇是C6、C8、C10、C12、C13、C14、C15、C16、C17或C18分支脂肪酸、分支脂肪醛或分支脂肪醇。在某些实施方案中,分支脂肪酸、分支脂肪醛或分支脂肪醇的羟基在第一(C1)位中。
在某些实施方案中,分支脂肪酸、分支脂肪醛或分支脂肪醇是异脂肪酸、异脂肪醛或异脂肪醇,或者反异脂肪酸、反异脂肪醛或反异脂肪醇。在示例性实施方案中,分支脂肪酸、分支脂肪醛或分支脂肪醇选自异-C7:0、异-C8:0、异-C9:0、异-C10:0、异-C11:0、异-C12:0、异-C13:0、异-C14:0、异-C15:0、异-C16:0、异-C17:0、异-C18:0、异-C19:0、反异-C7:0、反异-C8:0、反异-C9:0、反异-C10:0、反异-C11:0,反异-C12:0、反异-C13:0、反异-C14:0、反异-C15:0、反异-C16:0、反异-C17:0、反异-C18:0和反异-C19:0分支脂肪酸、分支脂肪醛或分支脂肪醇。
分支或未分支脂肪酸、分支或未分支脂肪醛、或者分支或未分支脂肪醇的R基团可以是饱和或不饱和的。如果不饱和,则R基团可以具有一个或超过一个不饱和点。在一些实施方案中,不饱和脂肪酸、不饱和脂肪醛或不饱和脂肪醇是单不饱和脂肪酸、单不饱和脂肪醛或单不饱和脂肪醇。在某些实施方案中,不饱和脂肪酸、不饱和脂肪醛或不饱和脂肪醇是C6:1、C7:1、C8:1、C9:1、C10:1、C11:1、C12:1、C13:1、C14:1、C15:1、C16:1、C17:1、C18:1、C19:1、C20:1、C21:1、C22:1、C23:1、C24:1、C25:1或C26:1不饱和脂肪酸、不饱和脂肪醛或不饱和脂肪醇。在某些优选实施方案中,不饱和脂肪酸、不饱和脂肪醛或不饱和脂肪醇是C10:1、C12:1、C14:1、C16:1或C18:1。在另外其他实施方案中,不饱和脂肪酸、不饱和脂肪醛或不饱和脂肪醇在ω-7位置处是不饱和的。在某些实施方案中,不饱和脂肪酸、不饱和脂肪醛或不饱和脂肪醇包含顺式双键。
如本文使用的,“重组宿主细胞”或“经改造的宿主细胞”是宿主细胞,例如已进行修饰使得它产生脂肪醇的微生物。在一些实施方案中,重组宿主细胞包含一种或多种多核苷酸,每种多核苷酸编码具有脂肪醛和/或脂肪醇生物合成酶活性的多肽,其中当在碳源的存在下在有效表达所述多核苷酸的条件下进行培养时,所述重组宿主细胞产生脂肪醇组合物。
如本文使用的,术语“克隆”通常指由单个共同祖先遗传且基本上遗传上等同于单个共同祖先的细胞或细胞群,例如起因于单一细菌细胞的克隆的细菌菌落的细菌。
如本文使用的,术语“培养物”通常指包含活细胞的液体培养基。在一个实施方案中,培养物包含在控制条件下在预定培养基中繁殖的细胞,例如在包含所选碳源和/或氮源的液体培养基中生长的重组宿主细胞培养物。
术语“培养”或“培育”指在合适条件下在液体或固体培养基中生长细胞(例如微生物细胞)群体。在特定实施方案中,培养指底物的发酵生物转换为最终产物。培养基可以是众所周知的,并且此类培养基的个别组分可得自商业来源,例如DIFCO培养基和BBL培养基。在一个非限制性例子中,水性营养培养基是“丰富培养基”,包含氮、盐和碳的复杂来源,例如包含10g/L蛋白胨和10g/L此类培养基的酵母提取物的YP培养基。
根据例如美国专利5,000,000;5,028,539;5,424,202;5,482,846;5,602,030和WO2010127318中所述的方法,宿主细胞可以另外改造为有效同化碳,并且使用纤维素材料作为碳源。另外,宿主细胞可以改造为表达转化酶,从而使得蔗糖可以用作碳源。
如本文使用的,术语“在有效表达所述异源多核苷酸序列的条件下”意指允许宿主细胞产生所需脂肪醛或脂肪醇的任何条件。合适条件包括例如发酵条件。
如本文使用的,重组宿主细胞中“经修饰的”或“改变水平的”蛋白质例如酶的活性指相对于亲本或天然宿主细胞,所测定的活性中的一种或多种特征中的差异。通常,活性中的差异在具有经修饰的活性的重组宿主细胞和相应的野生型宿主细胞之间进行测定(例如,相对于野生型宿主细胞比较重组宿主细胞的培养物)。经修饰的活性可以是例如由重组宿主细胞表达的经修饰量的蛋白质的结果(例如由于增加或减少数目的拷贝的编码蛋白质的DNA序列,增加或减少数目的编码蛋白质的mRNA转录物,和/或增加或减少量的由mRNA蛋白质翻译的蛋白质);蛋白质结构中的变化(例如对一级结构的变化,例如对蛋白质的编码序列的变化,其导致底物特异性中的变化、在观察到的动力学参数中的变化);和蛋白质稳定性中的变化(例如增加或减少的蛋白质降解)。在一些实施方案中,多肽是本文描述的多肽中的任一种的突变体或变体。在某些情况下,本文描述的多肽的编码序列对于在特定宿主细胞中的表达是密码子优化的。例如,对于在大肠杆菌中的表达,一种或多种密码子可以进行优化(Grosjean等人(1982)Gene18:199-209)。
如本文使用的,术语“调节序列”通常指可操作地连接至编码蛋白质的DNA序列的DNA中的碱基序列,其最终控制蛋白质的表达。调节序列的例子包括但不限于RNA启动子序列、转录因子结合序列、转录终止序列、转录的调节子(例如增强子元件)、影响RNA稳定性的核苷酸序列、和翻译调节序列(例如核糖体结合位点(例如,在原核生物中的Shine-Dalgarno序列或在真核生物中的Kozak序列)、起始密码子、终止密码子)。
如本文使用的,短语“所述核苷酸序列的表达相对于野生型核苷酸序列是经修饰的”,意指内源核苷酸序列的表达和/或活性或者异源或非天然多肽编码核苷酸序列的表达和/或活性水平中的增加或减少。
如本文使用的,就多核苷酸而言的术语“表达”是促使其起作用。当表达时,编码多肽(或蛋白质)的多核苷酸将转录且翻译,以产生该多肽(或蛋白质)。如本文使用的,术语“过表达”意指表达(或促使)多核苷酸或多肽在细胞中以比在相同条件下在相应的野生型细胞中通常表达更大的浓度表达。
术语“改变的表达水平”和“经修饰的表达水平”可互换使用,并且意指与其在相同条件下在相应的野生型细胞中的浓度相比较,多核苷酸、多肽或烃在经改造的宿主细胞中以不同浓度存在。
如本文使用的,术语“滴度”指每单位体积的宿主细胞培养物产生的脂肪醛或脂肪醇的数量。在本文描述的组合物和方法的任何方面,脂肪醇以约25mg/L、约50mg/L、约75mg/L、约100mg/L、约125mg/L、约150mg/L、约175mg/L、约200mg/L、约225mg/L、约250mg/L、约275mg/L、约300mg/L、约325mg/L、约350mg/L、约375mg/L、约400mg/L、约425mg/L、约450mg/L、约475mg/L、约500mg/L、约525mg/L、约550mg/L、约575mg/L、约600mg/L、约625mg/L、约650mg/L、约675mg/L、约700mg/L、约725mg/L、约750mg/L、约775mg/L、约800mg/L、约825mg/L、约850mg/L、约875mg/L、约900mg/L、约925mg/L、约950mg/L、约975mg/L、约1000mg/L、约1050mg/L、约1075mg/L、约1100mg/L、约1125mg/L、约1150mg/L、约1175mg/L、约1200mg/L、约1225mg/L、约1250mg/L、约1275mg/L、约1300mg/L、约1325mg/L、约1350mg/L、约1375mg/L、约1400mg/L、约1425mg/L、约1450mg/L、约1475mg/L、约1500mg/L、约1525mg/L、约1550mg/L、约1575mg/L、约1600mg/L、约1625mg/L、约1650mg/L、约1675mg/L、约1700mg/L、约1725mg/L、约1750mg/L、约1775mg/L、约1800mg/L、约1825mg/L、约1850mg/L、约1875mg/L、约1900mg/L、约1925mg/L、约1950mg/L、约1975mg/L、约2000mg/L(2g/L)、3g/L、5g/L、10g/L、20g/L、30g/L、40g/L、50g/L、60g/L、70g/L、80g/L、90g/L、100g/L或由前述值中的任何两个约束的范围的滴度产生。在其他实施方案中,脂肪醛或脂肪醇以超过100g/L、超过200g/L或超过300g/L或更高(例如500g/L、700g/L、1000g/L、1200g/L、1500g/L或2000g/L)的滴度产生。由根据公开内容的方法的重组宿主细胞产生的脂肪醛或脂肪醇的优选滴度是5g/L-200g/L、10g/L-150g/L、20g/L-120g/L和30g/L-100g/L。
如本文使用的,术语“由宿主细胞产生的脂肪醛或脂肪醇的得率”指在宿主细胞中输入碳源转换为产物(即脂肪醛或脂肪醇)的效率。根据公开内容的方法改造为产生脂肪醇和/或脂肪醛的宿主细胞具有至少3%、至少4%、至少5%、至少6%、至少7%、至少8%、至少9%、至少10%、至少11%、至少12%、至少13%、至少14%、至少15%、至少16%、至少17%、至少18%、至少19%、至少20%、至少21%、至少22%、至少23%、至少24%、至少25%、至少26%、至少27%、至少28%、至少29%、或至少30%或由前述值中的任何两个约束的范围的得率。在其他实施方案中,脂肪醛或脂肪醇以超过30%、40%、50%、60%、70%、80%、90%或更多的得率产生。备选地或另外地,得率是约30%或更少、约27%或更少、约25%或更少、或约22%或更少。因此,得率可以由上述端点中的任何两个约束。例如,由根据公开内容的方法的重组宿主细胞产生的脂肪醛或脂肪醇得率可以是5%-15%、10%-25%、10%-22%、15%-27%、18%-22%、20%-28%、或20%-30%。由根据公开内容的方法的重组宿主细胞产生的脂肪醇的优选得率为10%-30%。
如本文使用的,术语“生产率”指每单位时间每单位体积的宿主细胞培养物产生的脂肪醛或脂肪醇的数量。在本文描述的组合物和方法的任何方面,由重组宿主细胞产生的脂肪醛或脂肪醇的生产率是至少100mg/L/小时、至少200mg/L/小时、至少300mg/L/小时、至少400mg/L/小时、至少500mg/L/小时、至少600mg/L/小时、至少700mg/L/小时、至少800mg/L/小时、至少900mg/L/小时、至少1000mg/L/小时、至少1100mg/L/小时、至少1200mg/L/小时、至少1300mg/L/小时、至少1400mg/L/小时、至少1500mg/L/小时、至少1600mg/L/小时、至少1700mg/L/小时、至少1800mg/L/小时、至少1900mg/L/小时、至少2000mg/L/小时、至少2100mg/L/小时、至少2200mg/L/小时、至少2300mg/L/小时、至少2400mg/L/小时、或至少2500mg/L/小时。备选地或另外地,生产率是2500mg/L/小时或更少、2000mg/L/OD600或更少、1500mg/L/OD600或更少、120mg/L/小时或更少、1000mg/L/小时或更少、800mg/L/小时或更少、或600mg/L/小时或更少。因此,生产率可以由上述端点中的任何两个约束。例如,生产率可以是3-30mg/L/小时、6-20mg/L/小时、或15-30mg/L/小时。由根据公开内容的方法的重组宿主细胞产生的脂肪醛或脂肪醇的优选生产率选自500mg/L/小时-2500mg/L/小时、或700mg/L/小时-2000mg/L/小时。
术语“总脂肪种类”和“总脂肪酸产物”在本文中就样品中存在的脂肪醇、脂肪醛、游离脂肪酸和脂肪酯总量而言可以互换使用,如通过GC-FID评估的,如国际专利申请公开WO2008/119082中所述。取决于背景,样品可以含有这些化合物中的一种、两种、三种或四种。
如本文使用的,术语“葡萄糖利用率”意指每单位时间由培养物使用的葡萄糖量,报告为克/升/小时(g/L/hr)。
如本文使用的,术语“碳源”指适合用作原核或简单真核细胞生长的碳来源的底物或化合物。碳源可以采取多种形式,包括但不限于聚合物、碳水化合物、酸、醇、醛、酮、氨基酸、肽和气体(例如CO和CO2)。示例性碳源包括但不限于单糖例如葡萄糖、果糖、甘露糖、半乳糖、木糖和阿拉伯糖;寡糖例如果寡糖和半乳寡聚糖;多糖例如淀粉、纤维素、果胶和木聚糖;二糖例如蔗糖、麦芽糖、纤维二糖和松二糖;纤维素材料和变体例如半纤维素、甲基纤维素和羧甲基纤维素钠;饱和或不饱和脂肪酸、琥珀酸盐、乳酸盐和乙酸盐;醇例如乙醇、甲醇和甘油、或其混合物。碳源还可以是光合作用的产物,例如葡萄糖。在某些实施方案中,碳源是来自烟气(flugas)的含有CO的气体混合物。在另一个实施方案中,碳源是来自含碳材料(例如生物质、煤或天然气)的再形成(reformation)的含有CO的气体混合物。在其他实施方案中,碳源是合成气、甲烷或天然气。在某些优选实施方案中,碳源是生物质。在其他优选实施方案中,碳源是葡萄糖。在其他优选实施方案中,碳源是蔗糖。在其他实施方案中,碳源是甘油。在其他优选实施方案中,碳源是甘蔗汁、甘蔗糖浆或玉米糖浆。在其他优选实施方案中,碳源衍生自可再生原料,例如CO2、CO、葡萄糖、蔗糖、木糖、阿拉伯糖、甘油、甘露糖或其混合物。在其他实施方案中,碳源衍生自可再生原料,包括淀粉,纤维素生物质,糖蜜及其他碳水化合物来源,包括衍生自纤维素生物质水解的碳水化合物混合物,或衍生自植物或天然石油加工的废料。
如本文使用的,术语“生物质”指由其衍生碳源的任何生物材料。在一些实施方案中,生物质加工成适合于生物转换的碳源。在其他实施方案中,生物质不需要进一步加工成碳源。示例性生物质来源是植物物质或植物,例如玉米、甘蔗或柳枝稷。另一种示例性生物质来源是代谢废弃物,例如动物物质(例如牛粪)。进一步示例性生物质来源包括藻类及其他海洋植物。生物质还包括来自工业、农业、林业和家庭的废弃物,包括但不限于甘油、发酵废料、青贮饲料、稻草、木材、污水、垃圾、纤维质城市垃圾和食物剩余物(例如肥皂、油和脂肪酸)。术语“生物质”还可以指碳源,例如碳水化合物(例如单糖、二糖或多糖)。
如本文使用的,就产物(例如脂肪酸及其衍生物)而言的术语“经分离的”指与细胞组分、细胞培养基或者化学或合成前体分离的产物。由本文描述的方法产生的脂肪酸及其衍生物可以是在发酵液中以及在细胞质中相对不能混合的。因此,脂肪酸及其衍生物可以在细胞内或细胞外的有机相中收集。
如本文使用的,术语“提纯”、“纯化的”或“纯化”意指通过例如离心或分离,分子从其环境中取出或与其环境的分离。“基本上纯化的”分子是至少约60%不含(例如至少约70%不含、至少约75%不含、至少约85%不含、至少约90%不含、至少约95%不含、至少约97%不含、至少约99%不含)它们与之结合的其他组分。如本文使用的,这些术语还指从样品中去除污染物。例如,污染物去除可以导致样品中脂肪酸衍生物例如脂肪醇百分比中的增加。例如,当脂肪酸衍生物在重组宿主细胞中产生时,脂肪酸衍生物可以通过去除宿主细胞蛋白质或其他宿主细胞材料进行纯化。在纯化后,样品中的脂肪酸衍生物百分比增加。术语“提纯”、“纯化的”和“纯化”是不要求绝对纯度的相对术语。因此,例如当脂肪酸衍生物在重组宿主细胞中产生时,纯化的脂肪酸衍生物是基本上与其他细胞组分(例如核酸、多肽、脂质、碳水化合物或其他烃)分离的脂肪酸衍生物。
增加的脂肪醇生产
公开内容提供了由于酰基-ACP还原酶(AAR)基因在宿主细胞中的经修饰的表达,而得到增强的脂肪醇组合物生产。AAR涉及用于生产脂肪醛和脂肪醇的生物合成途径。变体AAR单独或与另一种基因的经修饰的表达组合使用,所述另一种基因涉及将脂肪醛转换为脂肪醇的生物合成途径。此处,公开内容提供了重组宿主细胞,其已进行改造以表达变体AAR,以提供相对于未经改造的或天然或野生型宿主细胞(其表达野生型AAR或具有与AAR相同的功能的其他脂肪醇生物合成多肽)增强的脂肪醇生物合成。公开内容鉴定了在重组宿主细胞中有用的AAR相关多核苷酸和多肽。然而,应认识到与AAR相关多核苷酸的绝对序列同一性不是必需的。例如,可以作出特定多核苷酸序列中的变化,并且就活性筛选所编码的多肽。此类变化通常包括例如通过密码子优化的保守突变和沉默突变。使用本领域已知的方法,经修饰的或突变的(即突变型)多核苷酸和所编码的变体多肽可以就所需功能进行筛选,所述所需功能例如与亲本多肽相比较改善的功能,包括但不限于增加的催化活性、增加的稳定性、或减少的抑制(例如减少的反馈抑制)。根据酶分类(EC)编号,公开内容鉴定了涉及本文描述的脂肪酸生物合成途径的多个步骤(即反应)的酶促活性,并且提供了由此类EC编号分类的示例性多肽(酶),和编码此类多肽的示例性多核苷酸。在本文中通过登录号和/或序列标识符(SEQIDNO)鉴定的此类示例性多肽和多核苷酸,用于改造亲本宿主细胞中的脂肪酸途径,以获得本文描述的重组宿主细胞。然而,应当理解本文描述的多肽和多核苷酸是示例性和因此非限制性的。使用数据库,例如由美国国家生物技术信息中心(NCBI)提供的Entrez数据库,由瑞士生物信息研究所提供的ExPasy数据库,由布伦瑞克工业大学(TechnicalUniversityofBraunschweig)提供的BRENDA数据库,和由京都大学和东京大学的生物信息学中心(BioinformaticsCenterofKyotoUniversityandUniversityofTokyo)提供的KEGG数据库,所有这些数据库均在万维网上可获得,本文描述的示例性多肽的同系物的序列对于本领域技术人员是可获得的。多种不同的宿主细胞可以进行修饰,以表达变体AAR脂肪醇生物合成酶,例如本文描述的那些,导致适合于脂肪醇组合物的增强生产的重组宿主细胞。应当理解多种细胞可以提供遗传材料的来源,包括编码适用于如本文描述的重组宿主细胞的多肽的多核苷酸序列。
酰基-ACP还原酶(AAR)多肽及其变体
在一个方面,公开内容涉及通过改造宿主细胞以表达天然或非天然酰基-ACP还原酶(AAR)蛋白质,改善脂肪酸衍生物例如脂肪醛和/或脂肪醇的生产。AAR蛋白质催化酰基-ACP还原为脂肪醛,并且还可以催化脂肪醛转换为脂肪醇(参见通过引用并入本文的美国专利公开号20120282663)。AAR多肽或编码AAR多肽的多核苷酸序列可以是天然的(例如内源的)或非天然的(例如外源的、异源的等),即它可以不同于天然存在于相应的野生型宿主细胞中的野生型序列及其表达。例子包括AAR多核苷酸、多肽或蛋白质的序列中的修饰,导致变体AAR(例如突变体)和/或其表达水平。公开内容包括AAR多肽、同系物和变体。
在一个实施方案中,用于实践公开内容的AAR多肽与SEQIDNO:28、SEQIDNO:30、SEQIDNO:32、SEQIDNO:34、SEQIDNO:36、SEQIDNO:38、SEQIDNO:40、SEQIDNO:42或SEQIDNO:44的野生型AAR多肽序列具有至少90%序列同一性。在一些实施方案中,AAR衍生自聚球藻属(Synechococcus)物种或原绿球藻属(Prochlorococcus)物种。在其他实施方案中,用于实践公开内容的AAR多肽与SEQIDNO:28、SEQIDNO:30、SEQIDNO:32、SEQIDNO:34、SEQIDNO:36、SEQIDNO:38、SEQIDNO:40、SEQIDNO:42或SEQIDNO:44的野生型AAR多肽序列具有至少75%(例如至少76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%)序列同一性,并且还可以包括导致如本文描述的有用特征和/或特性的一个或多个置换。在一个实施方案中,用于实践本公开内容的AAR多肽与SEQIDNO:28或SEQIDNO:34的野生型AAR多肽序列具有至少75%(例如至少76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%)序列同一性。在其他实施方案中,用于实践公开内容的AAR多肽与SEQIDNO:28、SEQIDNO:30、SEQIDNO:32、SEQIDNO:34、SEQIDNO:36、SEQIDNO:38、SEQIDNO:40、SEQIDNO:42或SEQIDNO:44具有100%序列同一性。在另外其他实施方案中,改善的或变体AAR多肽序列衍生自除聚球藻属物种或原绿球藻属物种外的物种。
在相关实施方案中,公开内容包括具有由核酸序列编码的氨基酸序列的AAR多肽,所述核酸序列与SEQIDNO:27、SEQIDNO:29、SEQIDNO:31、SEQIDNO:33、SEQIDNO:35、SEQIDNO:37、SEQIDNO:39、SEQIDNO:41或SEQIDNO:43具有至少75%(例如至少76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或和至少99%)序列同一性。在一些实施方案中,核酸序列编码具有一个或多个置换的AAR变体,所述一个或多个置换导致如本文描述的改善特征和/或特性。在另外一个相关实施方案中,用于实践公开内容的AAR多肽由与SEQIDNO:27、SEQIDNO:29、SEQIDNO:31、SEQIDNO:33、SEQIDNO:35、SEQIDNO:37、SEQIDNO:39、SEQIDNO:41或SEQIDNO:43具有100%序列同一性的核苷酸序列编码。在另一个方面,公开内容涉及包含由核酸编码的氨基酸序列的AAR多肽,所述核酸在严格条件下在对应于SEQIDNO:27、SEQIDNO:29、SEQIDNO:31、SEQIDNO:33、SEQIDNO:35、SEQIDNO:37、SEQIDNO:39、SEQIDNO:41或SEQIDNO:43的核酸的基本上整个长度上杂交。
在一个优选实施方案中,公开内容提供了用于实践公开内容的AAR多肽,其与SEQIDNO:57至SEQIDNO:78中的任何一个的变体AAR多肽序列具有至少90%序列同一性。在一些实施方案中,变体AAR衍生自聚球藻属物种或原绿球藻属物种。在其他实施方案中,用于实践公开内容的AAR多肽与SEQIDNO:57至SEQIDNO:78中的任何一个的变体AAR多肽序列具有至少75%(例如至少76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%)序列同一性。变体AAR多肽可以包括导致如本文描述的有用特征和/或特性的一个或多个置换。在另一个优选实施方案中,用于实践公开内容的AAR多肽与SEQIDNO:57、SEQIDNO:58、SEQIDNO:59或SEQIDNO:65的变体AAR多肽序列具有至少75%(例如至少76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%)序列同一性。在其他实施方案中,用于实践公开内容的AAR多肽与SEQIDNO:57直到SEQIDNO:78中的任何一个具有100%序列同一性。在另外其他实施方案中,改善的或变体AAR多肽序列衍生自除聚球藻属物种或原绿球藻属物种外的物种。
本发明人构建了来自细长聚球藻PCC7942的酰基-ACP还原酶(AAR_7942)的易错文库,以便筛选具有超过野生型AAR_7942的改善的变体(参见下文实施例3)。改善分类为改善的脂肪醇滴度总体或者增加的C10、C12、C14或C16脂肪醇级分,而不显著影响滴度。易错文库鉴定多个氨基酸位置包括氨基酸位置18。制备饱和和组合文库以进一步测试这些位置。SEQIDNO:57编码AAR变体(突变体)的氨基酸序列,其具有在氨基酸18中的突变。当在细胞中表达时,其中丝氨酸替换为色氨酸的突变S18W导致脂肪醇生产的显著增加(参见下文实施例3和4)。更具体而言,与用作对照的野生型AAR相比较,S18W突变导致总脂肪醇(FALC)生产的227百分比增加,和C14脂肪醇的324百分比增加(参见下文表4A和4B)。
本发明人基于S18W突变构建饱和文库,以便鉴定进一步增加总体FALC滴度或C12脂肪醇级分的变体(突变体)(参见下文实施例4和表5)。使用S18W突变(SEQIDNO:57)作为模板的组合文库产生7种组合突变体,其显示总FALC滴度和/或C12脂肪醇生产中的进一步显著增加(参见下文表6B)。7种组合突变体包括具有突变S18W的AAR(SEQIDNO:57);具有突变M21L、C63G、S113K、T154A、A281L的AAR(SEQIDNO:58);具有突变L8A、M21L、C63G、A77A(GCC至GCA沉默密码子突变)、S113K、T154A、A281L的AAR(SEQIDNO:59);具有突变D16L、M21L、C63G、S113K、T154A、A281L的AAR(SEQIDNO:60);具有突变L8A、D24V、C63G、S113K、Q155L、A281L的AAR(SEQIDNO:61);具有突变D24P、L31M、C63G、S113K、T154A、A281L的AAR(SEQIDNO:62);具有突变L8A、D16L、D24V、C63G、S113K、T154A、A281L的AAR(SEQIDNO:63);和具有突变D24E、C63G、S113K、T154A、A281L的AAR(SEQIDNO:64)。值得注意的是,SEQIDNO:58显示最高的C12脂肪醇级分,而SEQIDNO:59显示最高的组合突变体滴度(参见下文表6B)。
本发明还构建了来自海洋原绿球藻(Prochlorococcusmarinus)的酰基-ACP还原酶MED4_AAR的完全饱和文库,以便筛选显示超过野生型MED4_AAR的改善的变体(参见下文实施例7)。基于比野生型AAR酶更多的脂肪醇生产,或生产具有改变的链长概况的脂肪醇(例如增加的C12、C14或C16脂肪醇级分)的能力,来选择AAR变体。表8(参见下文实施例7)显示了来自16种AAR变体的代表性数据,所述AAR变体产生超过野生型MED4_AAR的范围为1.4倍至2.2倍的最高FALC滴度。本发明人还筛选了具有改变的链长概况的AAR变体,其中具有短于C16的链长的FALC种类的比例增加是感兴趣的。导致FALC数量中的2-3倍增加的两个变体克隆显示于图10中。这些AAR变体之一即D61E突变体(SEQIDNO:65)在重组宿主细胞中的表达,使脂肪醇种类的链长分布朝向更短的碳链倾斜。所有变体均导致更高的FALC数量,因为它们具有增加的滴度,但仅SEQIDNO:65具有增加的C14级分(和更高的滴度)。表9(参见下文实施例7)举例说明了与野生型(WT)MED4_AAR和不产生具有改变链长的产物的MED4_AAR的V346P变体相比较,由表达MED4_AAR的D61E变体的重组宿主细胞产生的FALC链长分布。
酰基载体蛋白质(ACP)
关于可以限制宿主细胞例如大肠杆菌(E.coli)中的脂肪酸生物合成的因素,在文献中存在相矛盾的报道。尽管酰基载体蛋白质(ACP)在所有生物体中保守至一定程度,但它们的一级序列可以不同。已提出当来自除大肠杆菌外的来源的终末途径酶在大肠杆菌中表达,以便将脂肪酰基-ACP转换为产物时,可以存在例如重组途径酶朝向脂肪酰基-ACP的识别、亲和力和/或周转中的限制(参见Suh等人(1999)ThePlantJournal17(6):679-688;Salas等人(2002)ArchivesofBiochemistryandBiophysics403:25–34)。一个提议是限制脂肪酸生物合成的主要前体,例如乙酰-CoA和丙二酰-CoA,可以导致脂肪酸衍生物的合成减少。增加通过脂肪酸生物合成的流量的一种方法是操纵途径中的多种酶(参见图1-3)。经由乙酰-CoA羧化酶(acc)复合物和脂肪酸生物合成(fab)途径由乙酰-CoA供应酰基-ACP可以影响脂肪酸衍生物生产的速率(参见图2)。如实施例(下文)中详述的,为了举例说明的目的而评估ACP过表达对脂肪醇生产的作用。
改造为表达ACP的宿主细胞可以显示出脂肪醛和/或脂肪醇组合物或者特定脂肪醛和/或脂肪醇组合物的滴度增加,其中与当在相同条件下培养时不表达ACP的相应宿主细胞产生的脂肪醛和/或脂肪醇组合物的滴度相比较,所述增加是大至少3%、至少4%、至少5%、至少6%、至少7%、至少8%、至少9%、至少10%、至少11%、至少12%、至少13%、至少14%、至少15%、至少16%、至少17%、至少18%、至少19%、至少20%、至少21%、至少22%、至少23%、至少24%、至少25%、至少26%、至少27%、至少28%、至少29%、或至少30%。在一个方面,公开内容涉及通过将宿主细胞改造为表达天然的(例如内源的)或非天然的(例如外源的、异源的)ACP蛋白质,改善的脂肪醛和/或脂肪醇组合物生产。ACP多肽或编码ACP多肽的多核苷酸序列可以是非天然的,即它可以不同于天然存在于相应的野生型宿主细胞中的野生型序列。例子包括核苷酸、多肽或蛋白质的表达水平或序列中的修饰。公开内容包括ACP多肽及其同系物。
在一个实施方案中,用于实践公开内容的ACP多肽与SEQIDNO:2、SEQIDNO:4、SEQIDNO:6、SEQIDNO:8或SEQIDNO:10具有至少70%序列同一性。在一些实施方案中,ACP衍生自除烃海杆菌(Marinobacterhydrocarbonoclasticus)或大肠杆菌。在其他实施方案中,用于实践公开内容的ACP多肽与SEQIDNO:2、SEQIDNO:4、SEQIDNO:6、SEQIDNO:8或SEQIDNO:10的野生型ACP多肽序列具有至少75%(例如至少76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%)序列同一性,并且还可以包括导致如本文描述的有用特征和/或特性的一个或多个置换。在一个方面,用于实践公开内容的ACP多肽与SEQIDNO:2、SEQIDNO:4、SEQIDNO:6、SEQIDNO:8或SEQIDNO:10具有100%序列同一性。在其他实施方案中,改善的或变体ACP多肽序列衍生自除了除烃海杆菌或大肠杆菌外的物种。在相关方面,用于实践公开内容的ACP多肽由与SEQIDNO:1、SEQIDNO:3、SEQIDNO:5、SEQIDNO:7或SEQIDNO:9具有100%序列同一性的核苷酸序列编码。在另一个相关方面,公开内容涉及包含由核酸序列编码的氨基酸序列的ACP多肽,所述核酸序列与SEQIDNO:1、SEQIDNO:3、SEQIDNO:5、SEQIDNO:7或SEQIDNO:9具有至少75%(例如至少76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或和至少99%)序列同一性。在一些实施方案中,核酸序列编码具有一个或多个置换的ACP变体,所述一个或多个置换导致如本文描述的改善特征和/或特性。在其他实施方案中,改善的或变体ACP核酸序列衍生自除了除烃海杆菌或大肠杆菌外的物种。在另一个方面,公开内容涉及具有由核酸编码的氨基酸序列的ACP多肽,所述核酸在严格条件下在对应于SEQIDNO:1、SEQIDNO:3、SEQIDNO:5、SEQIDNO:7或SEQIDNO:9的核酸的基本上整个长度上杂交。
变化和突变
在一些实施方案中,AAR或ACP多肽是本文描述的多肽中的任一种的突变体或变体。如本文描述的变体或突变体多肽指具有氨基酸序列的多肽,所述氨基酸序列以至少一个氨基酸而不同于野生型多肽。例如,突变体可以具有下述保守氨基酸置换中的一个或多个,包括但不限于脂肪族氨基酸例如丙氨酸、缬氨酸、亮氨酸和异亮氨酸替换为另一种脂肪族氨基酸;丝氨酸替换为苏氨酸;苏氨酸替换为丝氨酸;酸性残基例如天冬氨酸和谷氨酸替换为另一种酸性残基;具有酰胺基团的残基例如天冬酰胺和谷氨酰胺替换为另一种具有酰胺基团的残基;碱性残基例如赖氨酸和精氨酸更换为另一种碱性残基;以及芳香族残基例如苯丙氨酸和酪氨酸替换为另一种脂肪酸残基。在一些实施方案中,变体或突变体多肽具有约1、2、3、4、5、6、7、8、9、10、15、20、30、40、50、60、70、80、90、100个或更多个氨基酸置换、添加、插入或缺失。充当变体或突变体的一些优选多肽片段保留相应野生型多肽的生物学功能(例如酶促活性)的一些或全部。在一些实施方案中,片段保留相应野生型多肽的生物学功能的至少75%、至少80%、至少90%、至少95%、或至少98%或更多。在其他实施方案中,片段或突变体保留相应野生型多肽的生物学功能的100%。使用本领域众所周知的计算机程序,例如LASERGENE软件(DNASTAR,Inc.,Madison,WI),可以找到确定哪些氨基酸残基可以进行置换、插入或缺失而不影响生物活性的指导。在另外其他实施方案中,与相应野生型多肽相比较,片段显示出增加的生物学功能。例如,与相应野生型多肽相比较,片段可以显示出酶促活性中的至少10%、至少25%、至少50%、至少75%、或至少90%改善。在其他实施方案中,与相应野生型多肽相比较,片段可以显示出酶促活性中的至少100%、至少200%、或至少500%改善。
应当理解本文描述的多肽可以具有另外的保守或非必需氨基酸置换,其对多肽功能基本上没有作用。特定置换是否将是耐受的(即,不会负面影响所需生物学功能,例如酰基-ACP还原酶活性),可以如本领域已知的进行测定(参见Bowie等人(1990)Science,247:1306-1310)。保守氨基酸置换是其中氨基酸残基替换为具有相似侧链的氨基酸残基的置换。具有相似侧链的氨基酸残基家族已在本领域中得到定义。这些家族包括具有碱性侧链的氨基酸(例如赖氨酸、精氨酸、组氨酸)、具有酸性侧链的氨基酸(例如天冬氨酸、谷氨酸)、具有不带电荷的极性侧链的氨基酸(例如甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸)、具有非极性侧链的氨基酸(例如丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸)、具有β-分支侧链的氨基酸(例如苏氨酸、缬氨酸、异亮氨酸)、以及具有芳香族侧链的氨基酸(例如酪氨酸、苯丙氨酸、色氨酸、组氨酸)。
变体可以是天然存在的或体外制备的。特别地,此类变体可以使用遗传改造技术进行制备,所述遗传改造技术例如定点诱变、随机化学诱变、外切核酸酶III缺失操作或标准克隆技术。备选地,此类变体、突变体、片段、类似物或衍生物可以使用化学合成或修饰操作进行制备。制备变体的方法是本领域众所周知的。例如,变体可以通过使用随机和定点诱变进行制备。随机和定点诱变是本领域一般已知的(参见例如Arnold(1993)Curr.Opin.Biotech.4:450-455)。随机诱变可以使用易错PCR来实现(参见例如Leung等人(1989)Technique1:11-15;和Caldwell等人(1992)PCRMethodsApplic.2:28-33)。在易错PCR中,实际PCR在其中DNA聚合酶的拷贝保真度低的条件下执行,从而使得沿PCR产物的整个长度获得高点突变率。简言之,在此类操作中,待诱变的核酸(例如编码AAR酶的多核苷酸序列)与PCR引物、反应缓冲液、MgCl2、MnCl2、Taq聚合酶和适当浓度的dNTP混合,用于实现沿PCR产物的整个长度的高点突变率。例如,反应可以使用20fmole待诱变的核酸、30pmole每种PCR引物、包含下述的反应缓冲液来执行:50mMKCl、10mMTrisHCl(pH8.3)、0.01%明胶、7mMMgCl2、0.5mMMnCl2、5单位Taq聚合酶、0.2mMdGTP、0.2mMdATP、1mMdCTP和1mMdTTP。PCR可以执行30个循环:94℃1分钟、45℃1分钟和72℃1分钟。然而,本领域技术人员应当理解这些参数可以适当加以改变。随后将诱变的核酸克隆到适当载体内,并且评估由诱变的核酸编码的多肽的活性。定点诱变可以使用寡核苷酸指导的诱变来实现,以在任何目的克隆DNA中生成位点特异性突变。寡核苷酸诱变在本领域中得到描述(参见例如Reidhaar-Olson等人(1988)Science241:53-57)。简言之,在此类操作中,具有待引入克隆DNA内的一个或多个突变的多个双链寡核苷酸进行合成且插入待诱变的克隆DNA(例如编码AAR多肽的多核苷酸序列)内。回收含有诱变DNA的克隆,并且评价它们编码的多肽的活性。
用于生成变体的另一种方法是装配PCR。装配PCR涉及来自小DNA片段混合物的PCR产物的装配。大量不同PCR反应在同一小瓶中平行发生,其中一种反应的产物作为另一种反应的产物的引物(参见美国专利号5,965,408)。生成变体的另外一种方法是有性PCR诱变。在有性PCR诱变中,由于DNA分子基于序列同源性的随机断裂,在体外被迫的同源重组在不同但高度相关的DNA序列的DNA分子之间发生。这随后为在PCR反应中通过引物延伸的交换固定。有性PCR诱变在本领域已知的出版物中进行描述(参见例如Stemmer(1994)Proc.Natl.Acad.Sci.U.S.A.91:10747-10751)。变体还可以通过体内诱变进行制备。在一些实施方案中,核酸序列中的随机突变通过在细菌菌株例如大肠杆菌菌株中繁殖序列来生成,所述细菌菌株携带在DNA修复途径的一种或多种中的突变。此类增变株具有比野生型菌株那种更高的随机突变率。在这些菌株之一中繁殖DNA序列(例如编码AAR多肽的多核苷酸序列)最终生成在DNA内的随机突变。适用于体内诱变的增变株在本领域的出版物中进行描述(参见例如国际专利申请公开号WO1991/016427)。变体还可以使用盒式诱变来生成。在盒式诱变中,将双链DNA分子的小区域替换为合成的寡核苷酸盒,其不同于天然序列。寡核苷酸通常含有完全和/或部分随机化形式的天然序列。递归整体诱变(Recursiveensemblemutagenesis)也可以用于生成变体。递归整体诱变是用于蛋白质改造(即蛋白质诱变)的算法,被开发以产生表型相关突变体的不同群体,其成员在氨基酸序列中不同。该方法使用反馈机制来控制组合盒式诱变的相继循环(参见例如Arkin等人(1992)Proc.Natl.Acad.Sci.,U.S.A.89:7811-7815)。在一些实施方案中,变体使用指数整体诱变进行制备。指数整体诱变是用于生成具有高百分比的独特和功能突变体的组合文库的方法,其中残基的小群体平行随机化,以鉴定在每个改变的位置处导致功能蛋白质的氨基酸(参见例如Delegrave等人(1993)Biotech.Res.11:1548-1552)。在一些实施方案中,使用改组操作来制备变体,其中将编码不同多肽的多个核酸的部分融合在一起,以制备编码嵌合多肽的嵌合核酸序列(如例如美国专利号5,965,408和5,939,250中所述)。
脂肪醛和脂肪醇的生产
天然或重组宿主细胞可以包含编码具有脂肪醛生物合成活性的酶(在本文中也称为脂肪醛生物合成多肽或者脂肪醛生物合成多肽或酶)的多核苷酸。当脂肪醛生物合成酶在宿主细胞中表达或过表达时,产生脂肪醛。酰基-ACP还原酶(AAR)多肽在重组宿主细胞中的表达或过表达可以导致通过重组宿主细胞的脂肪醛生产。在一个实施方案中,重组宿主细胞产生脂肪醛。在一些实施方案中,由重组宿主细胞产生的脂肪醛转换成脂肪醇。在一些实施方案中,天然(内源)脂肪醛生物合成多肽例如醛还原酶存在于宿主细胞(例如大肠杆菌)中,并且将脂肪醛有效转换为脂肪醇。在其他实施方案中,天然(内源)脂肪醛生物合成多肽是过表达的。在另外其他实施方案中,将外源脂肪醛生物合成多肽引入重组宿主细胞内,且表达或过表达。脂肪醛可以通过在重组宿主细胞中表达或过表达多核苷酸进行生产,所述多核苷酸编码脂肪醛生物合成多肽,例如具有酰基-ACP还原酶(AAR)活性的多肽。AAR在重组宿主细胞中的表达导致脂肪醛和脂肪醇的生产(图4)。示例性AAR多肽在本文以及PCT公开号WO2009/140695和WO/2009/140696中得到描述,所述两个PCT公开号均通过引用明确并入本文。
通过在有效表达脂肪醛生物合成酶例如AAR的条件下,在碳源的存在下培养宿主细胞,产生包含脂肪醛的组合物(脂肪醛组合物)。改造为产生脂肪醛的重组宿主细胞通常将一些脂肪醛转换为脂肪醇。在一些实施方案中,脂肪醛组合物包含脂肪醛和脂肪醇。通常,脂肪醛组合物从重组宿主细胞的细胞外环境即细胞培养基中回收。在一些实施方案中,重组宿主细胞包括编码多肽(酶)的多核苷酸,所述多肽(酶)具有脂肪醇生物合成活性(在本文中也称为脂肪醇生物合成多肽或脂肪醇生物合成酶),并且由重组宿主细胞产生脂肪醇。通过在有效表达脂肪醇生物合成酶的条件下,在碳源的存在下培养宿主细胞,可以产生包括脂肪醇的组合物(即脂肪醇组合物)。重组宿主细胞(例如大肠杆菌)中存在的天然(例如内源)醛还原酶将脂肪醛转换成脂肪醇。在一些实施方案中,天然(例如内源)脂肪醛生物合成多肽,例如宿主细胞中存在的醛还原酶足以将脂肪醛转换成脂肪醇。然而,在其他实施方案中,脂肪醇通过在重组宿主细胞中表达或过表达多核苷酸进行生产,所述多核苷酸编码具有脂肪醇生物合成活性的多肽,其将脂肪醛转换为脂肪醇。例如,醇脱氢酶(在本文中也称为醛还原酶,例如EC1.1.1.1),也可以用于实践公开内容。如本文使用的,术语醇脱氢酶指能够催化脂肪醛至脂肪醇的转换的多肽。本领域普通技术人员应当理解,某些醇脱氢酶同样能够催化其他反应,并且这些非特异性醇脱氢酶也由术语醇脱氢酶包含。依照公开内容有用的醇脱氢酶多肽的例子包括但不限于,不动杆菌属物种M-1的AlrA(SEQIDNO:52)或AlrA同系物例如AlrAadp1(SEQIDNO:53),以及内源大肠杆菌醇脱氢酶例如YjgB、(AAC77226)(SEQIDNO:5)、DkgA(NP_417485)、DkgB(NP_414743)、YdjL(AAC74846)、YdjJ(NP_416288)、AdhP(NP_415995)、YhdH(NP_417719)、YahK(NP_414859)、YphC(AAC75598)、YqhD(446856)和YbbO[AAC73595.1]。另外的例子在国际专利申请公开号WO2007/136762、WO2008/119082和WO2010/062480中描述,所述专利各自通过引用明确并入本文。在某些实施方案中,脂肪醇生物合成多肽具有醛还原酶或醇脱氢酶活性(EC1.1.1.1)。在一些实施方案中,天然(例如内源)脂肪醇生物合成多肽是过表达的,并且在其他实施方案中,将外源脂肪醇生物合成多肽引入重组宿主细胞内,且表达或过表达。
经由利用脂肪酰基-ACP和脂肪酰-CoA中间产物的酰基-CoA依赖性途径,以及利用脂肪酰基-ACP中间产物而不是脂肪酰-CoA中间产物的酰基-CoA不依赖性途径,可以生产脂肪醇。在特定实施方案中,由过表达的基因编码的酶选自脂肪酸合酶、酰基-ACP硫酯酶、脂肪酰-CoA合酶和乙酰-CoA羧化酶。脂肪醇在自然界中也由酶进行制备,所述酶能够将各种酰基-ACP或酰基-CoA分子还原为相应的伯醇(参见通过引用明确并入本文的美国专利公开号20100105963和20110206630,以及美国专利号8097439)。脂肪醇组合物通常包括脂肪醇连同其他脂肪酸衍生物,例如脂肪醛和/或脂肪酸。通常,脂肪醇组合物从重组宿主细胞的细胞外环境即细胞培养基中回收。在某些实施方案中,多肽例如直接或间接涉及脂肪酸生物合成的酶的表达是被调节的(例如表达、过表达或减弱的),其中此类调节导致目的脂肪酸衍生物例如脂肪醇的更高得率、更高滴度或更高生产率。酶可以由其为外源或异源(例如源于除亲本宿主细胞外的生物体的多肽、或对于亲本微生物细胞天然的多肽的变体)的脂肪酸生物合成多核苷酸或内源多肽(例如对于亲本宿主细胞天然的多肽)进行编码,其中所述内源多肽在重组宿主细胞中是过表达的。表1提供了示例性蛋白质列表,其可以在重组宿主细胞中表达,以促进特定脂肪醇组合物的生产。
表1:基因
重组宿主细胞和细胞培养
增加通过重组宿主细胞的脂肪醛或脂肪醇组合物生产的策略包括:通过过表达天然脂肪醛或脂肪醇生物合成基因,且在生产宿主中表达来自不同生物体的外源脂肪醛和脂肪醇生物合成基因,来增加经过脂肪酸生物合成途径的流量。如本文使用的,术语重组宿主细胞或经改造的宿主细胞指:例如通过新遗传元件的有意引入和/或天然存在于宿主细胞中的遗传元件的有意修饰,其基因构成已相对于相应的野生型宿主细胞加以改变的宿主细胞。此类重组宿主细胞的后代也含有这些新的和/或经修饰的遗传元件。在本文描述的公开内容的方面的任一个中,宿主细胞可以选自植物细胞、昆虫细胞,真菌细胞(例如丝状真菌例如念珠菌属(Candida)物种,或芽殖酵母例如酵母属(Saccharomyces)物种)、藻类细胞和细菌细胞。在一个优选实施方案中,重组宿主细胞是重组微生物。其为微生物的宿主细胞的例子包括但不限于来自下述属的细胞:埃希氏菌属(Escherichia)、芽孢杆菌属(Bacillus)、乳杆菌属(Lactobacillus)、发酵单胞菌属(Zymomonas)、红球菌属(Rhodococcus)、假单胞菌属(Pseudomonas)、曲霉菌属(Aspergillus)、木霉属(Trichoderma)、链孢霉属(Neurospora)、镰刀菌属(Fusarium)、腐质霉属(Humicola)、根毛霉菌属(Rhizomucor)、克鲁维酵母属(Kluyveromyces)、毕赤酵母属(Pichia)、毛霉属(Mucor)、毁丝菌属(Myceliophtora)、青霉属(Penicillium)、平革菌属(Phanerochaete)、侧耳属(Pleurotus)、栓菌属(Trametes)、金孢子菌属(Chrysosporium)、酵母属、寡养单胞菌属(Stenotrophamonas)、裂殖酵母属(Schizosaccharomyces)、耶氏酵母属(Yarrowia)、或链霉菌属(Streptomyces)。在一些实施方案中,宿主细胞是革兰氏阳性菌细胞。在其他实施方案中,宿主细胞是革兰氏阴性菌细胞。在一些实施方案中,宿主细胞是大肠杆菌细胞。在其他实施方案中,宿主细胞是迟缓芽孢杆菌(Bacilluslentus)细胞、短芽孢杆菌(Bacillusbrevis)细胞、嗜热脂肪芽孢杆菌(Bacillusstearothermophilus)细胞、地衣芽孢杆菌细胞、嗜碱芽孢杆菌(Bacillusalkalophilus)细胞、凝结芽孢杆菌(Bacilluscoagulans)细胞、环状芽孢杆菌(Bacilluscirculans)细胞、短小芽胞杆菌(Bacilluspumilis)细胞、苏云金芽孢杆菌(Bacillusthuringiensis)细胞、克劳氏芽孢杆菌(Bacillusclausii)细胞、巨大芽孢杆菌(Bacillusmegaterium)细胞、枯草芽孢杆菌细胞、或解淀粉芽孢杆菌(Bacillusamyloliquefaciens)细胞。在其他实施方案中,宿主细胞是康氏木霉(Trichodermakoningii)细胞、绿色木霉(Trichodermaviride)细胞、里氏木霉(Trichodermareesei)细胞、长梗木霉(Trichodermalongibrachiatum)细胞、泡盛曲霉(Aspergillusawamori)细胞、烟曲霉(Aspergillusfumigates)细胞、臭曲霉(Aspergillusfoetidus)细胞、构巢曲霉(Aspergillusnidulans)细胞、黑曲霉(Aspergillusniger)细胞、米曲霉(Aspergillusoryzae)细胞、特异腐质霉(Humicolainsolens)细胞、柔毛腐质霉(Humicolalanuginose)细胞、混浊红球菌(Rhodococcusopacus)细胞、米赫根毛霉(Rhizomucormiehei)细胞或米黑毛霉(Mucormichei)细胞。在另外其他实施方案中,宿主细胞是变铅青链霉菌(Streptomyceslividans)细胞或鼠灰链霉菌(Streptomycesmurinus)细胞。在另外其他实施方案中,宿主细胞是放线菌属(Actinomycetes)细胞。在一些实施方案中,宿主细胞是酿酒酵母细胞。
在其他实施方案中,宿主细胞是真核植物细胞、藻类细胞、蓝细菌细胞、绿色硫细菌细胞、绿色非硫细菌细胞、紫色硫细菌细胞、紫色非硫细菌细胞、嗜极生物(extremophile)细胞、酵母细胞、真菌细胞、本文中所述物种中任一种的经改造的细胞、或合成生物体。在一些实施方案中,宿主细胞是光依赖性的或固氮。在一些实施方案中,宿主细胞具有自养活性。在一些实施方案中,宿主细胞例如在光的存在下具有光合自养活性。在一些实施方案中,宿主细胞在不存在光的情况下是异养的或兼养的。在某些实施方案中,宿主细胞是来自拟南芥、柳枝稷(Panicumvirgatum)、芒草(Miscanthusgiganteus)、玉蜀黍(Zeamays)、布朗葡萄藻(Botryococcusebraunii)、莱茵衣藻(Chlamydomonasreinhardtii)、盐生杜氏藻(Dunalielasalina)、聚球藻属物种PCC7002、聚球藻属物种PCC7942、聚球藻属物种PCC6803、嗜热细长聚球藻(Thermosynechococcuselongates)BP-1、微温绿硫菌(Chlorobiumtepidum)、嗜热光合绿曲菌(Chlorojlexusauranticus)、酒色着色菌(Chromatiummvinosum)、深红红螺菌(Rhodospirillumrubrum)、荚膜红细菌(Rhodobactercapsulatus)、沼泽红假单胞菌(Rhodopseudomonaspalusris)、杨氏梭菌(Clostridiumljungdahlii)、热纤梭菌(Clostridiumthermocellum)、产黄青霉(Penicilliumchrysogenum)、巴斯德毕赤酵母(Pichiapastoris)、酿酒酵母、粟酒裂殖酵母(Schizosaccharomycespombe)、荧光假单胞菌(Pseudomonasfluorescens)、或运动发酵单胞菌(Zymomonasmobilis)的细胞。
改造宿主细胞
在一些实施方案中,多核苷酸(或基因)序列借助于重组载体提供给宿主细胞,所述重组载体包括与多核苷酸序列可操作地连接的启动子。在某些实施方案中,启动子是发育调节、器官特异性、组织特异性、诱导型、组成型或细胞特异性启动子。在一些实施方案中,重组载体包括选自下述的至少一种序列:可操作地偶联至多核苷酸序列的表达控制序列;可操作地偶联至多核苷酸序列的选择标记;可操作地偶联至多核苷酸序列的标记序列;可操作地偶联至多核苷酸序列的纯化部分;可操作地偶联至多核苷酸序列的分泌序列;和可操作地偶联至多核苷酸序列的靶向序列。本文描述的表达载体包括以适合于在宿主细胞中表达多核苷酸序列的形式的多核苷酸序列。本领域技术人员应当理解表达载体的设计可以取决于此类因素如待转化的宿主细胞的选择、所需多肽表达水平等。本文描述的表达载体可以引入宿主细胞内,以产生由如上文描述(同上)的多核苷酸序列编码的多肽,包括融合多肽。编码多肽的基因在原核生物例如大肠杆菌中的表达最通常用含有组成型或诱导型启动子的载体进行,所述组成型或诱导型启动子指导融合或非融合多肽的表达。融合载体对其中编码的多肽添加多个氨基酸,通常是对重组多肽的氨基或羧基末端添加。此类融合载体通常发挥下述三个目的中的一个或多个,包括增加重组多肽的表达;增加重组多肽的可溶性;和通过充当亲和纯化中的配体来帮助重组多肽的纯化。通常,在融合表达载体中,将蛋白酶解切割位点引入融合部分和重组多肽的连接处。这允许在融合多肽纯化后,使重组多肽与融合部分分离。此类酶及其同种识别序列的例子包括因子Xa、凝血酶和肠激酶。示例性融合表达载体包括pGEX载体(PharmaciaBiotech,Inc.,Piscataway,NJ;Smith等人(1988)Gene67:31-40)、pMAL载体(NewEnglandBiolabs,Beverly,MA)、和pRITS载体(PharmaciaBiotech,Inc.,Piscataway,N.J.),其分别使谷胱甘肽S转移酶(GST)、麦芽糖E结合蛋白或蛋白A融合至靶重组多肽。
可诱导、非融合大肠杆菌表达载体的例子包括pTrc载体(Amann等人(1988)Gene69:301-315)和pET11d载体(Studier等人,GeneExpressionTechnology:MethodsinEnzymology185,AcademicPress,SanDiego,Calif.(1990)60-89)。来自pTrc载体的靶基因表达依赖来自杂交trp-lac融合启动子的宿主RNA聚合酶转录。来自pET11d载体的靶基因表达依赖通过共表达的病毒RNA聚合酶(T7gn1)介导的,来自T7gn10-lac融合启动子的转录。该病毒聚合酶在lacUV5启动子的转录控制下由宿主菌株供应,所述宿主菌株例如来自具有T7gn1基因的驻留λ原噬菌体的BL21(DE3)或HMS174(DE3)。用于原核和真核细胞两者的合适表达系统是本领域众所周知的(参见例如Sambrook等人(1989)MolecularCloning:ALaboratoryManual,第二版,ColdSpringHarborLaboratory)。可诱导、非融合大肠杆菌表达载体的例子包括pTrc载体(Amann等人(1988)Gene69:301-315)和PET11d载体(Studier等人(1990)GeneExpressionTechnology:MethodsinEnzymology185,AcademicPress,SanDiego,CA,第60-89页)。在某些实施方案中,公开内容的多核苷酸序列可操作地连接至衍生自细菌噬菌体T5的启动子。在一个实施方案中,宿主细胞是酵母细胞。在该实施方案中,表达载体是酵母表达载体。经由多种领域公认的用于将外源核酸(例如DNA)引入宿主细胞内的技术,可以将载体引入原核或真核细胞内。用于转化或转染宿主细胞的合适方法可以在例如Sambrook等人(同上)中找到。对于细菌细胞的稳定转化,已知(取决于使用的表达载体和转化技术)一部分的细胞将吸收且复制表达载体。为了鉴定且选择这些转化体,编码可选标记(例如对抗生素的抗性)的基因可以连同目的基因一起引入宿主细胞内。可选标记包括赋予对于药物的抗性的那些,所述药物例如但不限于氨苄青霉素、卡那霉素、氯霉素或四环素。编码可选标记的核酸可以在与编码本文描述的多肽相同的载体上引入宿主细胞内,或可以在分开的载体上引入。用所引入的核酸稳定转化的细胞可以通过在合适的选择药物的存在下的生长进行鉴定。如本文描述的经改造的或重组宿主细胞(同上)是用于产生脂肪酸衍生物组合物例如脂肪醛或脂肪醇的细胞。在本文描述的公开内容的方面的任一个中,宿主细胞可以选自真核植物、细菌、藻类、蓝细菌、绿色硫细菌、绿色非硫细菌、紫色硫细菌、紫色非硫细菌、嗜极生物、酵母、真菌、本文中所述物种中任一种的经改造的、或合成生物体。在一些实施方案中,宿主细胞是光依赖性的或固氮。在一些实施方案中,宿主细胞具有自养活性。多种宿主细胞可以用于产生脂肪酸衍生物,如本文描述的。
公开内容的宿主细胞或微生物包括宿主菌株或宿主细胞,其遗传改造为或经修饰为含有改变,以便测试特定突变对酶促活性的效率(即,重组宿主细胞或微生物)。多种任选基因操纵和改变可以从一种宿主细胞到另一种之间互换使用,取决于何种天然酶促途径存在于原始宿主细胞中。在一个实施方案中,宿主菌株可以用于测试AAR多肽与其他生物合成多肽(例如酶)组合的表达。宿主菌株可以包含许多遗传改变,以便测试特异性变量,包括但不限于培养条件包括发酵组分、碳源(例如原料)、温度、压力、降低培养污染条件和氧水平。
在一个实施方案中,宿主菌株包含任选的fadE和fhuA缺失。酰基-CoA脱氢酶(FadE)是对于代谢脂肪酸重要的酶。它催化脂肪酸利用中的第二步(β-氧化),其是将长链脂肪酸(酰基-CoA)分解成乙酰-CoA分子的过程。更具体而言,细菌中的脂肪酸降解的β-氧化循环的第二步是酰基-CoA氧化为2-烯酰-CoA,其由FadE催化。当大肠杆菌催化FadE时,它不能以作为碳源的脂肪酸为生,但它可以以乙酸酯为生。不能利用任何链长的脂肪酸与报道的fadE菌株,即其中FadE功能被破坏的fadE突变株的表型一致。fadE基因可以任选敲除或减弱,以确保可以是脂肪酸衍生途径的中间产物的酰基-CoA可以在细胞中累积,从而使得所有酰基-CoA均可有效转换为脂肪酸衍生物。然而,当糖用作碳源时,fadE减弱是任选的,因为当在此类条件下时,FadE的表达可能被阻遏,并且FadE因此仅能够以小量存在,并且不能与酯合酶或其他酶有效竞争酰基-CoA底物。FadE由于分解代谢产物阻遏被阻遏。大肠杆菌及许多其他微生物更喜欢消耗糖超过脂肪酸,因此当两个来源均可获得时,糖通过阻遏fad调节子首先被消耗(参见D.Clark,JBacteriol.(1981)148(2):521-6))。此外,糖的不存在和脂肪酸的存在诱导FadE表达。酰基-CoA中间产物可以丧失至β氧化途径,因为由fad调节子(包括FadE)表达的蛋白质是上调的,且有效竞争酰基-CoA。因此,具有fadE基因敲除或减弱可以是有利的。因为大多数碳源主要是基于糖的,所以减弱FadE是任选的。基因fhuA编码TonA蛋白质,其是大肠杆菌外膜中的能源偶联的转运蛋白和受体(V.Braun(2009)JBacteriol.191(11):3431–3436)。它的缺失是任选的。fhuA缺失允许细胞变得对噬菌体攻击更有抵抗力,这在某些发酵条件下可以是有利的。因此,可能期望缺失宿主细胞中的fhuA,所述宿主细胞可能在发酵运行期间遭受潜在污染。
在另一个实施方案中,宿主菌株(同上)还包含下述基因中的一种或多种的任选过表达:包括fadR、fabA、fabD、fabG、fabH、fabV和/或fabF。此类基因的例子是来自大肠杆菌的fadR、来自鼠伤寒沙门氏菌(Salmonellatyphimurium)的fabA(NP_460041)、来自鼠伤寒沙门氏菌的fabD(NP_460164)、来自鼠伤寒沙门氏菌的fabG(NP_460165)、来自鼠伤寒沙门氏菌的fabH(NP_460163)、来自霍乱弧菌的fabV(YP_001217283)、和来自丙酮丁醇梭菌(Clostridiumacetobutylicum)的fabF(NP_350156)。编码脂肪酸生物合成中的酶和调节物的这些基因中的一种或多种的过表达,可以作用于增加在不同培养条件下的脂肪酸衍生物化合物,包括脂肪醛和脂肪醇的滴度。
在另一个实施方案中,大肠杆菌菌株用作宿主细胞用于生产脂肪酸衍生物,例如脂肪醛和/或脂肪醇。类似地,这些宿主细胞提供了一种或多种生物合成基因(即编码脂肪酸生物合成的酶和调节物的基因)的任选过表达,其可以进一步增加或增强在不同培养条件下的脂肪酸衍生物化合物例如脂肪酸衍生物(例如脂肪醇、脂肪醛等)的滴度,包括但不限于fadR、fabA、fabD、fabG、fabH、fabV和/或fabF。遗传改变的例子包括来自大肠杆菌的fadR、来自鼠伤寒沙门氏菌的fabA(NP_460041)、来自鼠伤寒沙门氏菌的fabD(NP_460164)、来自鼠伤寒沙门氏菌的fabG(NP_460165)、来自鼠伤寒沙门氏菌的fabH(NP_460163)、来自霍乱弧菌的fabV(YP_001217283)、和来自丙酮丁醇梭菌的fabF(NP_350156)。在一些实施方案中,携带这些生物合成基因的合成操纵子可以进行改造且在细胞中表达,以便测试在不同培养条件下的脂肪醛和/或脂肪醇过表达和/或进一步增强脂肪醛和/或脂肪醇生产。此类合成操纵子含有一种或多种生物合成基因。ifab138操纵子例如是经改造的操纵子,其含有任选的脂肪酸生物合成基因,包括来自霍乱弧菌的fabV、来自鼠伤寒沙门氏菌的fabH、来自鼠伤寒沙门氏菌的fabD、来自鼠伤寒沙门氏菌的fabG、来自鼠伤寒沙门氏菌的fabA和/或来自丙酮丁醇梭菌的fabF,其可以用于促进脂肪酸衍生物的过表达,以便测试特异性培养条件。此类合成操纵子的一个优点是脂肪酸衍生物生产的速率可以得到进一步增加或增强。
在一些实施方案中,用于表达ACP和生物合成酶(例如TE、ES、CAR、AAR、ADC等)的宿主细胞或微生物进一步表达包含某些酶促活性的基因,所述某些酶促活性可以增加对一种或多种特定脂肪酸衍生物的生产,所述特定脂肪酸衍生物例如脂肪醇、脂肪醛、脂肪酯、脂肪胺、双功能脂肪酸衍生物、二酸等。在一个实施方案中,宿主细胞具有硫酯酶活性(E.C.3.1.2.*或E.C.3.1.2.14或E.C.3.1.1.5)用于生产脂肪酸,所述脂肪酸可以通过过表达基因得到增加。在另一个实施方案中,宿主细胞具有酯合酶活性(E.C.2.3.1.75)用于生产脂肪酯。在另一个实施方案中,宿主细胞具有酰基-ACP还原酶(AAR)(E.C.1.2.1.80)活性和/或醇脱氢酶活性(E.C.1.1.1.1.)和/或脂肪醇酰基-CoA还原酶(FAR)(E.C.1.1.1.*)活性和/或羧酸还原酶(CAR)(EC1.2.99.6)活性用于生产脂肪醇。在另一个实施方案中,宿主细胞具有酰基-ACP还原酶(AAR)(E.C.1.2.1.80)活性用于生产脂肪醛。在另一个实施方案中,宿主细胞具有酰基-ACP还原酶(AAR)(E.C.1.2.1.80)活性和脱羧酶(ADC)活性用于生产烷烃和烯烃。在另一个实施方案中,宿主细胞具有酰基-CoA还原酶(E.C.1.2.1.50)活性、酰基-CoA合酶(FadD)(E.C.2.3.1.86)活性和硫酯酶(E.C.3.1.2.*或E.C.3.1.2.14或E.C.3.1.1.5)活性用于生产脂肪醇。在另一个实施方案中,宿主细胞具有酯合酶活性(E.C.2.3.1.75)、酰基-CoA合酶(FadD)(E.C.2.3.1.86)活性、和硫酯酶(E.C.3.1.2.*或E.C.3.1.2.14或E.C.3.1.1.5)活性用于生产脂肪酯。在另一个实施方案中,宿主细胞具有OleA活性用于生产酮。在另一个实施方案中,宿主细胞具有OleBCD活性用于生产内部烯烃。在另一个实施方案中,宿主细胞具有酰基-ACP还原酶(AAR)(E.C.1.2.1.80)活性和醇脱氢酶活性(E.C.1.1.1.1.)用于生产脂肪醇。在另一个实施方案中,宿主细胞具有硫酯酶(E.C.3.1.2.*或E.C.3.1.2.14或E.C.3.1.1.5)活性和脱羧酶活性用于制备末端烯烃。酶促活性在微生物和微生物细胞中的表达通过美国专利号8,097,439;8,110,093;8,110,670;8,183,028;8,268,599;8,283,143;8,232,924;8,372,610;和8,530,221教导,所述专利通过引用并入本文。在其他实施方案中,用于表达ACP和其他生物合成酶的宿主细胞或微生物包括上调或过表达的某些天然酶活性,以便产生一种或多种特定脂肪酸衍生物例如脂肪醛和/或脂肪醇。在一个实施方案中,宿主细胞具有天然硫酯酶(E.C.3.1.2.*或E.C.3.1.2.14或E.C.3.1.1.5)活性用于生产脂肪酸,其可以通过过表达硫酯酶基因得到增加。
本公开内容包括宿主菌株或微生物,其表达编码AAR及其他生物合成酶的基因(同上)。重组宿主细胞产生脂肪酸衍生物例如脂肪醛和脂肪醇及其组合物和掺和物。脂肪酸衍生物通常从培养基中回收和/或从宿主细胞中分离。在一个实施方案中,脂肪酸衍生物例如脂肪醛和脂肪醇从培养基中回收(细胞外的)。在另一个实施方案中,脂肪酸衍生物例如脂肪醛和脂肪醇从宿主细胞中回收(细胞内的)。在另一个实施方案中,脂肪酸衍生物例如脂肪醛和脂肪醇从培养基中回收,且从宿主细胞中分离。由宿主细胞产生的脂肪酸衍生物组合物可以使用本领域已知的方法例如GC-FID进行分析,以便测定特定脂肪酸衍生物的分布以及脂肪酸衍生物组合物例如脂肪醛和脂肪醇组合物的组分的链长和饱和度。
充当微生物的宿主细胞例如微生物细胞的例子包括但不限于来自下述属的细胞:埃希氏菌属、芽孢杆菌属、乳杆菌属、发酵单胞菌属、红球菌属、假单胞菌属、曲霉菌属、木霉属、链孢霉属、镰刀菌属、腐质霉属、根毛霉菌属、克鲁维酵母属、毕赤酵母属、毛霉菌属、毁丝菌属、青霉属、平革菌属、侧耳属、栓菌属、金孢子菌属、酵母属、寡养单胞菌属、裂殖酵母属、耶氏酵母属、或链霉菌属。在一些实施方案中,宿主细胞是革兰氏阳性菌细胞。在其他实施方案中,宿主细胞是革兰氏阴性菌细胞。在一些实施方案中,宿主细胞是大肠杆菌细胞。在一些实施方案中,宿主细胞是大肠杆菌B细胞、大肠杆菌C细胞、大肠杆菌K细胞或大肠杆菌W细胞。在其他实施方案中,宿主细胞是迟缓芽孢杆菌细胞、短芽孢杆菌细胞、嗜热脂肪芽孢杆菌细胞、地衣芽孢杆菌细胞、嗜碱芽孢杆菌细胞、凝结芽孢杆菌细胞、环状芽孢杆菌细胞、短小芽孢杆菌细胞、苏云金芽孢杆菌细胞、克劳氏芽孢杆菌细胞、巨大芽孢杆菌细胞、枯草芽孢杆菌细胞、或解淀粉芽孢杆菌细胞。在另外其他实施方案中,宿主细胞是康氏木霉细胞、绿色木霉细胞、里氏木霉细胞、长梗木霉细胞、泡盛曲霉细胞、烟曲霉细胞、臭曲霉细胞、构巢曲霉细胞、黑曲霉细胞、米曲霉细胞、特异腐质霉细胞、柔毛腐质霉细胞、混浊红球菌细胞、米赫根毛霉细胞或米黑毛霉细胞。在另外其他实施方案中,宿主细胞是变铅青链霉菌细胞或鼠灰链霉菌细胞。在另外其他实施方案中,宿主细胞是放线菌属细胞。在一些实施方案中,宿主细胞是酿酒酵母细胞。在其他实施方案中,宿主细胞是来自真核植物、藻类、蓝细菌、绿色硫细菌、绿色非硫细菌、紫色硫细菌、紫色非硫细菌、嗜极生物、酵母、真菌、其改造生物体、或合成生物体的细胞。在一些实施方案中,宿主细胞是光依赖性的或固氮的。在一些实施方案中,宿主细胞具有自养活性。在一些实施方案中,宿主细胞例如在光的存在下具有光合自养活性。在一些实施方案中,宿主细胞在不存在光的情况下是异养的或兼养的。在某些实施方案中,宿主细胞是来自拟南芥、柳枝稷、芒草、玉蜀黍、布朗葡萄藻、莱茵衣藻、盐生杜氏藻、聚球藻属物种PCC7002、聚球藻属物种PCC7942、聚球藻属物种PCC6803、嗜热细长聚球藻BP-1、微温绿硫菌、嗜热光合绿曲菌、酒色着色菌、深红红螺菌、荚膜红细菌、沼泽红假单胞菌、杨氏梭菌、热纤梭菌、产黄青霉、巴斯德毕赤酵母、酿酒酵母、粟酒裂殖酵母、荧光假单胞菌、或运动发酵单胞菌的细胞。在一个特定实施方案中,微生物细胞来自蓝细菌,包括但不限于原绿球藻属、聚球藻属、集胞藻属(Synechocystis)、蓝丝菌属(Cyanothece)和点形念珠藻(Nostocpunctiforme)。在另一个实施方案中,微生物细胞来自特异性蓝细菌物种,包括但不限于细长聚球藻PCC7942、集胞藻属物种PCC6803和聚球藻属物种PCC7001。
重组宿主细胞的培养和发酵
如本文使用的,术语发酵泛指有机材料通过宿主细胞转换成靶物质,例如通过在包含碳源的培养基中繁殖重组宿主细胞的培养物,碳源通过重组宿主细胞转换成脂肪酸或其衍生物。允许生产的条件指允许宿主细胞产生所需产物例如脂肪酸醛或脂肪醇的任何条件。类似地,其中表达载体的多核苷酸序列的条件意指允许宿主细胞合成多肽的任何条件。合适条件包括例如发酵条件。发酵条件可以包括许多参数,包括但不限于温度范围、曝气水平、进料速率和培养基组成。这些条件各自个别和组合允许宿主细胞生长。发酵可以是好氧的、厌氧的或其变化(例如微好氧的)。示例性培养基包括肉汤或凝胶。一般地,培养基包括可以由宿主细胞直接代谢的碳源。另外,酶可以在培养基中使用,以促进碳源的动员(例如淀粉或纤维素解聚为可发酵糖)和后续代谢。
对于小规模生产,经改造的宿主细胞可以在例如约100μL、200μL、300μL、400μL、500μL、1mL、5mL、10mL、15mL、25mL、50mL、75mL、100mL、500mL、1L、2L、5L或10L的分批中生长;发酵;且诱导以表达所需多核苷酸序列,例如编码ACP和/或生物合成多肽的多核苷酸序列。对于大规模生产,经改造的宿主细胞可以在约10L、100L、1000L、10,000L、100,000L和1,000,000L或更大的分批中生长;发酵;且诱导以表达所需多核苷酸序列。备选地,可以进行大规模补料分批发酵。本文描述的脂肪酸衍生物组合物在重组宿主细胞培养物的细胞外环境中发现,并且可以与培养基容易地分离。脂肪酸衍生物例如脂肪醛和脂肪醇可以由重组宿主细胞分泌,转运到细胞外环境内或被动转移到重组宿主细胞培养物的细胞外环境内。脂肪酸衍生物使用本领域已知的常规方法从重组宿主细胞培养物中分离。
衍生自重组宿主细胞的产物
如本文使用的,现代碳分数(fractionofmodemcarbon)或fM具有与由美国国家标准技术研究所(NationalInstituteofStandardsandTechnology)(NIST)标准参考材料(SRMs4990B和4990C,分别称为草酸标准HOxI和HOxII)定义的相同含义。基础定义涉及0.95倍的14C/12C同位素比率HOxI(参考AD1950)。这大致等于衰变校正的工业革命前树木(decay-correctedpre-IndustrialRevolutionwood)。对于现今生命生物圈(植物物质),fM为大约1.1。生物制品(例如依照本公开内容产生的脂肪酸衍生物,包括脂肪醛和/或脂肪醇)包括生物产生的有机化合物。特别地,使用本文的脂肪酸生物合成途径产生的脂肪酸衍生物未由可再生来源产生,并且像这样是新物质组合物。基于双重碳-同位素指纹分析或14C测年,这些新的生物制品可以区别于衍生自石油化学品碳的有机化合物。另外,生物来源的碳(例如葡萄糖相对于甘油)的特定来源可以通过双重碳同位素指纹分析进行测定(参见例如美国专利号7,169,588)。使生物制品区别于基于石油的有机化合物的能力在商业中跟踪这些材料中是有利的。例如,包括基于生物和基于石油的碳同位素概况两者的有机化合物或化学制品可以区别于仅由基于石油的材料制备的有机化合物和化学制品。因此,生物制品在本文中可以基于其独特的碳同位素概况在商业中跟踪或追踪。通过比较每种样品中的稳定碳同位素比率(13C/12C),生物制品可以区别于基于石油的有机化合物。给定生物制品中的13C/12C比率是在二氧化碳固定时大气层二氧化碳中的13C/12C比例的结果。它还反映精确的代谢途径。还发生区域变异。石油、C3植物(阔叶树)、C4植物(草类)和海洋碳酸酯均显示13C/12C和相应的δ13C值中的显著差异。此外,C3和C4植物的液体物质与由于代谢途径而衍生自相同植物的碳水化合物组分的材料不同地分析。在测量精确度内,13C显示由于同位素分馏效应的大变化,对于生物制品最显著的效应是光合机制。植物中的碳同位素比中的差异的主要原因与植物中的光合碳代谢代谢途径中的差异紧密相关,特别是在初级羧化(即大气CO2的初始固定)期间发生的反应。两个大植物类别是掺入C3(或Calvin-Benson)光合循环的那些和掺入C4(或Hatch-Slack)光合循环的那些。在C3植物中,初级CO2固定或羧化反应涉及酶1,5-二磷酸核酮糖羧化酶,并且第一种稳定产物是3-碳化合物。C3植物例如阔叶树和针叶树在温带气候区是占优势的。在C4植物中,涉及另一种酶磷酸烯醇丙酮酸羧化酶的另外羧化反应是初级羧化反应。第一种稳定的碳化合物是随后脱羧的4-碳酸。因此释放的CO2通过C3循环再固定。C4植物的例子是热带草、玉米和甘蔗。C4和C3植物两者均显示出一系列13C/12C同位素比率,但典型值对于C4植物为每密耳(mil)约-7至约-13,并且对于C3植物为每密耳约-19至约-27(参见例如Stuiver等人,Radiocarbon19:355(1977))。煤和石油一般落入后面一个范围内。13C测量尺度最初通过由PeeDeeBelemnite(PDB)石灰石的零位调整进行限定,其中值以与该材料的每一千份偏差给出。δ13C值以每一千份(每密耳)表示,缩写为‰,且如下计算:
δ13C(‰)=[(13C/12C)样品-(13C/12C)标准]/(13C/12C)标准×1000
因为PDB参考材料(RM)已耗尽,所以与IAEA、USGS、NIST及其他所选国际同位素实验室合作已开发一系列备选RM。与PDB的每密耳偏差的符号为δ13C。通过在质量44、45和46的分子离子上的高精确度稳定比率质谱法(IRMS)对CO2进行测量。本文描述的组合物包括由本文描述的方法中的任一种产生的生物制品,包括例如脂肪酸衍生物产物。具体地,生物制品可以具有约-28或更大、约-27或更大、-20或更大、-18或更大、-15或更大、-13或更大、-10或更大、或-8或更大的δ13C。例如,生物制品可以具有约-30至约-15、约-27至约-19、约-25至约-21、约-15至约-5、约-13至约-7、或约-13至约-10的δ13C。在其他情况下,生物制品可以具有约-10、-11、-12或-12.3的δ13C。依照本文公开内容产生的生物制品还可以通过比较每种化合物中的14C量区别于基于石油的有机化合物。因为14C具有5730年的核半衰期,所以含有“更老的”碳的基于石油的燃料可以区别于含有“更年轻的”碳的生物制品(参见例如Currie,“SourceApportionmentofAtmosphericParticles”,CharacterizationofEnvironmentalParticles,J.Buffle和H.P.vanLeeuwen,编辑,IUPACEnvironmentalAnalyticalChemistrySeries的第I卷的1(LewisPublishers,Inc.)3-74,(1992))。放射性碳测年中的基础假设是大气层中的14C浓度的恒定性导致活生物体中的14C的恒定性。然而,由于自从1950年以后的大气层核试验和自从1850年以后的化石燃料燃烧,14C已获得第二种地球化学时间特征。它在大气CO2中的浓度和因此在生命生物圈中的浓度在二十世纪六十年代中期核试验高峰期大约加倍。它从那以后已逐渐恢复至约1.2x10-12的稳态宇宙成因(大气层)基线同位素比率(14C/12C),具有7-10年的近似松弛“半衰期”。这后面一种半衰期不能按字面意思理解;相反,必须使用详细的大气层核输入/衰变函数,以追踪自从核时代开始以后大气层和生物圈14C的变化。正是这后面一种生物圈14C时间特征保持近期生物圈碳的每年测年的希望。14C可以通过加速器质谱法(AMS)进行测量,其结果以现代碳分数(fM)单位给出。fM由美国国家标准技术研究所(NIST)标准参考材料(SRMs)4990B和4990C限定。如本文使用的,现代碳分数或fM具有与由美国国家标准技术研究所(NIST)标准参考材料(SRMs4990B和4990C,分别称为草酸标准HOxI和HOxII)定义的相同含义。基础定义涉及0.95倍的14C/12C同位素比率HOxI(参考AD1950)。这大致等于衰变校正的工业革命前树木。对于现今生命生物圈(植物物质),fM为大约1.1。本文描述的脂肪酯组合物和产物包括可以具有至少约1的fM14C的生物制品。例如,公开内容的生物制品可以具有至少约1.01的fM14C,约1至约1.5的fM14C,约1.04至约1.18的fM14C,或约1.111至约1.124的fM14C。
14C的另一种测量称为现代碳百分比(pMC)。对于使用14C日期的考古学家或地质学家,AD1950等于“0岁”。这还表示100pMC。大气层中的“炸弹碳”在1963年在热核武器高峰期时达到正常水平的几乎两倍。它在大气层内的分布自从它出现后已进行约计,显示对于自从AD1950以后有生命的植物和动物大于100pMC的值。它已随着时间过去逐渐减少,今天的值是接近107.5pMC。这意指新鲜的生物质材料例如玉米将给出接近107.5pMC的14C标记。基于石油的化合物将具有零的pMC值。组合化石碳与当今碳将导致当今pMC含量的稀释。通过假定107.5pMC表示当今生物质材料的14C含量,并且0pMC表示基于石油的产品的14C含量,对于该材料测量的pMC值将反映两个组分类型的比例。例如,100%衍生自当今大豆的材料给出接近107.5pMC的放射性碳标记。如果该材料由基于石油的产品稀释50%,则它将给出大约54pMC的放射性碳标记。基于生物的碳含量通过指定“100%”等于107.5pMC并且“0%”对于0pMC而衍生。例如,测量99pMC的样品将给出93%的等价基于生物的碳含量。该值被称为平均基于生物的碳结果,且假设在分析的材料内的所有组分均源于当今生物材料或基于石油的材料。包含如本文描述的一种或多种脂肪酸衍生物的生物制品可以具有至少约50、60、70、75、80、85、90、95、96、97、98、99或100的pMC。在其他情况下,本文描述的脂肪酸衍生物可以具有约50-约100;约60-约100;约70-约100;约80-约100;约85-约100;约87-约98;或约90-约95的pMC。在另外其他情况下,本文描述的脂肪酸衍生物可以具有约90、91、92、93、94或94.2的pMC。
脂肪醛和脂肪醇组合物及其用途
醛用于生产许多特种化学品。例如,醛用于生产聚合物、树脂(例如BAKELITE树脂)、染料、调味剂、增塑剂、香精、药物及其化学品,所述化学品中的一些可以用作溶剂、防腐剂或消毒剂。另外,某些天然和合成化合物例如维生素和激素是醛,并且许多糖含有醛基。脂肪醇可以通过化学或酶促还原而转换为脂肪醇。脂肪醇也具有多重商业用途。全世界每年的脂肪醇及其衍生物销售超过10亿美元。较短链的脂肪醇作为乳化剂、软化剂和增稠剂用于化妆品和食品工业中。由于它们的两亲性质,脂肪醇表现为非离子型表面活性剂,其用于个人护理和家用产品例如去污剂中。另外,脂肪醇用于蜡、树胶、树脂、药物药膏和洗剂、润滑油添加剂、纺织品抗静电和整理剂、增塑剂、化妆品、工业溶剂和脂肪溶剂中。
公开内容还提供了表面活性剂组合物或去污剂组合物,其包括通过本文所述方法中的任一种产生的脂肪醇。本领域普通技术人员应当理解,取决于表面活性剂或去污剂组合物的预期用途,可以产生且使用不同脂肪醇。例如,当本文描述的脂肪醇用作表面活性剂或去污剂生产的原料时,本领域普通技术人员应当理解,脂肪醇原料的特征将影响所生产的表面活性剂或去污剂组合物的特征。因此,表面活性剂或去污剂组合物的特征可以通过生产用作原料的特定脂肪醇加以选择。本文描述的基于脂肪醇的表面活性剂和/或去污剂组合物可以与本领域众所周知的其他表面活性剂和/或去污剂混合。在一些实施方案中,混合物可以包括按重量计至少约10%、至少约15%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%或由前述值中的任何两个约束的范围的脂肪醇。在其他例子中,可以制备表面活性剂或去污剂组合物,其包括按重量计至少约5%、至少约10%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约85%、至少约90%、至少约95%或由前述值中的任何两个约束的范围的脂肪醇,所述脂肪醇包括长度为8、9、10、11、12、13、14、15、16、17、18、19、20、21或22个碳的碳链。此类表面活性剂或去污剂组合物还可以包括至少一种添加剂例如微乳剂,或者来自非微生物来源的表面活性剂或去污剂,例如植物油或石油,其可以以按脂肪醇的重量计至少约5%、至少约10%、至少约15%、至少约20%、至少约30%、至少约40%、至少约50%、至少约60%、至少约70%、至少约80%、至少约85%、至少约90%、至少约95%或由前述值中的任何两个约束的范围的量存在。
实施例
下述具体实施例预期举例说明公开内容,并且不应解释为限制权利要求的范围。
方案和方法
筛选文库
本文描述的所有方案均依赖96孔板—主块(masterblock)—2mL系统(GreinerBio-One,Monroe,NC或Corning,Amsterdam,荷兰)用于生长培养物,并且使用板(Costar,Inc.)用于从培养肉汤中提取脂肪酸种类。下文提供的方案是发酵条件的例子。备选方案可以用于评估脂肪酸种类生产。
32℃培养方案(4NBT)
20μLLB培养物(来自在96孔板中生长的LB培养物)用于接种400μL2NBT培养基(表2),其随后在32℃振荡下温育大约16小时。20μL过夜种子用于接种具有1或2g/L氮的400μL4NBT(NBT_1N或NBT_2N)。在32℃下生长6小时后,用IPTG(最终浓度1mM)诱导培养物(表2)。培养物随后在32℃下伴随振荡温育18小时,这之后它们遵循下文详述的标准提取方案进行提取。
表2:培养基名称和制剂
脂肪酸种类标准提取方案
向待提取的每个孔中加入40μL1MHCl,随后为300μL乙酸丁酯(具有500mg/LC11-FAME作为内部标准)。96孔板随后使用板密封器(ALPS-300加热器;Abgene,ThermoScientific,Rockford,IL)进行热密封,并且使用MIXMATE混合器(Eppendorf,Hamburg,德国)以2000rpm振荡15分钟。在振荡后,板以4500rpm在室温下离心10分钟(AllegraX-15R,转子SX4750A,BeckmanCoulter,Brea,CA),以分离水层和有机层。将50μL有机层转移至96孔板(聚丙烯,Corning,Amsterdam,荷兰),随后将板热密封且贮存于-20℃下,直至使用FALC_Broth.met方法通过GC-FID进行评估。FALC_Broth.met方法如下进行:将1μL样品注射到Agilent7890AGCUltra装置(Agilent,SantaClara,CA)中的分析柱(DB-1,10m×180μm×0.2μM膜厚度,可得自JW121-101A)上,所述Agilent7890AGCUltra装置具有火焰离子化检测器(FID)。该仪器设置为检测且定量C6至C18脂肪醇。下文详述的方案代表标准条件,其可以根据需要进行修饰,以优化分析结果。
脂肪酸种类-标准尼罗红测定方案
在发酵24小时后,通过将70μL发酵液加入在GreinerMicrolonFluotrac200板中在84.6%水和15.4%乙腈溶液中的130μL1.54μg/mL尼罗红(对于1μg/mL尼罗红的最终测定浓度)而进行尼罗红测定,并且通过上下吸取进行混合。相对荧光单位使用SpectraMaxM2部件以540nm的激发和630nm的发射进行测量。
构建易错文库
本领域技术人员已知的标准技术用于制备易错文库。在一个例子中,载体主链使用在载体中的限制性内切核酸酶进行制备,同时在有利于掺入错配核苷酸的条件下,通过来自DNA模板的PCR扩增生成DNA插入片段中的多样性制备。在一种方法中,根据制造商的方案,使用INFUSIONCloningSystem(ClontechLaboratories,Inc.,MountainView,CA)执行载体主链和具有多样性的DNA插入片段的克隆。
构建饱和文库
本领域技术人员已知的标准技术用于制备饱和文库。在一个例子中,载体主链使用在载体中的限制性内切核酸酶进行制备,同时使用简并引物生成DNA插入片段中的多样性制备。在一种方法中,根据制造商的方案,使用INFUSIONCloningSystem(ClontechLaboratories,Inc.,MountainView,CA)执行载体主链和具有多样性的DNA插入片段的克隆。
构建组合文库
组合鉴定为有利的突变,以提供在脂肪醇种类生产中具有进一步改善的AAR变体。本领域技术人员已知的标准技术用于制备组合文库,在一个例子中,载体主链使用在载体中的限制性内切核酸酶进行制备,同时使用引入所需突变的引物生成DNA插入片段中的多样性制备。如上所述,在一种方法中,根据制造商的方案,使用INFUSIONCloningSystem(ClontechLaboratories,Inc.,MountainView,CA)执行载体主链和具有多样性的DNA插入片段的克隆。组合文库可以使用转移PCR(tPCR)方案(Erijman等人(2011)J.StructuralBio.175:171-177)生成。
文库筛选
一旦文库多样性在易错、饱和文库或组合文库中生成,它就使用上文描述的方法之一进行筛选。鉴定两类命中:(1)增加的脂肪醇的量(FALC滴度);和/或(2)增加的中链FALC例如十二醇(C12)或十四醇(C14)的量。还鉴定的是十六醇(C16)和十八醇(C18)。通过使用本领域技术人员常规采用的标准技术的测序,鉴定在每个命中内的AAR变体中的突变。表4、5和6列出了在饱和文库和组合文库中鉴定为有利的突变(命中)。
实施例1:通过酰基载体蛋白质(ACP)介导的经过脂肪酸合成途径的流量增加,使用AAR_7942的改善脂肪醇生产
当来自除大肠杆菌外的来源的终末途径酶在作为异源宿主的大肠杆菌中表达,以将脂肪酰基-ACP转换为产物时,可以存在重组途径酶朝向大肠杆菌脂肪酰基-ACP的识别、亲和力和/或周转中的限制。尽管ACP蛋白质在所有生物体中保守至一定程度,但它们的一级序列即使在给定物种中也可以不同。为了测试这个假设,将来自几种蓝细菌的acp基因克隆到质粒pLS9-185中存在的细长聚球藻PCC7942酰基-ACP还原酶(AAR_7942)下游,所述质粒pLS9-185是pCL1920衍生物(3-5个拷贝/细胞)。另外,将编码具有广泛底物特异性的磷酸泛酰巯基乙胺基转移酶,来自枯草芽孢杆菌的sfp基因(登录号X63158;SEQIDNO:11)克隆到各个acp基因下游。该酶涉及失活apo-ACP至活性holo-ACP的转换。构建的质粒在表3中描述。
表3:共表达蓝细菌ACP含和不含来自细长聚球藻PCC7942AAR下游的枯草芽孢杆菌sfp的质粒
基本质粒 ACP来源 ACP-SEQ ID NO.(NA/AA*) 不含sfp 含sfp
pLS9-185 细长聚球藻7942 7/8 pDS168 pDS168S
pLS9-185 集胞藻属物种6803 3/4 pDS169 不可用
pLS9-185 海洋原绿球藻MED4 5/6 pDS170 pDS170S
pLS9-185 点形念珠藻73102 1/2 pDS171 pDS171S
pLS9-185 念珠藻属物种7120 9/10 pDS172 pDS172S
*NA=核酸序列;AA=氨基酸序列/多肽序列
使用INFUSION技术,将所有acp基因与合成的RBS一起克隆到pLS9-185中的aar基因紧下游的EcoRI位点内。EcoRI位点重构在acp基因下游。类似地,将枯草芽孢杆菌sfp基因连同合成的RBS一起INFUSION克隆到该EcoRI位点内。所有质粒均转化到大肠杆菌MG1655DV内。这些实验的对照是单独的AAR的表达(pLS9-185)。
来自标准摇瓶发酵实验的结果显示于图5中。在含有质粒pDS171S、pDS172S、pDS168和pDS169的菌株中观察到脂肪醇滴度中的显著改善,证实ACP过表达对于脂肪醇生产可以是有利的。虽然不希望受理论束缚,但假设通过帮助异源终末途径酶对酰基-ACP的识别、亲和力和/或周转,ACP过表达对于脂肪醇生产可以是有利的(关于ACP的来源以及sfp的存在或不存在,参见表3(同上))。
实施例2:通过酰基-CoA羧化酶(ACC)介导的经过脂肪酸合成途径的流量增加,使用AAR_7942改善的脂肪醇生产
脂肪酸生物合成的主要前体是丙二酰-CoA和乙酰-CoA。已提出这些前体限制大肠杆菌中的脂肪酸生物合成速率。在该实施例中,合成的乙酰-CoA羧化酶、acc、操纵子[谷氨酸棒状杆菌:accDCAB+birA;SEQIDNO:45或46、48和50也称为D+]连同来自细长聚球藻PCC7942的酰基-ACP还原酶(AAR)(AAR_7942)一起表达。将accD+操纵子克隆到质粒pLS9-185中的AAR_7942基因的下游。将所得到的质粒和pLS9-185对照质粒转化到大肠杆菌DV2内。菌株就标准摇瓶方案中的脂肪醇生产进行评估。如图6中所示,合成谷氨酸棒状杆菌acc操纵子的共表达导致增加的脂肪醇生产。
实施例3:使用AAR_7942作为模板制备的易错文库、组合和有限饱和文库
A.易错文库
构建来自细长聚球藻PCC7942的酰基-ACP还原酶(AAR_7942)的易错文库,且筛选显示超过野生型AAR_7942的改善的变体。用于制备易错文库的质粒命名为“pDS171S”(参见表3)。使用上文描述的标准方案之一筛选易错文库。改善分类为改善滴度或增加所产生的C10-C14脂肪醇的级分,而不显著影响滴度(结果未显示)。
B.组合和有限饱和文库
基于位置17、18和19,本领域技术人员已知的标准技术用于制备组合文库和饱和文库。组合文库和饱和文库中测试的突变(表4A和4B)最初在上文描述的AAR_7942的易错文库中鉴定。使用的质粒、菌株和筛选方案与实施例1中所述的相同。来自筛选易错文库的结果显示于表4A和4B中。表4A显示了导致增加的脂肪醇滴度的AAR_7942突变,并且表4B显示了导致增加的C14脂肪醇级分,而不显著影响总体脂肪醇滴度的突变。
表4A:与改善的脂肪醇滴度关联的来自AAR_7942组合和有限饱和文库的突变
表4B:与增加的C14脂肪醇级分关联的来自AAR_7942组合和有限饱和文库的突变
实施例4:使用AAR(S18W)作为模板制备的饱和文库
构建来自细长聚球藻PCC7942的酰基-ACP还原酶变体(“‘AAR(S18W)_7942”)的完全饱和文库,并且筛选显示超过AAR的改善的变体(S18W),在第一轮筛选中鉴定为显著改善的AAR变体(实施例2和3)。选择标准是FALC滴度中的增加或C12级分百分比中的增加。改造努力集中于减轻AAR对ACP过表达的依赖性,以便获得高滴度。虽然不希望受理论束缚,但在过表达ACP的菌株中观察到的优点假设为起因于对于通过AAR切割可获得的脂肪酸生物合成中间产物的更高浓度。通过在缺乏ACP过表达的菌株中筛选在AAR上构建的饱和和组合文库(具有FAS中间产物的更低浓度),可以选择对于FAS中间产物具有更高亲和力的变体。
用于制备完全饱和文库的质粒命名为pAAR-1。它是pLS9-185的衍生物,具有编码(S18W)变体的AAR基因,随后为来自鲍氏不动杆菌(Acinetobacterbaylyi)的醛还原酶基因AlrA(SEQIDNO:54)。添加AlrA以完全还原由AAR生成且未由大肠杆菌的内源脂肪醛还原酶完全还原的脂肪醛中间产物。在菌株Shu.002中筛选完全饱和文库。菌株Shu.002是DV2PT5-ifab138PT5_ifadR(下表7)。关于ifab138,参见表10中的SEQIDNO:55。使用上文描述的标准方案之一筛选文库。将改善分类为改善滴度或增加由酰基-ACP还原酶产生的C12脂肪醇的级分,而不显著影响滴度。来自筛选饱和文库的结果显示于下表5中。
表5:与增加的脂肪醇滴度和/或增加的C12脂肪醇级分关联的来自AAR(S18W)7942完全饱和文库的突变
*来自4次重复的平均值
**FIOC=超过AAR(S18W)对照的增加倍数
实施例5:使用AAR(S18W)作为模板制备的组合文库
本领域技术人员已知的标准技术用于制备组合文库。组合文库中测试的突变(表6A、6B和6C)最初在完全饱和文库中鉴定(实施例4)。组合文库在与实施例3中所述的相同质粒中构建,且在与实施例3中所述的相同菌株中筛选。使用上文描述的标准方案之一筛选文库。将改善分类为改善滴度或增加由酰基-ACP还原酶产生的C12脂肪醇的级分,而不显著影响滴度。来自筛选AAR组合文库的结果显示于下表6A、6B和6C中。
表6A:与增加的脂肪醇滴度关联的来自第1个AAR(S18W)_7942组合文库的突变
*4次重复的平均值
**FIOC=超过(S18W)对照的增加倍数
表6B:与增加的脂肪醇滴度关联的来自第2个AAR(S18W)_7942组合文库的突变
*来自4次重复的平均值
**FIOC=超过(S18W)对照的增加倍数
***A77A突变是gcc至gca沉默密码子突变
表6C:与增加的C12脂肪醇级分关联的来自AAR(S18W)_7942组合文库的突变
*来自4次重复的平均值
**FIOC=超过(S18W)对照的增加倍数
实施例6:经过脂肪酸合成途径增加的流量–iFab和iFadR介导的使用AAR的脂肪醇生产
在该实施例中,通过过表达包含几种FAB蛋白质(ifab138)的合成操纵子和/或过表达FadR蛋白质(ifad)(脂肪酸代谢的调节物),通过增加经过脂肪酸生物合成途径的流量,显示了使用AAR的改善的脂肪醇生产。iFAB138(SEQIDNO:55)以下述次序包括来自霍乱弧菌的fabV,来自鼠伤寒沙门氏菌的FabH、fabD、fabG和fabA,以及来自丙酮丁醇梭菌的FabF,并且它整合为受PlacUV5或PT5启动子控制的合成操纵子。iFadR包括受T5启动子控制的来自大肠杆菌的fadR基因(SEQIDNO:56)。该实施例中评估的大肠杆菌菌株中存在的组分显示于下表7中。
表7:具有iFAB138或fadR的大肠杆菌菌株
组分 DV2 BD061 BD064 Shu002
i(PlacUV5-fab138) - + + -
i(PT5-fab138) - - - +
i(PT5-fadR) - - + +
AAR(S18W)由质粒pDS311表达,所述pDS311是质粒pDS171S的变体,其中AAR密码子18指定色氨酸代替丝氨酸(pCL-AAR(S18W)+ACP-sfp),并且将来自鲍氏不动杆菌的醛还原酶基因alrA(SEQIDNO:54)克隆到来自枯草芽孢杆菌的sfp基因的下游。将pDS311转化到菌株DV2、BD061、BD064和Shu002内。菌株在4NBT_2N方案(参见上文)中进行评估。如图7中所示,由于ifab138和ifadR的存在,脂肪醇生产显著增加,其中菌株Shu002显示最高的脂肪醇滴度。
实施例7:在具有经过脂肪酸合成途径增加的流量的菌株中的改善的AAR变体
在该实施例中,在用来自组合文库的AAR变体转化的重组宿主细胞中改善的脂肪醇生产在Shu2中得到证实,所述Shu2是具有通过过表达ifab138和过表达FadR蛋白质介导的经过脂肪酸生物合成途径增加的流量的大肠杆菌菌株(同上)。评估了来自第二个组合文库的四种AAR变体(表6B)。这些变体具有如下突变:Com2a:S18W、D24P、L31M、C63G、S113K、T154A、A281L;Comb2b:S18W、D16L、M21L、C63G、S113K、T154A、A281L;Com2c:S18W、L8A、M21L、C63G、A77A、S113K、T154A、A281L;Com2d:D24E、C63G、S113K、T154A、A281L(还参见图8)。将这些变体克隆到质粒pJL104的主链内。通过将来自谷氨酸棒状杆菌的合成accD+操纵子(如上文实施例2中所示)克隆到pDS311中的alrA基因的下游,制备pJL104。将所得到的质粒转化到菌株Shu002内,并且在4NBT_1N方案(同上)中评估菌株。如图8中所示,在所有菌株中均观察到升高的脂肪醇生产。还在罐发酵中评估具有质粒pDS311的菌株BD064,所述质粒pDS311表达AAR_7942的S18W变体。如图9中所示,菌株产生脂肪醇,具有42g/L的最大滴度、12.6%的得率(以葡萄糖为生)和0.62g/L/h的生产率。脂肪醇的链长分布如下:1.2%C8、7.7%C10、26.9%C12、44.7%C14、16.0%C16和1.9%C18。饱和和不饱和脂肪醇的级分分别为72.6%和27.4%。
实施例8:增加的MED4酰基醛还原酶(AAR)活性和链长选择性对于C14脂肪醇生产的再分布
AAR是蓝细菌烷烃生物合成必需的组分之一,另一种必需组分是醛脱羧酶(ADC)。本发明人发现如果没有MED4_ADC的存在,海洋原绿球藻MED4_AAR是催化失活的,即当仅MED4_AAR在大肠杆菌中表达时,未检测到产物,并且当MED4_AAR和ADC在大肠杆菌中共表达时,检测到的唯一产物是烷烃。本发明人还发现当MED4_AAR与表观催化失活的MED4_ADC变体一起在大肠杆菌中共表达时,在所述MED4_ADC变体中,组氨酸156替换为精氨酸(随后被称为MED4_ADC(H165R)),检测到脂肪醇且未检测到烷烃(参见图10)。由该数据得出结论MED4_AAR需要与MED4_ADC的物理相互作用,以成为催化活性的。本发明人使用这种系统,来鉴定具有增加的活性和/或改变的底物特异性的MED4_AAR变体,用于FALC生产的目的。
MED4_ADC(H156R)连同MED4_AAR的完全饱和文库一起表达。MED4_AAR饱和文库在质粒pCL1920衍生物(pLS9-195)中制备,并且引入携带质粒pGLAK-043(其为具有ADC基因中的H156R突变的质粒pACYC-Ptrc-MED4_ADC)的生产菌株内。将克隆诱导,并且基于比野生型AAR酶更多的脂肪醇生产,或生产具有改变的链长概况的脂肪醇(例如增加的C14脂肪醇级分)的能力,来选择AAR变体。所选择的克隆随后在验证轮中进行再测试。使在一次和二次发酵中显示一致的FALC滴度的所有变体再生长,将质粒DNA分离,测序且再引入亲本生产菌株内用于进一步测试。随后对这些新的转化株实施另一次证实发酵和分析。下表8显示了来自16种AAR变体的代表性数据,所述16种AAR变体产生最高的FALC滴度(从上到下以下降的活性排序)。变体超过野生型为1.4倍至2.2倍的范围。这些变体显示使用定向进化技术增加MED4_AAR活性的能力,并且此外构成用于进一步改善的基础。
表8:相对于野生型(WT)MED4AAR,MED4AAR突变体的FALC生产率
AAR突变 超过野生型的FALC倍数增加
V346P 2.2
Q40V 2.2
A345R 2.1
L344S 2.1
D61E 2.1
V346G 2.0
L344D 1.9
G52V 1.9
A345* 1.9
L344T 1.8
K303G 1.8
L344A 1.8
H340P 1.6
S588V 1.5
K339L 1.4
G273E 1.4
*截短的变体缺少最后两个氨基酸。
数据集还就展示改变的链长概况的AAR变体进行扫描。由野生型AAR产生的最常见种类具有C16的链长。具有短于C16的链长的FALC种类的比例增加是感兴趣的。鉴定了显示C14FALC数量中的大约3倍增加的两个变体克隆(图10)。这些克隆的测序揭示它们是相同的D61E突变体,具有相同的核苷酸密码子序列。将D61E变体的质粒DNA再引入含有H156RADC的亲本株内。结果显示AAR的D61E变体在重组宿主细胞中的表达,使FALC种类的链长分布朝向更短的碳链倾斜。下表9举例说明了与野生型(WT)MED4_AAR和不产生具有改变链长的任何产物的MED4_AAR的V346P变体相比较,由表达MED4_AAR的D61E变体的重组宿主细胞产生的FALC链长分布。
表9:AAR变体和野生型AAR的链长分布
*1%变异可归于求平均值的偏差
这些变体可以进一步重组且筛选MED4_ADC(H156R)背景下的改善。MED4_AAR(D61E)变体和进一步突变的后代可以用于减少脂肪醇和烷烃两者的平均链长。MED4_AAR(D61E)变体证实MED4_AAR链长特异性是易适应的,并且所示通过另外的蛋白质改造努力进一步改善这种活性的可能性。所有所述变体均由pLS9-195的后代进行测序,且含有对应于所列出的氨基酸置换的密码子突变。
表10:与序列表相关的名称
如对于本领域技术人员显而易见的,可以制备上文方面和实施方案的多种修饰和变化,而不背离本公开内容的精神和范围。此类修饰和变化在本公开内容的范围内。

Claims (82)

1.一种包含与SEQIDNO:57至少90%序列同一性的变体酰基-ACP还原酶(AAR)多肽,其中所述AAR多肽催化酰基-ACP转化为脂肪醛。
2.权利要求1的变体AAR多肽,其中与通过野生型AAR多肽在相应的野生型宿主细胞中的表达而产生的脂肪醛或脂肪醇组合物的滴度相比较,所述变体AAR多肽在重组宿主细胞中的表达导致脂肪醛或脂肪醇组合物的更高滴度。
3.权利要求2的变体AAR多肽,其中所述脂肪醇组合物是C12、C14或C16脂肪醇组合物或其组合。
4.权利要求1的变体AAR多肽,其中所述变体AAR多肽包含在氨基酸位置18处的突变。
5.权利要求4的变体AAR多肽,其中所述突变是S18W。
6.权利要求4的变体AAR多肽,其中所述变体AAR多肽进一步包含在选自下述的氨基酸位置处的突变:氨基酸8、16、21、24、31、34、35、43、50、63、86、112、113、116、118、120、135、148、153、154、155、157、159、168、172、187、188、191、209、210、211、236、277、281、283、285、291、324、328、335、337和338。
7.权利要求6的变体AAR多肽,其中所述突变选自L8A、D16L、M21L、D24E、D24Y、D24V、D24P、L31V、L31M、W34F、W35F、D43E、A50Q、C63A、C63G、C63Y、S86G、A112R、S113K、Q116G、R118Q、T120S、A135S、T148C、T148E、T148V、I153P、T154A、Q155C、Q155L、T157V、A159V、I168V、C172L、T187V、T188H、T188V、Q191A、L209R、E210Y、A211W、T236C、Q277V、A281L、E283G、E283S、A285V、M291V、A324T、A328S、Q335N、L337V和L338W。
8.权利要求7的变体AAR多肽,其中所述变体AAR多肽包含M21L突变。
9.权利要求7的变体AAR多肽,其中所述变体AAR多肽包含C63GA突变。
10.权利要求7的变体AAR多肽,其中所述变体AAR多肽包含S113K突变。
11.权利要求7的变体AAR多肽,其中所述变体AAR多肽包含T154A突变。
12.权利要求7的变体AAR多肽,其中所述变体AAR多肽包含A281L突变。
13.权利要求7的变体AAR多肽,其中所述变体AAR多肽包含L8A突变。
14.权利要求5的变体AAR多肽,其中所述变体AAR多肽进一步包含M21L突变、C63G突变、S113K突变、T154A和A281L突变。
15.权利要求14的变体AAR多肽,其包含SEQIDNO:58。
16.权利要求5的变体AAR多肽,其中所述变体AAR多肽进一步包含L8A突变、M21L突变、C63G突变、S113K突变、T154A突变和A281L突变。
17.权利要求16的变体AAR多肽,其包含SEQIDNO:59。
18.权利要求5的变体AAR多肽,其中所述变体AAR多肽进一步包含D16L突变、M21L突变、C63G突变、S113K突变、T154A和A281L突变。
19.权利要求18的变体AAR多肽,其包含SEQIDNO:60。
20.权利要求5的变体AAR多肽,其中所述变体AAR多肽进一步包含L8A突变、D24V突变、C63G突变、S113K突变、Q155L突变和A281L突变。
21.权利要求20的变体AAR多肽,其包含SEQIDNO:61。
22.权利要求5的变体AAR多肽,其中所述变体AAR多肽进一步包含D24P突变、L31M突变、C63G突变、S113K突变、T154A突变和A281L突变。
23.权利要求22的变体AAR多肽,其包含SEQIDNO:62。
24.权利要求5的变体AAR多肽,其中所述变体AAR多肽进一步包含L8A突变、D16L突变、D24V突变、C63G突变、S113K突变、T154A突变和A281L突变。
25.权利要求24的变体AAR多肽,其包含SEQIDNO:63。
26.权利要求5的变体AAR多肽,其中所述变体AAR多肽进一步包含D24E突变、C63G突变、S113K突变、T154A突变和A281L突变。
27.权利要求26的变体AAR多肽,其包含SEQIDNO:64。
28.一种重组宿主细胞,其表达权利要求1-27中任一项的变体AAR多肽。
29.权利要求28的重组宿主细胞,其中当在含有碳源的培养基中在有效表达所述变体AAR多肽的条件下进行培养时,与通过表达相应野生型AAR多肽的宿主细胞产生的脂肪醛或脂肪醇组合物的滴度相比较,所述重组宿主细胞产生滴度大至少10%、大至少15%、大至少20%、大至少25%、或大至少30%的脂肪醛或脂肪醇组合物。
30.权利要求29的重组宿主细胞,其中所述脂肪醛或脂肪醇组合物以大约30g/L–大约250g/L的滴度产生。
31.权利要求29的重组宿主细胞,其中所述脂肪醛或脂肪醇组合物细胞外产生。
32.一种细胞培养物,其包含权利要求28-31中任一项的重组宿主细胞。
33.权利要求32的细胞培养物,其中所述脂肪醇组合物包含C6、C8、C10、C12、C13、C14、C15、C16、C17和C18脂肪醇中的一种或多种。
34.权利要求33的细胞培养物,其中所述脂肪醇组合物包含C10:1、C12:1、C14:1、C16:1和C18:1不饱和脂肪醇中的一种或多种。
35.权利要求33的细胞培养物,其中所述脂肪醇组合物包含不饱和脂肪醇。
36.权利要求33的细胞培养物,其中所述脂肪醇组合物包含在距离所述脂肪醇的还原端的C7和C8之间的碳链中的第7位处具有双键的脂肪醇。
37.权利要求33的细胞培养物,其中所述脂肪醇组合物包含饱和脂肪醇。
38.一种产生具有滴度增加的脂肪醇组合物的方法,其包括:
i.用碳源培养权利要求27的宿主细胞;和
ii.收获脂肪醇组合物。
39.权利要求38的方法,其中与通过表达野生型AAR的宿主细胞产生的脂肪醇组合物的滴度相比较,所述脂肪醇的滴度大至少20%-30%。
40.一种包含与SEQIDNO:65至少90%序列同一性的变体酰基-ACP还原酶(AAR)多肽,其中所述多肽催化酰基-ACP转化为脂肪醛。
41.权利要求40的变体AAR多肽,其中与通过野生型AAR多肽在相应的野生型宿主细胞中的表达而产生的脂肪醛或脂肪醇组合物的滴度相比较,所述变体AAR多肽在重组宿主细胞中的表达导致脂肪醛或脂肪醇组合物的更高滴度。
42.权利要求41的变体AAR多肽,其中所述脂肪醇组合物是C12、C14或C16脂肪醇组合物或其组合。
43.权利要求40的变体AAR多肽,其中所述变体AAR多肽包含在氨基酸位置61处的突变。
44.权利要求43的变体AAR多肽,其中所述突变是D61E。
45.一种包含与SEQIDNO:34至少90%序列同一性的变体酰基-ACP还原酶(AAR)多肽,其中与通过野生型AAR多肽在相应的野生型宿主细胞中的表达而产生的脂肪醇组合物的滴度相比较,所述变体AAR多肽在重组宿主细胞中的表达导致脂肪醛或脂肪醇组合物的更高滴度,或者C12、C14或C16脂肪醇组合物的更高滴度,并且其中所述变体AAR多肽包含在选自氨基酸40、52、61、273、303、340、344、345和346的氨基酸位置处的突变。
46.权利要求45的变体AAR多肽,其中所述变体AAR多肽包含选自Q40V、G52V、D61E、G273E、K303G、H340P、L344A、L344D、L344S、L344T、L345R、V346P、V346G和A345*的突变。
47.权利要求46的变体AAR多肽,其中所述变体AAR多肽包含在V346P处的突变。
48.权利要求47的变体AAR多肽,其包含SEQIDNO:66。
49.权利要求46的变体AAR多肽,其中所述变体AAR多肽包含在Q40V处的突变。
50.权利要求49的变体AAR多肽,其包含SEQIDNO:67。
51.权利要求46的变体AAR多肽,其中所述变体AAR多肽包含在A345R处的突变。
52.权利要求51的变体AAR多肽,其包含SEQIDNO:68。
53.权利要求46的变体AAR多肽,其中所述变体AAR多肽包含在L344S处的突变。
54.权利要求53的变体AAR多肽,其包含SEQIDNO:69。
55.权利要求46的变体AAR多肽,其中所述变体AAR多肽包含在V346G处的突变。
56.权利要求55的变体AAR多肽,其包含SEQIDNO:70。
57.权利要求46的变体AAR多肽,其中所述变体AAR多肽包含在L344D处的突变。
58.权利要求57的变体AAR多肽,其包含SEQIDNO:71。
59.权利要求46的变体AAR多肽,其中所述变体AAR多肽包含在G52V处的突变。
60.权利要求59的变体AAR多肽,其包含SEQIDNO:72。
61.权利要求46的变体AAR多肽,其中所述变体AAR多肽包含在L344T处的突变。
62.权利要求61的变体AAR多肽,其包含SEQIDNO:73。
63.权利要求46的变体AAR多肽,其中所述变体AAR多肽包含在K303G处的突变。
64.权利要求63的变体AAR多肽,其包含SEQIDNO:74。
65.权利要求46的变体AAR多肽,其中所述变体AAR多肽包含在L344A处的突变。
66.权利要求65的变体AAR多肽,其包含SEQIDNO:75。
67.权利要求46的变体AAR多肽,其中所述变体AAR多肽包含在H340P处的突变。
68.权利要求67的变体AAR多肽,其包含SEQIDNO:76。
69.权利要求46的变体AAR多肽,其中所述变体AAR多肽包含在G273E处的突变。
70.权利要求69的变体AAR多肽,其包含SEQIDNO:77。
71.一种重组宿主细胞,其表达权利要求42-70中任一项的变体AAR多肽。
72.权利要求71的重组宿主细胞,其中当在含有碳源的培养基中在有效表达所述变体AAR多肽的条件下进行培养时,与通过表达相应野生型AAR多肽的宿主细胞产生的脂肪醛或醇组合物的滴度相比较,所述重组宿主细胞产生滴度大至少10%、大至少15%、大至少20%、大至少25%、或大至少30%的脂肪醛或脂肪醇组合物。
73.权利要求72的重组宿主细胞,其中所述脂肪醇组合物以30g/L-250g/L的滴度产生。
74.权利要求73的重组宿主细胞,其中所述脂肪醇组合物细胞外产生。
75.一种细胞培养物,其包含权利要求73-74中任一项的重组宿主细胞。
76.权利要求75的细胞培养物,其中所述脂肪醇组合物包含C6、C8、C10、C12、C13、C14、C15、C16、C17和C18脂肪醇中的一种或多种。
77.权利要求76的细胞培养物,其中所述脂肪醇组合物包含C10:1、C12:1、C14:1、C16:1和C18:1不饱和脂肪醇中的一种或多种。
78.权利要求76的细胞培养物,其中所述脂肪醇组合物包含不饱和脂肪醇。
79.权利要求76的细胞培养物,其中所述脂肪醇组合物包含在距离所述脂肪醇的还原端的C7和C8之间的碳链中的第7位处具有双键的脂肪醇。
80.权利要求76的细胞培养物,其中所述脂肪醇组合物包含饱和脂肪醇。
81.一种产生具有滴度增加的脂肪醇组合物的方法,其包括:
i.用碳源培养权利要求73的宿主细胞;和
ii.收获脂肪醇组合物。
82.权利要求81的方法,其中与通过表达野生型AAR的宿主细胞产生的脂肪醇组合物的滴度相比较,所述脂肪醇的滴度大至少20%-30%。
CN201480004992.3A 2013-01-16 2014-01-16 具有改善特性的酰基-acp还原酶 Active CN105051189B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910169609.4A CN109897834A (zh) 2013-01-16 2014-01-16 具有改善特性的酰基-acp还原酶
CN201910693927.0A CN110387352A (zh) 2013-01-16 2014-01-16 具有改善特性的酰基-acp还原酶

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361753273P 2013-01-16 2013-01-16
US61/753,273 2013-01-16
PCT/US2014/011859 WO2014113571A2 (en) 2013-01-16 2014-01-16 Acyl-acp reductase with improved properties

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201910169609.4A Division CN109897834A (zh) 2013-01-16 2014-01-16 具有改善特性的酰基-acp还原酶
CN201910693927.0A Division CN110387352A (zh) 2013-01-16 2014-01-16 具有改善特性的酰基-acp还原酶

Publications (2)

Publication Number Publication Date
CN105051189A true CN105051189A (zh) 2015-11-11
CN105051189B CN105051189B (zh) 2019-08-06

Family

ID=50473752

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201480004992.3A Active CN105051189B (zh) 2013-01-16 2014-01-16 具有改善特性的酰基-acp还原酶
CN201910169609.4A Pending CN109897834A (zh) 2013-01-16 2014-01-16 具有改善特性的酰基-acp还原酶
CN201910693927.0A Pending CN110387352A (zh) 2013-01-16 2014-01-16 具有改善特性的酰基-acp还原酶

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201910169609.4A Pending CN109897834A (zh) 2013-01-16 2014-01-16 具有改善特性的酰基-acp还原酶
CN201910693927.0A Pending CN110387352A (zh) 2013-01-16 2014-01-16 具有改善特性的酰基-acp还原酶

Country Status (13)

Country Link
US (6) US9683219B2 (zh)
EP (3) EP3385375B1 (zh)
JP (5) JP6063585B2 (zh)
KR (4) KR102265148B1 (zh)
CN (3) CN105051189B (zh)
AU (3) AU2014207522B2 (zh)
BR (1) BR112015017005A2 (zh)
CA (2) CA3143642A1 (zh)
CO (1) CO7461134A2 (zh)
ES (2) ES2600354T3 (zh)
MX (2) MX346830B (zh)
MY (1) MY167434A (zh)
WO (1) WO2014113571A2 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140015136A (ko) 2009-09-27 2014-02-06 더 리젠츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코포레이트 3-히드록시프로피온산 및 다른 생성물의 제조 방법
AU2013299414A1 (en) 2012-08-10 2015-03-26 Opx Biotechnologies, Inc. Microorganisms and methods for the production of fatty acids and fatty acid derived products
MY167434A (en) * 2013-01-16 2018-08-28 Reg Life Sciences Llc Acyl-acp reductase with improved properties
US20150119601A1 (en) 2013-03-15 2015-04-30 Opx Biotechnologies, Inc. Monofunctional mcr + 3-hp dehydrogenase
JP6603658B2 (ja) 2013-07-19 2019-11-06 カーギル インコーポレイテッド 脂肪酸及び脂肪酸誘導体の製造のための微生物及び方法
US11408013B2 (en) 2013-07-19 2022-08-09 Cargill, Incorporated Microorganisms and methods for the production of fatty acids and fatty acid derived products
US10676763B2 (en) * 2014-07-18 2020-06-09 Genomatica, Inc. Microbial production of fatty diols
EP2993228B1 (en) 2014-09-02 2019-10-09 Cargill, Incorporated Production of fatty acid esters
US11345938B2 (en) 2017-02-02 2022-05-31 Cargill, Incorporated Genetically modified cells that produce C6-C10 fatty acid derivatives
JP2020515293A (ja) 2017-04-03 2020-05-28 ジェノマティカ, インコーポレイテッド 中鎖脂肪酸誘導体の生産のための改良された活性を有するチオエステラーゼ変種
US20210189373A1 (en) * 2018-08-31 2021-06-24 Genomatica, Inc. Production Of Non-Native Monounsaturated Fatty Acids In Bacteria
CA3109062A1 (en) 2018-08-31 2020-03-05 Genomatica, Inc. Xylr mutant for improved xylose utilization or improved co-utilization of glucose and xylose
WO2023178193A1 (en) 2022-03-16 2023-09-21 Genomatica, Inc. Acyl-acp thioesterase variants and uses thereof
JP7374260B1 (ja) 2022-05-13 2023-11-06 チャン,ヤ-チン 駆動装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1398300A (zh) * 2000-02-09 2003-02-19 巴斯福股份公司 新延伸酶基因以及制备多不饱和脂肪酸的方法
WO2011006137A2 (en) * 2009-07-09 2011-01-13 Joule Unlimited, Inc. Methods and compositions for the recombinant biosynthesis of n-alkanes
CN102695799A (zh) * 2009-09-27 2012-09-26 Opx生物工艺学公司 用于制备3-羟基丙酸和其它产物的方法
CN102719467A (zh) * 2012-07-09 2012-10-10 武汉大学 一种利用脂肪酰acp还原酶生物合成脂肪醇的方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000000A (en) 1988-08-31 1991-03-19 University Of Florida Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes
US5028539A (en) 1988-08-31 1991-07-02 The University Of Florida Ethanol production using engineered mutant E. coli
US5424202A (en) 1988-08-31 1995-06-13 The University Of Florida Ethanol production by recombinant hosts
US5482846A (en) 1988-08-31 1996-01-09 University Of Florida Ethanol production in Gram-positive microbes
EP0528881A4 (en) 1990-04-24 1993-05-26 Stratagene Methods for phenotype creation from multiple gene populations
US5602030A (en) 1994-03-28 1997-02-11 University Of Florida Research Foundation Recombinant glucose uptake system
US6428767B1 (en) 1995-05-12 2002-08-06 E. I. Du Pont De Nemours And Company Method for identifying the source of carbon in 1,3-propanediol
US5965408A (en) 1996-07-09 1999-10-12 Diversa Corporation Method of DNA reassembly by interrupting synthesis
US5939250A (en) 1995-12-07 1999-08-17 Diversa Corporation Production of enzymes having desired activities by mutagenesis
DK2840131T3 (da) 2006-05-19 2020-01-20 Genomatica Inc Fremstilling af fedtsyrer og derivater deraf
US8110670B2 (en) 2006-05-19 2012-02-07 Ls9, Inc. Enhanced production of fatty acid derivatives
US8110093B2 (en) 2007-03-14 2012-02-07 Ls9, Inc. Process for producing low molecular weight hydrocarbons from renewable resources
EP3369807A3 (en) 2007-03-28 2018-11-21 REG Life Sciences, LLC Enhanced production of fatty acid derivatives
TWI351779B (en) 2007-12-03 2011-11-01 Advance Smart Ind Ltd Apparatus and method for correcting residual capac
WO2009085278A1 (en) 2007-12-21 2009-07-09 Ls9, Inc. Methods and compositions for producing olefins
KR101735549B1 (ko) * 2008-05-16 2017-05-16 알이지 라이프 사이언시스, 엘엘씨 탄화수소를 생산하기 위한 방법과 조성물
US8232924B2 (en) 2008-05-23 2012-07-31 Alliant Techsystems Inc. Broadband patch antenna and antenna system
CN102232110B (zh) 2008-10-07 2016-01-06 Reg生命科学有限责任公司 产生脂肪醛的方法和组合物
CN102264910B (zh) 2008-10-28 2015-08-26 Reg生命科学有限责任公司 用于产生脂肪醇的方法和组合物
US20120115195A1 (en) 2009-05-01 2012-05-10 The Regents Of The University Of California Product of fatty acid esters from biomass polymers
EP2432890B1 (en) * 2009-05-22 2015-09-02 Codexis, Inc. Engineered biosynthesis of fatty alcohols
US8867042B2 (en) * 2009-09-07 2014-10-21 National Institute Of Information And Communications Technology Method for evaluating characteristic of optical modulator having mach-zehnder interferometer
WO2011038132A1 (en) * 2009-09-25 2011-03-31 Ls9, Inc. Production of fatty acid derivatives
US8530221B2 (en) 2010-01-14 2013-09-10 Ls9, Inc. Production of branched chain fatty acids and derivatives thereof in recombinant microbial cells
US8859259B2 (en) 2010-02-14 2014-10-14 Ls9, Inc. Surfactant and cleaning compositions comprising microbially produced branched fatty alcohols
WO2011127409A2 (en) 2010-04-08 2011-10-13 Ls9, Inc. Methods and compositions related to fatty alcohol biosynthetic enzymes
US8372610B2 (en) 2010-09-15 2013-02-12 Ls9, Inc. Production of odd chain fatty acid derivatives in recombinant microbial cells
WO2012087963A1 (en) * 2010-12-20 2012-06-28 Targeted Growth, Inc. Modified photosynthetic microorganisms for producing lipids
EP4282972A3 (en) * 2011-01-14 2024-02-28 Genomatica, Inc. Production of branched chain fatty acids and derivatives thereof in recombinant microbial cells
MY167434A (en) * 2013-01-16 2018-08-28 Reg Life Sciences Llc Acyl-acp reductase with improved properties
JP7478517B2 (ja) 2019-04-24 2024-05-07 三菱商事ライフサイエンス株式会社 脂質活性代謝改善組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1398300A (zh) * 2000-02-09 2003-02-19 巴斯福股份公司 新延伸酶基因以及制备多不饱和脂肪酸的方法
WO2011006137A2 (en) * 2009-07-09 2011-01-13 Joule Unlimited, Inc. Methods and compositions for the recombinant biosynthesis of n-alkanes
CN102695799A (zh) * 2009-09-27 2012-09-26 Opx生物工艺学公司 用于制备3-羟基丙酸和其它产物的方法
CN102719467A (zh) * 2012-07-09 2012-10-10 武汉大学 一种利用脂肪酰acp还原酶生物合成脂肪醇的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PUTATIVE ACYL-ACP REDUCTASE [NOSTOC SP. PCC 6720]: "GENBANK登录号:AEX28225.1", 《GENBANK》 *

Also Published As

Publication number Publication date
US20170342388A1 (en) 2017-11-30
ES2600354T3 (es) 2017-02-08
JP2019141083A (ja) 2019-08-29
US20160348080A1 (en) 2016-12-01
CA2898317C (en) 2022-03-01
JP2017042170A (ja) 2017-03-02
US20200010813A1 (en) 2020-01-09
CO7461134A2 (es) 2015-11-30
JP6926143B2 (ja) 2021-08-25
EP2946009A2 (en) 2015-11-25
JP6063585B2 (ja) 2017-01-18
CA2898317A1 (en) 2014-07-24
KR20210072147A (ko) 2021-06-16
US20220090028A1 (en) 2022-03-24
WO2014113571A3 (en) 2014-11-13
CN105051189B (zh) 2019-08-06
US11130944B2 (en) 2021-09-28
MX2015009138A (es) 2015-11-06
AU2017200596A1 (en) 2017-02-23
EP3385375A1 (en) 2018-10-10
CA3143642A1 (en) 2014-07-24
JP2016503663A (ja) 2016-02-08
AU2019202790A1 (en) 2019-05-16
EP3103867A1 (en) 2016-12-14
EP3103867B1 (en) 2018-05-16
CN109897834A (zh) 2019-06-18
KR20170066694A (ko) 2017-06-14
US10208294B2 (en) 2019-02-19
AU2014207522B2 (en) 2016-12-15
EP2946009B1 (en) 2016-07-27
KR101746040B1 (ko) 2017-06-13
US9683219B2 (en) 2017-06-20
WO2014113571A2 (en) 2014-07-24
JP6523393B2 (ja) 2019-05-29
ES2675224T3 (es) 2018-07-09
MX346830B (es) 2017-04-03
JP2021006067A (ja) 2021-01-21
MX356997B (es) 2018-06-22
EP3385375B1 (en) 2021-06-16
AU2017200596B2 (en) 2019-01-24
MY167434A (en) 2018-08-28
JP6211162B2 (ja) 2017-10-11
KR20200020998A (ko) 2020-02-26
BR112015017005A2 (pt) 2017-08-15
JP7094343B2 (ja) 2022-07-01
JP2017209118A (ja) 2017-11-30
KR20150105471A (ko) 2015-09-16
US9873865B2 (en) 2018-01-23
KR102082247B1 (ko) 2020-02-28
AU2014207522A1 (en) 2015-05-07
CN110387352A (zh) 2019-10-29
KR102265148B1 (ko) 2021-06-15
US20240117324A1 (en) 2024-04-11
US20150361454A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
CN105051189B (zh) 具有改善特性的酰基-acp还原酶
CN104395464A (zh) 改善的脂肪酸衍生物的生产
AU2016225853A1 (en) Methods and compositions related to thioesterase enzymes
CN104704113A (zh) Car酶及脂肪醇的改良生产
JP2016500261A (ja) 脂肪酸誘導体のacp媒介性生産方法
JP7564800B2 (ja) 特性が改良されたオメガ-ヒドロキシラーゼ関連融合ポリペプチド
JP7458358B2 (ja) 改良された特性を有するω-ヒドロキシラーゼ関連融合ポリペプチドバリアント
CN104955944A (zh) 具有改善的酯合酶特性的酶变体
JP6486372B2 (ja) 改善されたアセチル−CoAカルボキシラーゼ変種
BR122017000832A2 (pt) polipeptídeo da variante acil-acp redutase (aar), célula hospedeira recombinante, cultura celular, método de produção de composição de álcool graxo tendo aumento do título

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20191212

Address after: California, USA

Patentee after: Genomatica, Inc.

Address before: California, USA

Patentee before: REG Life Sciences Co.,Ltd.

TR01 Transfer of patent right