CN1346385A - 热塑性纳米复合材料 - Google Patents

热塑性纳米复合材料 Download PDF

Info

Publication number
CN1346385A
CN1346385A CN 00806107 CN00806107A CN1346385A CN 1346385 A CN1346385 A CN 1346385A CN 00806107 CN00806107 CN 00806107 CN 00806107 A CN00806107 A CN 00806107A CN 1346385 A CN1346385 A CN 1346385A
Authority
CN
China
Prior art keywords
component
layered silicate
thermoplastic
thermoplastic nanocomposites
nanocomposites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 00806107
Other languages
English (en)
Inventor
S·格鲁特克
M·韦伯
C·梅勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN1346385A publication Critical patent/CN1346385A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明涉及热塑性纳米复合材料,该材料包括a)一种热塑性塑料(A),b)由带负电荷的层状硅酸盐和嵌入它们(分层的表面处理的层状硅酸盐)中的阳离子构成的至少一种化合物(B),它均匀分散在组分(A)中,c)另一种未经表面处理的且平均粒度<50μm而长/径比(1/d)<20的层状硅酸盐(C)。本发明还涉及所述纳米复合材料的生产方法及用途。

Description

热塑性纳米复合材料
本发明涉及具有有利地平衡的机械性能的热塑性纳米复合材料。
由有机聚合物如聚酰胺和由层状硅酸盐制备的复合材料是已知的。但是虽然加入层状硅酸盐改进了刚度,但也降低了韧性。
由有机聚合物和层状硅酸盐制备复合材料的一个困难在于获得无机材料与有机材料的紧密耐久混合物。
通过例如使用有机硅烷来偶合无机和有机组分获得了这些有机和无机材料的结合。但是,这种类型的改性是复且昂贵的。
US 4,789,403描述了由有机材料如聚酰胺和层状硅酸盐制备复合材料的制备方法。为了改进与有机材料的相容性,未处理形式的层状硅酸盐首先在研磨机中与有机单体、共聚单体或预聚物紧密混合。随后该均匀粉末在提高的温度下在氢气氛中聚合得到所要求的复合材料。此处所用层状硅酸盐可以是任何所要求的层状硅酸盐,如埃洛石、伊利石、高岭石、蒙脱石或坡缕石。
有机材料与无机材料的耐久混合还可通过表面处理(疏水处理)层状硅酸盐而获得。这种类型的层状硅酸盐(分层层状硅酸盐)带有嵌入其带负电荷的晶格内的阳离子,增加了硅酸盐层之间的距离,并且层状硅酸盐在后继的在层状硅酸盐存在下进行的有机单体聚合期间分解为单一的层。但是,一些用这种方式处理的层状硅酸盐不能完全地分层。特别是如果纳米复合材料不是通过在层状硅酸盐存在下直接聚合有机单体而原位地制备的,而是通过混合所有的起始材料(这在技术上更简单)而制备的,则层状硅酸盐的分层通常是不完全的。结果是缺乏层状硅酸盐单一层在塑料(有机材料)内的理想和均匀分布,特别是当纳米复合材料通过混合制备时。所得材料不具有比与未分层矿物混合的那些材料更优越的性能。
基于本发明的目的,混合优选地是在例如双螺杆挤塑机中配混组成纳米复合材料的所有组分来得到最终纳米复合材料。
因此本发明的目的是提供热塑性纳米复合材料,其即使是通过配混制备时,也具有层状硅酸盐的分层在所用塑料中的理想分布,并且具有有利的和平衡的机械性能特征。
我们已经发现该目的可通过包含以下组分的热塑性纳米复合材料来实现:
a)热塑性塑料(A),
b)至少一种化合物(B)(分层的表面处理的层状硅酸盐),其结构由带负电荷的层状硅酸盐和嵌入其中的阳离子构成,并且它均匀分散在组分(A)中,和
c)中值粒度<50μm且长/径比(l/d)<20的另一种层状硅酸盐(C),
其中组分(C)未经表面处理。
未经表面处理的层状硅酸盐(组分(C))具有小于50μm,优选小于30μm,特别优选为15-25μm的粒度。配混可在常规体系,例如挤出机中进行,并且是不太复杂的,因此比热塑性纳米复合材料的原位制备更节约成本。
与已知的热塑性纳米复合材料相比,新型热塑性纳米复合材料具有更高的耐热性、更高的强度和更高的刚度,并且由其生产的注塑制品具有高韧性。此外,纳米复合材料的各向异性线性膨胀问题得到克服。特别惊人的一点是在保持刚度的同时改进了韧性。
与玻璃纤维增强塑料相比,表面得到了改进,并且机械性能在较低的填料含量并因此在较低的密度时是可比的。
以热塑性纳米复合材料的总重量为基准,所用组分(C)的比例很小。以热塑性纳米复合材料的总重量为基准,一般使用0.1-15wt%,优选1-10wt%且特别优选2-6wt%。
新型热塑性纳米复合材料优选包含:
a)10-99.89wt%组分(A),
b)0.01-15wt%,优选1-10wt%,特别优选2-6wt%组分(B),
c)0.1-15wt%,优选1-10wt%,特别优选2-6wt%组分(C),
d)0-50wt%其它填料(D),和
e)0-50wt%其它添加剂(E),
其中所有组分的总量为100wt%。
组分A:热塑性塑料
热塑性塑料优选选自聚酰胺、乙烯基聚合物、聚酯、聚碳酸酯、聚醛和聚酮。
可能的形成聚酰胺的单体为内酰胺,如ε-己内酰胺、庚内酰胺、辛内酰胺和十二内酰胺,及其混合物,优选ε-己内酰胺。其它可用来形成聚酰胺的单体的实例为二羧酸,如含有4-14个碳原子,特别是6-10个碳原子的链烷二羧酸,如己二酸、庚二酸、辛二酸、壬二酸和癸二酸,以及对苯二甲酸和间苯二甲酸,二胺如C4-C12-烷基二胺,特别是含有4-8个碳原子者,如己二胺、丁二胺和辛二胺、及间二甲苯二胺、二(4-氨基苯基)甲烷、2,2-二(4-氨基苯基)丙烷和二(4-氨基环己基)甲烷,以及二羧酸和二胺在每个基团内以任何所需组合、但优选以彼此等当量的比例的混合物,例如己二酸己二铵、对苯二甲酸己二铵和己二酸丁二铵,优选己二酸己二铵和对苯二甲酸己二铵以及内酰胺和二盐的混合物。工业上特别重要的是由己内酰胺、己二胺、间苯二甲酸和/或对苯二甲酸构成的聚己内酰胺和聚酰胺。
适于制备乙烯基聚合物的单体为乙烯、丙烯、丁二烯、异戊二烯、氯丁二烯、氯乙烯、偏二氯乙烯、氟乙烯、偏二氟乙烯、苯乙烯、α-甲基苯乙烯、二乙烯基苯、丙烯酸、丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丙酯、丙烯酸异丙酯、丙烯酸正丁酯、丙烯酸异丁酯、丙烯酸叔丁酯、甲基丙烯酸、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丙酯、甲基丙烯酸异丙酯、甲基丙烯酸正丁酯、甲基丙烯酸异丁酯、甲基丙烯酸叔丁酯、丙烯酰胺、甲基丙烯酰胺、乙基丙烯酰胺、正丙基丙烯酰胺、异丙基丙烯酰胺、丙烯腈、乙烯基醇、降冰片二烯、N-乙烯基咔唑、乙烯基吡啶、1-丁烯、异丁烯、亚乙烯基二氰、4-甲基-1-戊烯、乙酸乙烯酯、乙烯基异丁基醚、甲基乙烯基酮、乙烯基乙烯基酮、甲基乙烯基醚、乙烯基乙烯基醚、乙烯基乙烯基硫醚和丙烯醛。这些单体可单独使用或彼此组合使用。优选的乙烯基聚合物为聚苯乙烯,特别是间同立构的聚苯乙烯、聚乙烯、聚丙烯和聚氯乙烯。
聚酯也是适宜的热塑性塑料,优选基于对苯二甲酸和二醇者,特别优选聚对苯二甲酸乙二酯和聚对苯二甲酸丁二酯。
其它适宜的热塑性塑料为聚碳酸酯、聚酮和聚醛,如聚甲醛。
所用热塑性塑料(A)特别优选为聚酯或聚酰胺,非常特别的优选聚酰胺。
组分B:分层的表面处理过的层状硅酸盐
一般将层状硅酸盐理解为其中SiO4四面体被束缚在无限的二维网络中的硅酸盐。(阴离子的经验式为(Si2O5 2-)n。各层通过位于其间的阳离子彼此连接,并且主要存在于天然存在的层状硅酸盐中的阳离子为Na,K,Mg,Al或/和Ca)。
应该提到的合成和天然存在的层状硅酸盐的实例为蒙脱石、蒙皂石、伊利石、海泡石、坡缕石、白云母、钠板石、镁铝蛇纹石、锂皂石、氟锂皂石、皂石、贝得石、滑石粉、氯脱石、斯皂石、斑脱土、云母、蛭石、氟蛭石、埃洛石和含氟合成滑石粉系列。
基于本发明的目的,分层层状硅酸盐为其中层间距离首先通过与疏水剂的反应而加大,适当的话,随后通过加入单体(溶胀,例如用己内酰胺)的层状硅酸盐。
这类硅酸盐在分层前的层厚度通常为5-100,优选5-50且特别为8-25(一层的上界至下一层上界的距离)。
然后通过配混疏水化的及适当情况下用热塑性塑料(组分A)优选聚酰胺溶胀的层状硅酸盐,和组分C,进行层的分层,所得热塑性纳米复合材料的层间距离优选为至少40,特别优选为至少50。
为了扩大层间距离(疏水化),(在制备新型热塑性纳米复合材料之前)使层状硅酸盐与疏水剂(通常称作鎓离子或鎓盐)反应。
在这种情况中,层状硅酸盐的阳离子被有机疏水剂替代。所需的层间距离可通过所用有机基团的类型设定,并取决于将层状硅酸盐引入其中的特定单体或聚合物的类型。
金属离子的交换可超出化学计量范围,并且可全部或部分或根本不发生。金属离子的完全交换是优选的。可交换的金属离子量通常以每100g层状硅酸盐的毫当量(meq)给出,并将其称作离子交换容量。
优选阳离子交换容量为至少50meq/100g,优选为80-130meq/100g的层状硅酸盐。
适宜的有机疏水剂衍生自氧鎓、铵、磷鎓或锍离子,它们可携带一个或多个有机基团。
可提到的适宜琉水剂是式I和/或II代表的那些:
其中:
R1,R2,R3和R4彼此独立地为氢、含有1-40个碳原子,优选1-20个碳原子的直链或支链、饱和或不饱和烃基,如果需要,该烃基可携带至少一个官能团,或者两个该基团彼此结合时,特别得到一个含有5-10个碳原子的杂环基团,
X为磷或氮,
Y为氧或硫,
n为1-5,优选1-3的整数,和
Z为阴离子。
适宜的官能团为羧基、羟基、硝基或磺基,并且特别优选羧基,因为这类官能团能更好地与聚酰胺的端基相连。
适宜的阴离子Z衍生自质子酸,特别是无机酸,并且优选卤素如氯、溴、氟或碘、硫酸盐、磺酸盐、磷酸盐、膦酸盐、亚磷酸盐和羧酸盐,特别是乙酸盐。
作为起始原料的层状硅酸盐一般以悬浮液形式进行反应。优选的悬浮介质为水,如果需要可以为与醇特别是含有1-3个碳原子的低级醇的混合物。与水性介质一起共同使用烃例如庚烷是有利的,因为疏水的层状硅酸盐通常与烃的相容性比与水的更好。
其它适宜的悬浮介质的实例为酮和烃。与水混容的悬浮介质一般是优选的。当将疏水剂加入到层状硅酸盐中时,发生离子交换,通常导致层状硅酸盐从溶液中沉淀出来。离子交换产生的副产物金属盐优选是溶于水的,以便使疏水的层状硅酸盐可通过例如过滤作为结晶固体分离掉。
离子交换基本上不依赖于反应温度。温度优选在介质的结晶点之上和其沸点之下。在水性体系的情况下,温度为0-100℃,优选为40-80℃。
在聚酰胺作为组分A的情况中,优选烷基铵离子,其也可以是通过使适当的氨基羧酸,优选ω-氨基羧酸,如ω-氨基十二酸、ω-氨基十一酸、ω-氨基丁酸、ω-氨基辛酸或ω-氨基己酸与普通的无机酸,如盐酸、硫酸或磷酸,或者与甲基化试剂,如碘甲烷反应而获得的。
其它优选的无机铵离子为月桂基铵、肉豆蔻基铵、棕榈基铵、硬脂酰铵、吡啶鎓、十八烷基铵、单甲基十八烷基铵和二甲基十八烷基铵离子。
可以提到的适宜磷鎓离子的实例为二十二烷基三甲基磷鎓、三十六烷基三环己基磷鎓、十八烷基三乙基磷鎓、二十烷基三异丁基磷鎓、甲基三壬基磷鎓、乙基三(十六烷基)磷鎓、二甲基二癸基磷鎓、二乙基二(十八烷基)磷鎓、十八烷基二乙基烯丙基磷鎓、三辛基乙烯基苄基磷鎓、二辛基癸基乙基羟乙基磷鎓、二十二烷基二乙基二氯苄基磷鎓、辛基壬基癸基炔丙基磷鎓、三异丁基全氟癸基磷鎓、二十烷基三羟甲基磷鎓、三十烷基三氰基乙基磷鎓和双(三辛基)亚乙基二磷鎓。
其它适宜的疏水剂描述于例如WO 93/4118,WO 93/4117,EP-A 398551和DE-A 36 32 865中。
经过疏水化作用后,层状硅酸盐一般具有10-50,优选13-40的层间距离。层间距离通常为上层下边界至下层上边界的距离。
使以上述方式进行疏水化作用的层状硅酸盐尽量不含水,例如通过干燥,如喷雾干燥方法。以这种方式处理的疏水化的层状硅酸盐一般包含0-10wt%,优选0-5wt%的水。然后疏水化的层状硅酸盐可用作基本不含水的悬浮介质中的悬浮体。在上述悬浮介质中,特别适宜者为醇和低沸点烷烃。或者,疏水化的层状硅酸盐可以固体形式与例如聚酰胺单体混合。优选使用固体形式的疏水化的层状硅酸盐。
在此可以通过使层状硅酸盐与聚酰胺单体在例如25-300℃,优选80-280℃,特别是80-260℃,保留时间一般为5-120min,优选10-60min条件下反应(溶胀)而进一步增加层间距离。根据保留时间的长短和所选单体的类型,层间距离可进一步增加10-150,优选10-50。层长度通常高达2000,优选高达1500。存在或形成的任何预聚物一般也可对层状硅酸盐的溶胀有贡献。
组分C:未表面处理的层状硅酸盐
适于作为组分(C)的层状硅酸盐可见Hollemann,Wiberg,Lehrbuch der anorganischen Chemie,de Gruyter,1985,771-776页。可提到的合成和天然存在的层状硅酸盐的实例为蒙脱石、伊利石、海泡石、坡缕石、白云母、钠板石、镁铝蛇纹石、锂皂石、氟锂皂石、皂石、贝得石、滑石粉、氯脱石、斯皂石、斑脱土、云母、蛭石、氟蛭石、高岭石和埃洛石。
滑石粉和高岭石是优选的。滑石粉是特别优选的,且平均粒度为15-25μm的滑石粉是非常特别优选的。
这些层状硅酸盐是以其未表面处理的形式用作组分(C)的。
组分D:填料
适宜的填料为颗粒状或纤维状填料。适宜的颗粒状填料为碳酸盐,如碳酸镁或白垩。优选使用纤维状填料。适宜的纤维状填料的实例为碳纤维、钛酸钾晶须、芳纶和玻璃纤维。特别优选使用玻璃纤维。如果使用玻璃纤维则会提供上浆剂或偶联剂以改进与基体材料的相容性。所用碳纤维和玻璃纤维一般具有6-16μm的直径。玻璃纤维可作为短玻璃纤维或者作为连续纤维(粗纱)引入。碳纤维或玻璃纤维也可以织物、席子(mats)或玻璃长丝粗纱的形式使用。以组合物总重量为基准,填料存在的量一般为0-50wt%,优选15-40wt%,特别优选20-35wt%。
组分E:添加剂
组合物可进一步包含添加剂。这些添加剂的实例为加工助剂、稳定剂和氧化抑制剂、防止由热或紫外线引起的降解的试剂、润滑剂、脱模剂、阻燃剂、染料、颜料和增塑剂。以组合物总重量为基准,它们的比例一般为0-50wt%,优选最多30wt%,特别优选1-25wt%。
以组合物总重量为基准,所用颜料和染料的量一般为0-4wt%,优选0.5-3.5wt%且特别优选0.5-3wt%。
用于染色热塑性塑料的颜料是为人熟知的,见例如R.Gchter和H.Müller,Taschenbuch der Kunststoffadditive,Carl HanserVerlag,1983,494-510页。应该提到的首选颜料组为白颜料,如氧化锌、硫化锌、铅白(2PbCO3.Pb(OH)2)、锌钡白、锑白和二氧化钛。在二氧化钛两种最常见的晶体形式(金红石和锐钛矿)中,特别使用金红石形式作为新型热塑性纳米复合材料的白色着色剂。
根据本发明可以使用的黑色颜料为氧化铁黑(Fe3O4)、尖晶石黑(Cu(Cr,Fe)2O4)、锰黑(二氧化锰、二氧化硅和氧化铁的混合物)、钴黑和锑黑,并且还特别优选炭黑,最常用的炭黑为炉黑或气黑形式的炭黑(这方面可见G.Benzing,Pigmente für Anstrichmittel,Expert-Verlag(1988),78及其后各页)。
为了获得特殊色泽,根据本发明当然也可以使用无机颜料,如氧化铬绿,或有机彩色颜料,如偶氮颜料和酞菁染料。这类颜料在市场上都有供应。
使用颜料及相应的所述染料的混合物,例如炭黑与铜酞菁也可能是有利的,因为这一般可使颜色在热塑性塑料中分散得更容易。
根据本发明可以加入到热塑性材料中的氧化抑制剂和热稳定剂的实例为周期表第I族金属的卤化物,例如卤化钠、卤化钾和卤化锂与卤化铜(I),例如氯化物、溴化物或碘化物。卤化物,特别是铜的卤化物还可包含富电子π配位体。可以提到的这类铜配合物的实例为例如与三苯基膦的Cu-卤化物配合物。也可以使用氟化锌和氯化锌。还可以使用位阻酚、氢醌、该组的取代代表物、仲芳胺,如果需要可与含磷酸或者相应地与它们的盐合用、或这些化合物的混合物,以混合物重量为基准,一般浓度最多为1wt%。
紫外稳定剂的实例为各种取代的间苯二酚、水杨酸酯、苯并三唑和二苯甲酮,通常用量最多为2wt%。
通常用量占热塑性材料最多1wt%的润滑剂和脱模剂为硬脂酸、硬脂醇、硬脂酸烷基酯和硬脂酰胺、以及季戊四醇和长链脂肪酸的酯。还可以使用钙、锌或铝的硬脂酸盐,或者二烷基酮,例如二硬脂基酮。
制备新型热塑性纳米复合材料的方法
可用各种方法制备新型热塑性纳米复合材料。
1.原位法
在原位法中,将疏水的(=分层的)层状硅酸盐(B)(例如来自英国Southern Clay Products,Laporte Co.的Cloisite 30A)以悬浮液或作为固体与可聚合得到热塑性塑料(A)的单体混合。然后用单体使疏水的层状硅酸盐发生溶胀。随后的单体聚合可以通常方式进行。其后将所得纳米复合材料与组分(C)配混,如果需要,与其它组分(D)和(E)配混。
为此,将疏水的层状硅酸盐(B)悬浮在可聚合得到组分(A)(热塑性塑料)的液态单体中并在一般占单体0.1-8wt%,优选0.1-7wt%的水存在下聚合。聚合优选在大于0.2wt%的水,例如0.25-6wt%水的存在下进行。
水可以加入到悬浮液中。如果该悬浮液中已包含来自组分B的水,或者不再加入水或者加入水的量只为以单体为基准的本发明所需总水量范围内的水量。
为了获得非常好的且彻底的混合,搅拌悬浮液,特别优选使用剪切搅拌是有利的。例如搅拌的釜式反应器适用于此目的。随后一般一次性、一点一点地或连续地加入水,而悬浮液的温度一般为70-100℃,优选75-95℃。水相悬浮液的温度同时或随后升高,一般高达180-330℃,优选220-320℃。在温度升高之前或之后,或者在加入水之前或之后,悬浮液可保留在制备它的设备中,或者可转移到另一个反应容器中。同时使用剪切搅拌进行聚合是特别有利的。
可以使用各种方法进行制备新型复合材料的过程。例如,制备可通过间歇或连续法进行。
在间歇法中,水性悬浮液可在上述温度和剪切及加压条件下进行聚合。此处压力一般为5-30巴,优选8-20巴(绝对)。此处滞留时间基本取决于聚合期间所选的温度,并且一般为0.5-3h。达到平衡转化点后,一般蒸掉水并将压力降至大气压。仍存在于熔体中的任何水份可引起分子量的进一步增长,即使是在这样的压力下。随后将反应混合物排出,例如作为成形的熔体条,通过水浴冷却是有利的,并将其粉碎,优选进行造粒。所得聚酰胺的摩尔质量一般最高22,000g/mol,优选为8000-22,000g/mol。
在一个优选的实施方案中,连续法一般是通过将温度为70-100℃,优选75-95℃的水性悬浮液连续加入到第一反应区并在此于上述的温度和剪切条件下将其聚合而进行的。在一个特别优选的实施方案中,可向第一反应区中加入其它或该相同单体的预聚物以及水性悬浮液。它们可通过提取造粒产物产生(见下)。第一反应区的压力一般小于5巴(绝对),例如为1-3巴(绝对)。
主要取决于温度、压力和反应混合物水含量的滞留时间一般选为2-5h,优选为3-4h。如果将预聚物加入到反应的第一阶段,则滞留时间一般小于2h,优选为0.5-1h。当使用己内酰胺时,在第一反应区缩聚通常达到的摩尔质量为3000g/mol或更大,优选5000-7000g/mol。此处总的端基浓度可例如为200-600mmol/kg,优选为300-400mmol/kg。
反应混合物从第一反应区导入第二反应区。第二反应区的反应容器可以是例如管形的,并且优选装有内部器件。这些器件包括有序的混合元件,如填料(例如Raschig环、珠或Pall环)以便优选地确保尚未反应的单体在熔体中的滞留时间最短(以便获得高转化率),并且在相当大的范围内避免产生不或仅是最小量地传输熔体的区域(“死区”),并且还能避免任何回混。第二反应区的温度一般与第一反应区的温度范围相同。第二反应区中的滞留时间可在很宽范围内变化,其取决于单体的类型、温度、压力和反应容器的属性。如果在第一反应区中未加入预聚物,则第二反应区中的滞留时间一般更长。聚合物熔体一般以熔体成形条的形式排出第二反应区,用水浴冷却并粉碎,优选进行造粒。以这种方式获得的聚酰胺的摩尔质量例如为12,000-22,000g/mol。
由间歇法获得的组合物以及由连续法获得者还可包含挥发性成分,如所用的内酰胺(例如在己内酰胺聚合中)和其它单体单元,以及蒸汽-挥发性低聚物。一般通过用水逆流萃取将它们从聚合物颗粒中除去(见例如DE-A 206999)。做到这一点的另一个方法是气相萃取(见EP-A 0 284 968),同时构造分子量,并且在该萃取过程中可以使用过热蒸汽以同时萃取并退火。在一个优选的实施方案中,再定量地将挥发性成分引入到过程中,即优选引入到第一反应区中。为此,在提取水中,浓度优选增加至不大于85wt%的提取物浓度,而所得浓缩物的水含量通过加入新鲜单体方式调节以使缩聚可以在根据本发明的水量存在下进行。如果聚合以这种方式进行,在聚合期间一般至少发生一次绝热压力释放以降低水含量(见DE-A-19 752181)。
所要求的终产品粘数也可通过干燥或通过在固相退火期间聚合以已知方式进行调节。
在此所要求的终产品粘数一般为80-350ml/g,优选120-200ml/g(除去不溶成分后在浓度为95wt%的硫酸中以浓度为0.5wt%溶液测定)。
通过常规方法,例如使用挤塑法将所得纳米复合材料与组分(C)(未表面处理的层状硅酸盐)配混。
通过新方法制备的组合物一般包含占组合物总重量10-99.89wt%的热塑性塑料(组分A)和占组合物总重量0.1-15wt%,优选1-10wt%,特别优选2-6wt%的未表面处理的层状硅酸盐(组分C)。分层的层状硅酸盐(组分B)的比例一般占组合物总重量的0.01-15wt%,优选1-10wt%,特别优选2-6wt%。在此组分B的比例是通过灰化组合物而确定的。
2.熔体插入
在一个优选实施方案中,新型热塑性纳米复合材料可以为人熟知的方法,例如在160-340℃,特别优选在240-300℃使用挤塑法通过混合热塑性塑料(组分A)、分层的层状硅酸盐(组分B)和未表面处理的层状硅酸盐(组分C)而获得。高剪切双螺杆挤塑机特别适用于此,并且根据DIN 11 443的优选剪切应力为10-105Pa,特别为102-104Pa。该制备过程可在常规设备例如挤塑机中进行,并且操作简便,因此是具有成本效益的。新型组合物达到了理想混合。
所得新型热塑性纳米复合材料特别具有优异的韧性以及非常好的刚度。
新型热塑性纳米复合材料可用于生产模塑品。这类模塑品优选可通过挤塑、热成型或注塑来生产。
因此本发明进一步提供了用新型纳米复合材料获得的模塑品。
下列实施例进一步说明了本发明。
实施例
组分B
Cloisite 30A(英国的Southern Clay Products,LaporteCo.),一种预先疏水化的层状硅酸盐作为组分(B)。
新型热塑性纳米复合材料的制备
路线I
实施例1:
a)层状硅酸盐的疏水化
此步见组分B的制备
b)尼龙-6纳米复合材料的制备
(在组分B存在下制备组分A)
将3kg聚合物A和0.9kg层状硅酸盐B溶解或分别悬浮在28kg己内酰胺中。在加入1000g水之后,于搅拌釜式反应器中将混合物加热至250℃,内部压力为10巴。预缩合2小时后,在1.5小时内将容器中压力降低,然后在250℃进行2.5小时后缩合。
随后将熔体排出反应器并造粒。用热水萃取粒料。
将尼龙-6纳米复合材料与作为组分C的IT Extra滑石粉(来自德国的Norwegian Talc,Bad Soden)配混:
使用ZSK53双螺杆挤塑机在270℃不加入其它助剂如润滑剂下进行配混。
路线II
实施例2:
a)疏水化
在101配有搅拌器的加压容器中制备41分析纯级甲醇、80g蒙脱土、20g(0.14mol)二-2-羟乙基甲基硬脂胺和26.6g(0.14mol)对甲苯磺酸一水合物的悬浮液,于75℃在N2气氛下剧烈搅拌6h并随后冷却到室温。
b)聚合
在组分B和C存在下聚合己内酰胺。
在所有起始原料存在下进行的缩聚只有在熔融捏合机中才是可行的。250℃时的MVI流动性(ml/10’)在1以下,不可能进行注塑。
路线III
实施例3,4:
在常规条件下于260℃配混所有起始原料(ZSK30)。
对比例:
1c:配混5%的IT Extra滑石粉
1’c:配混10%的IT Extra⑧滑石粉
2c:配混5%的VP283/600 AST硅灰石(=链状硅酸盐)
3c:纯纳米复合材料(路线II)
4c:纳米复合材料(路线III)
性能测试
基质的粘数是在H2SO4溶液中于25℃以0.5wt%的浓度测定的。
耐冲击性(an[kJ/m2])是根据ISO 179第1部分以无缺口标准样品测定的。
拉伸试验是根据ISO 527-2进行的。
结果在表1中给出。
表1:
性能 单位 试验说明   1   2   3   4   1c  1′c   2c  3c  4c
基质粘数 ml/g  140  150  153  146  143  145  150  140  147
无机物含量 灰化后  6.2  8.7  6.2  8.7  5.0  10  4.9  3.7  3.8
(2)的含量  2.5%滑石粉  5%滑石粉  2.5%滑石粉  5%滑石粉  5%滑石粉  10%滑石粉  5%硅灰石  0  0
拉伸弹性模量 MPa ISO 527-2  5410   -  5130  5460  3970  4320  3210  5010  3700
断裂伸长率 ISO 527-2  2.6   -  2.6  2.8  3.4  3.2  3.5  2.1  3.4
断裂强度 MPa ISO 527-2  92   -  96  99  73  82  60  80  76
Charpy 1eU冲击性 kJ/m2 ISO179/1eU  81   -  80  82  134  119  121  75  138
HDT/A ISO 75-2  125   -  132  135  61  60  62  120  70
(B)脆性断裂对通过研磨厚度为2mm的注塑板切割的样片测试*不能注塑

Claims (11)

1.热塑性纳米复合材料,其包含
a)热塑性塑料(A),
b)至少一种化合物(B)(分层的表面处理的层状硅酸盐),其结构由带负电荷的层状硅酸盐和嵌入其中的阳离子构成,它被均匀分散在组分(A)中,和
c)中值粒度<50μm且长/径比(l/d)<20的其它层状硅酸盐(C),其中组分(C)未经表面处理。
2.权利要求1的热塑性纳米复合材料,其中组分(C)的中值粒度为15-25μm。
3.权利要求1或2的热塑性纳米复合材料,其包含
a)10-99.89wt%的组分(A),
b)0.01-15wt%的组分(B),
c)0.1-15wt%的组分(C),
d)0-50wt%的其它填料(D),和
e)0-50wt%的其它添加剂(E),
其中所有组分的总和为100wt%。
4.权利要求1-3任意一项的热塑性纳米复合材料,其中组分(A)为聚酰胺或聚酯。
5.权利要求1-4任意一项的热塑性纳米复合材料,其中组分(C)存在的比例为总重量的1-10wt%。
6.权利要求1-5任意一项的热塑性纳米复合材料,其中组分(C)为滑石粉或高岭土。
7.通过原位法制备权利要求1-6任意一项的热塑性纳米复合材料的方法,其中疏水的层状硅酸盐(B)在悬浮液中或作为固体与可聚合得到热塑性塑料(A)的单体混合,疏水的层状硅酸盐用单体溶胀,随后进行单体的聚合,并将所得纳米复合材料与组分(C)及如果需要的其它组分(D)和(E)配混。
8.通过熔体插入法制备权利要求1-6任意一项的热塑性纳米复合材料的方法,其中在160-340℃混合热塑性塑料(组分A)、疏水的层状硅酸盐(组分B)和中值粒度<50μm的其它层状硅酸盐(组分C)及如果需要的其它组分(D)和(E)。
9.将权利要求1-6任意一项的热塑性纳米复合材料用于生产模塑品的用途。
10.由权利要求1-6任意一项的热塑性纳米复合材料可获得的模塑品。
11.通过挤塑、热成型或注塑生产权利要求10的模塑品的方法。
CN 00806107 1999-02-10 2000-02-10 热塑性纳米复合材料 Pending CN1346385A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999105502 DE19905502A1 (de) 1999-02-10 1999-02-10 Thermoplastische Nanocomposites
DE19905502.5 1999-02-10

Publications (1)

Publication Number Publication Date
CN1346385A true CN1346385A (zh) 2002-04-24

Family

ID=7897041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 00806107 Pending CN1346385A (zh) 1999-02-10 2000-02-10 热塑性纳米复合材料

Country Status (6)

Country Link
EP (1) EP1153075A1 (zh)
JP (1) JP2002536523A (zh)
CN (1) CN1346385A (zh)
AU (1) AU2547800A (zh)
DE (1) DE19905502A1 (zh)
WO (1) WO2000047665A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348655C (zh) * 2005-06-24 2007-11-14 华南理工大学 埃洛石纳米管用于制备聚合物复合材料的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060618A (ja) * 2000-08-22 2002-02-26 Mitsui Chemicals Inc 熱可塑性芳香環含有ポリアミド樹脂組成物
JP4777672B2 (ja) * 2005-03-09 2011-09-21 株式会社カネカ ポリエステル樹脂組成物およびそれから得られる成形体
EP1770115A1 (de) * 2005-09-30 2007-04-04 Quadrant Plastic Composites AG Faserverstärktes flächiges Halbzeug
ES2331640B1 (es) * 2008-07-08 2010-10-21 Nanobiomatters, S.L Materiales nanocompuestos de matriz polimerica con propiedades mecanicas y barrera mejoradas y procedimiento para su obtencion.
JP6274782B2 (ja) * 2012-09-27 2018-02-07 ユニチカ株式会社 ポリアミド樹脂組成物およびそれを成形してなる成形体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844032A (en) * 1995-06-07 1998-12-01 Amcol International Corporation Intercalates and exfoliates formed with non-EVOH monomers, oligomers and polymers; and EVOH composite materials containing same
DE69632617T2 (de) * 1995-11-02 2005-06-16 Mitsubishi Chemical Corp. Kristalline, thermoplastische Kunststoffzusammensetzung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348655C (zh) * 2005-06-24 2007-11-14 华南理工大学 埃洛石纳米管用于制备聚合物复合材料的方法

Also Published As

Publication number Publication date
WO2000047665A1 (de) 2000-08-17
AU2547800A (en) 2000-08-29
EP1153075A1 (de) 2001-11-14
JP2002536523A (ja) 2002-10-29
DE19905502A1 (de) 2000-08-17

Similar Documents

Publication Publication Date Title
CN1175029C (zh) 由二腈和二胺制备聚酰胺的方法
DE69326532T2 (de) Verstärkte Polyamidharz-Zusammensetzung und Verfahren für ihre Herstellung
US6458879B1 (en) Thermoplastic materials containing nanocomposites and an additional elastomer
CN1297401A (zh) 制备聚合物纳米复合材料组合物的方法
CN1136055A (zh) 具有高结晶度的部分芳族共聚酰胺模塑料
CN1263109A (zh) 橡胶粉末及其制备方法
CN1444628A (zh) 包含基质聚合物和层状粘土材料的、可萃取物质水平改进的聚合物纳米复合材料
WO2008022910A1 (de) Polyamidformmassen mit verbesserter wärmealterungs- und hydrolysebeständigkeit
CN1237192A (zh) 具有耐热劣化性的合成树脂组合物和成形品
CN1910239A (zh) 阻燃剂及阻燃性树脂组合物
CN1280346C (zh) 含有大量填料的橡胶粉末、制备工艺及其用途
CN106854295A (zh) 一种白度化红磷、尼龙用低气味低散发白度化红磷阻燃母粒及其制备方法
CN1346385A (zh) 热塑性纳米复合材料
KR101426104B1 (ko) 가황 활성 성분 처리 탄산칼슘
KR20010099892A (ko) 분지화 폴리아미드의 제조 방법
US20050182159A1 (en) Diene rubber-inorganic compound composite and process for producing the same
CN1257892A (zh) 聚酰胺树脂组合物及其模制制品
CN1306543A (zh) 就地固态聚合法制备聚酰胺纳米复合材料组合物的方法
EP0883647A1 (en) Composite material and production of the composite material, and composite-material-containing resin composition and production of the resin composition
JP3075709B2 (ja) 複合材料
WO1998036022A1 (de) Flammgeschützte thermoplastische formmassen
JP2007176781A (ja) 高靭性ナノコンポジット材料およびその製造方法
CN1184829A (zh) 增强聚酰胺树脂组合物及其制备方法
CN110256753A (zh) 一种耐腐蚀聚乙烯通信管及其制备方法
CN1231521C (zh) 由氨基腈制备聚酰胺的加速剂

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication