CN1625597A - 新的延长酶基因及多不饱和脂肪酸的制备方法 - Google Patents

新的延长酶基因及多不饱和脂肪酸的制备方法 Download PDF

Info

Publication number
CN1625597A
CN1625597A CNA038031078A CN03803107A CN1625597A CN 1625597 A CN1625597 A CN 1625597A CN A038031078 A CNA038031078 A CN A038031078A CN 03803107 A CN03803107 A CN 03803107A CN 1625597 A CN1625597 A CN 1625597A
Authority
CN
China
Prior art keywords
pse
nucleic acid
sequence
lipid
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA038031078A
Other languages
English (en)
Inventor
J·莱尔希尔
E·海因茨
T·灿克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Plant Science GmbH
Original Assignee
BASF Plant Science GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10203713A external-priority patent/DE10203713A1/de
Priority claimed from DE10205607A external-priority patent/DE10205607A1/de
Application filed by BASF Plant Science GmbH filed Critical BASF Plant Science GmbH
Publication of CN1625597A publication Critical patent/CN1625597A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Cardiology (AREA)
  • Rheumatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Edible Oils And Fats (AREA)
  • Fodder In General (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明涉及新的具有序列SEQ ID NO:1的延长酶基因,或其同系物、衍生物或类似物,涉及包含该基因或其同系物、衍生物和类似物的基因构建体并涉及其用途。本发明也涉及包含具有序列SEQ ID NO:1的延长酶基因、或其同系物、衍生物或类似物的载体或生物体。而且,本发明涉及多不饱和脂肪酸的制备方法,并且涉及向产生大量油,特别是具有高不饱和脂肪酸含量的油的生物体中引入DNA的方法。而且,本发明涉及具有较高多不饱和脂肪酸含量的油和/或脂肪酸制品——所述多不饱和脂肪酸具有至少两个双键,和/或具有较高多不饱和脂肪酸含量的三酰甘油制品——所述多不饱和脂肪酸具有至少两个双键。

Description

新的延长酶基因及多不饱和脂肪酸的制备方法
技术领域
本发明涉及新的具有序列SEQ ID NO:1的延长酶(elongase)基因,或其同系物、衍生物或类似物,涉及包含该基因或其同系物、衍生物和类似物的基因构建体,还涉及其用途。本发明也涉及包含具有序列SEQ IDNO:1的延长酶基因、或其同系物、衍生物或类似物的载体或生物体。
而且,本发明涉及多不饱和脂肪酸的制备方法,并且涉及向产生大量油,特别是具有高不饱和脂肪酸含量的油的生物体中引入DNA的方法。而且,本发明涉及具有较高多不饱和脂肪酸含量的油和/或脂肪酸制品——所述多不饱和脂肪酸具有至少两个双键,和/或具有较高不饱和脂肪酸含量的三酰甘油制品——所述多不饱和脂肪酸具有至少两个双键。
背景技术
微生物细胞中或动物细胞中,有利地,植物细胞中天然代谢过程的一些产物和副产物可以用于广泛的工业,包括动物饲料工业、食品工业、化妆品工业和制药工业。一起被称为“精细化学品”的这些分子也包括脂质和脂肪酸,其中多不饱和脂肪酸构成了一类例子。例如,向儿童食品添加多不饱和脂肪酸(PUFA)以增加这些食品的营养价值。例如,PUFA对人血液中胆固醇水平具有积极的作用,因此适于防止心脏疾病。可以从动物来源,例如鱼分离精细化学品如多不饱和脂肪酸,或者利用微生物通过培养微生物进行大规模生产,其中所述微生物经过开发以致可以产生和积累或分泌大量的一种或多种期望分子。
特别适于制备PUFA的微生物是例如,藻类,诸如三角褐指藻(Phaeodactylum tricornutum)或隐甲藻属(Crypthecodinium)种,纤毛虫纲(Ciliata),诸如棘尾虫属(Stylonychia)或豆形虫属(Colpidium),真菌,诸如被孢霉属(Mortierella),虫霉属(Entomophthora)或毛霉菌属(Mucor)。通过株系筛选已经开发了大量所讨论的微生物的突变体株系,这些突变株系产生一系列期望化合物,包括PUFA。但是,筛选具有提高的某种分子的产量的株系是费时而困难的方法。
做为可替代方案,适宜地,可以通过植物生产大规模制备精细化学品,其中所述植物经开发可以产生上述PUFA。特别适于该目的的植物是含有大量脂质化合物的油料作物,如油籽油菜、canola、亚麻、大豆、向日葵、蓟、琉璃苣和月见草。然而,含有油或脂质和脂肪酸的其它作物也非常适合,如本发明详述中所提到的作物。通过筛选适宜植物进行的常规植物育种已经引起了一系列突变植物的出现,这些突变植物产生多种期望的脂质和脂肪酸、辅因子和酶。然而,如果某一分子在所讨论植物中不天然存在,如多不饱和C20脂肪酸和具有更长碳链的多不饱和脂肪酸的情况下,筛选具有提高的此种化合物产量的新植物品种是费时而困难的方法或甚至是不可能的。
由于不饱和脂肪酸的积极特性,在过去已有尝试利用现有参与脂肪酸或甘油三酯合成的基因在各种生物体中生产具有修饰的不饱和脂肪酸含量的油。因此,WO91/13972和它的美国同族专利申请描述了Δ-9去饱和酶。WO 93/11245要求了Δ-15去饱和酶,WO 94/11516要求Δ-12去饱和酶。在WO 93/06712、US5,614,393、WO 96/21022和WO 99/27111中描述了Δ-6去饱和酶。并且,例如在EP-A-0 550 162、WO 94/18337、WO 97/30582、WO 97/21340、WO 95/18222、EP-A-0 794 250,Stukey等,J.Biol.Chem.,265,1990:20144-20149,Wada等,Nature 347,1990:200-203或Huang等,Lipids 34,1999:649-659中描述了其它去饱和酶。WO 96/13591描述和要求了Δ-6-棕榈酰-ACP去饱和酶。然而,因为只能很困难地分离和表征做为膜结合蛋白质的各种去饱和酶,所以至今还没有充分地表征它们的生物化学方面(McKeon等,Methods in Enzymol.71,1981:12141-12147,Wang等,Plant Physiol.Biochem.,26,1988:777-792)。
在酵母中已经鉴定到脂肪酸谱向不饱和脂肪酸的移动和生产率的增加(参见,Huang等,Lipids 34,1999:649-659,Napier等,Biochem.J.,330卷,1998:611-614)。然而,各种去饱和酶在转基因植物中的表达不如所期望的一样成功。没有发现脂肪酸谱向不饱和脂肪酸的移动,相反,同时已经发现转基因植物的合成生产率大大降低,即,与起始的植物比较,仅仅分离了少量的油。
至今还没有描述酵母或植物的如下延长酶的克隆和表达,该延长酶将做为酶反应底物的不饱和脂肪酸延伸至少2个C原子。
这意味着酵母或植物都不天然产生在脂肪酸分子中具有至少2个双键的多不饱和C20-和/或C22脂肪酸,如花生四烯酸(ARA)和/或二十碳五烯酸(EPA)和/或二十二碳六烯酸(DHA)。
因此,仍旧非常需要编码参与不饱和脂肪酸生物合成的酶的新基因,由此使得可以工业规模地生产不饱和脂肪酸。特别地,非常需要延伸不饱和脂肪酸至少2个C原子的延长酶。用于多不饱和脂肪酸生产的现有生物技术方法没有一种能以经济可利用的量产生上述脂肪酸。
一再地,植物中的基因表达总是涉及一些问题,即,表达不能使期望的有价值产物的产量得到预期增加。
发明内容
因此,本发明一个目的是鉴定、克隆和表达新的延长酶基并由此将它们用于合成不饱和脂肪酸,如脂肪酸分子中具有至少2个双键的多不饱和C20-和/或C22-脂肪酸,如花生四烯酸(ARA)和/或二十碳五烯酸(EPA)和/或二十二碳六烯酸(DHA)。
利用根据本发明的分离的核酸达到了该目的,该核酸编码多肽,该多肽延伸脂肪酸中具有至少2个双键的C16-或C18-脂肪酸至少2个碳原子,但不延伸脂肪酸C18:3 Δ5t,9,12,C20:3 Δ8,11,14,C20:4 Δ5,8,11,14和C20:5 Δ5,8,11,14,17
有利地,该目的通过包含如下核苷酸序列的分离的核酸来达到,该核苷酸序列编码的多肽能延伸脂肪酸分子中具有至少2个双键的C16-或C18-脂肪酸,该核苷酸序列选自:
a)SEQ ID NO:1中所示的核酸序列;
b)根据遗传密码简并性,来源于SEQ ID NO:2中所示序列的核酸序列;
c)SEQ ID NO:1中所示序列的衍生物,其编码与编码SEQ ID NO:2中氨基酸序列的序列有至少50%同源性的多肽,该序列作为C16-或C18-延长酶起作用。
优选地,选自上面的核苷酸序列延伸脂肪酸中具有至少2个双键的C16-或C18-脂肪酸至少2个碳原子,然而,该核苷酸序列不延伸下面的脂肪酸:C18:3 Δ5t,9,12,C20:3 Δ8,11,14,C20:4 Δ5,8,11,14和C20:5 Δ5,8,11,14,17。优选地,延伸脂肪酸分子中具有2、3或4个双键的C16-或C18-脂肪酸。尽管不延伸脂肪酸如C18:3 Δ5t,9,12,C20:3 Δ8,11,14,C20:4 Δ5,8,11,14和C20:5 Δ5,8,11,14,17,但延伸选自以下的脂肪酸:C18:2 Δ9,12、C18:3 Δ4,7,10、C18:3 Δ5,8,11、C18:3 Δ6,9,12、C18:3 Δ7,10,13、C18:3 Δ8,11,14、C18:3 Δ9,12,15、C18:4 Δ6,9,12,15、C18:3 Δ5c,9,12或C16:3 Δ7,10,13。本发明的延长酶对C18:3 Δ6,9,12-、C18:4 Δ6,9,12,15-和16:3 Δ7,10,13-脂肪酸显示了优先选择性,该优选选择性超出了对不饱和脂肪酸如C18:2 Δ9,12-、C18:3 Δ4,7,10-、C18:3 Δ5,8,11-、C18:3 Δ7,10,13-、C18:3 Δ8,11,14、C18:3 Δ9,12,15或C18:3 Δ5,c9,12-脂肪酸的选择性有利地至少1.5倍、优选地至少1.6倍,特别优选地至少1.7倍,或者十分特别优选地至少1.8倍。
延伸C16-或C18-脂肪酸的本发明核酸序列有利地最初来源于真菌,优选来源于诸如卵菌纲(Oomycetes)的真菌,例如卵菌纲疫霉属(Phytophthora),特别优选地来源于卵菌纲疫霉属致病疫霉(Phytophthora infestans)种。
本发明核酸可以用于油、脂肪酸、脂质、脂质衍生化合物的修饰,最优选地用于多不饱和脂肪酸的生产。
有利地适于本发明核酸的宿主生物体是微生物,如褐指藻属(Phaeodactylum)、豆形虫属(Colpidium)、被孢霉属(Mortierella)、虫霉属(Entomophthora)、毛霉菌属(Mucor)、隐甲藻属(Crypthecodinium)和其它藻类和真菌,以及植物,特别是油料作物——其大规模应用在工业中用于多种精细化学品的生产。
利用在,例如WO 98/01572中公开的用于上述微生物和纤毛虫的克隆载体和遗传操作技术,或者在Falciatore等,1999,Marine Biotechnology1(3):239-251和Dunahay等,1995,硅藻的遗传转化,J.Phycol.31:10004-1012中及其中引用的文献描述的用于藻类和相关生物体,如三角褐指藻的方法和载体,本发明的核酸分子可以用于这些生物体的重组修饰,这样使它们变成更优良或更有效的一种或多种精细化学品的生产者。这种精细化学品的提高的产量或生产效率可以由(优选地完整基因形式的)本发明核酸的操作的直接作用引起,或者通过该操作的间接作用引起。
藓类和藻类是仅已知产生相当大量多不饱和脂肪酸,如花生四烯酸(ARA)和/或二十碳五烯酸(EPA)和/或二十二碳六烯酸(DHA)的植物系统。真菌系统,如卵菌纲(真核生物界(Eukaryota)/Stramenopiles/卵菌纲/Phythiales/腐霉菌科(Pythiaceaea))也产生上述脂肪酸。因此,来源于卵菌纲诸如致病疫霉的核酸分子特别适合于在宿主,特别是微生物诸如上述微生物和植物诸如油料作物,例如油籽油菜、canola、亚麻籽、大豆、向日葵、琉璃苣中修饰脂质和PUFA生产系统。而且,来源于卵菌纲诸如致病疫霉的核酸可以用于鉴定其它生物种中适于修饰所关心的生物体中PUFA前体分子生物合成的此类DNA序列和酶。
真菌致病疫霉属于卵菌纲。其与在缺光下可以生长的其它真菌相关。真菌诸如疫霉属彼此在DNA序列和多肽水平上具有高度同源性,这使得用来源于其它真菌和生物体的探针进行DNA分子的异源筛选成为可能,因此,如果除了本发明序列外还有其它核酸序列存在,则可以推导出适于在第三物种中用于异源筛选或基因功能的功能性评价和预测的共有序列。然而,对这些序列编码的蛋白质或酶的功能进行预测至今还不可能。因此,能够鉴定这些功能,例如预测酶底物特异性具有显著重要性。而且,这些核酸分子可以作为参照序列用于其它真菌的作图或用于得到PCR引物。
此外,我们第一次从卵菌纲的致病疫霉(真核生物界/Stramenopiles/卵菌纲/Phythiales/腐霉菌科)分离了功能活性的PSE基因。有利地,该基因适于长链多不饱和脂肪酸的产生,优选地,这些长链多不饱和脂肪酸的脂肪酸碳骨架中具有16或18个以上碳原子和/或在碳链中具有至少2个双键,在延伸过程中,本发明序列编码的酶对上述脂肪酸具有优先选择性。
新的核酸分子编码在本发明上下文中称为PUFA-特异性延长酶的蛋白质(=PSEs,或单数的PSE)。这些PSEs可以例如,参与脂质或脂肪酸合成所需化合物,诸如PUFA的代谢(例如,生物合成或分解),或者其参与一种或多种脂质/脂肪酸化合物进入细胞或从细胞向外的跨膜转运。
本新申请更详细地表明了该序列的功能。我们第一次分离了适于产生长链多不饱和脂肪酸的功能活性卵菌纲基因,优选地,这些长链多不饱和脂肪酸的脂肪酸碳骨架中具有16或18个以上碳原子和/或在碳链中具有至少2个双键,在延伸步骤期间,本发明序列编码的酶对上述脂肪酸具有优先选择性。这意味着PSE基因或PSE蛋白质。其它公开出版物和专利未公开或发表过功能活性PSE基因,尽管存在各种已知专利申请加载了延伸短或中链长度的饱和脂肪酸(WO 98/46776和US 5,475,099)或延伸或产生长链脂肪酸,但是这些脂肪酸具有不超过一个的双键或导致长链脂肪酸蜡酯(参见WO 98/54954,WO 96/13582,WO 95/15387)。
尽管WO 99/64616,WO 98/46763,WO 98/46764,WO 98/46765描述了转基因植物中PUFAs的产生,并且证明了特别是来源于真菌的相应去饱和酶活性的克隆和功能性表达,但他们没有证明了必需PSE编码基因和功能性PSE活性。尽管,已经有人参照γ-亚麻酸,证明和要求了具有C18-碳链的三烯酸的产生,但是,至今还没有教导(具有C20-或更长碳链及三烯酸和高级不饱和类型的)非常长链多不饱和脂肪酸的产生和延长酶底物特异性。
为了制备长链PUFAs,必需通过延长酶酶促活性,延伸多不饱和C16-和/或C18-脂肪酸至少两个碳原子。本发明核酸序列编码第一个真菌延长酶,该延长酶能够延伸脂肪酸中具有至少2个双键的C16-或C18-脂肪酸至少两个碳原子。1个延伸循环后,该酶活性产生C20-脂肪酸,2、3、4个延伸循环后,该酶活性产生C22-、C24-和C26-脂肪酸。本发明酶促活性的优点是并不延伸所有的不饱和C20-脂肪酸。这使得单个期望的不饱和脂肪酸或脂肪酸混合物的特异性合成成为可能。利用本发明延长酶也可以合成更长的PUFAs。优选地,本发明延长酶活性产生脂肪酸分子中具有至少2个双键,优选地具有3或4个双键的C20-和/或C22-脂肪酸,特别优选的是在Δ6位置具有1个双键的脂肪酸。由本发明酶进行延伸后,可以进行其它去饱和步骤。因此,延长酶活性和可能的进一步去饱和导致产生高度去饱和的优选PUFAs,诸如二十二碳二烯酸、花生四烯酸、ω6-二十碳三烯酸、双同-γ-亚麻酸(di-homo-linolenic acid)、二十碳五烯酸、ω3-二十碳三烯酸、ω3-二十碳四烯酸、二十二碳五烯酸或二十二碳六烯酸。本发明酶活性的底物是,例如taxol acid、6,9-十八碳二烯酸、亚油酸、γ-亚麻酸、pinolenic acid、α-亚麻酸或stearidonic acid。优选的底物是亚油酸、γ-亚麻酸和/或α-亚麻酸。通过本发明酶促活性,可以以自由脂肪酸形式或酯形式延伸脂肪酸分子中具有至少2个双键的C16-和/或C18-脂肪酸,所述酯形式为诸如磷脂、糖脂、鞘脂、磷酸甘油酯、单酰甘油、二酰甘油或三酰甘油。
利用适于用在植物中和植物转化中的克隆载体,诸如在《植物分子生物学和生物技术》(CRC出版社,Boca Raton,Florida),6/7章,71-119页(1993);F.F.White,用于高等植物的基因转移载体,《TransgenicPlants》,1卷,工程化和应用,Kung和R.Wu编辑,Academic出版社,1993,15-38;B.Jenes等,基因转移技术,《Transgenic Plants》,1卷,Engineering and Utilization,Kung和R.Wu编辑,Academic出版社(1993),128-143;Potrykus,Annu.Rev.Plant Physiol.Plant Molec.Biol.42(1991),205-225))和这些出版物中引用的参考文献中公开的克隆载体,本发明核酸可以用于广泛范围的植物的重组修饰,以使它们成为一种或多种脂质衍生产物,如PUFAs的更好或更有效的生产者。可以通过操作的直接作用或该操作的间接作用导致脂质衍生产物诸如PUFAs的生产或生产效率提高。
存在一系列本发明PSE蛋白质的修饰可以由于修饰的蛋白质,直接影响油料作物或微生物的精细化学品产率、生产和/或生产效率的机制。可以增加PSE蛋白质、PSE核酸或PSE基因的数量或活性,使所述核酸基因引入前缺少这种活性和生物合成能力的生物体可以从头产生更大量的这些化合物。
本发明核酸和/或PSE基因向生物体或细胞的引入不仅可以增加朝向最终产物的生物合成流,而且可以增加或从头产生相应的三酰甘油组合物。同样地,可以增加参与输入一种或多种精细化学品(例如,脂肪酸、极性和中性脂质)生物合成所需的营养物的其它基因的数量或活性,使细胞内或贮藏区室内这些前体、辅因子或中间体的浓度增加,由此进一步增加细胞产生PUFAs的能力,见此后所述。脂肪酸和脂质本身就是期望的精细化学品;增加一种或多种参与这些化合物生物合成的PSE的数量或者优化其活性,或者破坏一种或多种参与这些化合物分解的PSE的活性可以使从植物或微生物产生的脂肪酸分子和脂质分子的产率、生产和/或生产效率增加。
本发明PSE基因或核酸的诱变也可以产生具有修饰活性的PSE蛋白质,从而直接或间接影响一种或多种精细化学品的产生。例如,可以增加本发明PSE基因或核酸的数量或活性,以便在细胞正常代谢废物或副产物(由于期望的精细化学品的过量生产,它们的数量可能增加)破坏细胞内其它分子或过程(这将降低细胞生存力),或干扰精细化学品生物合成途径(因此降低期望的精细化学品的产率、生产或生产效率)前,以有效的方式排出它们。此外,相对大量的胞内所需精细化学品本身即可对细胞产生毒性或干扰酶反馈机制,例如变构调节,因此,例如,通过增加PUFA途径下游其他酶或解毒酶的活性或数量,可能增加PUF向三酰甘油部分的分配及可能增加种子细胞的生活力,而这又可导致细胞在培养基中更好地生长或者导致能够产生所需精细化学品的种子。做为可替代的方案,可以操作本发明的PSE基因或核酸,以产生相应数量的各种脂质分子和脂肪酸分子。这对细胞膜的脂组成可能有决定性的作用,并且除了已经从头合成的PUFAs存在外,还可以产生新的油类。因为每种类型的脂质有不同的物理特性,所以膜脂组成的变化可能实质上地改变膜流动性。膜流动性的变化可能对通过膜的分子转运和细胞完整性有影响,而通过膜的分子转运和细胞完整性都对精细化学品的产生有决定性作用。而且,在植物中,这些变化也可能影响其它性状,诸如对非生物和生物胁迫状况的耐受性。
生物和非生物胁迫耐受性是期望赋予广谱植物诸如玉米、小麦、黑麦、燕麦、黑小麦、水稻、大麦、大豆、花生、蓟、棉花、油籽油菜和canola、木薯、胡椒、向日葵和万寿菊、茄科(solanaceae)植物诸如马铃薯、烟草、茄子和番茄,蚕豆属(Vicia)物种、豌豆、紫花苜蓿、灌木植物(咖啡树、可可树、茶树),柳属(Salix)物种,树(油棕、椰子树)和多年生草类和饲料作物的一般性状。作为本发明的另一实施方式,这些作物也是优选的基因工程的靶植物。本发明非常特别优选的植物是油料作物诸如大豆、花生、油籽油菜、canola、向日葵、蓟、树(油棕、椰子树)或作物诸如玉米、小麦、黑麦、燕麦、黑小麦、水稻、大麦、紫花苜蓿或灌木植物(咖啡、可可、茶树)。
因此,本发明一方面涉及分离的核酸分子(例如,cDNA)——其包含编码PSE或其生物活性部分的核苷酸序列,或者适于用作引物或杂交探针用于检测或扩增编码PSE的核酸(例如,DNA或mRNA)的核酸片段。在特别优选的实施方式中,核酸分子包含SEQ ID NO:1中所示的核苷酸序列之一,或者这些核苷酸序列之一的编码区或互补序列。在其它特别优选的实施方式中,本发明分离的核酸分子包含与序列SEQ ID NO:1中所示核苷酸序列或者其部分杂交的核苷酸序列,或者与其有至少约50%,优选地,至少约60%,更优选地,至少约70%,80%或90%,甚至更优选地,至少约95%,96%,97%,98%,99%或更多同源性的核苷酸序列,对本发明目的而言,同源性意指同一性。在其它优选的实施方式中,分离的核酸分子编码SEQ ID NO:2中所示氨基酸序列之一。优选地,本发明优选的PSE基因和本发明的核酸序列也有至少这里所述的一种PSE活性。
在另一实施方式中,分离的核酸分子编码蛋白质或其部分,该蛋白质或其部分包含与序列SEQ ID NO:2的氨基酸序列有足够同源性的氨基酸序列,这样蛋白质或蛋白质部分保留PSE活性,对本发明目的而言,同源性意指同一性。优选地,核酸分子编码的蛋白质或其部分保留参与化合物代谢或通过这些膜的分子转运的能力,其中所述化合物是植物细胞膜合成所需要的。在一个实施方式中,核酸分子编码的蛋白质与序列SEQ ID NO:2的氨基酸序列有至少约50%,优选地,至少约60%,更优选地,至少约70%,80%或90%,最优选地,至少约95%,96%,97%,98%,99%或更高的同源性。在进一步优选的实施方式中,蛋白质是致病疫霉全长蛋白质,其与SEQ ID NO:2的完整氨基酸序列(来源于SEQ ID NO:1中所示的开放读框)基本同源。
在另一个优选的实施方式中,分离的核酸分子来源于致病疫霉,并且编码包含生物活性域的蛋白质(例如,PSE融合蛋白质)——该蛋白质与序列SEQ ID NO:2的氨基酸序列有至少约50%或更高的同源性(同一性),并且保留参与真菌中化合物代谢或通过膜的分子转运的能力,其中所述化合物是不饱和脂肪酸合成所需要的,或者该蛋白质具有至少一种表1中所列的活性,此外,所述分离的核酸分子还包含编码异源多肽或调节蛋白质的异源核酸序列。
本发明核酸编码的蛋白质延伸选自以下的脂肪酸:C18:2 Δ9,12、C18:3 Δ4,7,10、C18:3 Δ5,8,11、C18:3 Δ6,9,12、C18:3 Δ7,10,13、C18:3 Δ8,11,14、C18:3 Δ9,12,15、C18:4 Δ6,9,12,15、C18:3 Δ5c,9,12或C16:3 Δ7,10,13,而不延伸脂肪酸诸如C18:3 Δ5t,9,12、C20:3 Δ8,11,14、C20:4 Δ5,8,11,14和C20:5 Δ5,8,11,14,17。此PSE基因在酵母中异源地表达,将各种多不饱和脂肪酸单独地饲喂给此转化的酵母,并通过该酵母实现各种多不饱和脂肪酸的转化。通过GLC方法分析转基因酵母的脂肪酸谱。如下计算饲喂的脂肪酸的转化百分数:mol%(产物)×100/[mol%(起始材料)+mol%(产物)]。
表1显示通过本发明酶延伸的脂肪酸。
表1:用质粒pYES2(对照)和pY2piPSE1转化的酵母细胞的脂肪酸(mol%)。饲喂18:2,γ-18:3,α-18:3或18:4脂肪酸。将整个脂质级分转甲基化,通过GC测定脂肪酸谱。计算延伸作用(%):100×mol%(产物)/[mol%(起始材料)+mol%(产物)]。底物和延伸的脂肪酸以粗体表示。
    总脂肪酸%
    PYES2     PY2piPSE1
脂肪酸     +18:2  +γ-18:3  +α-18:3   +18:4   +18:2   +γ-18:3   +α-18:3   +18:4
16:0     13.7    16.4    14.3   19.5   9.8     9.8     7.3   10.6
16:1Δ9     8.8    6.5    3.4   7.8   9.9     4.1     1.3   2.3
18:0     6.9    9.9    11.3   13.3   8.6     12.3     14.4   19.4
18:1Δ9     9.9    10.5    6.0   13.6   15.3     11.8     5.6   8.4
18:2Δ9,12     60.7    -    -   -   41.0     -     -   -
18:3Δ6,9,12     -    56.7    -   -   -     51.1     -   -
18:3Δ9,12,15     -    -    64.7   -   -     -     65.1   -
18:4Δ6,9,12,15     -    -    -   45.7   -     -     -   48.3
20:2Δ11,14     -    -    -   -   2.1     -     -   -
20:3Δ8,11,14     -    -    -   -   -     11.0     -   -
20:3Δ11,14,17     -    -    -   -   -     -     6.2   -
20:4Δ8,11,14,17     -    -    -   -   -     -     -   11.0
延伸%     n.d.    n.d.    n.d.   n.d.   4.9     17.7     8.7   18.5
在另一实施方式中,分离的核酸分子是至少15个核苷酸长度,并且在严格条件下与包含SEQ ID NO:1核苷酸序列的核酸分子杂交。优选地,分离的核酸分子对应于天然存在的核酸分子。更优选地,分离的核酸分子编码天然出现的致病疫霉PSE或其生物活性部分。
本发明另一个方面涉及载体,例如重组表达载体——其包含至少一个本发明的核苷酸分子——和已经引入这些载体的宿主细胞,特别是微生物、植物细胞、植物组织、植物器官或完整植物。非人类宿主细胞,诸如秀丽隐杆线虫(Caenorhabditis elegans),也可以有利地利用。在一个实施方式中,这种宿主细胞可以贮藏精细化学品,特别是PUFAs。为分离期望的化合物,可以收获细胞。然后,可以从培养基或从宿主细胞分离化合物(油、脂质、三酰甘油酯、脂肪酸)或PSE,在植物的情况下,宿主细胞是含有或贮藏精细化学品的细胞,最优选地是贮藏组织诸如种皮、块茎的细胞、表皮细胞和种子细胞。
本发明再一方面涉及遗传修饰的植物(=转基因植物),优选地,上述油料作物,或者遗传修饰的真菌(=转基因真菌),特别优选地,已经引入PSE基因(优选地,PSE基因来源于卵菌纲,诸如,有利地,致病疫霉)或者其中的PSE基因已被修饰的疫霉属真菌,或者植物。在一个实施方式中,通过引入编码野生型或突变PSE序列的本发明核酸分子作为转基因,已修饰致病疫霉基因组。在另一个实施方式中,通过与修饰的PSE基因同源重组已修饰卵菌纲致病疫霉基因组的内源PSE基因,即,功能性地破坏该内源PSE基因。在优选的实施方式中,植物生物体属于剑叶藓属(Physcomitrella)、角齿藓属(Ceratodon)或葫芦藓属(Funaria),优选剑叶藓属。在优选的实施方式中,也利用剑叶藓属植物产生期望的化合物诸如脂质或脂肪酸,特别优选PUFAs。
在又一个优选的实施方式中,利用基于本发明中所述核酸的同源重组,卵菌纲致病疫霉可以用于证明藓类基因的功能。
本发明再一方面涉及分离的核酸序列,PSE基因或者其部分,例如其生物活性部分。在优选的实施方式中,分离的核酸序列、PSE或其部分可以参与微生物或植物细胞中细胞膜合成所需化合物的代谢,或者参与通过其膜的分子转运。在另一优选的实施方式中,分离的核酸序列、PSE或其部分与SEQ ID NO:2氨基酸序列有足够的同源性,使得该蛋白质或其部分仍然能够参与微生物或植物细胞中细胞膜合成所需的化合物的代谢或者参与通过这些膜的分子转运。
本发明也提供了分离的PSE(PSE蛋白质)制品。在优选的实施方式中,本发明核酸序列或PSE基因包含SEQ ID NO:2的氨基酸序列。在另一优选的实施方式中,本发明涉及分离的全长蛋白质,该蛋白质与SEQ IDNO:2的完整氨基酸序列(SEQ ID NO:1中所示开放读框编码)基本同源。在再一实施方式中,蛋白质与序列SEQ ID NO:2的氨基酸序列有至少约50%,优选地,至少60%,更优选地,至少约70%,80%或90%,最优选地,至少约95%,96%,97%,98%,99%或更高的同源性(同一性)。在其它实施方式中,分离的核酸序列和PSE包含氨基酸序列,该氨基酸序列与SEQ ID NO:2的氨基酸序列之一有至少约50%同源性,并且其可以参与微生物或植物细胞中脂肪酸合成所需的化合物的代谢或者通过这些膜的分子转运,或者具有一种或多种延伸PUFA的活性,有利地,此延伸涉及在至少2个位置具有双键的去饱和C16-和/或C18-碳链。
做为可替代方案,分离的PSE蛋白质可以包含如下氨基酸序列,该序列由例如,在严格条件下与SEQ ID NO:1核苷酸序列杂交的核苷酸序列编码或者该氨基酸序列与其有至少约50%,优选地,至少约60%,更优选地,至少约70%,80%或90%,甚至更优选地,至少约95%,96%,97%,98%,99%或更高的同源性。优选的PSE形式也优选地具有这里所述的一种PSE活性。
PSE多肽或其生物活性部分可以功能性连接非PSE多肽以形成融合蛋白质。在优选的实施方式中,该融合蛋白质有不同于单独PSE的活性。在其它优选实施方式中,该融合蛋白质参与化合物代谢,有利地,该化合物为微生物或植物中脂质和脂肪酸、辅因子和酶的合成所需的,或该融合蛋白质参与通过这些膜的分子转运。在特别优选的实施方式中,通过向宿主细胞中引入该融合蛋白质,调节期望化合物的产生,诸如,有利地,细胞的PUFAs合成。在优选的实施方式中,这些融合蛋白质还单独或联合地含有Δ-4-,Δ-5-或Δ-6-去饱和酶活性。
本发明另一方面涉及有利地从不饱和脂肪酸和/或脂质不饱和脂肪酸生产精细化学品的方法。该方法包括培养适合的微生物或者培养植物细胞、植物组织、植物器官或完整植物——它们包含SEQ ID NO:1的本发明核苷酸序列或其同系物、衍生物或类似物,或者含有SEQ ID NO:1或其同系物、衍生物或类似物的基因构建体,或含有这些序列的载体,或者能引起本发明PSE核酸分子表达的基因构建体——以生产精细化学品。在优选的实施方式中,该方法还包括获得包含本发明这种延长酶核酸序列的细胞的步骤,其中用延长酶核酸序列,引起本发明PSE核酸表达的基因构建体或载体转化细胞。在进一步优选的实施方式中,该方法还包括从培养物获得精细化学品的步骤。在特别优选的实施方式中,细胞属于纤毛虫(Ciliata)目,属于微生物诸如真菌,或者属于植物界,特别地属于油料作物,特别优选微生物或油料作物。
本发明另一方面涉及调节微生物的分子产生的方法。这些方法包括将调节PSE活性或PSE核酸表达的物质与细胞混合,这样相对于在缺少该物质情况下的相同活性,使细胞相关的活性改变。在优选的实施方式中,调节脂质和脂肪酸,辅因子和酶的一个细胞代谢途径或二个代谢途径,或者调节通过这些膜的化合物转运,由此提高该微生物产生的期望精细化学品的产率或生产率。调节PSE活性的物质可以是刺激PSE活性或PSE核酸表达的物质,或者是可以用作脂肪酸生物合成中的中间体的物质。刺激PSE活性或PSE核酸表达的物质的例子有例如已经引入细胞中的编码PSEs的核酸、小分子、活性PSEs。抑制PSE活性或PSE表达的物质的例子有例如小分子和反义PSE核酸分子。
本发明另一个方面涉及调节细胞的期望化合物产率的方法,包括向细胞中引入本发明的野生型或突变PSE基因,或者野生型或突变核酸,使其保持在单独质粒上或整合进入宿主细胞基因组中。在整合进入基因组的情况下,整合可以是随机的,或可以通过重组发生,这样引入的拷贝置换天然核酸序列或天然基因从而调节细胞的期望化合物的产生;或者可以利用反式基因,使基因功能性地连接功能表达单元,该功能表达单元包含至少一个有利于基因表达的序列和至少一个有利于功能性地转录的基因或核酸实现聚腺苷酸化的序列。
在优选的实施方式中,产率被改变。在再一实施方式中,增加期望的化学品,可以减少有不利作用的不期望的化合物。在特别优选的实施方式中,期望的精细化学品是脂质或脂肪酸,辅因子或酶。在特别优选的实施方式中,该化学品是多不饱和脂肪酸。更优选地,其选自花生四烯酸(ARA)、二十碳五烯酸(EPA)或二十二碳六烯酸(DHA)。
发明详述
本发明提供了参与卵菌纲致病疫霉中脂质和脂肪酸,PUFA辅因子和酶代谢或者通过膜的亲脂化合物转运的PSE核酸和蛋白质分子。本发明这些化合物可以用于直接调节来源于生物体的精细化学品的生产(例如,当脂肪酸生物合成蛋白质过表达和优化时,直接影响修饰生物体的脂肪酸产率、生产和/或生产效率),所述生物体例如是微生物,诸如纤毛虫、真菌、酵母、细菌、藻类和/或植物,诸如玉米、小麦、黑麦、燕麦、黑小麦、水稻、大麦、大豆、花生、棉花、蓟、芸苔种(Brassica species),诸如油籽油菜、蓟、canola和芜菁、胡椒、向日葵、琉璃苣、月见草和万寿菊,茄科(solanaceae)植物诸如马铃薯、烟草、茄子和番茄,蚕豆属种(Viciaspecies),豌豆、木薯、紫花苜蓿、灌木植物(咖啡、可可、茶树),柳属种(Salix species),树(油棕、椰子树)和多年生草类和饲料作物,或者这些化合物可以有间接作用,但仍导致期望化合物增加的产率、生产和/或生产效率,或者导致不期望化合物降低(例如,调节脂质和脂肪酸,辅因子和酶代谢可引起细胞内期望化合物的产率、生产和/或生产效率的改变或者组成的改变,接着,这可以影响一种或多种精细化学品的生产)。此后,更详细地示例说明本发明的各方面。
I.精细化学品和PUFAs
本领域已知术语“精细化学品”,它包含生物体已经产生的分子,并且可以用于各种工业中,诸如,举例而言,但是非限制性地,制药工业、农业、食品工业和化妆品工业。这些化合物包括脂质、脂肪酸、辅因子和酶等等(例如,如Kuninaka,A.(1996)核苷酸和相关化合物,561-612页,《Biotechnology》,6卷,Rehm等编辑:VCH Weinheim和其中引用的参考文献中所述),脂质、饱和和不饱和脂肪酸(例如,花生四烯酸),维生素和辅因子(如在Ullmann’s Encyclopedia of Industrial Chemistry,A27卷,Vitamins,443-613页(1996):VCH Weinheim和其中引用的参考文献;Ong,A.S.,Niki,E.,&Packer,L.(1995)”,,UNESCO马来西亚科学技术协会和自由基研究学会之大会的营养、脂、健康和疾病会议录1994年9月1-3日亚洲举办,马来西亚Penang,AOCS出版社(1995)中所述),在Gutcho(1983)的《Chemicals by Fermentation》,Noyes Data Corporation,ISBN:0818805086和其中引用的参考文献中所述的酶和所有其它化学品。此后更详细地示例了一些精细化学品的代谢和用途。
各种前体分子和生物合成酶的联合引起各种脂肪酸分子的产生,从而对膜组成具有决定性影响。可以认为PUFAs不仅只是掺入到三酰甘油中,也掺入到膜脂质中。
膜合成是一个已充分地被表征的过程,其中涉及多种成分,包括做为双层膜一部分的脂质。因此,细胞或生物体中新的脂肪酸,诸如PUFAs的产生可以导致新的膜功能特性。
细胞膜在细胞中起有多种作用。首先且最重要的,膜将环境和细胞的内容物划分开,因此赋予了细胞完整性。膜也可以作为抵抗危险或不期望化合物流入或者抵抗期望化合物流出的屏障。
对于膜和有关的机理的更详细描述和涉及参见Bamberg,E.,等(1993)脂双层膜上离子泵的电荷转运,Q.Rev.Biophys.26:1-25;Gennis,R.B.(1989),孔、通道和转运蛋白,《Biomembranes,Molecular Structure andFunction》,Springer:Heidelberg,270-322页;和Nikaido,H.,und Saier,H.(1992)细菌转运蛋白:其设计中的常用主题,Science 258:936-942,和这些参考文献中含有的引用文献。
脂质合成可以分成两个部分:脂肪酸的合成和它们与sn-甘油-3-磷酸的结合,以及极性头部基团的添加或修饰。常用在膜中的脂质包括磷脂、糖脂、鞘脂和磷酸甘油酯。脂肪酸合成起始于乙酰-CoA通过乙酰-CoA羧化酶转化为丙二酸单酰CoA,或者通过乙酰转酰酶转化为乙酰-ACP。缩合反应后,这两种产物分子一起形成乙酰乙酰-ACP,其通过一系列缩合、还原和脱水反应转化产生具有期望链长的饱和脂肪酸分子。通过特异的去饱和酶,利用分子氧有氧地或厌氧地催化从这些分子产生不饱和脂肪酸(关于微生物中脂肪酸合成,参见F.C.Neidhardt等(1996)E.coli andSalmonella.ASM出版社:Washington,D.C.,612-636页和其中含有的参考文献;Lengeler等,(编辑)(1999)Biology of Procaryotes.Thieme:Stuttgart,New York,和其中含有的参考文献,和Magnuson,K.,等(1993)Microbiological Reviews 57:522-542和其中含有的参考文献)。
PUFA生物合成前体的例子是棕榈油酸、亚油酸和亚麻酸。必需延伸这些C16-和/或C18-碳脂肪酸到C20和C22以产生二十碳和二十二碳链类型脂肪酸。优选地,在本发明核酸和这些核酸编码的蛋白质辅助下实现该延伸。各种去饱和酶诸如具有Δ-6-去饱和酶、Δ-5-去饱和酶和Δ-4-去饱和酶活性的酶可以导致花生四烯酸、二十碳五烯酸和二十二碳六烯酸和各种其它的长链PUFAs,可以提取这些PUFA用于食品和饲料、化妆品或制药应用中的各种目的。
为了产生长链PUFAs,如上所述,必需通过延长酶的酶促活性延伸多不饱和C16-和/或C18-脂肪酸至少2个碳原子。本发明核酸序列编码第一个植物延长酶,该延长酶能延伸脂肪酸分子中具有至少2个双键的C16-和/或C18-脂肪酸至少2个碳原子。1个延伸循环后,该酶活产生C18-或C20-脂肪酸,2,3和4或5个延伸循环后产生C22-、C24-或C26-脂肪酸。用本发明延长酶也可以合成更长的PUFAs。优选地,本发明延长酶活性产生脂肪酸分子中具有至少2个双键,优选地,脂肪酸分子中具有3或4个双键,特别优选地,具有3个双键的C20-和/或C22-脂肪酸。用本发明的酶延伸后,可以进行其它的去饱和步骤。因此,延长酶活性产物和可能的进一步去饱和产物产生高度去饱和的优选PUFAs,诸如二十二碳二烯酸、花生四烯酸、ω6-eicosatrienedihomo-γ-linolenic acid、二十碳五烯酸、ω3-二十碳三烯酸、ω3-二十碳四烯酸、二十二碳五烯酸或二十二碳六烯酸。根据本发明,该酶活性的底物的例子是taxol acid、6,9-十八碳二烯酸、亚油酸、γ-亚麻酸、pinolenic acid、α-亚麻酸或stearidonic acid。优选的底物是亚油酸、γ-亚麻酸和/或α-亚麻酸。通过本发明酶促活性,可以以自由脂肪酸形式或酯形式延伸脂肪酸分子中具有至少2个双键的C16-和/或C18-脂肪酸,所述酯为诸如磷脂、糖脂、鞘脂、磷酸甘油酯、单酰甘油、二酰甘油或三酰甘油。
而且,随后,必需将脂肪酸转运以进行各种修饰和掺入到三酰甘油贮藏脂质中。脂质合成中另一个重要步骤是,例如通过甘油脂肪酸酰基转移酶将脂肪酸转移到极性头部基团上(参见,Frentzen,1998,Lipid,100(4-5):161-166)。
而且,本发明核酸在各种宿主生物体中的表达不仅引起总体上膜脂组成的变化,也会引起宿主细胞中包含不饱和脂肪酸的所有化合物的组成相对于不包含该核酸或不包含此数量的核酸的最初宿主细胞发生改变。在天然不包含该核酸编码的蛋白质或酶的宿主生物体,例如植物细胞中,这些改变更明显。因此,本发明核酸的表达导致新的脂质组合物,这是本发明的另一个方面。
关于植物脂肪酸生物合成、去饱和,脂肪类化合物的脂代谢和膜转运,β-氧化,脂肪酸修饰和辅因子,三酰甘油贮藏和装配的出版物,参见下面的文章,包括其中所引用的参考文献:Kinney,1997,Genetic Engineering,JK Setlow编辑,19:149-166;Ohlrogge和Browse,1995,Plant Cell7:957-970;Shanklin和Cahoon,1998,Annu.Rev.Plant Physiol.Plant Mol.Biol.49:611-641;Voelker,1996,Genetic Engineering,JK Setlow编辑,18:111-13;Gerhardt,1992,Prog.Lipid R.31:397-417;Gühnemann-Schifer& Kindl,1995,Biochim.Biophys Acta 1256:181-186;Kunau等,1995,Prog.LipidRes.34:267-342;Stymne等,1993,《Biochemistry and Molecular Biology ofMembrane and Storage Lipids of Plants》,Murata和Somerville编辑,Rockville,American Society of Plant Physiologists,150-158,Murphy &Ross 1998,Plant Journal.13(1):1-16。
维生素、辅因子和“营养药”,诸如PUFAs,包括高等动物不能合成而必需摄取的一组分子,或者高等动物本身不能合成足够的程度而必需还要额外摄取的一组分子,尽管其它生物体,诸如细菌很容易合成这些分子。已经或多或少地表征了这些分子在能够产生它们的生物体,诸如细菌中的生物合成(Ullmann’s Encyclopedia of Industrial Chemistry,”Vitamins”,A27卷,443-613页,VCH Weinheim,1996;Michal,G.(1999)BiochemicalPathways:An Atlas of Biochemistry and Molecular Biology,John Wiley &Sons;Ong,A.S.,Niki,E.,& Packer,L.(1995)”Nutrition,Lipids,Healthand Disease”Proceedings of the UNESCO/Confederation of Scientific andTechnological Associations in Malaysia and the Society fo r Free RadicalResearch Asia,1994年9月1-3日举办,Penang,Malaysia,AOCS出版社,Champaign,IL X,374页)。
上述分子或者本身是生物活性分子或者是在多种代谢途径中作为电子载体或作为中间体的生物活性物质的前体。除了它们的营养价值外,这些化合物也有重要的工业价值,作为着色剂、抗氧化剂和催化剂或其它加工助剂。(对于这些化合物的结构、活性和工业应用的综述参见,例如Ullmann’s Encyclopedia of Industrial Chemistry,”Vitamins”,A27卷,443-613页,VCH Weinheim,1996)。多不饱和脂肪酸例如,在冠心病、发炎机理、儿童营养等方面有各种功能和促进健康的作用。对于公开出版物和参考文献,包括其中引用的参考文献,参见:Simopoulos,1999,Am.J.Clin.Nutr.70(第三次增补):560-569,Takahata等,Biosc.Biotechnol.Biochem.1998,62(11):2079-2085,Willich和Winther,1995,DeutscheMedizinische Wochenschrift 120(7):229以及以下页等等。此外,它们也是如下化合物合成的重要起始材料,所述化合物控制生物体内重要的生物学过程。因此,例如,它们用在各种饮食食物或药物中。
II.本发明的元素和方法
本发明至少部分是基于这里称为PSE核酸和PSE蛋白质分子的新分子的发现,该分子对展叶剑叶藓(Physcomitrella patens)、角齿藓(Ceratodonpurpureus)和/或致病疫霉中细胞膜或脂肪酸的产生有影响,并且,例如对通过这些膜的分子运动有影响。在一个实施方式中,PSE分子参与生物体诸如微生物和植物中细胞膜和/或脂肪酸合成所需的化合物的代谢,或者间接地影响通过这些膜的分子转运。在优选的实施方式中,本发明PSE分子在调节膜成分的产生和膜转运方面的活性影响该生物体的期望精细化学品的生产。在特别优选的实施方式中,调节本发明PSE分子的活性,由此调整对本发明PSE分子实施调节的微生物或植物代谢途径的产率、生产和/或生产效率和改变通过膜的化合物转运效率,这样就直接或间接地调节微生物和植物的期望精细化学品的产率、生产和/或生产效率。
术语PSE或PSE多肽包括参与生物体诸如微生物和植物中细胞膜合成所需的化合物的代谢或参与跨这些膜的分子转运的蛋白质。在SEQ IDNO:1或其同系物、衍生物或类似物中公开了PSEs的例子。术语PSE或PSE核酸序列包括编码PSE的核酸序列或其部分,所述部分是编码区和相应的5’-和3’-非翻译序列区。PSE基因的例子是SEQ ID NO:1中所示序列。术语生产和生产率是本领域已知的,包括在一定时期内和一定发酵体积中形成的发酵产物(例如期望的精细化学品)的浓度(例如,kg产物/小时/升)。术语生产效率包括达到特定产物量所需的时间(例如,细胞建立精细化学品特定的产出率所需的时间)。术语产率或产物/碳产率是本领域已知的,包括碳源转化为产物(即,精细化学品)的效率。这通常表示为,例如kg产物/kg碳源。增加化合物的产率或生产可以增加限定期间内特定培养量中获得的该分子或获得的该化合物的适宜分子的量。术语生物合成或生物合成途径是本领域已知的,包括通过细胞,在例如,受到强调节的多步过程中由中间体合成化合物,优选有机化合物。术语分解代谢或分解代谢途径是本领域已知的,包括通过细胞,在例如,受到强调节的多步过程中将化合物(优选有机化合物)断裂为分解代谢物(一般地是更小或不太复杂的分子)。术语代谢是本领域已知的,包括发生在生物体中的生物化学反应的总合。因此,某一化合物的代谢(例如,脂肪酸代谢)包括细胞中与该化合物相关的该化合物的生物合成、修饰和分解代谢途径的总合。
在另一个实施方式中,本发明PSE分子可以调节微生物中或植物中期望分子诸如精细化学品的生产。本发明PSE的修饰可以通过一系列机制直接影响包含该修饰蛋白质的微生物株系或植物株系的精细化学品产率、生产和/或生产效率。可以增加参与精细化学品分子向细胞内或外转运的PSEs的数量或活性,由此通过膜来转运更多数量的这些化合物,从而使它们更易获得,并且更易于相互转化。而且,脂肪酸、三酰甘油和/或脂质本身是期望的精细化学品;优化一种或多种参与这些化合物生物合成的本发明PSEs的活性或增加其数量,或者干扰一种或多种参与这些化合物分解代谢的PSEs的活性,可以增加从生物体诸如微生物或植物产生的脂肪酸分子和脂质分子的产率、生产和/或生产效率。
本发明核酸或PSE基因的诱变也可以产生具有修饰活性的PSEs,该PSE可以间接地影响微生物或植物的一种或多种期望精细化学品的生产。例如,参与废物输出的本发明PSEs可以显示更多数量或更高活性,以便在细胞正常代谢废物(由于精细化学品的过量生产,它的数量可能增加)可能损害细胞内分子(这将降低细胞的生存力)或干扰精细化学品生物合成途径(这将减少期望精细化学品的产率、生产或生产效率)前,有效地输出它们。细胞内相对大量的期望精细化学品本身也可能对细胞有毒,因此,增加能够从细胞输出这些化合物的转运蛋白的活性或数量可导致培养物中细胞的生存力增加,接着导致在培养物中产生更多数量的能生产期望化学品的细胞。也可以操作本发明的PSEs,以便产生相应数量的不同脂质分子和脂肪酸分子。这对细胞膜的脂组成可能有实质上的影响。因为每种类型的脂质有不同的物理特性,所以膜脂组成的改变会显著地改变膜的流动性。膜流动性的改变可能影响通过膜的分子转运和细胞完整性,而通过膜的分子转运和细胞完整性都对大规模发酵培养物中的微生物和植物的精细化学品生产有实质性影响。植物细胞膜赋予特殊的特性诸如对高温和低温、盐、干旱的耐受性和对病原体诸如细菌和真菌的耐受性。因此,对膜成分的调节可能对上述胁迫参数条件下植物的存活能力有至关重要的影响。这可以通过信号级联的变化或直接通过修饰的膜组成(参见,例如Chapman,1998,Trends in Plant Science,3(11):419-426)和信号级联(参见Wang 1999,Plant Physiology,120:645-651)发生,或者可以影响对低温的耐受性,如在WO 95/18222中所公开的。
本发明分离的核酸序列存在于例如,通过保藏中心ATCC或DSM可得到的致病疫霉株系的基因组中。在SEQ ID NO.1和2中分别示出了分离的展叶剑叶藓cDNA的核苷酸序列和衍生的致病疫霉PSEs的氨基酸序列。进行了计算机分析,其分类和/或鉴定这些核苷酸序列为编码参与细胞膜成分代谢或者参与通过细胞膜的化合物转运或脂肪酸合成的蛋白质的序列。本发明人在数据库中输入的编号08_ck19_b07的EST是SEQ ID NO.1中所示序列一部分。同时,重命名这些ESTs,产生了修改的名称:pp001019019f。以相似的方式,命名此部分多肽为pp001019019f。测序EST pp001019019f的完整插入片段,产生SEQ ID NO.1,其显示了pp001019019f的完整序列。它含有一个完整的功能活性克隆,该克隆在酵母中特异性表达后出现,具有如实施例部分中所示的期望的底物特异性。酵母也是本发明适宜的生物体,例如作为本发明基因、基因构建体或载体的宿主细胞。
本发明也涉及具有与SEQ ID NO:2氨基酸序列基本同源(相同)的氨基酸序列的蛋白质。如本发明上下文中所用,具有与选定的氨基酸序列基本同源的氨基酸序列的蛋白质与选定的氨基酸序列,例如选定的完整氨基酸序列有至少约50%的同源性。具有与选定的氨基酸序列基本同源的氨基酸序列的蛋白质也可以与选定的氨基酸序列有至少约50%到60%,优选地,至少约60%到70%,更优选地至少约70%到80%,80%到90%或90%到95%,最优选地,至少约96%,97%,98%,99%或更高的同源性。
本发明的PSE或其生物活性部分或其片段可以参与微生物或植物中细胞膜合成所需的化合物的代谢或通过这些膜的分子转运,或者具有一种或多种延伸C18-PUFAs所需的活性,以致可以获得C22-或C24-PUFAs和相关的PUFAs。
在下面的小节中更详细地描述了本发明的各个方面。
A.分离的核酸分子
本发明一个实施方式包括来源于卵菌纲株系的分离的核酸,其编码能延伸脂肪酸分子中具有至少2个双键的C16-和/或C18-脂肪酸至少2个碳原子的多肽。
本发明的进一步实施方式是包含如下核苷酸序列的分离的核酸,该核苷酸序列编码能延伸脂肪酸分子中具有至少2个双键的C16-和/或C18-脂肪酸的多肽,该核苷酸序列选自:
a)SEQ ID NO:1中所示的核酸序列;
b)根据遗传密码简并性,来源于SEQ ID NO:1中所示序列的核酸序列;
c)SEQ ID NO:1中所示序列的衍生物,其编码与编码SEQ ID NO:2中氨基酸序列的序列有至少50%同源性的多肽,该序列作为C16-或C18-延长酶起作用。
上述核酸来源于能合成PUFAs的生物体诸如纤毛虫、真菌、藻类或甲藻,优选地来源于植物或真菌,特别优选地来源于疫霉属,最优选地来源于致病疫霉。
本发明一个方面涉及编码PSE多肽或其生物活性部分的分离的核酸分子,和涉及足以用作鉴定或扩增编码PSE的核酸(例如PSE DNA)的杂交探针或引物的核酸片段。本发明上下文中所用术语“核酸分子”意在包括单或双链DNA分子(例如,cDNA或基因组DNA)和RNA分子(例如,mRNA)以及通过核苷酸类似物产生的DNA或RNA类似物,或DNA/RNA杂合体。该术语还包括编码区3’和5’末端非翻译序列:编码区5’末端上游至少约100个核苷酸和编码区3’末端下游至少约20个核苷酸。该核酸分子可以是单或双链,但是优选双链DNA。“分离的”核酸分子与存在于其天然来源中的其它核酸分子分离。优选地,“分离的”核酸没有在核酸所来源的生物体的基因组DNA中天然位于核酸侧翼的序列(例如,位于核酸5’和3’末端的序列)。在各种实施方式中,分离的PSE核酸分子可以含有,例如小于约5kb,4kb,3kb,2kb,1kb,0.5kb或0.1kb的如下核苷酸序列,该核苷酸序列在核酸所来源的细胞(例如,展叶剑叶藓细胞)的基因组DNA中天然位于核酸分子侧翼。而且,如果通过重组技术产生“分离的”核酸分子,诸如cDNA分子,其可以基本不含其它细胞物质或培养基,或者如果通过化学方式合成,则其基本上不含化学前体或其它化学试剂。
可以利用标准分子生物学技术和这里所提供的序列信息分离本发明的核酸分子,例如具有SEQ ID NO:1核苷酸序列或其部分的核酸分子。例如,通过利用完整SEQ ID NO:1或其部分作为杂交探针和利用标准杂交技术(例如在Sambrook等,Molecular Cloning:A Laboratory Manual.第二版Cold Spring Harbor Laboratory,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY,1989中所述)可以从致病疫霉(P.infestans)文库分离致病疫霉cDNA。而且,可以通过聚合酶链式反应分离包含SEQ IDNO:1完整序列或其部分的核酸分子,其中可以利用基于该序列或其部分,特别是基于His-盒子基序周围的区域(参见Shanklin等.(1994)Biochemistry 33,12787-12794)产生的寡核苷酸引物(例如,利用如下寡核苷酸引物,通过聚合酶链式反应可以分离包含SEQ ID NO:1完整序列或其部分的核酸分子,其中该寡核苷酸引物基于该相同的SEQ ID NO:1序列产生)。例如,可以从卵菌纲(Oomycete)细胞分离mRNA(例如,通过Chirgwin等.(1979)Biochemistry 18:5294-5299的硫氰酸胍提取方法),可以通过反转录酶(例如,从Gibco/BRL,Bethesda,MD可得到的莫洛尼鼠类MLV反转录酶,或者从Seikagaku America,Inc.,St.Petersburg,FL可得到的AMV反转录酶)产生cDNA。可以基于SEQ ID NO:1中所示核苷酸序列之一产生用于聚合酶链式反应扩增中的合成寡核苷酸引物。可以根据标准PCR扩增技术,利用cDNA或者可替代地利用基因组DNA作为模板并利用适宜的寡核苷酸引物扩增本发明的核酸。可以将由此扩增的核酸克隆进入适宜的载体,并且通过DNA序列分析鉴定。可以通过标准合成方法,例如利用自动DNA合成仪,产生对应于PSE核苷酸序列的寡核苷酸。
SEQ ID NO:1中所示cDNA包含编码PSEs的序列(即,“编码区”)和5’-非翻译序列和3’-非翻译序列。做为可替代方案,核酸分子可以仅含有SEQ ID NO:1中序列之一的编码区或者可以含有从基因组DNA分离的完整基因组片段。
在另一优选的实施方式中,本发明分离的核酸分子包含与SEQ IDNO:1中所示核苷酸序列之一或其部分互补的核酸分子。与SEQ ID NO:1中所示核苷酸序列之一互补的核酸分子是与SEQ ID NO:1中所示核苷酸序列之一充分互补从而可以与SEQ ID NO:1中所述序列之一杂交由此形成稳定的双链体的核酸分子。
具有序列SEQ ID NO:1的新的延长酶核酸序列的同系物意指,例如与SEQ ID NO:1中所示核苷酸序列之一具有至少约50%到60%,优选地,至少约60%到70%,更优选地,至少约70%到80%,80%到90%或90%到95%,甚至更优选地至少约95%,96%,97%,98%,99%或更高同源性的等位基因变异体,或其同系物,衍生物或类似物或部分,在本发明上下文中同源性意指同一性。在另一优选的实施方式中,本发明分离的核酸分子包含例如在严格条件下与SEQ ID NO:1中所示核苷酸序列之一或其部分杂交的核苷酸序列。特别地,等位基因变异体包括通过从SEQ ID NO:1中所示序列缺失、置换或在其中插入核苷酸而获得的功能性变异体,但是对于一个或多个基因的插入,它意指由此得到的蛋白合成后有利地保留酶活性。保留延长酶酶促活性的蛋白质意指与SEQ ID NO:2所编码蛋白质比较,具有至少10%,优选地20%,特别优选地30%,非常特别优选地40%的原始酶活性的蛋白质。
SEQ ID NO:1的同系物也意指,例如细菌、真菌和植物同系物、截短序列、编码和非编码DNA序列的单链DNA或RNA。
SEQ ID NO:1的同系物也意指衍生物,诸如,启动子变异体。可以通过一个或多个核苷酸置换,通过一个或多个插入和/或一个或多个缺失修饰所述核苷酸序列上游的启动子,而不干扰启动子的功能或活性。而且,可以通过修饰启动子序列来增加启动子活性,或者可以用甚至来源于异源生物体的更有活性的启动子完全地置换此启动子序列。
而且,本发明核酸分子可以仅包含SEQ ID NO:1中序列之一的编码区的一部分,例如,可以用作探针或引物的片段或者编码PSE生物活性片段的片段。通过克隆致病疫霉(P.infestans)PSE基因鉴定的核苷酸序列使得可以产生探针和引物,其中该探针和引物设计用于鉴定和/或克隆其它细胞类型和生物体中的PSE同系物和来源于其它卵菌纲(Oomycete)或相关物种的PSE同系物。正常地,探针/引物包含基本纯化的寡核苷酸。正常地,寡核苷酸包含严格条件下与如下核酸序列杂交的核苷酸序列区,该核酸序列为SEQ ID NO:1中所述序列之一的有义链、或SEQ ID NO:1中所述序列之一的反义链、或其同系物、衍生物和类似物或其天然突变体中的至少约12,优选地约16,更优选地约25,40,50或75个连续核苷酸。利用基于SEQID NO:1核苷酸序列的引物可以在PCR反应中用于克隆PSE同系物。可以利用基于PSE核苷酸序列的探针检测编码相同蛋白质或同源蛋白质的转录物或基因组序列。在优选的实施方式中,探针还包含与其结合的标记基团,例如放射性同位素、荧光化合物、酶或酶辅因子。这些探针可以用作基因组标记检测试剂盒的一部分,用于例如,通过测定细胞样品中编码PSE的核酸的量,例如测定PSE mRNA水平鉴定错误表达PSE的细胞,或用于检测基因组PSE基因是否突变或缺失。
在一个实施方式中,本发明核酸分子编码包含与SEQ ID NO:2氨基酸序列有足够同源性的氨基酸序列的蛋白质或其部分,以致该蛋白质或其部分保留参与微生物或植物中细胞膜合成所需的化合物代谢,或参与通过这些膜的分子转运,或者参与脂肪酸合成的能力。如本发明上下文中所用术语“足够同源性”涉及蛋白质或其部分的氨基酸序列具有最小数量的与SEQID NO:2氨基酸序列相同或等价的氨基酸残基(例如,具有相似侧链的氨基酸残基,诸如SEQ ID NO:2序列之一中的氨基酸残基),因此,该蛋白质或其部分可以参与微生物或植物中细胞膜合成所需的化合物的代谢或通过这些膜的分子转运。如这里所述,膜组分的这些代谢途径中的蛋白质组分或膜转运系统可以在一种或多种精细化学品的生产和分泌中起作用。这里也描述了这些活性的例子。因此,“PSE的功能”直接或间接地有助于一种或多种精细化学品的产率、生产和/或生产效率。在表I中阐述了PSE催化活性的底物特异性的例子。
在另一实施方式中,本发明核酸分子的衍生物编码与SEQ ID NO:2的完整氨基酸序列具有至少约50%到60%,优选地,至少约60%到70%,更优选地,至少约70%到80%,80%到90%或90%到95%,最优选地至少约96%,97%,98%,99%或更高同源性的蛋白质。氨基酸序列的同源性在整个序列区域上利用程序PileUp(J.Mol.Evolution.,25,351-360,1987,Higgins等,CABIOS,5,1989:151-153)测定。
优选地,本发明PSE核酸分子编码的蛋白质的部分是一种PSE的生物活性部分。如这里所用术语“PSE的生物活性部分”意在包括可以参与微生物或植物中细胞膜合成所需化合物的代谢或通过这些膜的分子转运,或者参与脂肪酸合成,或者具有表I中所述活性的PSE片段,例如结构域/基序。可以进行酶活性测定以检测是否PSE或其生物活性部分可以参与微生物或植物中细胞膜合成所需化合物的代谢或参与通过这些膜的分子转运。本领域技术人员已知实施例部分实施例8中详细描述的这些测定方法。
可以通过分离SEQ ID NO:2中序列之一的部分,表达PSE或肽的编码片段(例如,通过体外重组表达),并且测定PSE或肽的编码部分的活性,产生编码PSE生物活性片段的其它核酸片段。
而且,本发明包括由于遗传密码简并性而不同于SEQ ID NO:1中所示核苷酸序列之一,并因此与SEQ ID NO:1中所示核苷酸序列编码相同的PSE的核酸分子。在另一个实施方式中,本发明分离的核酸分子具有编码具有SEQ ID NO:2中所示氨基酸序列的蛋白质的核苷酸序列。在另一实施方式中,本发明核酸分子编码与SEQ ID NO:2氨基酸序列(其由SEQ IDNO:1中所示开放读框编码)基本同源的全长致病疫霉蛋白质。
除了SEQ ID NO:1中所示致病疫霉(Phytophthora infestans)PSE核苷酸序列外,本领域技术人员明了种群(例如,致病疫霉(Phytophthorainfestans)种群)中可以存在引起PSEs氨基酸序列变化的DNA序列多态性。由于天然变异,在种群个体之间可以存在PSE基因的这些遗传多态性。如本发明上下文中所用术语“基因”和“重组基因”指具有编码PSE,优选地致病疫霉PSE的开放读框的核酸分子。这些天然变异体通常引起PSE基因核苷酸序列中1到5%的变异。作为天然变异的结果但不改变PSEs的功能活性的所有这些核苷酸变异和由此获得的PSE氨基酸多态性均落在本发明范围内。
对应于本发明致病疫霉PSE cDNA的天然变异体和非致病疫霉同系物、衍生物和类似物的核酸分子可以基于其与这里公开的致病疫霉PSE核酸的同源性,根据标准杂交技术,在严格杂交条件下,利用致病疫霉cDNA或其部分做为杂交探针分离。在另一个实施方式中,本发明分离的核酸分子有最小15个核苷酸的长度,并且在严格条件下与包含SEQ ID NO:1核苷酸序列的核酸分子杂交。在其它实施方式中,核酸有最小25,50,100、250或更多个核苷酸的长度。本发明上下文中所用术语“在严格条件下杂交”意在描述相互有至少60%同源性的核苷酸序列通常仍保持相互杂交情况的杂交和洗涤条件。优选地,所述条件为使相互有至少约65%,更优选地至少约70%,甚至更优选地至少约75%或更高同源性的序列通常相互保持杂交的条件。本领域技术人员已知并且可以在Current Protocols in MolecularBiology,John Wiley & Sons,N.Y.(1989),6.3.1-6.3.6中发现这些严格条件。优选的,非限制性严格杂交条件的例子是在约45℃,6×氯化钠/柠檬酸钠(氯化钠/柠檬酸钠=SSC)中杂交,随后在50到65℃,0.2×SSC,0.1%SDS中进行1或多个洗涤步骤。本领域技术人员知道这些杂交条件根据核酸的类型和,例如,当有机溶剂存在时,根据缓冲液温度和浓度而不同。例如,“标准杂交条件”下,温度随核酸类型而不同,在具有0.1到5×SSC浓度(pH7.2)的含水缓冲液中为42℃至58℃。如果上述缓冲液中存在有机溶剂,例如50%甲酰胺,标准条件下的温度约是42℃。DNA:DNA杂交体的杂交条件优选是,例如0.1×SCC和20℃到45℃,优选地30℃和45℃之间。DNA:RNA杂交体的杂交条件优选是,例如0.1×SCC和30℃到55℃,优选地45℃到55℃之间。上述杂交温度是在没有甲酰胺情况下,针对例如约100bp(碱基对)长度和50%G+C含量的核酸确定的。本领域技术人员知道如何参照教科书,诸如上述教科书或下面的教科书确定所需的杂交条件:Sambrook等,“Molecular Cloning”,Cold Spring Harbor Laboratory,1989;Hames和Higgins(编辑)1985,”Nucleic Acids Hybridization:APractical Approach”,Oxford大学出版社IRL出版社,Oxford;Brown(编辑)  1991,”Essential Molecular Biology:A Practical Approach”,Oxford大学出版社IRL出版社,Oxford。本领域技术人员知道杂交结果的显影类型和时间影响杂交结果。他能够在简单试验中优化显影条件,以使上述杂交产生可靠明确的结果。
优选地,严格条件下与SEQ ID NO:1序列杂交的本发明分离的核酸分子对应于天然核酸分子。如本发明上下文中所用“天然的”核酸分子指具有自然界中出现的核苷酸序列的RNA或DNA分子(例如,其编码天然蛋白质)。在一个实施方式中,该核酸编码天然出现的致病疫霉PSE。
除了可以在种群中存在的PSE序列天然变异体外,本领域技术人员还知道也可以将突变引入SEQ ID NO:1核苷酸序列中,导致编码的PSE氨基酸序列的改变,而不会不利地影响PSE蛋白质的功能性。例如,在SEQ IDNO:1序列中可以产生核苷酸置换,该核苷酸置换导致对“非必需”氨基酸残基的氨基酸置换。“非必需”氨基酸残基是在PSEs(SEQ ID NO:2)之一的野生型序列中可以被改变而不改变PSE活性的残基,而“必需”氨基酸残基为PSE活性所必需。但,其它氨基酸残基(例如,在具有PSE活性的结构域中不保守,或者仅仅半保守的氨基酸残基)可能不是活性所必需的,因此可能可以改变它们而不改变PSE活性。
因此,本发明另一个方面涉及编码PSEs的核酸分子,该PSEs包含非PSE活性所必需的氨基酸残基的改变。这些PSEs在氨基酸序列方面不同于SEQ ID NO:2中的序列,然而仍旧保留至少一种这里所述PSE活性。在一个实施方式中,分离的核酸分子包含编码蛋白质的核苷酸序列,该蛋白质包含与SEQ ID NO:2氨基酸序列具有至少约50%同源性的氨基酸序列,并且能够参与致病疫霉中细胞膜合成所需化合物的代谢或者参与通过这些膜的分子转运,或者参与脂肪酸代谢,或者具有表I中所列一种或多种活性。优选地,此核酸分子编码的蛋白质与SEQ ID NO:2中序列之一有至少约50到60%同源性,更优选地与SEQ ID NO:2中序列之一有至少约60到70%同源性,甚至更优选地与SEQ ID NO:2中序列之一有至少约70到80%,80%到90%,90%到95%同源性,最优选地与SEQ ID NO:2中序列之一有至少约96%,97%,98%或99%同源性。
为了测定两个氨基酸序列(例如,SEQ ID NO:2中序列之一和其突变形式)或两个核酸的同源性百分率,一个序列写在另一个序列下面以允许最佳比较(例如,可以将空位(gap)引入一个蛋白质或核酸序列以产生与另一蛋白质或另一核酸的最佳联配(alignment))。接着,比较相应氨基酸位置或核苷酸位置的氨基酸残基或核苷酸。如果一个序列(例如,SEQ IDNO:2中序列之一)中的一个位置与另一序列(例如,选自SEQ ID NO:2的序列的突变形式)中的对应位置被相同的氨基酸残基或相同的核苷酸占据,那么两个分子在该位置同源(即,本发明上下文中所用氨基酸或核酸“同源性”对应于氨基酸或核酸“同一性”)。二个序列的同源性百分率是序列共有的相同位置数的函数(即,%同源性=相同位置数/总位置数×100)。
可以通过向SEQ ID NO:1核苷酸序列中引入一个或多个核苷酸置换,添加或缺失以便向编码的蛋白质中引入一个或多个氨基酸置换、添加或缺失来产生分离的核酸分子,由此该分离的核酸分子编码与SEQ ID NO:2蛋白质序列同源的PSE。可以通过标准技术,诸如定点诱变和PCR介导的诱变向SEQ ID NO:1序列之一中引入突变。优选地,可以在一个或多个预测的非必需氨基酸残基处产生保守性氨基酸置换。在“保守性氨基酸置换”中,氨基酸残基与具有相似侧链的氨基酸残基交换。在本专业领域已经定义了具有相似侧链的氨基酸残基家族。这些家族包括具有碱性侧链的氨基酸(例如,赖氨酸、精氨酸、组氨酸),酸性侧链的氨基酸(例如,天冬氨酸、谷氨酸),不带电荷的极性侧链氨基酸(例如甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸),非极性侧链的氨基酸(例如,丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸),β-分支侧链的氨基酸(例如,苏氨酸、缬氨酸、异亮氨酸)和芳香族侧链的氨基酸(例如,酪氨酸、苯丙氨酸、色氨酸、组氨酸)。因此,优选地使PSE中预测的非必需氨基酸残基与来自相同侧链家族的另一种氨基酸残基交换。做为可替代方案,在另一个实施方式中,通过例如,饱和诱变,可以在所有或一部分编码PSE的序列中随机引入突变,然后可以筛选所得突变体是否存在这里所述的PSE活性,以鉴定保留PSE活性的突变体。SEQ ID NO:1序列之一在诱变后,可以重组地表达编码的蛋白质,然后可以例如,利用这里所述测定法(参见实施例部分)确定蛋白质的活性。
除了编码上述PSEs的核酸分子,本发明另一个方面涉及与其“反义”的分离的核酸分子。“反义”核酸包括与编码蛋白质的“有义”核酸互补的核苷酸序列,例如与双链cDNA分子的编码链互补或与mRNA序列互补的核苷酸序列。因此,反义核酸分子可以通过氢键结合有义核酸分子。反义核酸可以与完整的PSE编码链互补或者仅与其部分互补。在一个实施方式中,反义核酸分子与编码PSE的核苷酸序列的编码链的“编码区”是“反义”的。术语“编码区”指包含将翻译为氨基酸残基的密码子的核苷酸序列区域(例如,起始和终止于终止密码子,即,终止密码子前最后的密码子的完整编码区)。在另一实施方式中,反义核酸分子与编码PSE的核苷酸序列的编码链的“非编码区”是“反义”的。术语“非编码区”指位于编码区侧翼的5’和3’序列,其不翻译为氨基酸(即,也称为5’-和3’-非翻译区)。
考虑这里公开的PSE编码序列的编码链(例如,SEQ ID NO:1中所示序列),可以根据Watson-Crick碱基配对规则设计本发明的反义核酸。反义核酸分子可以与PSE mRNA的所有编码区互补,但是更优选仅与PSEmRNA的编码或非编码区的一部分“反义”的寡核苷酸。例如,反义寡核苷酸可以与PSE mRNA的翻译起始位置附近的区域互补。反义寡核苷酸可以有,例如约5,10,15,20,25,30,35,40,45或50或更多个核苷酸的长度。通过本领域已知的方法,利用化学合成和酶促连接反应,可以构建本发明的反义核酸。例如,利用天然核苷酸或各种修饰的核苷酸可以化学合成反义核酸(例如,反义寡核苷酸),所述修饰的核苷酸是可以增加分子的生物稳定性或增加反义和有义核酸间形成的双链体的物理稳定性的核苷酸;例如,可以利用硫代磷酸酯衍生物和吖啶取代的核苷酸。可以用于产生反义核酸的修饰核苷酸的例子有例如,5-氟尿嘧啶、5-溴尿嘧啶、5-氯尿嘧啶、5-碘尿嘧啶、次黄嘌呤、黄嘌呤、4-乙酰胞嘧啶、5-(羧基羟基甲基)尿嘧啶、5-羧基甲基氨基甲基-2-硫尿苷、5-羧甲基氨基甲基尿嘧啶、二氢尿嘧啶、β-D-半乳糖基queosine、肌苷、N6-异戊烯基腺嘌呤、1-甲基鸟嘌呤、1-甲基肌苷、2,2-二甲基鸟嘌呤、2-甲基腺嘌呤、2-甲基鸟嘌呤、3-甲基胞嘧啶、5-甲基胞嘧啶、N6-腺嘌呤、7-甲基鸟嘌呤、5-甲基氨基甲基尿嘧啶、5-甲氧基氨基甲基-2-硫尿嘧啶、β-D-甘露糖基queosine、5’-甲氧基羧基甲基尿嘧啶、5-甲氧基尿嘧啶、2-甲基硫代-N6-异戊基腺嘌呤、尿嘧啶-5-氧乙酸(v)、wybutoxosine、假尿嘧啶、queosine、2-硫代胞嘧啶、5-甲基-2-硫尿嘧啶、2-硫尿嘧啶、4-硫尿嘧啶、5-甲基尿嘧啶、尿嘧啶-5-氧乙酸甲酯、尿嘧啶-5-氧乙酸(v)、5-甲基-2-硫尿嘧啶、3-(3-氨基-3-N-2-羧基丙基)尿嘧啶、(acp3)w和2,6-二氨基嘌呤。可替代地,利用已经以反义方向亚克隆了核酸的表达载体,可以生物学地产生反义核酸(即,由引入的核酸所转录的RNA相对于靶目的核酸是反义方向,这在下面的小节里将更详细地描述)。
通常地,将本发明反义核酸分子施用给细胞或者原位产生本发明反义核酸分子,这样它们可以杂交或结合编码PSE的细胞mRNA和/或基因组DNA,由此,例如,通过抑制转录和/或翻译而抑制该蛋白质的表达。杂交可以通过常规核苷酸互补性形成稳定双链体而实现,或者,例如在结合DNA双链体的反义核酸分子的情况下,杂交可以通过在双螺旋大沟中的特异相互作用而实现。可以修饰反义分子,例如,将反义核酸分子与结合细胞表面受体或抗原的肽或抗体结合,使得反义分子可以特异性结合在选定的细胞表面表达的受体或抗原上。利用这里所述的载体,也可以给细胞提供反义核酸分子。优选其中反义核酸分于处于强原核生物、病毒或真核生物启动子(包括植物启动子)控制下的载体构建体用于获得充足细胞内浓度的反义分子。
在另一实施方式中,本发明反义核酸分子是α-异头核酸分子(α-anomeric nucleic acid)。α-异头核酸分子与互补RNA形成特殊的双链杂交体,与通常的β-单元不同,其两条链走向互相平行(Gaultier等.(1987)Nucleic Acids Res.15:6625-6641)。而且,反义核酸分子可以包含2’-o-甲基核糖核苷酸(Inoue等.(1987)Nucleic Acids Res.15:6131-6148)或嵌合RNA-DNA类似物(Inoue等.(1987)FEBS Lett.215:327-330)。
在另一实施方式中,本发明的反义核酸是核酶。核酶是具有核糖核酸酶活性的催化性RNA分子,其可以切割与其有互补区的单链核酸,如mRNA。因此,核酶,例如锤头状核酶(如在Haselhoff和Gerlach(1988)Nature 334:585-591中所述)可以用于PSE mRNA转录物的催化切割,以抑制PSE mRNA的翻译。根据这里公开的PSE cDNA核苷酸序列(即,SEQ IDNO:1中38_Ck21_g07fwd)或者基于按照本发明所教导的方法分离的异源序列,可以设计对编码PSE的核酸具有特异性的核酶。例如,可以构建四膜虫-L-19-IVS RNA的衍生物,其中活性位点的核苷酸序列与编码PSE的mRNA中正待切割的核苷酸序列互补。参见,例如Cech等,US4,987,071和Cech等,US5,116,742。做为可替代方案,可以利用PSE mRNA从RNA分子池中筛选具有特异核糖核酸酶活性的催化性RNA(参见,例如Bartel,D.,和Szostak,J.W.(1993)Science 261:1411-1418)。
做为可替代方案,可以通过定向与PSE核苷酸序列的调节区(例如,PSE启动子和/或增强子)互补的核苷酸序列,以形成三股螺旋结构抑制靶细胞中PSE基因转录,而抑制PSE基因表达(通常地参见,Helene,C.(1991)Anticancer Drug Res.6(6)569-84;Helene,C.,等.(1992)Ann.N.Y.Acad.Sci.660:27-36;和Maher.L.J.(1992)Bioassays 14(12):807-815)。
做为另一可替代方案,可以通过共抑制方式抑制PSE基因表达。有利地,也可以同时表达联合的反义/有义链(RNAi技术)。
B.基因构建体
本发明另一实施方式是新的基因构建体,其意味着将来源于植物或真菌的分离核酸(其编码能延伸脂肪酸分子中具有至少2个双键的C16-/或C18-脂肪酸至少2个碳原子的多肽),或者将SEQ ID NO:1的基因序列,其同系物,衍生物或类似物与有利于增加基因表达的一个或多个调节信号功能性地连接。这些调节序列的例子是结合诱导物或阻抑物并且以这种方式调节核酸的表达的序列。除了这些新的调节序列外,在实际结构基因前的天然调节序列还可以存在,并且,如果适当,可以对它们进行遗传修饰,以使天然调节作用关闭和基因表达增强。然而,基因构建体也可以有较简单的结构,即,在序列SEQ ID NO:1或其同系物前没有插入另外的调节信号,并且天然启动子及其调节作用未被缺失。相反地,可以突变天然调节序列,使得不再发生调节作用,而增强基因表达。有利地,基因构建体还可以包含一个或多个通常所说的增强子序列,其功能性地连接启动子,并且允许核酸序列的表达增加。还可以在DNA序列3’末端插入有利的序列,例如另外的调节元件或终止子。在基因构建体中,延长酶基因可以存在一个或多个拷贝。对于在生物体中插入另外的基因,有利的是在基因构建体中存在另外的基因。
用于此新方法的有利的调节序列存在于,例如启动子诸如cos、tac、trp、tet、trp-tet、lpp、lac、lpp-lac、lacIq、T7、T5、T3、gal、trc、ara、SP6、λ-PR或λ-PL启动子中,并且有利地用于革兰氏阴性细菌。另外有利的调节序列存在于,例如,革兰氏阳性启动子amy和SPO2中,酵母或者真菌启动子ADC1、MFα、AC、P-60、CYC1、GAPDH、TEF、rp28、ADH中,或者植物启动子CaMV 35S(Franck等,Cell21(1980)285-294)、PRP1(Ward等,Plant.Mol.Biol.22(1993)、SSU、OCS、lib4、usp、STL S1、B33、nos中,或者泛素或菜豆蛋白启动子中。在本发明上下文中有利的启动子还有诱导型启动子,诸如在EP-A-0 388 186(苄基氨磺酰-诱导型),Plant J.2,1992:397-404(Gatz等,四环素-诱导型),EP-A-0 335 528(脱落酸-诱导型)或WO 93/21334(乙醇-或环己烯醇-诱导型)中描述的启动子。其它适合的植物启动子是胞质FBPase或马铃薯ST-LSI启动子(Stockhaus等,EMBO J.8,1989,2445),在EP-A-0 249 676中描述的结节特异性启动子或大豆(Glycine max)磷酸核糖焦磷酸转酰胺酶启动子(Genbank Accession No.U87999)。特别有利的启动子是允许在参与脂肪酸生物合成的组织中表达的启动子。非常特别有利的是种子特异性启动子,诸如usp、LEB4、菜豆蛋白或napin启动子。其它特别有利的启动子是可以用于单子叶植物或双子叶植物的种子特异性启动子,见US 5,608,152(油籽油菜napin启动子)、WO 98/45461(拟南芥菜豆蛋白启动子)、US5,504,200(菜豆的菜豆蛋白启动子)、WO 91/13980(芸苔属(Brassica)Bce4-启动子),Baeumlein等,Plant J.,2,2,1992:233-239(豆科LEB4启动子),这些启动子适于双子叶植物。启动子,例如大麦lpt-2或lpt-1启动子(WO 95/15389和WO 95/23230)、大麦醇溶蛋白启动子和WO99/16890中所述的其它适宜启动子适用于单子叶植物。
原则上,对于本发明的新方法,可以利用所有天然启动子与其调节序列,诸如上述启动子。此外,利用合成启动子也是可能和有利的。
如上所述,基因构建体也可以含有将要引入生物体中的另外基因。调节基因诸如编码诱导物、阻抑物或酶(由于其酶促活性而参与生物合成途径的一个或多个基因调节)的基因,可以有利地引入到宿主生物体中,并且在其中表达。这些基因可以具有异源或同源来源。插入的基因可以有它们自身的启动子或者可以处于序列SEQ ID NO:1或其同系物的启动子控制下。
为了表达存在的其它基因,有利地,基因构建体还包含用于增强表达的3’-和/或5’-端调节序列,并且可以依据所选宿主生物体和基因来选择这些序列以便得到最佳表达。
如上所述,这些调节序列旨在于使基因的特异表达和蛋白质表达成为可能。取决于宿主生物体,这可能意味着,例如,基因仅在诱导后表达或超表达,或者立即表达和/或超表达。
而且,优选地,调节序列或调节因子可以对已引入的基因的表达产生有利的影响,由此增强表达。以此方式,利用强转录信号,诸如启动子和/或增强子,可以在转录水平上有利地增强调节元件。然而,还可以例如,通过改进mRNA稳定性来增强翻译。
C.重组表达载体和宿主细胞
本发明另一个方面涉及包含编码PSE(或其部分)的核酸的载体,优选地表达载体。如本发明上下文中所用术语“载体”指可以运转与其结合的另一核酸的核酸分子。一种类型的载体是“质粒”,其为环状双链DNA环,其中可以连接另外的DNA片段。另一种类型的载体是病毒载体,其中可以将额外的DNA片段连接到病毒基因组中。有些载体具有在其所引入的宿主细胞中自主复制的能力(例如,具有细菌复制起点的细菌载体和游离型哺乳动物载体)。其它载体(例如非游离型哺乳动物载体)一旦引入宿主细胞后将整合进入宿主细胞基因组中,并且与宿主基因组一起复制。此外,有些载体可以控制与它们功能性连接的基因的表达。这里将这些载体称为“表达载体”。通常,适于重组DNA技术的表达载体采用质粒的形式。由于质粒是最常用的载体形式,故在本说明书中,“质粒”和“载体”可以相互交换地使用。然而,本发明旨在包括发挥相似作用的其它形式的表达载体,如病毒载体(例如,复制缺陷型逆转录病毒、腺病毒和腺相关病毒)。而且,术语载体也旨在包括本领域技术人员已知的其它载体,诸如噬菌体、病毒诸如SV40、CMV、杆状病毒、腺病毒、转座子、IS元件、噬菌粒、噬粒、粘粒、线性或环状DNA。
本发明的重组表达载体以适于在宿主细胞中表达核酸的形式包含本发明核酸或本发明基因构建体,这意味着重组表达载体包含一个或多个调节序列,其中基于用于表达的宿主细胞选定所述调节序列,所述调节序列功能性地连接待表达的核酸序列。在重组表达载体中,“功能性地连接”意指目的核苷酸序列与调节序列结合从而使得核苷酸序列可能表达,并且它们的结合还使得两个序列都完成了归因于序列的预期功能(例如,在体外转录/翻译系统中或当将载体引入宿主细胞时在宿主细胞中)。术语“调节序列”旨在包括启动子、增强子和其它表达控制元件(例如,聚腺苷酸化信号)。例如,在Goeddel:Gene Expression Technology:Methods inEnzymology 185,Academic出版社,San Diego,CA(1990)描述了这些调节序列或参见:Gruber和Crosby,《Methods in Plant Molecular Biologyand Biotechnology》,CRC出版社,Boca Raton,Florida,编辑:Glick和Thompson,第7章,89-108,包括其中的参考文献。调节序列包括控制核苷酸序列在许多类型宿主细胞中组成型表达的那些序列,和控制核苷酸序列仅在一些条件下于一些宿主细胞中表达的那些序列。本领域技术人员知道表达载体的设计可以取决于多种因素,诸如待转化的宿主细胞的选择,期望蛋白质表达的程度等。可以将本发明表达载体引入宿主细胞,以产生这里所述核酸编码的蛋白质或肽,包括融合蛋白质或融合肽(例如,PSEs,突变形式的PSEs,融合蛋白质等)。
可以设计本发明重组表达载体以在原核生物或真核生物细胞中表达PSEs。例如,可以在细菌细胞、诸如谷氨酸棒杆菌(C.glutamicum),昆虫细胞(利用杆状病毒表达载体),酵母和其它真菌细胞(参见,Romanos,M.A.,等.(1992)“酵母中外源基因表达:综述”,Yeast 8:423-488;vanden Hondel,C.A.M.J.J.,等.(1991)“丝状真菌中异源基因表达”,《MoreGene Manipulations in Fungi》,J.W.Bennet & L.L.Lasure,编辑,396-428页:Academic出版社:San Diego;和van den Hondel,C.A.M.J.J.,& Punt,P.J.(1991)“用于丝状真菌的基因转移系统和载体开发”,《AppliedMolecular Genetics of Fungi》,Peberdy,J.F.,等,编辑,1-28页,Cambridge University出版社:Cambridge),藻类(Falciatore等,1999,Marine Biotechnology.1,3:239-251),下面类型的纤毛虫:全毛亚纲(Holotrichia)、缘毛亚纲(Peritrichia)、旋辱亚纲(Spirotrichia)、吸管亚纲(Suctoria)、四膜虫属(Tetrahymena)、草履虫属(Paramecium)、豆形虫属(Colpidium)、瞬目虫属(Glaucoma)、匙口虫属(Platyophrya)、Potomacus、Pseudocohnilembus、游仆虫属(Euplotes)、Engelmaniella和棘尾虫属(Stylonychia),特别是Stylonychia lemnae(使用载体并按照WO98/01572中的转化方法实现),和多细胞植物的细胞(参见,Schmidt,R.和Willmitzer,L.(1988)“根癌农杆菌介导的拟南芥叶和子叶外植体的高效转化”,Plant Cell Rep.:583-586;Plant Molecular Biology andBiotechnology,C出版社,Boca Raton,Florida,6/7章,71-119页(1993);F.F.White,B.Jenes等,Techniques for Gene Transfer,《TransgenicPlants》,1卷,Engineering and Utilization,编辑:Kung和R.Wu,Academic出版社(1993),128-43;Potrykus,Annu.Rev.Plant Physiol.Plant Molec.Biol.42(1991),205-225(和其中引用的参考文献))或非人类哺乳动物细胞中表达PSE基因。而且,在Goeddel,Gene Expression Technology:Methods in Enzymology 185,Academic出版社,San Diego,CA(1990)中也讨论了适宜的宿主细胞。做为可替代方案,可以例如,利用T7启动子调节序列和T7聚合酶,体外转录和翻译重组表达载体。
在原核生物中,通常用如下包含组成型或诱导型启动子的载体表达蛋白质,所述启动子控制融合蛋白质或非融合蛋白质的表达。融合载体通常在重组蛋白质氨基末端,但也可以在C末端将一系列氨基酸添加到其中所编码的蛋白质上,或者将其融合在蛋白质的适合区域中。这些融合载体通常具有3个任务:1)增强重组蛋白质的表达;2)增加重组蛋白质的可溶性和3)通过作为亲和纯化中的配体,支持重组蛋白质的纯化。在融合表达载体的情况下,在融合单元和重组蛋白质连接的位点常常引入蛋白酶水解切割位点,这样融合蛋白质纯化后,重组蛋白质可以与融合单元分离。这些酶和它们的相应识别序列包括因子Xa,凝血酶和肠激酶。
典型的融合表达载体是例如,pGEX(Pharmacia Biotech Inc;Smith,D.B.,和Johnson,K.S.(1988)Gene 67:31-40),pMAL(New EnglandBiolabs,Beverly,MA)和pRIT5(Pharmacia,Piscataway,NJ),其中谷胱甘肽S-转移酶(GST),麦芽糖-E-结合蛋白质或蛋白质A与重组靶蛋白质融合。在一个实施方式中,将PSE编码序列克隆到pGEX表达载体中以产生编码融合蛋白质的载体,该融合蛋白质从N末端到C末端包含GST-凝血酶切割位点-X-蛋白质。利用谷胱甘肽-琼脂糖树脂,通过亲和层析可以纯化此融合蛋白质。通过用凝血酶切割融合蛋白质可以获得不与GST融合的重组PSE。
适宜的诱导型非融合大肠杆菌(E.coli)表达载体的例子是例如,pTrc(Amann等.(1988)Gene 69:301-315)和pET 11d(Studier等,GeneExpression Technology:Methods in Enzymology 185,Academic出版社,San Diego,California(1990)60-89)。pTrc载体的靶基因表达是基于宿主RNA聚合酶从杂合trp-lac融合启动子的转录。从pET 11d载体的靶基因表达是基于从T7-φ10-lac融合启动子的转录,其中共表达的病毒RNA聚合酶(T7 gnl)介导该转录。该病毒聚合酶由宿主株系BL21(DE3)或HMS174(DE3)中包含位于lacUV 5启动子转录控制之下的T7φ1基因的居住λ原噬菌体提供。
本领域技术人员已知适于用在原核生物体中的其它载体;这些载体是,例如,在大肠杆菌(E.coli)中的pLG338,pACYC184,pBR系列诸如pBR322,pUC系列诸如pUC18或pUC19,M113mp系列,pKC30,pRep4,pHS1,pHS2,pPLc236,pMBL24,pLG200,pUR290,pIN-III113-B1,λgt11或pBdCI,在链霉菌属(Streptomyces)中的pIJ101,pIJ364,pIJ702或pIJ361,在芽孢杆菌属(Bacillus)中的pUB110,pC194或pBD214,在棒状杆菌属(Corynebacterium)中的pSA77或pAJ667。
最大化重组蛋白质表达的策略是在通过蛋白酶水解切割重组蛋白质的能力被破坏的宿主细菌中表达蛋白质(Gottesman,S.,Gene ExpressionTechnology:Methods in Enzymology 185,Academic出版社,San Diego,California(1990)119-128)。另一个策略是修饰待插入到表达载体中的核酸的核酸序列,这样每个氨基酸的每个密码子都是选定用于表达的细菌诸如谷氨酸棒杆菌(C.glutamicum)中优先使用的密码子(Wada等.(1992)Nucleic Acids Res.20:2111-2118)。可以通过标准DNA合成技术进行本发明核酸序列的修饰。
在另一实施方式中,PSE表达载体是酵母表达载体。用于在酿酒酵母(S.cerevisiae)中表达的载体的例子包括pYepSec1(Baldari等.(1987)Embo J.6:229-234),pMFa(Kurjan和Herskowitz(1982)Cell30:933-943),pJRY88(Schultz等.(1987)Gene 54:113-123)和pYES2(Invitrogen Corporation,San Diego,CA)。适于用在其它真菌,诸如丝状真菌中的载体和载体构建方法,包括在van den Hondel,C.A.M.J.J.,&Punt,P.J.(1991)“开发用于丝状真菌的基因转移系统和载体”,《AppliedMolecular Genetics of fungi》,J.F.Peberdy等,编辑,1-28页,CambridgeUniversity出版社:Cambridge中或在More Gene Manipulations in Fungi[J.W.Bennet & L.L.Lasure,编辑,396-428页:Academic出版社:San Diego]中详细描述的载体和载体构建方法。其它适宜的酵母载体是例如2μM、pAG-1、YEp6、YEp13或pEMBLYe23。
做为可替代方案,利用杆状病毒表达载体,可以在昆虫细胞中表达本发明PSEs。可获得用于在培养的昆虫细胞(例如Sf9)中表达蛋白质的杆状病毒载体包括pAc系列(Smith等,(1983)Mol.Cell Biol.3:2156-2165)和pVL系列(Lucklow和Summers(1989)Virology 170:31-39)。
上述载体只是可能的适宜载体的简短综述。其它质粒是本领域技术人员已知的,并且例如在Cloning Vectors(Pouwels,P.H.,等编辑,Elsevier,Amsterdam-New York-Oxford,1985,ISBN 0 444 904018)中描述了其它的质粒。
在又一个实施方式中,利用哺乳动物表达载体,在哺乳动物细胞中表达本发明的核酸。哺乳动物表达载体的例子包括pCDM8(Seed,B.(1987)Nature 329:840)和pMT2PC(Kaufman等.(1987)EMBO J.6:187-195)。当用在哺乳动物细胞中时,常常由病毒调节元件提供表达载体的控制功能。经常使用的启动子来源于,例如多瘤病毒、腺病毒2、巨细胞病毒、猿猴病毒40。可以在Sambrook,J.,Fritsch,E.F.,和Maniatis,T.,Molecular Cloning:A Laboratory Manual,第二版,Cold Spring Harbor Laboratory,ColdSpring Harbor Laboratory出版社,Cold Spring Harbor,NY,1989之第16和17章中发现用于原核生物和真核生物细胞的其它适合的表达系统。
在另一个实施方式中,重组哺乳动物表达载体可以控制核酸优选地在特定细胞类型中表达(例如,利用组织特异性调节元件表达核酸)。组织特异性调节元件是本领域已知的。适宜的组织特异性启动子的非限制性例子为,例如,白蛋白启动子(肝脏特异性的;Pinkert等.(1987)Genes Dev.1:268-277),淋巴特异性启动子(Calame和Eaton(1988)Adv.Immunol.43:235-275),特别是T-细胞受体启动子(Winoto和Baltimore(1989)EMBO J.8:729-733)和免疫球蛋白启动子(Banerii等.(1983)Cell33:729-740;Queen和Baltimore(1983)Cell33:741-748),神经元特异性启动子(例如,神经丝蛋白启动子;Byrne和Ruddle(1989)PNAS86:5473-5477),胰腺特异性启动子(Edlund等,(1985)Science230:912-916)和乳腺特异性启动子(例如,乳清启动子;美国专利4,873,316和欧洲专利申请公开号:264 166)。也包括发育调节的启动子,例如,小鼠hox启动子(Kessel和Gruss(1990)Science 249:374-379)和甲胎蛋白启动子(Campes和Tilghman(1989)Genes Dev.3:537-546)。
在另一实施方式中,可以在单细胞植物细胞(诸如藻类)中(参见Falciatore等,1999,Marine Biotechnology 1(3):239-251和其中引用的参考文献),和在来源于高等植物(例如,种子植物,诸如作物)的植物细胞中表达本发明的PSEs。植物表达载体的例子包括在:Becker,D.,Kemper,E.,Schell,J.,和Masterson,R.(1992)“左边界近侧具有选择标志的新植物二元载体”,Plant Mol.Biol.20:1195-1197;和Bevan,M.W.(1984)“用于植物转化的二元农杆菌载体”,Nucl.Acids Res.12:8711-8721;用于高等植物中基因转移的载体,《Transgenic Plants》,1卷,Engineeringand Utilization,Kung和R.Wu编辑,Academic出版社,1993,15-38页中详细描述的植物表达载体。
优选地,植物表达盒子包含可以控制植物细胞中基因表达的调节序列,这些调节序列进行功能性连接,因此每个序列都可以完成其功能,诸如转录终止,例如聚腺苷酸化信号。优选的聚腺苷酸化信号是来源于根瘤农杆菌(Agrobacterium tumefaciens)t-DNA,如Ti质粒pTiACH5的基因3(已知其为章鱼碱合成酶)的聚腺苷酸化信号(Gielen等,EMBO J.3(1984)835以及以下页)或其功能性等同物,但是在植物中有功能活性的所有其它终止子也是适宜的。
由于植物基因表达经常并非在转录水平上受限,故植物表达盒子优选含有其它功能性连接的序列如翻译增强子,例如含有来自烟草花叶病毒的5’-非翻译前导序列的过驱动序列,以提高蛋白质/RNA比率(Gallie等1987,核酸研究(Nucl.Acids Research)15:8693-8711)。
植物基因表达必须功能性地连接适宜的启动子,该启动子可以在正确时间以细胞或组织特异性方式实现基因表达。优选的启动子是产生组成型表达的启动子(Benfey等,EMBO J.8(1989)2195-2202),如来源于植物病毒的启动子,诸如35S CAMV(Franck等,Cell 21(1980))285-294),19S CaMV(也参见US 5352605和WO 84/02913)或植物启动子诸如US4,962,028中所述核酮糖二磷酸羧化酶/加氧酶小亚基启动子。
优选用于植物基因表达盒子中进行功能性连接的其它序列是导向序列,其是将基因产物靶向相应细胞区室所需的序列(综述参见Kermode,Crit.Rev.Plant Sci.15,4(1996)285-423和其中引用的参考文献),例如将基因产物靶向进入液泡、细胞核,各种类型的质体诸如造粉体、叶绿体、色质体、细胞外间隙、线粒体、内质网、油质体、过氧化物酶体和植物细胞的其它区室。
通过化学诱导型启动子也可以利于植物基因表达(对于综述,参见Gatz 1997,Annu.Rev.Plant Physiol.Plant Mol.Biol.,48:89-108)。当期望就时机选择上以特定方式发生基因表达时,化学诱导型启动子特别适合。这种启动子的例子是水杨酸诱导型启动子(WO 95/19443),四环素诱导型启动子(Gatz等.(1992)Plant J.2,397-404)和乙醇诱导型启动子。
其它适合的启动子是对生物或非生物胁迫条件应答的启动子,例如病原体诱导的PRP1基因启动子(Ward等,Plant.Mol.Biol.22(1993)361-366),热诱导型番茄hsp80启动子(US 5,187,267),低温诱导型马铃薯α-淀粉酶启动子(WO 96/12814)或创伤诱导型pinII启动子(EP-A-0 375 091)。
特别优选的启动子是在发生脂质和油生物合成的组织和器官中,在种子细胞,诸如胚乳细胞和发育的胚细胞中导致基因表达的启动子。适合的启动子是油籽油菜napin基因启动子(US 5,608,152),蚕豆(Vicia faba)USP启动子(Baeumlein等,Mol Gen Genet,1991,225(3):459-67),拟南介(Arabidopsis)油质蛋白启动子(WO 98/45461),菜豆(Phaseolusvulgaris)的菜豆蛋白启动子(US 5,504,200),芸苔属(Brassica)Bce4启动子(WO 91/13980)或豆球蛋白B4启动子(LeB4;Baeumlein等,1992,Plant Journal,2(2):233-9),和在单子叶植物诸如玉米、大麦、小麦、黑麦、水稻等中导致种子特异性表达的启动子。合适的值得注意的启动子是大麦lpt2或lpt1基因启动子(WO 95/15389和WO 95/23230),或在WO99/16890中所述的启动子(来源于大麦的大麦醇溶蛋白基因、水稻谷蛋白基因、水稻米谷蛋白基因、水稻谷醇溶蛋白基因、小麦麦醇溶蛋白基因、小麦谷蛋白基因、玉米的玉米醇溶蛋白基因、燕麦谷蛋白基因、高梁kasirin基因和黑麦secalin基因的启动子)。
因为质体是合成脂质生物合成前体和一些终产物的区室,所以导致质体特异性表达的启动子也特别适宜。适合的启动子,诸如在WO 95/16783和WO 97/06250中描述的病毒RNA聚合酶启动子,和WO 99/46394中所述的拟南介属(Arabidopsis)clpP启动子。
本发明还提供了包含本发明DNA分子的重组表达载体,其中该DNA分子以反义方向克隆到表达载体中,即DNA分子功能性地连接调节序列以致(通过转录此DNA分子)可以允许与PSE mRNA“反义”的RNA分子表达。可以选择能控制反义RNA分子在多种细胞类型中连续表达的调节序列,例如病毒启动子和/或增强子,使其功能性地与以反义方向克隆的核酸连接,或者可以选择能控制反义RNA组成型、组织特异性或细胞类型特异性表达的调节序列。反义表达载体可以以重组质粒,噬菌粒或减毒病毒的形式存在,其中在高效调节区控制下产生反义核酸,而该调节区的活性可以由载体引入的细胞类型来确定。对于通过反义基因调节基因表达的说明,参见Weintraub,H.,等,Antisense-RNA as a molecular tool for genetic analysis,Reviews-Trends in Genetics,1卷(1)1986。
本发明另一方面涉及引入了本发明重组表达载体的宿主细胞。在本发明上下文中可互换地使用术语“宿主细胞”、“重组宿主细胞”和“转基因宿主细胞”。自然地,这些术语不仅指特定的靶细胞,也指该细胞的子代或潜在的子代。因为由于突变和环境影响,在随后世代中可能出现特定的修饰,所以该子代不必与亲代细胞相同,但是仍包括在这里所用此术语的范围内。
宿主细胞可以是原核生物或真核生物细胞。例如,可以在细菌细胞诸如谷氨酸棒杆菌(C.glutamicum)、昆虫细胞、真菌细胞或哺乳动物细胞(如中国仓鼠卵巢细胞(CHO)或COS细胞)、藻类、纤毛虫、植物细胞、真菌或其它微生物诸如谷氨酸棒杆菌(C.glutamicum)中表达PSE。本领域技术人员还已知其它适合的宿主细胞。
通过常规转化或转染技术,可以将载体DNA引入原核生物或真核生物细胞。如本发明上下文中所用术语“转化”和“转染”,结合和转导意在包括本领域已知的将外源核酸(例如,DNA)引入宿主细胞的大量方法,包括磷酸钙或氯化钙共沉淀,DEAE-葡聚糖-介导的转染、脂转染、天然感受态、化学介导的转化、电穿孔或微粒轰击。在Sambrook等.(MolecularCloning:A Laboratory Manual,第二版,Cold Spring Harbor Laboratory,Cold Spring Harbor Laboratory出版社,Cold Spring Harbor,NY,1989)和其它实验室教科书诸如Methods in Molecular Biology,1995,44卷,Agrobacterium protocols,编辑:Gartland和Davey,Humana出版社,Totowa,New Jersey中可以发现用于宿主细胞,包括植物细胞转化或转染的适宜方法。
关于哺乳动物细胞的稳定转染,已知根据所用的表达载体和所用的转染技术,仅仅少数细胞将外源DNA整合进入它们的基因组中。为了鉴定和选定这些整合体,通常将编码选择标记的基因(例如,对抗生素的抗性)和目的基因一起引入宿主细胞。优选的选择标记包括赋予对药物诸如G418、潮霉素和氨甲喋呤抗性的选择标记,或者在植物中赋予对除草剂诸如草甘膦或草胺膦(glufosinate)抗性的选择标记。其它适合的标记是,例如,编码参与例如糖或氨基酸的生物合成途径的基因的标记,如β-半乳糖苷酶、ura3或ilv2。编码基因诸如萤光素酶、gfp或其它荧光基因的标记也是适合的。这些标记可以用在例如通过常规方法已经缺失了这些基因从而这些基因不起作用的突变体中。而且,可以将编码PSE的核酸和编码选择标记的核酸放在相同载体上或者可以放在分离的载体上引入宿主细胞。可以通过例如,药物筛选鉴定被所引入的核酸稳定转染的细胞(例如,整合了选择标记的细胞存活,而其它细胞死亡)。
为了产生同源重组微生物,产生含有PSE基因的至少一个片段的载体,其中在该PSE基因片段中引入缺失、添加或置换以便修饰PSE基因,由此,例如功能性破坏PSE基因。优选地,该PSE基因是展叶剑叶藓或致病疫霉的PSE基因,但是也可以利用来源于其它生物体、甚至来源于哺乳动物、真菌或昆虫来源的同系物或类似物。在优选的实施方式中,设计载体,使得同源重组后内源PSE基因被功能性地破坏(即,不再编码功能性蛋白质,也称为剔出载体)。做为可替代方案,可以设计载体,以便一旦同源重组后,内源PSE基因发生突变或以另外的方式被修饰,但是仍旧编码功能性蛋白质(例如,可以修饰上游调节区,从而导致内源PSE表达的改变)。为了通过同源重组产生点突变,也可以利用DNA-RNA杂合体,也称为chimeraplasty,可参见Cole-Strauss等,1999,Nucleic Acids Research 27(5):1323-1330和Kmiec,Gene therapy,1999,American Scientist,87(3):240-247。
在用于同源重组的载体中,修饰的PSE基因片段由PSE基因中的其它核酸位于其5’和3’端侧翼,这样载体上存在的外源PSE基因和微生物或植物中的内源PSE基因之间可能同源重组。额外的侧翼PSE核酸应足够长以便与内源基因成功的同源重组。通常地,载体中存在几百个碱基对到成千碱基的侧翼DNA(同时在5’和3’端)(对于用于同源重组的载体的描述,参见,例如,Thomas,K.R.,和Capecchi,M.R.(1987)Cell 51:503),或者对于cDNA基础上展叶剑叶藓中的重组,参见,Strepp等,1998,Proc.Natl.Acad.Sci.USA 95(8):4368-4373)。(例如,通过聚乙二醇介导的DNA方法)将载体引入微生物或植物细胞,并且利用本领域已知的技术筛选所引入的PSE基因已经与内源PSE基因进行同源重组的细胞。
在另一实施方式中,可以产生含有选定系统的重组生物体诸如微生物,该系统将允许调节引入的基因的表达。例如,载体中将PSE基因置于lac-操纵子控制下将允许PSE基因仅在IPTG存在的情况下表达。这些调节系统是本领域已知的。
在培养基或大田中生长的本发明的宿主细胞,如原核生物或真核生物宿主细胞可以用于生产(即,表达)PSE。在植物中,作为备选方法,还可以通过电穿孔或农杆菌介导的基因转移将DNA直接转移到发育的花中。因此,本发明还提供了利用本发明宿主细胞生产PSEs的方法。在一个实施方式中,该方法包括:在适合培养基中培养本发明宿主细胞(编码PSE的重组表达载体已经引入该宿主细胞内,或者编码野生型或修饰的PSE的基因已经引入该宿主细胞基因组中),直到产生PSE。在另一实施方式中,该方法包括:从培养基或宿主细胞分离PSEs。
原则上适于摄取本发明核酸、本发明新的基因产物或本发明载体的宿主细胞可以是所有原核生物或真核生物。有利地,所用宿主生物体是例如细菌、真菌、酵母、非人动物细胞或植物细胞。其它有利的生物体是非人动物或优选地,植物或其部分。优选使用真菌、酵母或植物,特别优选地是真菌或植物,非常特别优选地是含有大量脂质化合物的植物,诸如油料作物,如油籽油菜、月见草、canola、花生、亚麻籽、大豆、蓟、向日葵、琉璃苣或植物诸如玉米、小麦、黑麦、燕麦、黑小麦、水稻、大麦、棉花、木薯、胡椒、万寿菊、茄科(solanaceae)植物诸如马铃薯、烟草、茄子和番茄,蚕豆属种(Vicia Species),豌豆、紫花苜蓿、灌木植物(咖啡、可可、茶树),柳属种(Salix Species),树(油棕、椰子树)和多年生草类和饲料作物。本发明特别优选的植物是油料作物诸如大豆、花生、油籽油菜、canola、向日葵、红花、树(油棕、椰子树)。
提及例如核酸序列、包含所述核酸序列的表达盒子(=基因构建体)或载体或用本发明核酸序列、表达盒子或载体转化的生物体时,“转基因”指通过重组方法产生的所有那些构建物,其中:
a)本发明的核酸序列,或
b)与本发明核酸序列可操作连接的遗传控制序列,例如,启动子,或
c)(a)和(b)不在它们的天然遗传环境中或者已经通过重组方法被修饰,可能的修饰的例子是一个或多个核苷酸残基的置换、添加、缺失、倒位或插入。
“天然遗传环境”指来源生物体中的天然染色体基因座或在基因组文库中存在。在基因组文库的情况下,优选至少部分保留核酸序列的天然遗传环境。该环境至少位于核酸序列的单侧,并且有至少50bp、优选地,至少500bp,特别优选地,至少1000bp,非常特别优选地,至少5000bp的序列长度。当通过非天然、合成(“人工”)方法,诸如,诱变处理而修饰PSE基因后,天然的表达盒子-例如,本发明核酸序列的天然启动子与所讨论的PSE基因的天然联合-即成为转基因表达盒子。例如,在US 5,565,350或WO 00/15815中已经描述了这种方法。
本发明还涉及用至少一个本发明核酸序列、表达盒子或载体转化的转基因生物体,并涉及细胞、细胞培养物、组织、部分——诸如,在植物生物体情况下,叶、根等——或者来源于这种生物体的繁殖材料。
D.分离的PSE
本发明的另一方面涉及分离的PSEs和其生物活性部分。当通过重组DNA技术产生“分离的”或“纯化的”蛋白质或其生物活性部分时,其基本不含细胞材料,或者当化学合成它时,基本不含化学前体或其它化学试剂。术语“基本不含细胞材料”包括这样的PSE制品,其中蛋白质与天然或重组产生它的细胞的细胞成分分离。在一个实施方式中,术语“基本不含细胞材料”包括具有小于约30%(基于干重)非PSE(这里也称为“杂质蛋白”),更优选地小于约20%非PSE,甚至更优选地小于约10%非PSE,最优选地小于约5%非PSE的PSE制品。当通过重组技术生产PSE或其生物活性部分时,它也基本不含培养基,即,培养基占蛋白质制品体积的大约20%以下,更优选地约10%以下,最优选地约5%以下。术语“基本不含化学前体或其它化学试剂”包括这样的PSE制品,其中蛋白质与参与蛋白质合成的化学前体或其它化学试剂分离。在一个实施方式中,术语“基本不含化学前体或其它化学试剂”包括具有小于约30%(基于干重)化学前体或非PSE化学试剂,更优选地小于约20%化学前体或非PSE化学试剂,甚至更优选地小于约10%化学前体或非PSE化学试剂,最优选地小于约5%化学前体或非PSE化学试剂的PSE制品。在优选的实施方式中,分离的蛋白质或其生物活性部分显示没有来自于PSE所来源的相同生物体的杂质蛋白质。通常地,通过在其它真菌、植物或微生物,例如细菌诸如谷氨酸棒杆菌(C.glutamicum),真菌诸如被孢霉属(Mortierella),酵母诸如酵母属(Saccharomyces),或纤毛虫,藻类诸如展叶剑叶藓或油料作物中重组表达例如致病疫霉PSE来产生这些蛋白质。
本发明分离的PSE或其部分也可以参与致病疫霉中细胞膜合成所需化合物的代谢或参与通过这些膜的分子转运,或者参与脂肪酸代谢,或者具有表I中所述一种或多种活性。在优选的实施方式中,蛋白质或其部分包含与SEQ ID NO:2氨基酸序列具有足够同源性的氨基酸序列,以使得蛋白质或其部分保留参与致病疫霉中细胞膜合成所需化合物的代谢或参与通过这些膜的分子转运或脂肪酸代谢的能力。如这里所述,优选地,蛋白质部分是生物活性部分。在另一优选的实施方式中,本发明PSE有SEQ ID NO:2中所示氨基酸序列之一。在另一优选的实施方式中,PSE有如下核苷酸序列编码的氨基酸序列,该核苷酸序列可以例如,在严格条件下,与SEQ IDNO:1的核苷酸序列杂交。在另一个实施方式中,PSE有核苷酸序列编码的氨基酸序列,该氨基酸序列与SEQ ID NO:2氨基酸序列之一有至少约50%到60%,优选地,至少约60%到70%,更优选地至少约70%到80%,80%到90%,90%到95%,甚至更优选地,至少约96%,97%,98%,99%或更高的同源性。优选地,本发明优选的PSE也具有至少一种这里所述的PSE活性。例如,本发明优选的PSE可以包含核苷酸序列编码的氨基酸序列,该核苷酸序列可以例如,在严格条件下,与SEQ ID NO:1的核苷酸序列杂交,并且其可以参与致病疫霉中细胞膜合成所需化合物的代谢或参与通过这些膜的分子转运,或者参与脂肪酸代谢,或者具有表I中所述一种或多种活性。
在其它实施方式中,PSE与SEQ ID NO:2的氨基酸序列基本同源,并且保留SEQ ID NO:2序列之一的蛋白质的功能活性,但是由于上面小节I中所详细描述的天然变异或诱变,它的氨基酸序列不同。因此,在另一实施方式中,PSE是包含如下氨基酸序列的蛋白质,该氨基酸序列与SEQ IDNO:2的完整氨基酸序列有至少约50%到60%,优选地,至少约60%到70%,更优选地至少约70%到80%,80%到90%,90%到95%,和最优选地至少约96%,97%,98%,99%或更高的同源性,并且其有至少一种这里所述的PSE活性。在另一个实施方式中,本发明涉及完整的致病疫霉蛋白质,其与SEQ ID NO:2的完整氨基酸序列基本同源。
PSE的生物活性部分包含这样的肽,该肽包含来源于PSE氨基酸序列,例如SEQ ID NO:2中所示的氨基酸序列,或者来源于与PSE同源的蛋白质的氨基酸序列的氨基酸序列,该肽具有比全长PSE或与PSE同源的全长蛋白质少的氨基酸,并且具有至少一种PSE活性。生物活性部分(肽,例如,具有例如5,10,15,20,30,35,36,37,38,39,40,50,100或更多氨基酸的长度)通常包含具有至少一种PSE活性的结构域或基序。而且,通过重组技术可以产生缺失蛋白质其它区域后的生物活性部分,然后可以研究其是否具有这里所述的一种或多种活性。优选地,PSE的生物活性部分包含一个或多个具有生物活性的选定结构域/基序或其部分。
优选通过重组DNA技术产生PSEs。例如,将编码蛋白质的核酸分子克隆到表达载体(如上所述)中,将表达载体引入宿主细胞(如上所述),在宿主细胞中表达PSE。然后,可以利用标准蛋白质纯化技术,通过适合的纯化方案,从细胞分离PSE。做为重组表达的可替代方案,通过标准肽合成技术,可以化学合成PSE,PSE多肽或PSE肽。而且,可以例如,利用抗—PSE抗体,从细胞(例如,内皮细胞)分离天然PSE,其中抗体可以利用本发明PSE或其片段通过标准技术引起。
本发明也提供了嵌合PSE蛋白质或PSE融合蛋白质。如本发明上下文中所用术语“嵌合PSE蛋白质”或“PSE融合蛋白质”包含与非PSE多肽可操作地结合的PSE多肽。“PSE多肽”指具有对应于PSE的氨基酸序列的多肽,而“非PSE多肽”指具有对应于与PSE基本不同源的蛋白质,例如不同于PSE并且来源于相同或其它生物体的蛋白质的氨基酸序列的多肽。在融合蛋白质中,术语“可操作地连接”应理解为意指PSE多肽和非PSE多肽互相融合,从而使两个序列都能完成属于所用序列的预测功能。非PSE多肽可以融合到PSE多肽的N末端或C末端。在一个实施方式中,融合蛋白质是,例如GST-PSE融合蛋白质,其中PSE序列融合到GST序列的C末端。这些融合蛋白质可以有助于重组PSEs的纯化。在另一实施方式中,融合蛋白质是在它的N末端具有异源信号序列的PSE。在一些宿主细胞(例如,哺乳动物宿主细胞)中,通过利用异源信号序列可以增加PSE的表达和/或分泌。
可以通过标准重组DNA技术产生本发明的嵌合PSE蛋白质或PSE融合蛋白质。例如,利用常规技术,例如,通过利用用于连接的平端或突出端,限制酶切割以提供适合的末端,补平粘性末端(如果需要),用碱性磷酸酶处理以避免不期望的连接,和酶促连接,在正确读框中将编码不同多肽序列的DNA片段连接在一起。在另一实施方式中,可以通过常规技术包括DNA合成仪合成融合基因。做为可替代方案,可以利用锚定引物进行基因片段的PCR扩增,该锚定引物在连续基因片段之间产生互补的突出端,其随后可以相互杂交并再扩增以产生嵌合基因序列(参见,例如,Current Protocols in Molecular Biology,编辑:Ausubel等,John Wiley &Sons:1992)。而且,可商购得到已经编码融合单元(例如,GST多肽)的大量表达载体。PSE编码核酸可以克隆到这种载体中,使融合单元在正确读框中连接PSE蛋白质。
通过诱变,例如通过特异性点突变或截短PSE,可以产生PSE同系物。本发明上下文中所用术语“同系物”指PSE的变异体形式,其可以作为PSE活性的激动剂或拮抗剂。PSE的激动剂可以基本保留与PSE相同的活性或一些生物活性。PSE的拮抗剂可以,例如,通过竞争结合包括PSE在内的细胞膜成分代谢级联中的上游或下游元件,或通过结合介导化合物跨细胞膜转运的PSE由此抑制转运,而抑制天然PSE形式的一种或多种活性。
在可替代的实施方式中,可以通过就PSE激动剂或PSE拮抗剂活性筛选PSE突变体,例如截短突变体的组合文库,鉴定PSE同系物。在一个实施方式中,通过组合诱变在核酸水平产生多样化的PSE变异体文库,其由多样化的遗传文库编码。例如,可以通过将合成的寡核苷酸的混合物酶促连接到基因序列中,使一组简并的潜在PSE序列可以表达为单独的多肽或可替代地表达为包含该组PSE序列的一组更大的融合蛋白质(例如,用于噬菌体展示),从而产生多样化的PSE变异体文库。有大量可以用于从简并寡核苷酸序列产生潜在PSE同系物文库的方法。可以在DNA合成仪中进行简并基因序列的化学合成,然后,可以将合成的基因连接到适合的表达载体中。该组简并基因的应用使得可以在一个混合物中提供编码一组期望的潜在PSE序列的所有序列。简并寡核苷酸的合成方法是本领域已知的(参见,例如Narang,S.A.(1983)Tetrahedron 39:3;Itakura等.(1984)Annu.Rev.Biochem.53:323;Itakura等,(1984)Science198:1056;Ike等.(1983)Nucleic Acids Res.11:477)。
此外,PSE片段的文库可以用于产生多样化的PSE片段群,用于筛选和用于PSE同系物的随后选择。在一个实施方式中,用核酸酶处理PSE编码序列的双链PCR片段使每个分子仅发生约一次双链DNA断裂,变性双链DNA,复性DNA形成双链DNA,该双链DNA可以包含来自不同双链断裂产物的有义/反义对,通过用S1核酸酶处理从新形成的双链体除去单链部分,连接所得片段文库到表达载体中,由此产生编码序列片段的文库。该方法允许得到表达文库,该表达文库编码PSEs的各种大小N-末端、C-末端和内部片段。
本领域已知用于从通过点突变或截短产生的组合文库中筛选基因产物和用于从cDNA文库筛选具有选定特性的基因产物的大量技术。可以修改这些技术以快速筛选通过PSE同系物的组合诱变产生的遗传文库。可以进行高通量分析的最常用大型基因文库筛选技术通常包括:克隆基因文库到可复制的表达载体中,用所得到的载体文库转化适合的细胞,在检测期望活性有利于分离编码基因的载体的条件下表达组合基因,其中该基因的产物已经被检测到。递归集合诱变(Recursive ensemble mutagenese)(REM),一种新的增加文库中功能性突变体频率的技术,可以与鉴定PSE同系物的筛选测定法联合使用(Arkin和Yourvan(1992)Proc.Natl.Acad.Sci.USA 89:7811-7815;Delgrave等.(1993)Protein Engineering 6(3):327-331)。
在另一实施方式中,利用本领域已知的方法,可以利用基于细胞的测定法分析多样化PSE文库。
E.本发明的用途和工艺/方法
可以在下面的一种或多种方法中利用这里所述的核酸分子、蛋白质、蛋白质同系物、融合蛋白质、引物、载体和宿主细胞:致病疫霉和相关生物体的鉴定,与致病疫霉相关的生物体的基因组作图,致病疫霉目的序列的鉴定和定位,进化研究,功能所需PSE蛋白质区的确定,PSE活性的调节;一种或多种细胞膜成分代谢的调节;一种或多种化合物的跨膜转运的调节,和期望化合物诸如精细化学品的细胞生产的调节。本发明的PSE核酸分子有多种用途。首先,它们可以用于鉴定生物体为致病疫霉或其近亲。它们也可以用于鉴定微生物混合群体中致病疫霉或其近亲的存在。本发明提供了一系列致病疫霉基因的核酸序列;在严格条件下,利用覆盖致病疫霉中对该生物体而言独特的基因区域或该基因的部分的探针,通过筛选从均一或混合的微生物群体培养物提取的基因组DNA,可以确定该生物体存在与否。尽管致病疫霉本身不用于多不饱和酸的商业生产,但在原理上卵菌纲适于PUFAs的生产。这就是为什么PSE相关DNA序列特别适于在其它生物体中用于PUFA生产的原因。
而且,本发明的核酸和蛋白质分子可以作为基因组特定区域的标记。它们不仅适于作图基因组,也适于致病疫霉蛋白质的功能性研究。为了鉴定某一致病疫霉DNA结合蛋白质结合的基因组区域,例如,可以使致病疫霉基因组片段化,然后将片段与DNA结合蛋白质温育。还可以利用优选地具有容易检测的标记的本发明核酸分子筛选结合蛋白质的那些片段;此核酸分子与基因组片段的结合使得可以将片段定位到致病疫霉基因组图谱上,并且,如果用不同的酶重复地进行上述步骤,将有利于与蛋白质结合的核酸序列的快速确定。而且,本发明核酸分子与相关物种的序列可具有足够的同源性,从而使得这些核酸分子能够作为相关真菌中基因组图谱构建的标记。
本发明的PSE核酸分子也适于进化研究和蛋白质结构研究。多种原核生物和真核生物细胞都利用本发明分子参与的代谢和转运过程;通过比较本发明核酸分子序列和编码来源于其它生物体的相似酶的核酸分子序列可以确定生物体的进化关联程度。因此,这种比较使得可以确定哪些序列区域是保守的或哪些序列区域是不保守的,当检测酶功能必需的蛋白质区域时,这可能是有帮助的。这种确定对蛋白质工程研究有价值,并且可以提供有关蛋白质可以容忍多大程度诱变而不失去其功能的线索。
对本发明PSE核酸分子的操作可以引起与野生型PSEs具有功能差异的PSEs的产生。可以改进这些蛋白质的效力或活性;它们可以以比通常更多的数量存在于细胞中;或者可以降低它们的效力或活性。改进的效力或活性意味着,例如,该酶比原始的酶有更高的选择性和/或活性,优选地比原始的酶活性至少高10%,非常特别地,比原始的酶活性至少高20%,非常特别优选地,比原始的酶活性高至少30%。
本发明PSE的修饰,包括这种修饰的蛋白质可以通过一系列机制直接影响精细化学品的产率、生产和/或生产效率。当细胞分泌期望的化合物时,因为(与从培养细胞的生物质提取相比)可以容易地从培养基分离这些化合物,所以可以显著地提高大规模从纤毛虫、藻类、植物或真菌培养物获得的精细化学品。或者,当细胞利用一种浓度机制在体内将化合物贮存在专门区室中时,可以改进纯化。在表达PSEs的植物中,增加的转运可以导致在植物组织和植物器官中更好的分布。增加从细胞输出精细化学品的转运蛋白分子的数量或活性可以允许增加产生的精细化学品存在于细胞外介质中的量,由此有利于收获和纯化,或者在植物的情况下,有利于更有效的分布。相反,一种或多种精细化学品的有效超表达需要增加用于适宜生物合成途径的辅因子、前体分子和中间体的量。增加参与营养物质诸如碳源(即,糖)、氮源(即,氨基酸、铵盐)、磷酸盐和硫输入的转运蛋白的数量和/或活性可以通过消除生物合成过程中营养物质获得的所有限制而改进精细化学品的产量。脂肪酸诸如PUFAs和包含PUFAs的脂质本身是期望的精细化学品;因此,增加参与这些化合物生物合成的本发明一种或多种PSEs的数量或者优化其活性,或者破坏参与这些化合物降解的一种或多种PSEs的活性,可以增加纤毛虫、藻类、植物、真菌、酵母或其它微生物中脂肪酸和脂质分子的产率、生产和/或生产效率。
对一种或多种本发明PSE基因的操作同样地可以导致具有如下修饰活性的PSEs,该PSE可以间接影响从藻类、植物、纤毛虫或真菌产生的一种或多种期望精细化学品的产量。正常的生物化学代谢过程,例如,引起大量废物的产生(例如,过氧化氢和其它活性氧种类),这些废物可以活跃地破坏这些代谢过程(例如,过硝酸(peroxynitrite)已知可硝化酪氨酸侧链,因此失活活性中心具有酪氨酸的一些酶)(Groves,J.T.(1999)Curr.Opin.Chem.Biol.3(2);226-235)。尽管正常情况下这些废物被排出,但用于大规模发酵生产的细胞被优化用于一种或多种精细化学品的超表达,因此可能产生比野生型细胞常规更多的废物。优化参与废物分子输出的本发明一种或多种PSEs的活性将允许细胞生存力的提高和有效代谢活性的维持。而且,实际上,细胞内期望精细化学品的大量存在可能对细胞有毒,因此通过增加细胞分泌这些化合物的能力可以改进细胞的生存力。
而且,可以操作本发明的PSEs,以改变各种脂质和脂肪酸分子的相对量。这对细胞膜的脂组成可能有决定性的作用。因为每种脂质都有不同的物理特性,膜脂组成的改变可以显著地改变膜流动性。膜流动性的变化可以影响通过膜的分子转运,如上所述,这可以改变废物或所产生的精细化学品的输出,或者所需营养物质的输入。膜流动性的这些变化也可以对细胞完整性有决定性作用;具有比较薄弱的膜的细胞更易受可以破坏或杀死细胞的非生物和生物胁迫条件的影响。对参与用于膜合成的脂肪酸和脂质的生产的PSEs进行操作,使所得的膜有更易受环境条件影响的膜组成——其中所述环境条件为在用于精细化学品生产的培养中占优势的条件,这应该允许更多的细胞生存和繁殖。更多数量的生产细胞将表现出以更高产率,更大产量和更高生产效率从培养物产生精细化学品。
不应该将上述用于PSEs的旨在导致提高精细化学品产率的诱变策略理解为限制性的;这些策路的变通形式对本领域技术人员显而易见。利用这些机制,以及这里所公开的机制,本发明核酸和蛋白质分子可以用于产生表达突变的PSE核酸和蛋白质分子的重组或转基因藻类、纤毛虫、植物、非人类动物、真菌或其它微生物诸如谷氨酸棒杆菌(C.glutamicum),由此改进期望的化合物的产率、生产和/或生产效率。该期望化合物可以是藻类、纤毛虫、植物、动物、真菌或谷氨酸棒杆菌(C.glutamicum)的任何天然产物,包括生物合成途径的终产物和天然代谢途径的中间体,还可以是这些细胞代谢中天然不存在但通过本发明细胞产生的分子。
本发明另一实施方式是PUFAs的生产方法,该方法包括:在允许生物体中产生PUFAs的条件下,培养包含本发明核酸、本发明基因构建体或本发明载体的生物体,该核酸、基因构建体或载体编码能延伸脂肪酸分子中具有至少2个双键的C16-和/或C18-脂肪酸至少2个碳原子的多肽。由本方法制备的PUFA可以通过从培养生物体的培养物或从大田收获生物体,和用有机溶剂破坏和/或提取收获的材料而分离。可以从该溶剂分离包含具有更高PUFA含量的脂、磷脂、鞘脂、糖脂、三酰甘油和/或游离脂肪酸的油。可以通过脂质、磷脂、鞘脂、糖脂和三酰甘油的碱性或酸性水解分离具有更高PUFAs含量的游离脂肪酸。更高含量的PUFAs意指比不具有编码本发明延长酶的额外核酸的原始生物体,例如卵菌纲诸如疫霉科(Phytophthora)或植物诸如油料作物植物多至少5%,优选地10%,特别优选地20%,非常特别优选地40%的PUFAs。而且,上述具有更高PUFA含量的油、脂质、磷脂、鞘脂、糖脂、三酰甘油和/或游离脂肪酸的组成不同于起始生物体的组成。这特别适用于不天然包含长链多不饱和C20-或C22-脂肪酸诸如DHA、EPA或ARA的植物。
优选地,本方法产生的PUFAs是脂肪酸分子中具有至少2个双键,优选地3或4个双键,特别优选地3个双键的C20-或C22-脂肪酸分子。可以从生物体中分离油、脂质或游离脂肪酸形式的这些C20-或C22-脂肪酸分子。适合的生物体的例子是上述生物体。优选的生物体是转基因植物。
本发明的一个实施方式是通过上述方法制备的油、脂质或脂肪酸或其级分,特别优选包含PUFAs并来源于转基因植物的油、脂质或脂肪酸组合物。
本发明另一个实施方式是油、脂质或脂肪酸组合物在饲料、食物、化妆品或制药中的用途。
下面通过实施例更详细地示例说明本发明,不应该将该实施例解释为限制性的。这里并入本专利申请中所引用的所有参考文献、专利申请、专利和公开的专利申请的内容为参考。
实施例
实施例1:一般方法
a)一般克隆方法
克隆方法,例如,限制性切割、琼脂糖凝胶电泳、DNA片段的纯化、核酸向硝酸纤维素和尼龙膜的转移、DNA片段的连接、大肠杆菌和酵母细胞的转化、细菌的培养及重组DNA的序列分析按Sambrook等((1989)Cold Spring Harbor Laboratory Press:ISBN 0-87969-309-6)或Kaiser,Michaelis和Mitchell((1994),“酵母遗传学方法”(Methods in YeastGenetics”),Cold Spring Harbor Laboratory Press:ISBN 0-87969-451-3)中描述进行。
b)化学药品:
在文中如不另外说明,应用的化学药品以分析纯品质从Fluka(Neu-Ulm)、Merck(Darmstadt)、Roth(Karlsruhe)、Serva(Heidelberg)和Sigma(Deisenhofen)公司获得。溶液用纯化的无致热原的水制备,所述水在下文中称作H2O,来自Milli-Q水系统水纯化装置(Millipore,Eschborn)。限制性内切酶、DNA修饰酶和分子生物学试剂盒从AGS(Heidelberg)、Amersham(Brunswick)、Biometra(Gttingen)、Boehringer(Mannheim)、Genomed(Bad Oeynhausen)、New EnglandBiolabs(Schwalbach/Taunus)、Novagen(Madison,Wisconsin,USA)、Perkin-Elmer(Weiterstadt)、Pharmacia(Freiburg)、Qiagen(Hilden)和Stratagene(Amsterdam,Netherlands)公司获得。如不另外说明,这些试剂根据生产商的说明书使用。
实施例2:cDNA文库的构建
为了构建cDNA文库,利用鼠白血病病毒逆转录酶(Roche,Mannheim,德国)和寡-d(T)引物进行第一条链合成,通过在12℃(2小时)、16℃(1小时)  和22℃(1小时)用RNAseH切割并与DNA聚合酶I、Klenow酶温育进行第二条链合成。通过在65℃温育(10分钟)猝灭该反应,随后转移到冰上。在37℃(30分钟),用T4 DNA聚合酶(Roche,Mannheim)将双链DNA分子制成平端。通过用苯酚/氯仿和Sephadex G50自旋柱提取出核苷酸。通过T4 DNA连接酶(Roche,12℃,过夜)的方法,将EcoRI衔接子(Pharmacia,Freiburg,Germany)连接到cDNA末端,并且通过与多核苷酸激酶(Roche,37℃,30分钟)温育而进行磷酸化。在低熔点的琼脂糖凝胶上进行该混合物的分离。从凝胶上洗脱大于300碱基对的DNA分子,用苯酚提取,在Elutip D柱子(Schleicher和Schüll,Dassel,Germany)上浓缩,利用Gigapack Gold试剂盒(Stratagene,Amsterdam,theNetherlands),利用制造商的材料和按照它们的说明书,将该DNA分子连接到载体臂上并且包装到λ-ZAPII噬菌体或λ-ZAP-表达噬菌体中。
实施例3:DNA测序和计算机分析
如实施例4中所述cDNA文库用于通过标准方法进行DNA测序,所述标准方法特别是利用ABI PRISM Big Dye Terminator Cycle SequencingReady反应试剂盒(Perkin-Elmer,Weiterstadt,Germany)的链终止方法。从cDNA文库制备质粒,接着通过体内大块切割以及在琼脂平板上进行DH10B的再转化来随机测序克隆(关于材料和方法的细节参见:Stratagene,Amsterdam,the Netherlands)。利用Qiagen DNA制备机器人(Qiagen,Hilden),按照制造商的方案,从过夜生长在补加氨苄青霉素的Luria肉汤中的大肠杆菌(E.coli)培养物制备质粒DNA(参见,Sambrook等.(1989)(Cold Spring Harbor Laboratory出版社:ISBN0-87969-309-6))。利用具有下面核苷酸序列的测序引物:
5’-CAGGAAACAGCTATGACC-3’
5’-CTAAAGGGAACAAAAGCTG-3’
5’-TGTAAAACGACGGCCAGT-3’
利用可从Bio-Max(Munich,Germany)商购的EST-MAX标准软件包,处理和评价该序列。更详细地鉴定了与已知延长酶具有弱同源性的一个克隆。
实施例4:致病疫霉(P.infestans)PSE1基因的鉴定和cDNA克隆PiPSE1的分析
由于EST序列(数据库登录:PI001002014r)与已知延长酶弱的同源性,故考虑将此候选基因作为靶基因。
BESTFIT程序,即BLOSUM氨基酸置换矩阵用于序列联配,参考:Henikoff,S.,和Henikoff.J.G.(1992),Amino acid substitution matricesfrom protein blocks,Proc.Natl.Aead.Sci.USA 89:10915-10919。
具有数据库号:PI001002014r的克隆序列用于和酵母elol肽序列联配。因为新的致病疫霉(P.infestans)克隆不完整,所以从致病疫霉cDNA文库分离相应的全长克隆(PiPSEI)。为此,用PI001002014做模板,通过PCR DIG合成试剂盒(Roche),通过PCR产生地高辛配基标记的探针。
下面引物用于PCR:
PI-DIGf:cacaccatcatgtacacttactac
PI-DIGr:caacttcttcttcgattcctccac
分离的标记探针用于筛选致病疫霉cDNA文库(根据制造商Stratagene的方案)。分离1046bp的片段,命名为PiPSE1。开放读框长度是837bp,编码具有32.1kDa计算摩尔质量的278个氨基酸的蛋白质。序列联配表明了下面的序列同一性和序列相似性,分别为:与展叶剑叶藓PSE1p是26%/43%,与人类HELOp是23%/37%,与高山被孢霉(Mortierellaalpina)GLELOp是21%/41%,与秀丽隐杆线虫(C.elegans)延长酶是17%/36%。
实施例5:通过杂交方法进行基因鉴定
基因序列可以用于鉴定来源于cDNA文库或基因组文库的同源或异源基因。
利用,例如,cDNA文库,通过核酸杂交可以分离同源基因(即,同源的全长cDNA克隆或同系物)。根据目的基因的频率,平板上铺100 000直到1 000 000个重组噬菌体,将其转移到尼龙膜上。用碱变性后,例如通过UV交联,在膜上固定DNA。在高严格杂交条件下进行杂交。在1M NaCl的离子强度和68℃的温度下,在水性溶液中进行杂交和洗涤步骤。通过例如用放射活性(32P-)切口平移技术(High Prime,Roche,Mannheim,Germany)进行标记,产生杂交探针。通过放射自显影术检测信号。
利用低严格杂交和洗涤条件,类似于上述的方法,可以鉴定相关但不相同的部分同源或异源基因。对于水性杂交,离子强度通常保持在1MNaCl,温度从68℃逐渐地降低到42℃。
利用合成的、放射标记的寡核苷酸探针可以进行如下基因序列的分离,该基因序列仅显示了与例如10到20个氨基酸的单个结构域的同源性。通过用T4多核苷酸激酶磷酸化两个互补寡核苷酸的5’末端产生放射性标记的寡核苷酸。这两个互补的寡核苷酸杂交并相互连接产生多联体。通过例如,切口平移放射标记双链多联体。通常,利用高浓度的寡核苷酸,在低严格条件下进行杂交。
寡核苷酸杂交溶液:
6×SSC
0.01 M磷酸钠
1mM EDTA(pH8)
0.5%SDS
100∝g/ml变性鲑精DNA
0.1%低脂肪奶粉
在杂交期间,逐步将温度降低到计算的寡核苷酸温度以下5到10℃,或者降低到室温(在所有试验中,除非有相反的说明,RT=~23℃),接着是洗涤步骤和放射自显影术。在极低严格条件下进行洗涤,例如用4×SSC进行3个洗涤步骤。在Sambrook,J.,等.(1989),”Molecular Cloning:ALaboratory Manual”,Cold Spring Harbor Laboratory出版社,或Ausubel,F.M.,等.(1994)”Current Protocols in Molecular Biology”,JohnWiley & Sons.中描述了更多的详细内容。
特异性抗体的制备,例如在
实施例6:Northern杂交
对于RNA杂交,如Amasino(1986,Anal.Biochem.152,304)所述,利用甲醛,通过在1.25%浓度的琼脂糖凝胶中凝胶电泳分离20μg总RNA或1μg poly(A)+-RNA,利用10×SSC,通过毛细管吸引力,转移到带正电荷的尼龙膜(Hybond N+,Amersham,Brunswick),通过UV光固定,在68℃利用杂交缓冲液(10%硫酸葡聚糖w/v,1M NaCl,1%SDS,100mg鲱鱼精子DNA)预杂交3小时。在预杂交阶段,利用α-32P-dCTP(Amersham,Brunswick,Germany),用Highprime DNA标记试剂盒(Roche,Mannheim,Germany)已经标记了DNA探针。在68℃,在相同缓冲液中添加标记的DNA探针后,进行杂交过夜。在68℃,用2×SSC进行洗涤步骤2次15分钟,然后用1×SSC,1%SDS进行洗涤步骤2次30分钟。在-70℃曝光密封的滤膜1到14天。
实施例7:用于植物转化的质粒
二元载体,诸如pBinAR可以用于植物转化(Hfgen和Willmitzer,PlantScience 66(1990)221-230)。通过将cDNA以有义或反义方向连接到T-DNA中可以构建二元载体。在cDNA的5’,植物启动子激活cDNA转录。多聚腺苷酸化序列定位于cDNA的3’。
利用组织特异性启动子可以获得组织特异性表达。例如在cDNA5’克隆napin或LeB4或USP启动子,可以获得种子特异性表达。也可以利用任何其它种子特异性启动子元件。CaMV 35S启动子可以用于所有植物中的组成型表达。
利用信号肽,可以将表达的蛋白质靶向到细胞区室,例如质体、线粒体或内质网中(Kermode,Crit.Rev.Plant Sci.15,4(1996)285-423)。与cDNA在正确读框中5’克隆信号肽,因此实现融合蛋白质的亚细胞定位。
实施例8:农杆菌的转化
可以例如,利用根瘤农杆菌(Agrobacterium tumefaciens)株系GV3101(pMP90)(Koncz和Schell,Mol.Gen.Genet.204(1986)383-396)或LBA4404(Clontech)进行农杆菌介导的植物转化。可以通过标准的转化技术(Deblaere等,Nucl.Acids.Tes.13(1984),4777-4788)进行转化。
实施例9:植物转化
利用标准的转化和再生技术可以进行农杆菌介导的植物转化(Gelvin,Stanton B.,Schilperoort,Robert A.,Plant Molecular Biology Manual,第二版,Dordrecht:Kluwer Academic出版社,1995,in Sect.,RingbuchZentrale Signatur:BT11-P ISBN 0-7923-2731-4;Glick,Bernard R.,Thompson,John E.,Methods in Plant Molecular Biology andBiotechnology,Boca Raton:CRC出版社,1993,360页,ISBN0-8493-5164-2)。
例如,可以通过子叶或下胚轴转化的方法转化油籽油菜(Moloney等,Plant Cell Report 8(1989)238-242;De Block等,Plant Physiol.91(1989)694-701)。筛选农杆菌和植物时抗生素的应用取决于用于转化的二元载体和农杆菌株系。正常地,利用卡那霉素做为植物选择标记进行油籽油菜的筛选。
例如,利用Mlynarova等.(1994)Plant Cell Report 13:282-285所描述的技术,可以进行亚麻中农杆菌介导的基因转移。
例如,利用在EP-A-0 424 047(Pioneer Hi-Bred International)或在EP-A-0 397 687,US 5,376,543,US 5,169,770(University Toledo)中所述的技术可以进行大豆的转化。
例如,Freeling和Walbot(“The maize handbook”(1993)ISBN3-540-97826-7,Springer Verlag New York)描述了利用微粒轰击、聚乙二醇介导的DNA摄取或通过碳酸硅纤维的植物转化。
实施例10:体内诱变
通过质粒DNA(或任何其它载体DNA)在保持遗传信息完整性的能力被破坏的大肠杆菌(E.coli)或其它微生物(例如,芽孢杆菌属(Bacillus spp.)或酵母诸如酿酒酵母(Saccharomyces cerevisiae))中传代,可以进行微生物体内诱变。常规的增变菌株在用于DNA修复系统的基因中有突变(例如,mutHLS,mutD,mutT等;做为参考文献,参见Rupp,W.D.(1996)DNA修复机制,《Escherichia coli and Salmonella》,2277-2294页,ASM:Washington)。本领域技术人员已知这些株系。例如,在Greener,A.,和Callahan,M.(1994)Strategies 7:32-34中示例了这些株系的用途。优选地,在选定和测试过微生物后,将突变的DNA分子转移到植物。根据本文件实施例部分的各实施例产生转基因植物。
实施例11:研究转化生物体中重组基因产物的表达
在转录和/或翻译水平,测定转化宿主生物体中重组基因产物的活性。
测定基因转录数量(其指示可得到用于基因产物翻译的RNA数量)的适合方法是进行Northern印迹(例如,参考文献,参见Ausubel等.(1988)Current Protocols in Molecular Biology,Wiley:New York,或上述实施例部分),其中设计引物使其结合目的基因,并且用(通常地具有放射活性或化学发光的)可检测标记物标记该引物,因此,当提取生物体培养物的总RNA,在凝胶上分离,转移到稳定基质上和与该探针温育时,该探针的结合和结合程度将表明该基因mRNA的存在和数量。该信息表明了转化基因的转录程度。可以通过多种方法,从细胞、组织或器官制备总细胞RNA,所有这些方法都是本领域已知的,诸如,Bormann,E.R.,等.(1992)Mol.Microbiol.6:317-326中的方法。
可以利用标准技术,诸如Western印迹(参见,例如,Ausubel等.(1988)Current Protocols in Molecular Biology,Wiley:New York)研究该mRNA翻译的蛋白质的存在或相对数量。在该方法中,提取总的细胞蛋白质,通过凝胶电泳方法分离,转移到基质诸如硝酸纤维素上,并且与特异性结合期望蛋白质的探针诸如抗体温育。通常,该探针具有可以容易检测的化学发光或显色标记物。所观察到的标记物的存在和数量将表明细胞中存在的期望突变蛋白质的存在和数量。
实施例12:分析重组蛋白质对期望产物生产的影响
通过在适宜条件下(如上述条件下),生长修饰的微生物或修饰的植物,然后分析培养基和/或细胞组分以确定期望产物(即,脂质或脂肪酸)的生产是否增加,可以确定植物、真菌、藻类、纤毛虫中基因修饰对期望化合物(如,脂肪酸)生产的影响。这些分析技术是本领域技术人员已知的,包括光谱法、薄层层析、各种染色方法、酶学和微生物学方法,和分析性层析法诸如高效液相层析法(参见,例如Ullman,Encyclopedia ofIndustrial Chemistry,A2卷,89-90页和443-613页,VCH Weinheim(1985);Fallon,A.,等,(1987)“HPLC在生物化学中的应用”,《Laboratory Techniques in Biochemistry and Molecular Biology》,17卷;Rehm等.(1993)Biotechnology,3卷,III章“产物回收和纯化”,469-714页,VCH Weinheim;Belter,P.A.,等.(1988)Bioseparations:downstreamprocessing for Biotechnology,John Wiley和Sons;Kennedy,J.F.,和Cabral,J.M.S.(1992)Recovery processes for biological Materials,John Wiley和Sons;Shaeiwitz,J.A.,和Henry,J.D.(1988)生物化学分离,《Ullmann’sEncyclopedia of Industrial Chemistry》,B3卷;11章,1-27页,VCH Weinheim;和Dechow,F.J.(1989)Separation and purification techniques inbiotechnology,Noyes Publications)。
除了上述方法,可以如Cahoon等.(1999)Proc.Natl.Acad.Sci.USA96(22):12935-12940,和Browse等.(1986)Analytic Biochemistry152:141-145所述从植物材料提取植物脂质。在Christie,William W.,Advances in Lipid Methodology,Ayr/Scotland:Oily出版社(Oily PressLipid Library;2);Christie,William W.,Gas Chromatography and Lipids.A Practical Guide-Ayr,Scotland:Oily出版社,1989,Repr.1992,IX,307pp.(Oily Press Lipid Library;1);Progress in Lipid Research,Oxford:Pergamon出版社,1(1952)-16(1977),标题:脂肪和其它脂质的化学进展中描述了定性和定量的脂质或脂肪酸分析。
除了测定发酵的终产物,也可以分析用于产生期望化合物的代谢途径的其它组分,诸如中间体和副产物,以确定化合物的总体生产效率。分析方法包括培养基中营养物质(例如,糖、碳水化合物、氮源、磷酸盐和其它离子)量的测定,生物质组成和生长测定,对生物合成途径常规代谢物产生的分析和对发酵期间产生的气体的测定。在Applied MicrobialPhysiology;A Practical Approach,P.M.Rhodes和P.F.Stanbury,编辑,IRL出版社,103-129页;131-163和165-192(ISBN:0199635773)和其中所述参考文献中描述了这些测定的标准方法。
一个例子是脂肪酸的分析(缩写:FAME,脂肪酸甲酯;GC-MS,气液色谱/质谱法;TAG,三酰甘油;TLC,薄层层析)。
通过Christie和其中参考文献(1997,《Advances on Lipid Methodology》,第四版:Christie,Oily出版社,Dundee,119-169;1998,气想色谱/质谱法,Lipide 33:343-353)几次描述的标准分析方法:GC,GC-MS或TLC分析重组生物体可以明确确定脂肪酸产物的存在。
可以通过超声处理,在玻璃研磨器、液氮中研磨,和通过其它可用的方法研磨破坏待分析的材料。破坏后,必需离心材料。在蒸馏水中重悬浮沉淀物,在100℃加热10分钟,冰上冷却,再次离心,接着,在90℃用2%二甲氧基丙烷在0.5M于甲醇中的硫酸中提取1小时,这导致水解的油和脂质化合物,该水解的油和脂质化合物产生转甲基化的脂质。在石油醚中萃取这些脂肪酸甲酯,最后,利用毛细柱(Chrompack,WCOT Fused Silica,CP-Wax-52 CB,25m,0.32mm)在170℃至240℃的温度梯度进行GC分析20分钟,在240℃进行GC分析5分钟。必须利用可商购的标准品(即,Sigma)定义所得脂肪酸甲酯的身份。
对于没有标准品可用的脂肪酸,必须进行衍生化然后通过GC-MS分析证明该身份。例如,必须通过用4,4-二甲氧基噁唑啉衍生物进行衍生化后GC-MS证明具有三键的脂肪酸的定位(Christie,1998,参见上述)。
实施例13:异源微生物系统中的表达构建体
株系、生长条件和质粒大肠杆菌(Escherichia coli)株系XL1 Blue MRF’kan(Stratagene)用于亚克隆新的致病疫霉延长酶PiPSE1。为了功能性表达该基因,我们利用了酿酒酵母(Saccharomyces cerevisiae)株系INVSc1(Invitrogen Co.)。在37℃,在Luria-Bertini肉汤(LB,Duchefa,Haarlem,the Netherlands)中培养大肠杆菌。如果必要,添加氨苄青霉素(100mg/l),并向固体LB培养基添加1.5%琼脂(w/v)。在YPG培养基或具有2%(w/v)棉子糖或葡萄糖的无尿嘧啶的完全基本培养基(CMdum;参见:Ausubel,F.M.,Brent,R.,Kingston,R.E.,Moore,D.D.,Seidman,J.G.,Smith,J.A.,Struhl,K.,Albright,L.B.,Coen,D.M.,和Varki,A.(1995)Current Protocols inMolecular Biology,John Wiley & Sons,New York)中,在30℃培养酿酒酵母。对于固体培养基,添加2%(w/v)BactoTM琼脂(Difco)。用于克隆和表达的质粒是pUC18(Pharmacia)和pYES2(Invitrogen Co.)。
来源于致病疫霉的PFUA特异性延长酶的克隆和表达
为了在酵母中表达,首先以下面方式修饰编码PUFA特异性延长酶(PSE1)基因的致病疫霉cDNA克隆piPSE1,所述方式是在起始密码子附近获得KpnI限制位点和用于高效翻译的酵母共有序列(Kozak,M.(1986)通过点突变定义可调节真核核糖体翻译的起始密码子AUG侧翼序列,Cell 44,283-292),在终止密码子侧翼产生XbaI位点。为了扩增开放读框,合成与其5’和3’末端互补的引物对。
ppex1 f:    cgg ggtaccacataatgtcgactgagctactgcag
ppex1 r:    cactag tctagattccaacttcttcttcgattcc
在热循环仪(Biometra)中,用质粒DNA做为模板,用Pfu DNA(Stratagene)聚合酶和下面的温度程序进行PCR反应:在96℃,3分钟;接着在96℃下30秒在55℃下30秒和在72℃下2分钟,30个循环;在72℃,10分钟,1个循环,在4℃终止。
通过琼脂糖TBE凝胶电泳,证实883bp正确大小的扩增DNA片段。利用QIAquick凝胶提取试剂盒(QIAGEN)从凝胶提取扩增的DNA,并且利用Sure Clone连接试剂盒(Pharmacia)连接到去磷酸化载体pUC18的SmaI限制位点中产生pUCPSE1。大肠杆菌(E.coli)XL1 Blue MRF’kan转化后,对24个氨苄青霉素抗性转化体进行转化体的DNA小量制备(Riggs,M.G.,&McLachlan,A.(1986)A一种用于大量质粒小量制备的简化筛选方法BioTechniques 4,310-313),并且通过BamHI限制分析鉴定阳性克隆。通过利用ABI PRISM Big Dye Terminator Cycle Sequencing Ready反应试剂盒(Perkin-Elmer,Weiterstadt)再测序以证实克隆的PCR产物的序列。
用KpnI/XbaI另外切割pUC-PSE1的质粒DNA,将所得到的~900bp片段连接到去磷酸化的酵母大肠杆菌穿梭载体pYES2的KpnI/XbaI限制位点中,产生pY2PSE1。大肠杆菌转化和从转化体小量制备DNA后,通过用HindIII切割检查载体中DNA片段的方向。培养一个克隆,用NucleobondAX 500质粒DNA提取试剂盒(Macherey-Nagel,Düringen)进行DNA大量制备。
通过修改的PEG/乙酸锂方法(Ausubel等,1995),用pY2PSE1和pYES2转化酵母INVSc1。在补加2%葡萄糖的CMdum琼脂平板上筛选,在每种情况下,选择4个pY2PSE11转化体(pY2PSE1a-d)和1个pYES2转化体,用于进一步培养和功能性表达。
酵母中延长酶活性的功能性表达
预培养:
20ml具有2%(w/v)棉子糖的CMdum液体培养基接种转基因酵母克隆(pY2PSE1a-d,pYES2),并且在30℃,200rpm培养3天,直到在600nm的光密度(OD600)已经达到1.5-2。
主培养:
为了表达,用γ-亚麻酸(γ-18:3)补加具有2%棉子糖和1%(v/v)Tergitol NP-40的20ml CMdum液体培养基到0.003%(w/v)的终浓度。用预培养物接种培养基到0.05OD600。在0.2OD600,用2%(w/v)半乳糖诱导表达16小时,随之在0.8-1.2OD600收获培养物。
脂肪酸分析
从酵母培养物提取全部脂肪酸,并且通过气相色谱分析。为此,通过离心(1000×g,10分钟,4℃)收集5ml培养物,用100mM NaHCO3,pH8.0洗1次,以除去残余培养基和脂肪酸。为了制备脂肪酸甲酯(FAME),在80℃,用1M甲醇H2SO4和2%(v/v)二甲氧基丙烷处理细胞沉淀1小时。用2ml石油醚萃取FAME2次,用100mM NaHCO3,pH8.0洗1次,用蒸馏水洗1次,用Na2SO4干燥。在氩气流下蒸发有机溶剂,并且在50ul石油醚中溶解FAME。在配有火焰离子化检测器的Hewlett Packard 6850气相色谱仪中的ZEBRON ZB Wax毛细柱(30m,0.32mm,0.25um;Phenomenex)上分离样品。以20℃/分钟的速率编程烘箱温度从70℃(保持1分钟)到200℃,然后以5℃/分钟的速率到250℃(保持5分钟),最后以5℃/分钟的速率到260℃。氮用作载气(在70℃,4.5ml/分钟)。通过与FAME标准(SIGMA)的保留时间比较鉴定脂肪酸。
表达分析
在表1中以mol%示出了5种转基因酵母株系的脂肪酸模式。
用粗体打印的数据强调已经添加的和已经摄取的γ-亚麻酸的比率,红色数据表示延伸产物的比率,粗体打印的数据表示延伸的γ-亚麻酸的比率(最后一行)。
在图1中显示了来自用pYES2(i/对照)和pY2PSE1转化的酵母的总脂质的FAME的GC分析。为了该分析,在γ-18:3存在的情况下,培养转基因酵母。
结果证明γ-18:3已经大量掺入所有的转基因酵母中。已经用pY2PSE1转化的所有4个转基因酵母克隆在气相色谱中显示了额外的峰,通过保留时间的比较鉴定为20:3Δ8,11,14。气相色谱/质谱分析可以提供证实该身份的另外证据。
所鉴定的产物证明PiPSE1核苷酸序列编码藓类展叶剑叶藓Δ6-选择性脂肪酸延长酶,其在转基因酵母中引起了新的脂肪酸的形成。
可以用多种其它脂肪酸(如,亚油酸(18:2Δ9,12?),stearidonic acid(18:4Δ6,9,12,15))进行摄食试验以更详细地证实该延长酶的底物选择性。
实施例14:一般性地从转化生物体分离期望化合物
通过本领域已知的各种方法,从植物材料或真菌、藻类、纤毛虫、动物细胞或从上述培养物的上清液可以获得期望产物。如果期望产物不从细胞向外分泌,可以通过慢速离心从培养物收集细胞,可以通过标准技术诸如机械力或超声处理裂解细胞。植物器官可以从其它组织或其它器官机械地分离。在匀浆后,通过离心除去细胞残渣,保留含有可溶蛋白质的上清液级分,用于进一步分离期望的化合物。如果产物从期望的细胞分泌,通过慢速离心从培养物除去细胞,保留上清液级分用于进一步分离。
用适宜树脂对各分离步骤的上清液级分进行层析,期望的分子或者保留在层析树脂上而样品中许多杂质不保留在该层析树脂上,或者杂质保留在层析树脂上而样品不保留在层析树脂上。如果需要,可以利用相同或其它层析树脂,重复这些层析步骤。本领域技术人员熟悉如何选择用于待分离的特定分子的适宜层析树脂并熟悉如何最有效地应用这些树脂。可以通过过滤或超过滤浓缩分离的产物,并在产物稳定性最高的温度下贮藏。
本领域已知多种分离方法,并且上述分离方法不意在限制。例如,在Bailey,J.E.,&Ollis,D.F.,Biochemical Engineering Fundamentals,McGraw-Hill:New York(1986)中描述了这些分离方法。
可以通过本领域的标准技术确定所分离的化合物的身份和纯度。这些方法包括高效液相层析(HPLC),光谱方法,染色方法,薄层层析,NIRS,酶测定法和微生物学方法。对于这些分析方法的综述,参见Patek等.(1994)Appl.Environ.Microbiol.60:133-140;Malakhova等.(1996)Biotekhnologiya 11:27-32;和Schmidt等.(1998)Bioprocess Engineer.19:67-70;Ulmann’s Encyclopedia of Industrial Chemistry(1996)A27卷,VCH Weinheim,89-90页,521-540页,540-547页,559-566,575-581页和581-587页;Michal,G(1999)Biochemical Pathways:An Atlas ofBiochemistry and Molecular Biology,John Wiley和Sons;Fallon,A.,等.(1987)HPLC在生物化学中的应用,《Laboratory Techniques inBiochemistry and Molecular Biology》,17卷。
等同方案
本领域内的技术人员将认识到,或将能够仅用常规实验确定许多与此处描述的本发明特定实施方案等同的方案。这些等同方案意在包括在权利要求内。
                            序列表
<110>巴斯福植物科学有限公司(BASF Plant Science GmbH)
<120>新的延长酶基因及多不饱和脂肪酸的制备方法
<130>925_2001
<140>
<141>
<160>2
<170>PatentIn Vers.2.0
<210>1
<211>1066
<212>DNA
<213>致病疫霉(Phytophthora infestans)
<220>
<221>CDS
<222>(52)..(888)
<400>1
gaattcggca cgaggttcgc acgtccatcg tctactcacc aacaagaagt c atg tcg   57
                                                         Met Ser
                                                           1
act gag cta ctg cag agc tac tac gcg tgg gcc aac gcc acg gag gcc    105
Thr Glu Leu Leu Gln Ser Tyr Tyr Ala Trp Ala Asn Ala Thr Glu Ala
          5                  10                  15
aag ctg ctg gac tgg gtc gac cct gag ggc ggc tgg aag gtg cat cct    153
Lys Leu Leu Asp Trp Val Asp Pro Glu Gly Gly Trp Lys Val His Pro
     20                  25                  30
atg gca gac tac ccc cta gcc aac ttc tcc agc gtc tac gcc atc tgc    201
Met Ala Asp Tyr Pro Leu Ala Asn Phe Ser Ser Val Tyr Ala Ile Cys
 35                  40                  45                  50
gtc gga tac ttg ctc ttc gta atc ttc ggc acg gcc ctg atg aaa atg    249
Val Gly Tyr Leu Leu Phe Val Ile Phe Gly Thr Ala Leu Met Lys Met
                 55                  60                  65
gga gtc ccc gcc atc aag acc agt cca tta cag ttt gtg tac aac ccc    297
Gly Val Pro Ala Ile Lys Thr Ser Pro Leu Gln Phe Val Tyr Asn Pro
             70                  75                  80
atc caa gtc att gcc tgc tct tat atg tgc gtg gag gcc gcc atc cag    345
Ile Gln Val Ile Ala Cys Ser Tyr Met Cys Val Glu Ala Ala Ile Gln
         85                  90                  95
gcc tac cgc aac ggc tac acc gcc gcc ccg tgc aac gcc ttt aag tcc    393
Ala Tyr Arg Asn Gly Tyr Thr Ala Ala Pro Cys Asn Ala Phe Lys Ser
    100                 105                 110
gac gac ccc gtc atg ggc aac gtt ctg tac ctc ttc tat ctc tcc aag    441
Asp Asp Pro Val Met Gly Asn Val Leu Tyr Leu Phe Tyr Leu Ser Lys
115                 120                 125                 130
atg ctc gac ctg tgc gac aca gtc ttc att atc cta gga aag aag tgg    489
Met Leu Asp Leu Cys Asp Thr Val Phe Ile Ile Leu Gly Lys Lys Trp
                135                 140                 145
aaa cag ctt tcc atc ttg cac gtg tac cac cac ctt acc gtg ctt ttc    537
Lys Gln Leu Ser Ile Leu His Val Tyr His His Leu Thr Val Leu Phe
            150                 155                 160
gtc tac tat gtg acg ttc cgc gcc gct cag gac ggg gac tca tat gct    585
Val Tyr Tyr Val Thr Phe Arg Ala Ala Gln Asp Gly Asp Ser Tyr Ala
        165                 170                 175
acc atc gtg ctc aac ggc ttc gtg cac acc atc atg tac act tac tac    633
Thr Ile Val Leu Asn Gly Phe Val His Thr Ile Met Tyr Thr Tyr Tyr
    180                 185                 190
ttc gtc agc gcc cac acg cgc aac att tgg tgg aag aag tac ctc acg    681
Phe Val Ser Ala His Thr Arg Asn Ile Trp Trp Lys Lys Tyr Leu Thr
195                 200                 205                 210
cgc att cag ctt atc cag ttc gtg acc atg aac gtg cag ggc tac ctg    729
Arg Ile Gln Leu Ile Gln Phe Val Thr Met Asn Val Gln Gly Tyr Leu
                215                 220                 225
acc tac tct cga cag tgc cca ggc atg cct cct aag gtg ccg ctc atg    777
Thr Tyr Ser Arg Gln Cys Pro Gly Met Pro Pro Lys Val Pro Leu Met
            230                 235                 240
tac ctt gtg tac gtg cag tca ctc ttc tgg ctc ttc atg aat ttc tac    825
Tyr Leu Val Tyr Val Gln Ser Leu Phe Trp Leu Phe Met Asn Phe Tyr
        245                 250                 255
att cgc gcg tac gtg ttc ggc ccc aag aaa ccg gcc gtg gag gaa tcg    873
Ile Arg Ala Tyr Val Phe Gly Pro Lys Lys Pro Ala Val Glu Glu Ser
    260                 265                 270
aag aag aag ttg taa cggcgcttgt taaaaagtct aacctcgctg taacagctta    928
Lys Lys Lys Leu
275
aaacacacac acacacaacg ctttgtagag gaggtaagta gtggcaactc gtgtagaaat  988
gcagcatgcc catcaaatac atcccgtatg attcaaaaaa aaaaaaaaaa aaaaaaaaaa  1048
aaaaaaaaaa aactcgag                                                1066
<210>2
<211>278
<212>PRT
<213>致病疫霉(Phytophthora infestans)
<400>2
Met Ser Thr Glu Leu Leu Gln Ser Tyr Tyr Ala Trp Ala Asn Ala Thr
  1               5                  10                  15
Glu Ala Lys Leu Leu Asp Trp Val Asp Pro Glu Gly Gly Trp Lys Val
             20                  25                  30
His Pro Met Ala Asp Tyr Pro Leu Ala Asn Phe Ser Ser Val Tyr Ala
         35                  40                  45
Ile Cys Val Gly Tyr Leu Leu Phe Val Ile Phe Gly Thr Ala Leu Met
     50                  55                  60
Lys Met Gly Val Pro Ala Ile Lys Thr Ser Pro Leu Gln Phe Val Tyr
 65                  70                  75                  80
Asn Pro Ile Gln Val Ile Ala Cys Ser Tyr Met Cys Val Glu Ala Ala
                 85                  90                  95
Ile Gln Ala Tyr Arg Asn Gly Tyr Thr Ala Ala Pro Cys Asn Ala Phe
            100                 105                 110
Lys Ser Asp Asp Pro Val Met Gly Asn Val Leu Tyr Leu Phe Tyr Leu
        115                 120                 125
Ser Lys Met Leu Asp Leu Cys Asp Thr Val Phe Ile Ile Leu Gly Lys
    130                 135                 140
Lys Trp Lys Gln Leu Ser Ile Leu His Val Tyr His His Leu Thr Val
145                 150                 155                 160
Leu Phe Val Tyr Tyr Val Thr Phe Arg Ala Ala Gln Asp Gly Asp Ser
                165                 170                 175
Tyr Ala Thr Ile Val Leu Asn Gly Phe Val His Thr Ile Met Tyr Thr
            180                 185                 190
Tyr Tyr Phe Val Ser Ala His Thr Arg Asn Ile Trp Trp Lys Lys Tyr
        195                 200                 205
Leu Thr Arg Ile Gln Leu Ile Gln Phe Val Thr Met Asn Val Gln Gly
    210                 215                 220
Tyr Leu Thr Tyr Ser Arg Gln Cys Pro Gly Met Pro Pro Lys Val Pro
225                 230                 235                 240
Leu Met Tyr Leu Val Tyr Val Gln Ser Leu Phe Trp Leu Phe Met Asn
                245                 250                 255
Phe Tyr Ile Arg Ala Tyr Val Phe Gly Pro Lys Lys Pro Ala Val Glu
            260                 265                 270
Glu Ser Lys Lys Lys Leu
        275

Claims (21)

1、一种分离的核酸,其编码能延伸脂肪酸中具有至少2个双键的C16-或C18-脂肪酸至少2个碳原子而不延伸C18:3 Δ5t,9,12,C20:3  Δ8,11,14,C20:4 Δ5,8,11,14和C20:5 Δ5,8,11,14,17的多肽。
2、一种分离的核酸,其包含编码多肽的核苷酸序列,该多肽延伸脂肪酸分子中具有至少2个双键的C16-或C18-脂肪酸,该核苷酸序列选自:
a)SEQ ID NO:1中所示的核酸序列;
b)根据遗传密码简并性,来源于SEQ ID NO:2中所示序列的核酸序列;
c)SEQ ID NO:1中所示序列的衍生物,其编码的多肽与编码SEQ IDNO:2中氨基酸序列的序列有至少50%同源性,该序列作为C16-或C18-延长酶起作用。
3、如权利要求2所述的分离的核酸序列,其中该序列来源于卵菌纲。
4、如权利要求2或3所述的分离的核酸序列,其中该序列来源于疫霉属。
5、来源于如权利要求2到4任一项所述的分离的核酸序列的氨基酸序列。
6、包含如权利要求1到4任一项所述的分离的核酸的基因构建体,其中所述核酸功能性地连接一个或多个调节信号。
7、如权利要求6所述的基因构建体,其基因表达通过调节信号增强。
8、包含如权利要求2所述的核酸或如权利要求6所述的基因构建体的载体。
9、包含至少一种如权利要求2所述的核酸、如权利要求6所述的基因构建体或如权利要求8所述的载体的生物体。
10、如权利要求9所述的生物体,其中该生物体是微生物、非人动物或植物。
11、如权利要求9或10所述的生物体,其中该生物体是转基因植物。
12、一种生产PUFA的方法,该方法包括:在生物体中可以形成PUFA的条件下,培养包含如权利要求2所述的核酸、如权利要求6所述的基因构建体或如权利要求8所述的载体的生物体,所述核酸、基因构建体或载体编码能延伸脂肪酸分子中具有至少2个双键的C16-或C18-脂肪酸至少2个碳原子的多肽。
13、如权利要求12所述的方法,其中通过该方法制备的PUFA是脂肪酸分子中具有至少2个双键的C20-或C22-脂肪酸分子。
14、如权利要求13所述的方法,其中从生物体分离油、脂质或游离脂肪酸形式的C20-或C22-脂肪酸分子。
15、如权利要求12到14任一项所述的方法,其中生物体是微生物、非人动物或植物。
16、如权利要求12到15任一项所述的方法,其中生物体是转基因植物。
17、如权利要求12到16任一项所述的方法,其中C16-或C18-脂肪酸是分子中具有3个双键的脂肪酸。
18、通过如权利要求12到17任一项的方法制备的油、脂质或脂肪酸或其部分。
19、包含PUFA并来源于转基因植物的油、脂质或脂肪酸组合物。
20、如权利要求19所述的油、脂质或脂肪酸组合物,其中PUFA来源于转基因植物,该转基因植物包含如权利要求2所述的核苷酸序列。
21、油、脂质或脂肪酸组合物在饲料、食物、化妆品或制药中的用途。
CNA038031078A 2002-01-30 2003-01-13 新的延长酶基因及多不饱和脂肪酸的制备方法 Pending CN1625597A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10203713A DE10203713A1 (de) 2002-01-30 2002-01-30 Neues Elongasegen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren
DE10203713.2 2002-01-30
DE10205607.2 2002-02-11
DE10205607A DE10205607A1 (de) 2002-02-11 2002-02-11 Neues Elongasegen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren

Publications (1)

Publication Number Publication Date
CN1625597A true CN1625597A (zh) 2005-06-08

Family

ID=27664549

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA038031078A Pending CN1625597A (zh) 2002-01-30 2003-01-13 新的延长酶基因及多不饱和脂肪酸的制备方法

Country Status (14)

Country Link
US (1) US7179647B2 (zh)
EP (1) EP1472357B1 (zh)
JP (1) JP2005526496A (zh)
CN (1) CN1625597A (zh)
AT (1) ATE452198T1 (zh)
AU (1) AU2003206714B2 (zh)
BR (1) BR0306883A (zh)
CA (1) CA2474163C (zh)
DE (1) DE50312241D1 (zh)
ES (1) ES2337564T3 (zh)
IL (1) IL162794A0 (zh)
MX (1) MXPA04007327A (zh)
NO (1) NO20043592L (zh)
WO (1) WO2003064638A2 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2549097C (en) * 2003-12-17 2013-03-26 Suntory Limited Method of producing arachidonic acid-containing plants
CN1930277B (zh) * 2004-02-27 2011-02-02 巴斯福植物科学有限公司 在转基因植物中产生多不饱和脂肪酸的方法
CN102559364B (zh) 2004-04-22 2016-08-17 联邦科学技术研究组织 用重组细胞合成长链多不饱和脂肪酸
US7834250B2 (en) 2004-04-22 2010-11-16 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
CA2568689A1 (en) 2004-06-04 2005-12-15 Fluxome Sciences A/S Metabolically engineered cells for the production of polyunsaturated fatty acids
DE102005013779A1 (de) * 2005-03-22 2006-09-28 Basf Plant Science Gmbh Verfahren zur Herstellung von mehrfach ungesättigten C20- und C22-Fettsäuren mit mindestens vier Doppelbindungen in transgenen Pflanzen
CA2661697A1 (en) 2006-08-29 2008-03-06 Commonwealth Scientific And Industrial Research Organisation Synthesis of fatty acids
DE112009002048T5 (de) 2008-08-26 2012-01-26 Basf Plant Science Gmbh Nukleinsäure, die Desaturasen kodieren, und modifiziertes Planzenöl
EP2358882B1 (en) 2008-11-18 2017-07-26 Commonwealth Scientific and Industrial Research Organisation Enzymes and methods for producing omega-3 fatty acids
US8802924B2 (en) * 2008-12-09 2014-08-12 Ben Gurion University Of The Negev Research And Development Authority Polyunsaturated fatty acid elongase
EP2821492A3 (en) 2009-05-13 2015-04-08 BASF Plant Science Company GmbH Acyltransferases and uses thereof in fatty acid production
US8993841B2 (en) 2009-06-08 2015-03-31 Basf Plant Science Company Gmbh Fatty acid elongation components and uses thereof
CA3037072C (en) 2009-07-17 2022-07-26 Basf Plant Science Company Gmbh Novel fatty acid desaturases and elongases and uses thereof
JP5168511B2 (ja) * 2009-08-25 2013-03-21 独立行政法人農業生物資源研究所 種子特異的プロモーターおよびその利用
EP3418387B1 (en) 2009-08-31 2020-11-25 Basf Plant Science Company GmbH Regulatory nucleic acid molecules for enhancing seed-specific gene expression in plants promoting enhanced polyunsaturated fatty acid synthesis
EP2504427B1 (en) 2009-11-24 2018-06-27 BASF Plant Science Company GmbH Novel fatty acid desaturase and uses thereof
CA2781559C (en) 2009-11-24 2018-09-04 Basf Plant Science Company Gmbh Novel fatty acid elongase and uses thereof
US9388437B2 (en) 2010-06-25 2016-07-12 Basf Plant Science Company Gmbh Acyltransferases and uses thereof in fatty acid production
WO2012052468A2 (en) 2010-10-21 2012-04-26 Basf Plant Science Company Gmbh Novel fatty acid desaturases, elongases, elongation components and uses therof
JP2013256452A (ja) * 2012-06-11 2013-12-26 Kawaken Fine Chem Co Ltd メラニン産生抑制剤とその組成物
US8946460B2 (en) 2012-06-15 2015-02-03 Commonwealth Scientific And Industrial Research Organisation Process for producing polyunsaturated fatty acids in an esterified form
CN104520313A (zh) 2012-08-03 2015-04-15 巴斯夫植物科学有限公司 新的酶、酶组合物及其用途
SG11201604871VA (en) 2013-12-18 2016-07-28 Commw Scient Ind Res Org Lipid comprising long chain polyunsaturated fatty acids
KR102527795B1 (ko) 2014-06-27 2023-05-02 커먼웰쓰 사이언티픽 앤 인더스트리알 리서치 오거니제이션 도코사펜타에노산을 포함하는 지질

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE241007T1 (de) 1990-03-16 2003-06-15 Calgene Llc Dnas, die für pflanzliche desaturasen kodieren und deren anwendungen
US5475099A (en) * 1990-08-15 1995-12-12 Calgene Inc. Plant fatty acid synthases
PH31293A (en) 1991-10-10 1998-07-06 Rhone Poulenc Agrochimie Production of y-linolenic acid by a delta6-desaturage.
US5614393A (en) 1991-10-10 1997-03-25 Rhone-Poulenc Agrochimie Production of γ-linolenic acid by a Δ6-desaturase
US5679881A (en) 1991-11-20 1997-10-21 Calgene, Inc. Nucleic acid sequences encoding a plant cytoplasmic protein involved in fatty acyl-CoA metabolism
DE69233118T2 (de) 1991-12-04 2004-04-15 E.I. Du Pont De Nemours And Co., Wilmington Fettsäure-desaturase gene aus pflanzen
CA2084348A1 (en) 1991-12-31 1993-07-01 David F. Hildebrand Fatty acid alteration by a d9 desaturase in transgenic plant tissue
DK0668919T3 (da) 1992-11-17 2003-09-15 Du Pont Gener for mikorsomale delta-12-fedtsyredesaturaser og beslægtede enzymer fra planter
WO1994018337A1 (en) 1993-02-05 1994-08-18 Monsanto Company Altered linolenic and linoleic acid content in plants
EP0736598B1 (en) 1993-12-28 2004-08-11 Kirin Beer Kabushiki Kaisha Gene for fatty acid desaturase, vector containing said gene, plant containing said gene transferred thereinto, and process for creating said plant
US6310194B1 (en) 1994-09-26 2001-10-30 Carnegie Institution Of Washington Plant fatty acid hydroxylases
DK0788542T3 (da) 1994-10-26 2005-01-24 Cargill Inc FAE1-gener og anvendelse deraf
CA2557769A1 (en) 1995-12-14 1997-06-19 Cargill, Incorporated Plants having mutant sequences that confer altered fatty acid profiles
EP0794250A1 (en) 1996-03-04 1997-09-10 Soremartec S.A. Isolation and sequencing of the hazel FAd2-N gene
CN1253588A (zh) 1997-04-11 2000-05-17 艾博特公司 在植物中合成长链多不饱和脂肪酸的方法和组合物
US5968809A (en) 1997-04-11 1999-10-19 Abbot Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids
US5972664A (en) 1997-04-11 1999-10-26 Abbott Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids
AR013633A1 (es) 1997-04-11 2001-01-10 Calgene Llc METODO PARA LA ALTERACIoN DE LA COMPOSICIoN DE ÁCIDOS GRASOS DE CADENA MEDIA EN SEMILLAS VEGETALES QUE EXPRESAN UNA TIOESTERASA QUE PREFIERE CADENA MEDIA VEGETAL HETERoLOGA.
US6307128B1 (en) 1997-06-03 2001-10-23 Miami University Fatty acid elongases
GB9724783D0 (en) 1997-11-24 1998-01-21 Inst Arable Crops Research Novel polypeptides
AU4564399A (en) 1998-06-12 1999-12-30 Abbott Laboratories Polyunsaturated fatty acids in plants
US6913916B1 (en) * 1998-09-02 2005-07-05 Abbott Laboratories Elongase genes and uses thereof
GB0107510D0 (en) * 2001-03-26 2001-05-16 Univ Bristol New elongase gene and a process for the production of -9-polyunsaturated fatty acids

Also Published As

Publication number Publication date
CA2474163C (en) 2012-04-17
US7179647B2 (en) 2007-02-20
WO2003064638A2 (de) 2003-08-07
CA2474163A1 (en) 2003-08-07
MXPA04007327A (es) 2004-11-26
ES2337564T3 (es) 2010-04-27
AU2003206714B2 (en) 2007-09-06
NO20043592L (no) 2004-10-29
US20050214761A1 (en) 2005-09-29
ATE452198T1 (de) 2010-01-15
EP1472357A2 (de) 2004-11-03
IL162794A0 (en) 2005-11-20
DE50312241D1 (de) 2010-01-28
BR0306883A (pt) 2004-12-07
JP2005526496A (ja) 2005-09-08
EP1472357B1 (de) 2009-12-16
WO2003064638A3 (de) 2003-12-31

Similar Documents

Publication Publication Date Title
CN1247784C (zh) 新延伸酶基因以及制备多不饱和脂肪酸的方法
CN1537166A (zh) 新延长酶基因以及△9-多不饱和脂肪酸的生产
JP4490039B2 (ja) 高度不飽和脂肪酸の生産方法、新規な生合成遺伝子、ならびに新規な植物発現構築物
CN1625597A (zh) 新的延长酶基因及多不饱和脂肪酸的制备方法
AU2002310891A1 (en) New elongase gene and production of delta9-polyunsaturated fatty acids
CN101076594A (zh) 参与糖和脂质代谢的蛋白质的拟南芥编码基因及使用方法
DE10102338A1 (de) Verfahren zur Expression von Biosynthesegenen in pflanzlichen Samen unter Verwendung von neuen multiplen Expressionskonstrukten
CN1898389A (zh) 植物中的糖及脂质代谢调节剂vi
MXPA02005214A (es) Genes de musgo de physcomitrella patens que codifican proteinas involucradas en la sintesis de lipidos y acidos grasos poliinsaturados.
CN1894405A (zh) 含有花生四烯酸的植物体及其利用
CN1729293A (zh) 生产多不饱和脂肪酸的方法
Napier et al. New Elongase Gene And Production Of Delta-9-polyunsaturated Fatty Acids (Patent EP 1373519 B1)
CN1882684A (zh) 细小裸藻的ter基因

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication