CN1377323A - 高纯度盐酸的生产 - Google Patents

高纯度盐酸的生产 Download PDF

Info

Publication number
CN1377323A
CN1377323A CN00813864A CN00813864A CN1377323A CN 1377323 A CN1377323 A CN 1377323A CN 00813864 A CN00813864 A CN 00813864A CN 00813864 A CN00813864 A CN 00813864A CN 1377323 A CN1377323 A CN 1377323A
Authority
CN
China
Prior art keywords
hydrochloric acid
hydrogen chloride
tower
concentration
absorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00813864A
Other languages
English (en)
Other versions
CN100473600C (zh
Inventor
W·布特尼尔
M·赫斯塔勒克
甘晋荣
吕志鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of CN1377323A publication Critical patent/CN1377323A/zh
Application granted granted Critical
Publication of CN100473600C publication Critical patent/CN100473600C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • C01B7/0731Purification ; Separation of hydrogen chloride by extraction
    • C01B7/0737Purification ; Separation of hydrogen chloride by extraction hydrogen chloride being extracted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Gas Separation By Absorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

本发明涉及一种新型的方法,其能够根据工业标准实施,生产半导体生产中所使用的低颗粒含量的高纯度盐酸。

Description

高纯度盐酸的生产
本发明涉及一种半导体生产中使用的高纯度、低颗粒盐酸的新型工业生产方法。
由首先氯气电解,接着燃烧氯气和氢气生产的氯化氢气体通常含有很难(如果能除去的话)从氯化氢气体中除去的杂质(原文如此)。这些杂质例如包含砷、溴和挥发性有机杂质。即使将氯化氢通入水中,然后将盐酸进行绝热蒸馏,也很难除去这些杂质。
已知的是根据下列不同方法生产大体上高纯度的盐酸:
1.蒸馏20%的盐酸
2.蒸馏氯化氢含量大于20的盐酸,接着用20%的盐酸馏出液吸收释放出的氯化氢
3.由压缩气瓶或一个输送氯化氢的加压管路系统将氯化氢气体引入一个部分装有水且配有冷凝器的接收器
4.过沸(subboiling)蒸馏
但是,这种方法(1-4)不能生产出所需纯度(方法1,2,3)或所需浓度(方法1和4)的盐酸。
迄今,一种适于生产少量高纯盐酸的方法是按下列方法进行的:加热37%的盐酸以排出氯化氢气体。该氯化氢气体通过一个小型的滞留塔(retention column)以除去液滴,随后将其通过入一个装有高纯水的接收器。但是,这种方法仅适用于少量盐酸的生产,及每年10-20吨,且需间歇操作,因为装置中的压力将随充气量恒定地变化。在该装置的蒸发中进行后续的提练连续操作是不可能的,或者必须付出相当大的复杂的技术努力。
本发明的目的是提供一种简单且便宜的方法,以能满足半导体工业应用的工业规模生产阳离子、阴离子和粒子杂质含量都极低的盐酸。根据所需用途,所生产的盐酸其盐酸含量应达到35-38%。
通过一种生产高纯度、低颗粒的半导体工业用盐酸的方法可以达到上述目的,该方法的特征在于:
a)通过加热从氯化氢含量大于21%的盐酸中排出[气泡][lacuna],
b)使氯化氢气体通过由氟化或全氟聚烯烃制成的滞留塔和除沫器,和
c)随后将上步排出的气体溶解在吸收塔中的高纯水中,以形成盐酸。
为了浓缩,本发明也可能将所获得的氯化氢溶液回收(withdraw)、冷却、使重新进入塔中循环。
在本发明的一个实施方案中,将吸收塔顶部排出的含水蒸汽的HCl通入填充柱并在下流塔中浓缩。
可以通过测定电导率来确定氯化氢溶液的浓度。在连续法中,电导率的测定可以连续进行。
具体地,本发明提供了一种在低流阻条件下实施的方法,以便可以在大气压到500mm,优选在小于200mm静水压头的小超压下,且在连续条件下实施该方法。
在本发明所述方法的一个实施方案中,使氯化氢溶液循环进入吸收塔以生产出浓度大于32%的盐酸。
在本发明所述的另一个实施方案中,使氯化氢溶液循环进入吸收塔以生产出浓度为35-38%的盐酸。
在本方法的一个方案中,通过加入高纯水,将盐酸溶液调节到所需的浓度。
如果有必要,在装入适当的传输容器之前,可以通过使用1到3步过滤装置过滤除去高纯度盐酸中存在或形成的任何颗粒杂质。
具体地,在多步过滤的情况下,使用1.0和0.05μm的低孔径连续过滤器实施过滤。
如前所述,把蒸发装置和绝热吸收塔结合起来能够以能满足半导体工业使用要求的工业规模生产出浓度为35-38%的高纯度盐酸。
通过使用氟化或全氟聚烯烃结构材料制得的装置组件和供给容器,可以获得上述有利结果。
为了浓缩,将塔上段(8)中初始获得的氯化氢含量不超过32%的溶液在热交换器(9)中冷却,然后输入安装在塔上段(8)和冷却器(9)下方的第二个塔段(10)中。
为了防止经过塔上段(8)的顶部(含HCl气体残余的水蒸汽通过其逸出)排出污染产品,使逸出的气体(HCl和水蒸汽)向下(原文如此)通过安全塔(13),然后在冷凝器中冷凝。
可以连续测定冷凝液流放口中盐酸的剩余浓度以监控吸收塔的性能。
[气泡]使氯化氢溶液循环进入吸收塔(10)的下段,可以进一步提高酸的浓度,从而生产出浓度大于32%的盐酸。
更具体地,通过使盐酸在第二个塔段(10)中达到饱和,可以生产出浓度在32-40%的盐酸。
在本方法的一个方案中,起始生产出氯化氢含量大于所需浓度的盐酸,然后通过特殊方法生产[原文如此]的高纯水的控制加入以达到满意的浓度,通过高纯水的控制加入使浓度在很窄的范围内(±0.2%)。
为了实施本发明的方法,用蒸发装置通过在大气压或仅略微加压(0-最大500mm静水压头)下加热,从氯化氢含量大于20%,优选为22-40%的盐酸中排除氯化氢气体。
有害的杂质留在大约20%的残余酸中,从而得到高纯度的氯化氢气体。
起始将氯化氢蒸汽在常压下或略高的超大气压的条件下通入滞留塔以除去液体馏分,例如液滴形式的微量酸,然后在绝热条件下通过下流除沫器进入吸收塔,在吸收塔的超纯水中被吸收。为了获得浓度大于32%,优选在35-40%的盐酸,将塔上段(8)中流下的氯化氢溶液冷却,然后输入到塔下段(10)中,以将酸浓缩到所需的氯化氢含量。
如上所述,使用由氟化或全氟聚乙烯作为结构材料制得的滞留塔和除沫器是特别有利的。
吸收塔的顶部装有高纯水。所加水的量是一种控制所得高纯盐酸的浓度和下降酸的浓度的简单方法,因此通过第2个塔段出口处电导率的连续测定也可监控所加水的量。
测试结果显示,仅当所有部件的流阻为使整个系统的流阻不超过500mm,优选不超过200mm静水压,且在蒸发段中完全保持恒定的时,该装置系统将能正常运作。换句话说,该装置能在常压恒定条件下运作。
填充塔(13)保护吸收塔顶部仍含有非常小量的HCl气体的水蒸汽免受外部大气的影响。水蒸汽在下流冷凝器中冷凝。为了监控塔系统,通过电导率测定连续记录氯化氢的浓度。
为了能够满足半导体制造中要求的窄的浓度容限,从吸收塔中排出的酸的浓度略高于要求的是有利的。然后通过进一步控制超纯水的加入,利用下流缓冲循环在要求的误差范围内调节所需的浓度。在该套设备的部件中,与生产相关的组件都是由氟化或全氟聚烯烃结构材料制得的。
对不同结构材料的测试显示,不仅选择用于该生产设备而且选择用于随后的储存和运输系统的适当的特定结构材料,有可能避免由于结构材料而带来的污染。更具体地,这不仅防止了纯氯化氢蒸汽的污染,而且防止了盐酸的污染。这特别特别适用于滞留塔和吸收塔中的塔填充和除沫器,其与产品接触释放的离子污染物必须低至使能够达到产品所要求的纯度。
优选在衬有氟化或全氟聚烯烃材料的储存器中收集所得产品。质量控制完成后,由一个干净的连接箱(coupling box)将盐酸释放并装入衬有氟化或全氟聚烯烃材料的传输容器或直接装入符合DIN ISO标准的类似传输容器的适当的小型容器中。
如果需要,将盐酸装入适当的储存容器之前,在2到3步过滤装置中对其进行过滤,以便连续地除去平均直径大于1μm,大于0.2μm和大于0.1-0.05μm的颗粒。
该装置中与盐酸或氯化氢气体或超纯水,以及储存容器相接触的各段都是由在给定条件下既不释放出离子也不释放出颗粒污染物的材料构成的。这些材料是基于聚烯烃的结构材料,优选基于氟化或全氟聚烯烃,例如,PVDF,PFA,PTFE和PTFE-TFM。PVDF,PFA和PTFE-TFM不仅从质量而且从经济的观点来说都是特别有用的。
与半导体工业中所用的生产高纯度低颗粒盐酸的传统装置相比,此处所描述的本发明的装置使得大规模地有选择性地生产氯化氢含量极低和氯化氢含量高达40%的盐酸产品成为可能。
根据本发明所获得的盐酸中的可能的阳离子污染物的浓度是如此低,以至于用于分析目前可得的盐酸的方法检测不到,或者接近于现有的检测极限,即,低于检测极限0.05ppb。同样,盐酸中阴离子污染物的含量实际上也低于目前可达到的分析检测极限。
更具体地,所述方法使得将通常在盐酸中的溴馏分降低到<1ppm的水平成为可能。
通过实施例的方法,表1列出了根据所述方法生产的高纯度盐酸中测得的分析值。
表1:分析值是在根据所述方法设计的且具有350kg的36%的高纯盐酸的容量的装置中测定的
(如果没有列出其它单位)值为ppb值
检定%还原碘游离氯 35-37<500<100
铵  NH4溴  Br硝酸根NO3磷酸根PO4硫酸根SO4 <200<1000<100<50<50
硫酸盐灼烧残余物 <500
铝  Al锑  Sb砷  As <0.1<0.1<0.05
钡  Ba铍  Be铋  Bi <0.05<0.05<0.05
硼  B镉  Cd钙  Ca <0.1<0.05<0.1
铬  Cr钴  Co铜  Cu <0.05<0.05<0.05
镓  Ga锗  Ge <0.05<0.05
金  Au铟  In <0.05<0.05
(如果没有列出其它单位)值为ppb值
铁  Fe铅  Pb锂  Li <0.1<0.05<0.05
镁  Mg锰  Mn钼  Mo <0.1<0.05<0.05
镍  Ni铌  Nb钯  Pd <0.05<0.05-
铂  Pt钾  K硅  Si -<0.05<5
银  Ag钠  Na锶  Sr <0.05<0.1<0.05
钽  Ta铊  Tl锡  Sn <0.05<0.05<0.1
钛  Ti钒  V <0.1<0.05
锌  Zn锆  Zr <0.05<0.05
颗粒0.2μm  N/ml <100
图1显示了用于实施生产半导体工业中使用的高纯度、低颗粒盐酸的发明方法的装置的发明全套设备。该装置包含下列构件:
1.滞留塔
2.盐酸输入
3.蒸发器4.残余酸的连续排出出口5.除沫器6.氯化氢气体管路7.超纯水输入8.吸收塔上段9.中间冷却10.吸收塔下段11.冷却12.获得最终产品的出口13.安全塔14.冷凝器

Claims (10)

1.一种用于半导体工业的高纯盐酸的生产方法,其特征在于
a)通过加热从氯化氢含量大于21%的盐酸中排出[气泡],
b)使氯化氢气体通过由氟化或全氟聚烯烃制成的滞留塔和除沫器,和
c)随后在吸收塔中溶于高纯水中,以形成盐酸。
2.根据权利要求1所述的方法,其特征在于将所获得的氯化氢溶液回收、冷却并使其重新进入塔中循环以便浓缩。
3.根据权利要求1所述的方法,其特征在于使吸收塔顶部排出的含氯化氢的水蒸汽通过填充塔并在下流塔中冷却。
4.根据权利要求1所述的方法,其特征在于通过测定电导率测定氯化氢溶液的浓度。
5.根据权利要求1-4所述的方法,其特征在于该方法是在常压到500mm静水压头,优选<200mm的小超压下,且在恒定条件下实施的。
6.根据权利要求1-5所述的方法,其特征在于将氯化氢溶液循环进入吸收塔以生产出浓度大于32%的盐酸。
7.根据权利要求1-5所述的方法,其特征在于将氯化氢溶液循环进入吸收塔以生产出浓度为35-38%的盐酸。
8.根据权利要求1-5所述的方法,其特征在于通过加入超纯水将盐酸溶液调节到所需的浓度。
9.根据权利要求1-8所述的方法,其特征在于在装入适当的传输容器之前,通过使用2到3步过滤装置过滤除去所形成的颗粒。
10.根据权利要求9所述的方法,其特征在于使用1.0到0.05μm之间的低孔径连续的过滤器达到过滤效果。
CNB008138648A 1999-10-07 2000-10-04 高纯度盐酸的生产 Expired - Fee Related CN100473600C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19948206A DE19948206A1 (de) 1999-10-07 1999-10-07 Verfahren zur Herstellung hochreiner Salzsäure
DE19948206.3 1999-10-07

Publications (2)

Publication Number Publication Date
CN1377323A true CN1377323A (zh) 2002-10-30
CN100473600C CN100473600C (zh) 2009-04-01

Family

ID=7924745

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008138648A Expired - Fee Related CN100473600C (zh) 1999-10-07 2000-10-04 高纯度盐酸的生产

Country Status (11)

Country Link
US (1) US6793905B1 (zh)
EP (1) EP1218291A1 (zh)
JP (1) JP4718077B2 (zh)
KR (1) KR100742477B1 (zh)
CN (1) CN100473600C (zh)
AU (1) AU7524800A (zh)
CA (1) CA2387584A1 (zh)
DE (1) DE19948206A1 (zh)
MY (1) MY128168A (zh)
TW (1) TW539646B (zh)
WO (1) WO2001025144A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993041A (zh) * 2009-08-27 2011-03-30 林大昌 氨基葡萄糖盐酸盐的废酸液中回收循环使用盐酸的方法
CN102060271A (zh) * 2011-02-21 2011-05-18 上海正帆科技有限公司 电子级盐酸生产方法
CN109534293A (zh) * 2018-12-26 2019-03-29 江阴江化微电子材料股份有限公司 一种电子级盐酸纯化系统
CN109650340A (zh) * 2018-12-26 2019-04-19 江阴江化微电子材料股份有限公司 一种电子级盐酸生产方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160598A1 (de) 2001-12-10 2003-06-12 Basf Ag Verfahren zur Herstellung von weitgehend HBr-freiem HCI-Gas und weitgehend HBr-freier wäßriger HCI-Lösung
DE10257093B4 (de) * 2002-12-05 2005-02-24 Basf Ag Aerosolabscheider und Verfahren zur Reinigung von gasförmigem Schwefeltrioxid durch Abscheidung darin dispergierter Flüssigkeiten
CN100372756C (zh) * 2004-01-15 2008-03-05 山东滨化集团有限责任公司 试剂级盐酸的生产方法
KR20060071274A (ko) * 2004-12-21 2006-06-26 삼성정밀화학 주식회사 35 % 염산의 제조방법
DE102007016973A1 (de) * 2007-04-10 2008-10-16 Bayer Materialscience Ag Regenerativer Adsorptionsprozess zur Entfernung organischer Komponenten aus einem Gasstrom
DE102007020144A1 (de) * 2007-04-26 2008-10-30 Bayer Materialscience Ag Kondensations-Adsorptionsprozess zur Entfernung organischer Komponenten aus einem Chlorwasserstoff enthaltenden Gasstrom
DE102007033524A1 (de) * 2007-07-19 2009-01-22 Bayer Materialscience Ag Regeneration eines mit Hexachlorostannat beladenen Anionenaustauschers
DE202008011956U1 (de) 2008-09-08 2008-11-06 Mikrowellen-Systeme Mws Gmbh Subboiling-Apparatur
CN102398895B (zh) * 2010-09-16 2014-09-24 上海化学试剂研究所 一种超纯电子级化学试剂的生产方法
CN102515102A (zh) * 2011-12-16 2012-06-27 天津市泰亨气体有限公司 一种高纯氯化氢的合成方法
US9573808B2 (en) 2013-07-31 2017-02-21 Schlumberger Technology Corporation Aqueous solution and method for use thereof
US9920606B2 (en) 2013-07-31 2018-03-20 Schlumberger Technology Corporation Preparation method, formulation and application of chemically retarded mineral acid for oilfield use
US9796490B2 (en) 2013-10-24 2017-10-24 Schlumberger Technology Corporation Aqueous solution and method for use thereof
US9476287B2 (en) 2013-11-05 2016-10-25 Schlumberger Technology Corporation Aqueous solution and method for use thereof
KR102219162B1 (ko) * 2015-12-22 2021-02-23 쇼와 덴코 가부시키가이샤 염화수소 혼합물의 제조 방법
WO2017199120A1 (en) * 2016-05-19 2017-11-23 Sabic Global Technologies B.V. Processes for separating organic impurities from aqueous inorganic acids
CN106241925B (zh) * 2016-08-26 2019-11-08 云南盐化股份有限公司 制盐循环冷却水回收装置
CN110589784B (zh) * 2019-10-08 2021-11-23 中国计量科学研究院 一种实验室级超纯硝酸的精细串联纯化系统与纯化方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2155849C3 (de) * 1971-11-10 1979-07-26 Semikron Gesellschaft Fuer Gleichrichterbau Und Elektronik Mbh, 8500 Nuernberg Verfahren zur Herstellung eines stabilisierenden und/oder isolierenden Überzuges auf Halbleiteroberflächen
US4214920A (en) * 1979-03-23 1980-07-29 Exxon Research & Engineering Co. Method for producing solar cell-grade silicon from rice hulls
FR2473898A1 (fr) * 1980-01-23 1981-07-24 Bljum Grigory Procede d'epuration des impuretes contenues dans une solution aqueuse d'un corps gazeux
JPH0543203A (ja) 1991-08-13 1993-02-23 Mitsui Toatsu Chem Inc 塩酸蒸留装置
US5407349A (en) * 1993-01-22 1995-04-18 International Business Machines Corporation Exhaust system for high temperature furnace
US5846387A (en) * 1994-01-07 1998-12-08 Air Liquide Electronics Chemicals & Services, Inc. On-site manufacture of ultra-high-purity hydrochloric acid for semiconductor processing
US5632866A (en) * 1994-01-12 1997-05-27 Fsi International, Inc. Point-of-use recycling of wafer cleaning substances
US6050283A (en) * 1995-07-07 2000-04-18 Air Liquide America Corporation System and method for on-site mixing of ultra-high-purity chemicals for semiconductor processing
US6132522A (en) * 1996-07-19 2000-10-17 Cfmt, Inc. Wet processing methods for the manufacture of electronic components using sequential chemical processing
KR100502706B1 (ko) * 1996-12-16 2005-10-13 쯔루미소다 가부시끼가이샤 고순도염산의제조장치및제조방법
JP4167307B2 (ja) * 1996-12-16 2008-10-15 鶴見曹達株式会社 高純度塩酸の製造装置及び製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993041A (zh) * 2009-08-27 2011-03-30 林大昌 氨基葡萄糖盐酸盐的废酸液中回收循环使用盐酸的方法
CN101993041B (zh) * 2009-08-27 2013-06-26 林大昌 氨基葡萄糖盐酸盐的废酸液中回收循环使用盐酸的方法
CN102060271A (zh) * 2011-02-21 2011-05-18 上海正帆科技有限公司 电子级盐酸生产方法
CN102060271B (zh) * 2011-02-21 2013-01-23 上海正帆科技有限公司 电子级盐酸生产方法
CN109534293A (zh) * 2018-12-26 2019-03-29 江阴江化微电子材料股份有限公司 一种电子级盐酸纯化系统
CN109650340A (zh) * 2018-12-26 2019-04-19 江阴江化微电子材料股份有限公司 一种电子级盐酸生产方法
CN109534293B (zh) * 2018-12-26 2024-01-05 江阴江化微电子材料股份有限公司 一种电子级盐酸纯化系统

Also Published As

Publication number Publication date
AU7524800A (en) 2001-05-10
KR100742477B1 (ko) 2007-07-25
DE19948206A1 (de) 2001-04-12
EP1218291A1 (de) 2002-07-03
TW539646B (en) 2003-07-01
KR20020048949A (ko) 2002-06-24
WO2001025144A1 (de) 2001-04-12
CN100473600C (zh) 2009-04-01
CA2387584A1 (en) 2001-04-12
US6793905B1 (en) 2004-09-21
JP2003511329A (ja) 2003-03-25
JP4718077B2 (ja) 2011-07-06
MY128168A (en) 2007-01-31

Similar Documents

Publication Publication Date Title
CN1377323A (zh) 高纯度盐酸的生产
US20110094872A1 (en) Method for producing of ultra-clean and high-purity electronic grade reagents
EP0417194B1 (en) Method and apparatus for purifying hydrogen fluoride
CN101362675B (zh) 超净高纯异丙醇的制备方法及其装置
DE69921877T2 (de) Verfahren zur Abgabe eines dampfförmigen Produktes an einen Verwendungsort
US20120071670A1 (en) Method for producing of ultra-clean and high-purity n-methyl pyrrolidone
US20020168773A1 (en) Method and apparatus for evaluating performance of anion exchange resins, and condensate demineralizers
Wang et al. Kinetics study on separation of cadmium from tellurium in acidic solution media using ion-exchange resins
EP1947054B1 (en) Method of producing chlorine gas, aqueous sodium hypochlorite solution and liquid chlorine
CN101144125B (zh) 制备单质高纯砷产业化生产的方法
JPH09502810A (ja) 示差気体センサーインライン監視システム
DE102009044249B3 (de) Verfahren und Vorrichtung zur Abtrennung von Argon aus einem Gasgemisch
DE2755824B2 (de) Verfahren zum Reinigen von Silan
CN100398502C (zh) 超纯异丙醇的制备方法
CN100420625C (zh) 超纯过氧化氢的制备方法
CN101870460A (zh) 一种超纯硝酸的制备方法
CN101362683B (zh) 超净高纯醋酸的制备方法及其装置
KR940009276B1 (ko) 유체 처리 방법 및 이를 위한 매질 및 장치
KR100856187B1 (ko) 부식성 기체의 정화방법
JP4458044B2 (ja) 高純度液体塩素の製造方法
JPH07116079B2 (ja) 高品質イソプロピルアルコールの製造方法
US6660875B1 (en) Ion exchange purification of dielectric condensate precursor fluids and silicate esters such as tetraethylorthosilicate (TEOS)
WO2008077902A2 (de) Reinigung von silica
JPH07122058B2 (ja) 高品質メチレンクロライドからなる溶剤
WO1994021355A1 (en) Methods of removing and detecting harmful component

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: BASF AKTIENGESELLCHAFT

Free format text: FORMER OWNER: MERCK PATENT GMBH

Effective date: 20050805

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20050805

Address after: Ludwigshafen, Germany

Applicant after: Basf AG

Address before: Darmstadt

Applicant before: Merck Patent GmbH

C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090401

Termination date: 20111004