CN1304158A - 交流驱动式等离子体显示器 - Google Patents

交流驱动式等离子体显示器 Download PDF

Info

Publication number
CN1304158A
CN1304158A CN01110808A CN01110808A CN1304158A CN 1304158 A CN1304158 A CN 1304158A CN 01110808 A CN01110808 A CN 01110808A CN 01110808 A CN01110808 A CN 01110808A CN 1304158 A CN1304158 A CN 1304158A
Authority
CN
China
Prior art keywords
gas
discharge
electrode
mentioned
alternating current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01110808A
Other languages
English (en)
Other versions
CN1224995C (zh
Inventor
鬼木一直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1304158A publication Critical patent/CN1304158A/zh
Application granted granted Critical
Publication of CN1224995C publication Critical patent/CN1224995C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/50Filling, e.g. selection of gas mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/24Sustain electrodes or scan electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/22Means for obtaining or maintaining the desired pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/02Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J7/06Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/24Sustain electrodes or scan electrodes
    • H01J2211/245Shape, e.g. cross section or pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

交流驱动式等离子体显示器,其特征在于充入放电空间的放电气体只包括氙气,并且放电气体具有9.0×104Pa或更低的压强,其中放电发生在放电空间中。

Description

交流驱动式等离子体显示器
本发明涉及交流驱动式等离子体显示器,它的其特征在于放电气体密封在放电空间中,其中放电发生在放电空间中。
人们正在以各种方式研制平面显示器(flat-Panel),来替换当前主流的阴极射线管显示器(CRT)。这样的平面显示器包括液晶显示器(LCD)、电致发光显示器(ELD)和等离子体显示器(PDP)。其中,等离子体显示器的优点在于:可以相对容易地制造更大的屏幕,并且相对容易地获得更宽的视角;对于环境因素,如温度、磁场、振动等,它具有出色的稳定性;并且它具有长的寿命。这样,不仅希望将等离子体显示器供给家用的壁挂式电视中,而且供给大型公用信息终端中。
在等离子体显示器中,电压供给放电单元,放电单元通过将放电气体密封在放电空间内而形成,放电气体包括稀有气体,并且每个放电单元中的荧光层,被紫外线激发来发出光,其中紫外线由放电气体中的辉光放电产生。也就是说,每个放电单元的驱动原理与日光灯相似,并且,数十万个放电单元通常按顺序放置在一起,来组成显示屏幕。根据电压供给放电单元的方法,等离子体显示器广泛地被分类为直流驱动方式(DC型)和交流驱动方式(AC型),并且每种方式具有各自的优点和缺点。在显示屏幕内,分隔壁用于分隔放电单元,由于分隔壁可以形成带状,AC型等离子体显示器适于获得更高的精细度。进一步,由于用于放电的电极表面覆盖有绝缘材料,它还具有这样的优点,即电极损耗较少,因而它具有长的寿命。
图1是示意性的剖视图,画出了AC型等离子体显示器的典型结构。这种AC型等离子体显示器被归入所谓的三电极方式中,并且放电主要发生在一对保持电极12之间。在图1所示的AC型等离子体显示器中,被称为前面板第一面板10,和被称为后面板第二面板20,它们的周围部分彼此粘合在一起。可以通过例如第一面板10,看到从第二面板20上的荧光层25发出的光。
第一面板10包括:透明的第一基底11;保持电极对12,它们由透明的导电材料组成,并且以带的形式形成在第一基底11上;总线电极13,其组成材料具有的电阻,比保持电极12的电阻低,并且总线电极13形成在保持电极12上,用于减小保持电极12的阻抗;绝缘材料层14,由绝缘材料组成,并且绝缘材料层14形成在保持电极12、总线电极13和第一基底11上;和保护层15,由MgO组成,并且保护层15形成在绝缘层14上。
第二面板20包括:第二基底21;地址电极22(也被称为数据电极),它们以带的形式形成在第二基底21上;绝缘膜23,形成在第二基底21和地址电极22上;绝缘的分隔壁24,它形成在绝缘膜23上的区域中,还形成在相邻的地址电极22之间,并且与地址电极22平行而伸出;和荧光层25,它形成在绝缘膜23的上表面上,并且从其上伸出,并且它还形成在分隔壁24的侧壁上。当AC型等离子体显示器用于彩色显示时,每个荧光层25由红色荧光层25R、绿色荧光层25G和蓝色荧光层25B组成,并且这些颜色的荧光层25R、25G和25B以预定的顺序形成。图1是部件分解透视图,并且在实际的实施例中,在第二面板一侧,分隔壁24的顶端部分接触第一面板一侧的保护层15。一对保持电极12与地址电极22重叠的区域,相应于一个放电单元,其中地址电极22定位在两个分隔壁24之间。放电气体封装在每个放电空间中,放电空间由相邻的两个分隔壁24、荧光层25和保护层15包围。第一面板10和第二面板20在其周围部分,由熔化的烧结玻璃料粘合在一起。
保持电极12的投影图像的伸出方向,和地址电极22的投影图像的伸出方向,以直角彼此交叉,并且一对保持电极12与荧光层25R、25G和25B的一个组合重叠的区域,相应于一个象素,其中荧光层25R、25G和25B用于发出三原色的光。由于辉光放电在一对保持电极12之间产生,上述式AC型等离子体显示器被称为“表面放电型”。例如,比放电单元的放电起动电压低的脉冲电压,在一对保持电极12之间的电压立即应用之前,被应用到地址电极22上。结果,壁电荷聚集在放电单元(选择用于显示的放电单元)中,并且表面放电起动电压减小。然后,在一对保持电极12之间起动的放电,与放电起动电压相比,可以保持在较低的电压水平上。在放电单元中,通过真空紫外线照射而激发的荧光层,根据荧光材料的颜色其特征发出光,其中紫外线由放电气体中的辉光放电产生。产生的真空紫外线具有的波长与所产生的一种封装的放电气体相符合。
通常地,充入放电空间中的放电气体由混合气体组成,混合气体通过将大约4%体积的氙气,与一种惰性气体混合而成,如氖(Ne)气、氦(He)气或氩(Ar)气。一对保持电极12之间的距离大约为100μm,特别在70μm到120μm之间。
当前商品化的AC型等离子体显示器具有的问题是亮度低。例如,42英寸的AC型等离子体显示器,最高具有大约500cd/m2的亮度。进一步,对于实际商品化的AC型等离子体显示器来讲,例如需要将薄片或薄膜贴在第一面板10的外表面上,来屏蔽电磁膜或外部的光,因而在实际的屏幕上,AC型等离子体显示器变得较暗。
当充入放电空间的放电气体被增压来增加亮度时,会产生这样的问题,即这会使放电电压增加、使放电变得不稳定或使放电不均匀。当充入放电空间的放电气体被增压时,放电气体将力作用于第一面板10和第二面板20,使它们彼此分开。结果,第一面板10和第二面板20通过熔化烧结玻璃料产生的粘合的可靠性会降低。进一步,当由于加到AC型等离子体显示器上的温度增加,而使放电气体扩散时,放电气体可能从第一面板10与第二面板20之间的连接部分中泄漏。这样,在传统的AC型等离子体显示器中,难于增加放电气体的压力来增加亮度,其中放电气体封装在放电空间中。
进一步,在AC型等离子体显示器中,在一对保持电极12之间的距离(d)与放电气体的总压(p)的乘积(d·p),与放电起动电压Vbd之间,存在一个Paschen定律,也就是,放电起动电压Vbd可以由距离(d)与气压(p)的乘积(d·p)的函数表示。在上述表达式中,如果减小一对保持电极12之间的距离(d)来增加放电效率,那么需要增加气压(p),于是AC型等离子体显示器的可靠性再次减小。
除了上面增加亮度的必要性,还需要提高对比度。已知由放电气体的发光产生的可见光部分,会使面板上的对比度减小。特别地,当氖(Ne)气用作放电气体时,由氖气的发光产生的可见光部分具有橙色。当氖气浓度高时,在AC型等离子体显示器中,屏幕上的图像显示主要具有基于橙色的色调,并且对比度减小。
这样,本发明的目标是提供一种交流驱动式等离子体显示器,它具有高可靠性,可以获得高对比度,甚至在低的放电气压时也可以给出高亮度,可以减小放电电压,并且可以减小驱动功率,即消耗功率。
根据实现上述目标的本发明的第一方面,交流驱动式等离子体显示器其特征在于,充入放电空间的放电气体只包括氙(Xe)气(即100%体积的氙气),并且其特征还在于放电气体具有9.0×104Pa或更低的压强,其中放电发生在放电空间内。当放电气体的压强超过9.0×104Pa时,由于放电气体的压力,交流驱动式等离子体显示器的烧结玻璃料封装可能会降低可靠性。
根据实现上述目标的本发明的第二方面,交流驱动式等离子体显示器其特征在于,充入放电空间的放电气体只包括氪(Kr)气(即100%体积的氪气),并且其特征还在于放电气体具有9.0×104Pa或更低的压强,其中放电发生在放电空间内。当放电气体的压强超过9.0×104Pa时,由于放电气体的压力,交流驱动式等离子体显示器的烧结玻璃料封装可能会降低可靠性。
根据实现上述目标的本发明的第三方面,交流驱动式等离子体显示器其特征在于,充入放电空间的放电气体包括氙(Xe)气和氪(Kr)气的混合气体,并且其特征还在于混合气体具有小于6.6×104Pa(500乇)的总压,其中放电发生在放电空间内。在这种情况下,上述混合气体中的氙气/氪气混合比例,实质上可以是任何混合比例。
根据实现上述目标的本发明的第四方面,交流驱动式等离子体显示器其特征在于,充入放电空间的放电气体包括混合气体,混合气体由至少第一气体和至少第二气体组成,其中第一气体从氙(Xe)气和氪(Kr)气组成的组中选择,而第二气体由从氖(Ne)气、氦(He)气和氩(Ar)气组成的组中选择,并且其特征在于第一气体具有至少1×103Pa的分压,最好为至少4×103Pa,并且浓度为至少10%体积比,最好为至少30%体积比,并且其特征还在于放电气体具有小于6.6×104Pa(500乇)的总压。
后面的表1总结了对第一气体和第二气体的气体组合,这样的气体组合用于根据本发明第四方案的交流驱动式等离子体显示器中。在情况1到21中,实践中最好选择情况1。在表1中,符号“+”意味着使用两种或三种气体,并当使用两种或三种气体时,实质上其混合比例确定为任何比例。其它气体如1%或小于1%体积的氢(H2)气,可以包括在混合气体中。
表1
   情况123456789101112131415161718192021   第一气体XeXeXeKrKrKrXeXeXeXeKrKrKrKr(Xe+Kr)(Xe+Kr)(Xe+Kr)(Xe+Kr)(Xe+Kr)(Xe+Kr)(Xe+Kr)    第二气体NeHeArNeHeAr(Ne+He)(Ne+Ar)(He+Ar)(Ne+He+Ar)(Ne+He)(Ne+Ar)(He+Ar)(Ne+He+Ar)NeHeAr(Ne+He)(Ne+Ar)(He+Ar)(Ne+He+Ar)
根据实现上述目标的本发明的第五方面,交流驱动式等离子体显示器其特征在于,充入放电空间的放电气体包括混合气体,混合气体包括氙(Xe)气,氙(Xe)气浓度为至少10%体积比,最好为至少30%体积比,但小于100%体积比,并且其特征还在于混合气体具有小于6.6×104Pa(500乇)的总压,其中放电发生在放电空间内。
根据本发明第五方面,在交流驱动式等离子体显示器中,氙(Xe)气的分压最好为至少1.0×103Pa,尤其是最好为至少4.0×103Pa。用于混合气体中的其它气体包括氪(Kr)气、氖(Ne)气、氦(He)气和氩(Ar)气。
根据本发明第一到第五方案,每个交流驱动式等离子体显示器(此后,通常有时会被简单地称为“等离子体显示器”),具有多对保持电极,并且放电发生在每对保持电极之间。在预定的放电电压下,只要可以发生必要的辉光放电,一对保持电极之间的距离可以是任意的。然而,为了减小放电电压,上述距离小于5×10-5m,最好小于5.0×10-5m,更特别地,等于或小于2×10-5m。可以采用这样的结构,其中一对保持电极中的一个保持电极形成在第一基底上,并且另一个保持电极形成在第二基底上。为了方便起见,这样构成的等离子体显示器被称为双电极式。在这种情况下,一个保持电极的投影图像沿第一方向伸出,另一个保持电极的投影图像沿第二方向伸出,其中第一方向与第二方向不同,并且一对保持电极这样安排,使一个保持电极相对放置另一个保持电极。另外,可以采用这样的结构,其中一对保持电极形成在第一基底上,并且所谓的地址电极形成在第二基底上。为了方便起见,这样构成的等离子体显示器被称为三电极式。在这种情况下,可以采用这样的结构,其中一对保持电极的投影图像沿第一方向伸出,使一个保持电极的投影图像平行于另一个的投影图像而伸出,地址电极的投影图像沿第二方向伸出,并且一对保持电极和地址电极这样安排,使一对保持电极相对放置地址电极,但是并不限于上面的结构。在这些情况下,考虑到等离子体显示器结构上的简化,第一方向和第二方向成直角彼此交叉。进一步,还可以采用这样的结构,其中一对保持电极和地址电极形成在第一基底上。
根据本发明第一到第五方案的任何一个,在等离子体显示器中,一对保持电极的边缘部分之间的间隙,其形式可以为直线形。另外,在保持电极的宽度方向上,上述间隙的形式可以具有弯曲的或扭曲的图样。在这种情况下,可以增加保持电极与放电相关部分的面积。
此后,将参考三电极方式等离子体显示器,解释本发明的等离子体显示器。对于双电极方式等离子体显示器,根据需要,后面解释中的“地址电极”可以替换为“另一个保持电极”。
根据等离子体显示器是透射式还是反射式,组成保持电极的导电材料会不同。在透射式等离子体显示器中,从荧光层发出的光通过第二基底被观察到,所以无论组成保持电极的导电材料是否是透明的,这都不会有任何问题。然而,由于地址电极形成在第二基底上,这需要地址电极是透明的。在反射式离子体显示器中,从荧光层发出的光通过第一基底被观察到,所以无论组成地址电极的导电材料是否透明,这都不会有任何问题。然而,需要组成保持电极的导电材料是透明的。对荧光材料的发光内在具有的波长(在可见光区),“透明或不透明”这个概念,依据导电材料对这样波长的光的传输性而言。也就是,对荧光材料发出的光,当组成保持电极或地址电极的导电材料是透明的时,导电材料可以被称为是透明的。不透明的导电材料包括Ni、Al、Au、Ag、Pd/Ag、Cr、Ta、Cu、Ba、LaB6、Ca0.2La0.8CrO3等,并且这些材料可以单独使用或组合使用。透明的导电材料包括ITO(indium-tin oxide,即铟锡氧化物)和SnO2。保持电极和地址电极可以通过溅射方法、沉积方法、网印方法、喷砂方法、电镀方法或顶离方法(lift-off)形成。
可以采用这样的结构,其中,除了保持电极,总线电极与保持电极接触而形成,其中与保持电极的材料相比,总线电极包括的材料具有较低的电阻,用于减小保持电极整体的阻抗。典型地,总线电极可以由这样的材料组成,如Ag、Au、Al、Ni、Cu、Mo、Cr或Cr/Cu/Cr叠合膜。在反射式等离子体显示器中,由上面的材料组成的总线电极,可以作为减小可见光传输量的因素,使显示屏幕的亮度减小,其中可见光从荧光层中发出并且穿过第一基底。这样,只要能够得到保持电极整体必要的电阻值,最好使总线电极形成得尽可能薄。总线电极可以通过溅射方法、沉积方法、网印方法、喷砂方法、电镀方法或顶离(lift-off)方法形成。
绝缘材料层最好通过例如电子束沉积方法、溅射方法、沉积方法或网印方法,形成在保持电极的表面上。当绝缘材料层形成时,可以防止离子或电子直接接触保持电极,结果,可以防止保持电极的磨损。绝缘材料层用于聚集壁电荷,用作电阻来限制过大的放电电流,并且用作存储器来保持放电状态。典型地,绝缘材料层可以由低熔点玻璃或氧化硅组成,或者还可以由其它绝缘材料形成。
更特别地,保护层形成在绝缘材料层上。当保护层形成时,可以防止离子或电子直接接触保持电极,结果,可以防止保持电极的磨损。保护层还用于发出放电所需的第二电子。组成保护层的材料包括氧化镁(MgO)、氟化镁(MgF2)和氟化钙(CaF2)。其中,氧化镁是适当的材料,它具有这样的性能,如第二电子的高发射比,低溅射比,在荧光层发出的光的波长下,具有高透光性,和低的放电起动电压。保护层可以由叠合结构构成,叠合结构包括至少两种材料,这两种材料从包括这些材料的组中选择。
在本发明的等离子体显示器中,组成第一面板的第一基底和第二面板的第二基底的材料的例子,包括高形变点玻璃、钠玻璃(Na2O·CaO·SiO2)、硼硅玻璃(Na2O·B2O3·SiO2)、镁橄榄石(2MgO·SiO2)和铅玻璃(Na2O·PbO·SiO2)。用于第一基底的材料和用于第二基底的材料可以彼此相同,也可以彼此不同。
荧光层包括的荧光材料,从发出红光、发出绿光和发出蓝光的荧光材料组成的组中选择。荧光层形成在地址电极上,或形成在地址电极的上面。特别地,当等离子体显示器用于彩色显示时,由例如发出红光的荧光材料组成的荧光层,形成在地址电极上,或形成在地址电极的上面;由例如发出绿光的荧光材料组成的荧光层,形成在另一个地址电极上,或形成在另一个地址电极的上面;并且,由例如发出蓝光的荧光材料组成的荧光层,形成在第三个地址电极上,或形成在第三个地址电极的上面。用于发出三原色光的这三个荧光层形成一组,并且这样的组以预定的顺序形成。一对保持电极与发出三原色光的一组荧光层重叠的区域,相应于一个象素。红色、绿色和蓝色荧光层的每一个可以形成带状,或者可以形成点状。进一步,荧光层可以只形成在保持电极和地址电极重叠的区域。
对于组成荧光层的荧光材料,具有高的量子效率,并且对真空紫外线产生较少的饱和度的荧光材料,根据需要可以从己知的荧光材料中选择。当假设等离子体显示器用于彩色显示时,最好将这样的荧光材料组合,这些材料其颜色纯度靠近NTSC中定义的三原色,当三原色混合时可以发出非常好的平衡白光,显示了短的余辉周期并且保证三原色的余辉周期几乎相等。当以真空紫外线照射时,发出红光的荧光材料的例子包括(Y2O3∶Eu)、(YBO3∶Eu)、(YVO4∶Eu)、(Y0.96P0.60V0.40O4∶Eu0.04)、[(Y,Gd)BO3∶Eu]、(GdBO3∶Eu)、(ScBO3∶Eu)和(3.5MgO·0.5MgF2·GeO2∶Mn)。当以真空紫外线照射时,发出绿光的荧光材料的例子包括(ZnSiO2∶Mn)、(BaAl12O19∶Mn)、(BaMg2Al16O27∶Mn)、(MgGa2O4∶Mn)、(YBO3∶Tb)、(LuBO3∶Tb)和(Sr4Si3O8Cl4∶Eu)。当以真空紫外线照射时,发出蓝光的荧光材料的例子包括(Y2SiO5∶Ce)、(CaWO4∶Pb)、CaWO4、YP0.85V0.15O4、(BaMgAl14O23∶Eu)、(Sr2P2O7∶Eu)和(Sr2P2O2∶Sn)。用于形成荧光层的方法包括厚膜印刷法;溅射荧光粒子的方法;将附着材料预形成于荧光层形成的区域,并使荧光材料附着其上的方法;提供感光荧光涂料(膏剂),并且通过曝光和生长形成荧光层图样的方法;和将荧光层形成在整个表面,并且不必要的部分通过喷砂方法去除的方法。
荧光层可以直接形成在地址电极上,或形成在地址电极上和分隔壁的侧壁上。另外,荧光层可以形成在绝缘膜上,而绝缘膜形成在地址电极上,或者绝缘膜形成在地址电极上和分隔壁的侧壁上。进一步,荧光层可以只形成分隔壁的侧壁上。组成绝缘膜的材料包括低熔点玻璃和氧化硅,并且它可以通过网印方法、溅射方法或真空沉积方法形成。在这些情况下,保护层可以形成在荧光层上和分隔壁上,其中保护层由氧化镁(MgO)、氟化镁(MgF2)、或氟化钙(CaF2)组成。
与地址电极平行伸出的分隔壁(侧壁),最好形成在第二基底上。分隔壁(侧壁)可以具有弯曲的结构。当绝缘膜形成在第二基底上,并形成在地址电极上时,在某些情况下,分隔壁形成在绝缘膜上。组成分隔壁的材料可以从已知的绝缘材料中选择。例如,可以使用广泛使用的低熔点玻璃与金属氧化物,如氧化铝的混合物。分隔壁可以通过网印方法、喷砂方法、干覆膜方法和感光方法形成。上面的网印方法是这样一种方法,其中开放部分形成在屏幕的部分上,这部分符合分隔壁形成的部分,屏幕上的分隔壁形成材料被挤压而穿过开放部分,来在第二基底上或绝缘膜(此后,这些通常被称为“第二基底或相似”)上形成分隔壁形成材料层,然后,分隔壁形成材料层被煅烧或烧结。上面的干覆膜方法是这样一种方法,其中感光膜压合在第二基底或相似上,在将要形成分隔壁的区域上,通过曝光和生长去除感光膜,通过去除形成的开放部分被注入分隔壁形成材料,并且分隔壁形成材料层被煅烧或烧结。感光膜燃烧,并且通过煅烧或烧结去除,注入开放部分的分隔壁形成材料保留而组成分隔壁。上面的感光方法是这样一种方法,其中用于形成分隔壁的感光材料层,形成在第二基底或相似上,感光材料层通过曝光和生长形成图样,然后形成图样的感光材料层被煅烧或烧结。上面的喷砂方法是这样一种方法,其中分隔壁形成材料层形成在第二基底或相似上,并被干燥,形成方法包括例如网印,或使用滚压覆涂机、刮浆刀或喷嘴喷射覆涂机,然后在分隔壁形成材料层中,这些分隔壁将要形成的部分被掩模层覆盖,并且分隔壁形成材料层中的曝光部分通过喷砂方法去除。分隔壁可以形成为黑色,来形成所谓的黑色矩阵。在这种情况下,可以获得显示屏幕的高对比度。形成黑色分隔壁的方法包括这样的方法,其中染成黑色的防染色材料形成分隔壁。
一个放电单元由一对分隔壁和保持电极、地址电极和荧光层(一个红色荧光层、一个绿色荧光层和一个蓝色荧光层组成的荧光层)构成,其中分隔壁形成在第二基底上,或形成在第二基底的上面,荧光层占据的区域由一对分隔壁包围。放电气体封装在上面的放电单元中,更特别地,封装在放电空间中,其中放电空间由分隔壁包围,并当被AC辉光放电产生的真空紫外线照射时,荧光层发光,其中AC辉光放电发生在放电空间内的放电气体中。
根据本发明的第一方案,在交流驱动式等离子体显示器中,使用了只由氙(Xe)气组成的放电气体。根据本发明的第二方案,在交流驱动式等离子体显示器中,使用了只由氪(Kr)气组成的放电气体。根据本发明的第三方案,在交流驱动式等离子体显示器中,使用了由氙(Xe)气和氪(Kr)气的混合气体组成的放电气体。这样,与传统交流驱动式等离子体显示器的相应部分相比,氙(Xe)气或氪(Kr)气的压强可以相对显著地增加,氙(Xe)气或氪(Kr)气的压强与发光相关。结果,发光效率提高,并且甚至如果放电气体的总压保持在较低的水平时,也可以保持放电的稳定性。同时,与增加放电气体压强得到的相应部分相比,可以获得更高的亮度。
根据本发明的第四方案,在交流驱动式等离子体显示器中,主要是第一气体与荧光层的发光相关。并且,由于放电气体是包括第一气体与第二气体的混合气体,由于Penning效应,放电起动电压Vbd可以减小。进一步,确定第一气体的分压和浓度,并且,例如混合气体中的氙(Xe)气体积比比增加,在交流驱动式等离子体显示器中,使亮度可以增加。
根据本发明的第五方案,在交流驱动式等离子体显示器中,主要是氙(Xe)气与荧光层的发光相关。由于放电气体是包括氙(Xe)气的混合气体,在交流驱动式等离子体显示器中,亮度可以增加。进一步,确定混合气体中氙(Xe)气的浓度,使放电起动电压Vbd可以相对于亮度值减小,并且使发光效率由此提高。
同时,等离子体显示器符合前面已经解释的Paschen定律,也就是,放电起动电压Vbd可以由距离(d)与气压(p)的乘积(d·p)的函数表示。在本发明的等离子体显示器中,一对保持电极的距离(d)被确定小于5×10-5m,最好小于5.0×10-5m,更特别地,为2×10-5m或更小。在这种情况下,不仅可以减小放电起动电压Vbd,而且对于与发光相关气体(氙气、氪气或第一气体),可以进一步增加气体的气压或分压,使等离子体显示器的亮度可以进一步增加。
下面将参考图示的实施例来解释本发明。
图1是示意性的部件分解透视图,显示了交流驱动式等离子体显示器的通常结构的例子,而且它是三电极式。
图2显示了在例1的等离子体显示器中,关于气体总压的Xe气浓度与亮度测量结果之间的关系曲线。
图3显示了在例1的等离子体显示器中,关于Xe气分压的Xe气浓度与亮度测量结果之间的关系曲线。
图4显示了在例1的等离子体显示器中,关于气体总压的Xe气浓度与优化的放电电压之间的关系曲线。
图5显示了在例2的等离子体显示器中,一对保持电极之间的距离与亮度测量结果之间的关系曲线。
图6显示了在例3的等离子体显示器中,Xe气与Kr气的混合气体中Kr气浓度,与亮度测量结果之间的关系曲线。
图7显示了在例4的等离子体显示器中,关于气体总压的Kr气浓度与亮度测量结果之间的关系曲线。
图8显示了在例4的等离子体显示器中,关于Kr气分压的Kr气浓度与亮度测量结果之间的关系曲线。
图9显示了在例4的等离子体显示器中,关于气体总压的Kr气浓度与优化的放电电压之间的关系曲线。
图10显示了单独的放电气体发出光的亮度,与发出光的颜色之间的关系曲线。
图11A、11B和11C是示意性的部分平面图,当一对彼此相对放置的保持电极的边缘部分形成的间隙,在保持电极的宽度方向上聚有弯曲的或曲线的图样时,这三幅图显示了两对保持电极的情况。
具有图1所示结构的三电极式等离子体显示器,由后面的方法生产。下面解释的等离子显示器是用于各种检测目的的等离子体显示器,并且与实际批量生产的等离子体显示器不同。这样,通过亮度测量得到的亮度值的评价,不是任何绝对的值,而是相对的值。
以后面的方法生产第一面板10。首先,ITO层形成在第一基底11的整个表面上,其中第一基底11通过例如溅射方法,由高形变点玻璃或钠玻璃制成,并且ITO层通过照相平板印刷或蚀刻,形成带状图样,由此形成多对保持电极12。保持电极12沿第一方向伸出。然后,通过例如沉积方法,在整个表面上形成铝层,并且铝层通过照相平板印刷或蚀刻形成图样,由此沿保持电极12的边缘部分形成总线电极13。然后,具有例如3μm的厚度,并且由氧化硅(SiO2)构成的绝缘材料层14,形成在整个表面上,并且由氧化镁(MgO)组成的0.6μm厚的保护层15,通过电子束沉积方法形成其上。通过上面的步骤,可以完成第一面板10的生产。
以后面的方法生产第二面板20。首先,银涂料通过网印方法印刷在第二基底21上,使银涂料具有带状,其中第二基底21由高形变点玻璃或钠玻璃制成,然后银涂料被煅烧或烧结,来形成地址电极22。地址电极22沿第二方向伸出,第二方向与第一方向成直角交叉。然后,低熔点玻璃涂料层通过网印方法形成在整个表面上,并且低熔点玻璃涂料层被煅烧或烧结,来形成绝缘层23。然后,通过例如网印方法,将低熔点玻璃涂料印刷在绝缘膜23上,其中印刷的位置位于一个地址电极22和另一个地址电极22之间的区域上面,并且低熔点玻璃涂料被煅烧或烧结,来形成分隔壁24。分隔壁具有130μm的平均高度。连续地印刷三原色的荧光材料膏剂,并且膏剂被煅烧或烧结,在一个分隔壁24和另一个分隔壁24之间的绝缘膜23上,并且在每个分隔壁24的侧壁上,形成每个荧光层25R、25G、25B。通过上面的步骤,可以完成第二面板20的生产。
然后,组装等离子体显示器。也就是,由熔化的烧结玻璃料制成的封装层,形成在第二面板20的周围部分。然后,第一面板10和第二面板20彼此结合,并且被煅烧或烧结,来养护封装层。然后,在第一面板10与第二面板20之间形成的空间被抽真空,充入放电气体,并且被封装,来完成等离子体显示器的生产。
为了检测的目的,保持电极12确定具有0.2mm的宽度和大约0.3mm的厚度。准备的等离子体显示器用于检测的目的,其中一对保持电极12之间的距离(d)为10μm、20μm、40μm或70μm。
下面将解释在这样构成的等离子体显示器中,辉光放电操作的一个例子。首先,例如比放电起动电压Vbd高的脉冲电压,在短时间内供给每对保持电极12中的一个保持电极上,在那里发生辉光放电,并且由于绝缘极化,在一对保持电极12中的一个保持电极附近,在绝缘材料层14的表面上,产生并聚集壁电荷,使表面放电起动电压减小。然后,当电压应用在地址电极22上时,电压也应用在一对保持电极12中的一个保持电极上,其中一对保持电极12包括在放电单元之中,这个放电单元不被驱动用于显示,由此,在地址电极22与~对保持电极12中的一个保持电极之间,允许放电发生,来擦除聚集的壁电荷。上面用于擦除的放电在地址电极22上连续进行。另一方案,电压不应用在一对保持电极中的一个保持电极上,其中一对保持电极12包括在放电单元之中,这个放电单元被驱动用于显示,由此,聚集的壁电荷被保持。然后,预定的脉冲电压应用在每对保持电极12之间。结果,在壁电荷聚集的单元中,在每对保持电极12之间开始辉光放电,并且在放电单元中,荧光层被真空紫外线照射而激发,发出的光具有荧光材料的内在颜色,在放电空间中,真空紫外线根据放电气体中的辉光放电而产生。在一对保持电极之间,供给其中一个保持电极的放电保持电压的相位,与供给另一个保持电极的放电保持电压的相位,相差半个周期,并且根据交流电流的频率,保持电极的极性相反。例1
例1是关于本发明的第一、第四和第五方案的等离子体显示器。例1中使用的等离子体显示器用于检测的目的,其中一对保持电极12之间的距离为常数或20μm。例1中使用的混合气体包括:氙(Xe)气作为第一气体,而氖(Ne)气作为第二气体。当Xe气体浓度在4%体积比到100%体积比之间变化时,混合气体的总压设置在5×103Pa(在图2和4中由空心的方块指示)、1×104Pa(在图2和4中由空心的三角指示)、3×104Pa(在图2和4中由实心的圆指示)或6.6×104Pa(在图2和4中由空心的圆指示)。在这样的条件下,测量被检测的等离子体显示器的亮度。根据每种混合气体的总压,应用的电压设置在优化水平上,并且图4显示了关于总压的优化放电电压。在图中,以“千Pa”为单位显示压强,并且以“放电间隙”显示一对保持电极之间的距离。
图2和3显示了准备的等离子体显示器的亮度测量结果。图2显示了在等离子体显示器中,关于气体总压的Xe气浓度与亮度测量结果之间的关系。图3根据图2中显示的数据,显示了在等离子体显示器中,关于Xe气分压的Xe气浓度与亮度测量结果之间的关系。图2清楚地显示了随着Xe气浓度的增加,亮度增加。进一步,图3清楚地显示了随着Xe气分压的增加,亮度增加。当Xe气浓度特别为30%体积比或更高时,可以获得高亮度。进一步,随着Xe气浓度的增加,亮度增加。在这种情况下,Xe气的分压需要为至少1×103Pa。当Xe气分压低于上面的水平时,由于Paschen定律,放电起动电压变得非常高。进一步,如图2和4所示,当混合气体的总压小于6.6×104Pa时,放电电压可以保持在大约200伏特或更低,并且同样可以获得高亮度。当Xe气浓度特别为100%体积比时,也就是,当放电气体只包括氙气时,甚至如果氙气压强为6.6×104Pa或更高时,这足以使放电电压的增加弥补,也可以获得很高的亮度。这样,放电气体的总压可以减小,并且可以获得高亮度,而不会导致由例如烧结玻璃料封装产生的可靠性的下降。例2
例2中使用的等离子体显示器用于检测的目的,其中一对保持电极12之间的距离为10μm、20μm、40μm或70μm。并且,等离子体显示器具有1×104Pa的氙气压强和100%体积的氙气浓度,这样的等离子体显示器被测量亮度。
图5显示了准备的等离子体显示器的亮度测量结果。图5清楚地显示了随着一对保持电极12之间的放电距离的减小,亮度趋于增加。也就是,可以看到当一对保持电极之间的距离小于5×10-5m,最好小于5.0×10-5m,更特别地为2×10-5m或更小时,可以获得更高的亮度。
进一步,在使用其它放电气体的情况下,也就是,在根据本发明的第二到第五方案的等离子体显示器中,相似地,随着一对保持电极12之间的距离减小,亮度趋于增加。例3
例3是关于本发明的第一、第二和第三方案的等离子体显示器。例3中使用的等离子体显示器,其一对保持电极12之间的距离为常数或20μm,并且放电气体由氙气和氪气组成。
图6显示了准备的等离子体显示器的亮度测量结果。图6中显示的结果是当氙气和氪气的混合气体的总压,为常数或1×104Pa(10kPa),并且Kr气体的浓度体积比在0%到100%之间变化时,这样测量的亮度结果。图6清楚地显示了与单独使用Xe气或单独使用Kr气相比,使用Xe气和Kr气的混合气体作为放电气体,可以给出更高的亮度。进一步,与图1中显示的结果相似,甚至当Xe气和Kr气的混合气体总压小于6.6×104Pa(500乇)时,混合气体可以给出更高的亮度。这样,放电气体的总压可以减小,并且可以获得高亮度,而不会导致由例如烧结玻璃料封装产生的可靠性的下降。例4
例4是关于根据本发明的第二和第四方案的等离子体显示器。例4中使用的等离子体显示器用于检测的目的,其中一对保持电极12之间的距离为常数或20μm。进一步,在使用的混合气体中,氪(Kr)气作为第一气体,而氖(Ne)气作为第二气体。当氪气浓度在4%体积比到100%体积比之间变化时,混合气体的总压设置在5×103Pa(在图7和9中由空心的方块指示)、1×104Pa(在图7和9中由空心的三角指示)、3×104Pa(在图7和9中由实心的圆指示)或6.6×104Pa(在图7和9中由空心的圆指示)。在这样的条件下,测量被检测的等离子体显示器的亮度。根据每种混合气体中的总压,应用的电压设置在优化水平上,并且图9显示了关于总压的优化放电电压。
图7和8显示了准备的等离子体显示器的亮度测量结果。图7显示了关于气体总压的Kr气浓度与亮度测量结果之间的关系。图8根据图7中显示的数据,显示了关于Kr气分压的Kr气浓度与亮度测量结果之间的关系曲线。图7清楚地显示了随着Kr气浓度的增加,亮度增加。进一步,图8清楚地显示了随着Kr气分压的增加,亮度增加。当Kr气浓度特别为30%或更高体积比时,可以获得高亮度。进一步,随着Kr气浓度的增加,亮度增加。在这种情况下,Kr气的分压需要为至少1×103Pa。当Kr气分压低于上面的水平时,由于Paschen定律,放电起动电压变得非常高。进一步,如图7和9所示,当混合气体的总压小于6.6×104Pa时,放电电压可以保持在大约200伏特或更低,并且同样可以获得高亮度。当Kr气浓度特别为100%体积比时,也就是,当放电气体只包括氪气时,甚至如果氪气压强为6.6×104Pa或更高时,这足以使放电电压的增加弥补,也可以获得很高的亮度。这样,放电气体的总压可以减小,并且可以获得高亮度,而不会导致由例如烧结玻璃料封装产生的可靠性的减小。例5
例5使用的等离子体显示器不形成有荧光层,并且这个等离子体显示器用于检测放电并测量亮度。在检测中,一对保持电极12之间的距离为20μm,放电气体由100%体积的Xe气组成,并且工作电压设置在150伏特。为了进行比较,准备了这样的等离子体显示器,其中一对保持电极12之间的距离为20μm,并且放电气体由4%体积的Xe气和96%体积的Ne气组成,并且在应用的电压为150伏特时,允许等离子体显示器放电。测量这些等离子体显示器亮度。
由于使用的等离子体显示器不形成有荧光层,通过测量得到的每个亮度,是根据放电气体发光(可见光)的数据。图10是色彩质量图,显示了测量的亮度与发光的颜色之间的关系曲线。通常地,放电气体的发光不是所希望的现象,因为它减小了等离子体显示器的对比度。在图10显示的比较例子(4%体积的Xe气和96%体积的Ne气)中,放电气体显示了24.11(1m/m2)的亮度,这不能被忽视。在例5中,放电气体由100%体积的Xe气组成,放电气体显示了2.93(1m/m2)的亮度,这大约是比较例子中数据的1/8。这样,在等离子体显示器中,图像显示的对比度可以保持在优异的水平上。
进一步,如图10中的色彩质量图所示,在比较例子中,发光的颜色为橙色,并且这由Ne气的主要发光颜色产生,即Ne气发出橙色光。在例5中,发光的颜色靠近蓝色,并且可以看见,在等离子体显示器的图像显示中,例5中放电气体的荧光在色调上小于比较例子的相应部分。
上面例1到5的结果总结如下:
(1)随着第一气体分压的增加,亮度增加,并当第一气体的分压特别为4×103Pa或更高时,可以获得高亮度。
(2)当第一气体的浓度为至少10%体积比,特别地,为至少30%体积比时,亮度增加。第一气体的分压需要为至少1×103Pa或更高。
(3)当气体总压小于6.6×104Pa时,放电保持电压可以保持在低水平上,但足以驱动放电。
(4)当放电气体从单独的氙(Xe)气、单独的氪(Kr)气或这些气体的混合气体中选择时,亮度可以进一步提高。
(5)随着一对保持电极之间的距离减小,亮度趋于增加。特别地,当一对保持电极之间的距离小于5×10-5m,特别地,等于或小于2×10-5m时,并当第一气体的浓度为至少10%体积比,特别地,为至少30%体积比时,亮度显著增加。
当根据此前的优选实施例解释本发明时,本发明不应限于此。在例子中解释的等离子体显示器的结构和组成,在例子中采用的材料、尺寸和生产方法,都用于说明的目的,并且可以根据需要修改或变化。本发明可以供给透射式等离子体显示器中,其中荧光层发出的光允许通过第二基底而被观察到。在例子中,等离子体显示器由一对保持电极组成,保持电极彼此平行伸出。除了这样的结构,可以采用其它结构,如一对总线电极沿第一方向伸出,在一对保持电极之中,一个保持电极沿第二方向,从一对总线电极之中的一个总线电极,向着并靠近另一个总线电极伸出,另一个保持电极沿第二方向,从一对总线电极之中的另一个总线电极,向着并靠近这个总线电极伸出。可以采用这样的结构,其中在沿第一方向伸出的一对保持电极之中,一个保持电极形成在第一基底上,并且另一个保持电极形成在分隔壁侧壁的上部,与地址电极平行。进一步,本发明的等离子体显示器可以是双电极方式等离子体显示器。更进一步,地址电极可以形成在第一基底上。这样构成的等离子体显示器可以包括:例如一对保持电极,它沿第一方向伸出;和一个地址电极,它在一对保持电极之中的一个保持电极附近,沿一对保持电极之中的一个保持电极伸出(提供了,沿一对保持电极之中的一个保持电极伸出的地址电极的长度,等于或小于放电单元沿第一方向的长度)。而且,可以采用这样的结构,其中地址电极的接线通过绝缘层形成,接线沿第二方向伸出,绝缘层用于到保持电极的短路,地址电极的接线和地址电极彼此电连接,或者地址电极从地址电极的接线上伸出。
在实施例中,由一对相对放置的保持电极的边缘部分形成的间隙,具有直线形状。但是,由一对相对放置的保持电极的边缘部分形成的间隙,在支持电极的宽度方向上具有弯曲的或曲线的图样(例如,任何形式的组合,如折线形、S形或弧形)。在这样的结构中,在一对相对放置的保持电极中,每个相对放置的边缘部分的长度可以增加,使放电效率预期提高。图11A、11B和11C是示意性的部分平面图,显示了具有上面的结构的两对保持电极。
可选地,可以在后面的AC辉光放电中操作等离子体显示器。首先,关于所有的象素执行擦除放电,来初始化所有的象素。然后执行放电操作。放电操作被分成地址阶段和放电保持阶段,在地址阶段,通过起动放电,在绝缘材料层的表面产生壁电荷,而在放电保持阶段保持辉光放电。在地址阶段,低于放电起动电压Vbd的脉冲电压,供给一对保持电极之中选择的一个保持电极上,并且供给选择的地址电极上。在某个区域中,一对保持电极之中的一个应用脉冲的保持电极,与应用脉冲的地址电极重叠,这个区域被选作显示象素,并且在重叠区域,由于绝缘极化,在绝缘材料层的表面产生壁电荷,由此聚集壁电荷。在后续的放电保持阶段,比Vbd低的放电保持电压Vsus,供给一对保持电极上。当壁电压Vw与放电保持电压Vsus的和,变得比放电起动电压大时(即Vw+Vsus>Vbd),辉光放电起动,其中,壁电压由壁电荷所感应。在一对保持电极之中,供给一个保持电极上的放电保持电压Vsus的相位,与供给另一个保持电极上的放电保持电压Vsus的相位,彼此相差半个周期,并且根据交流电流的频率,每个电极的极性相反。
根据本发明的第一到第三方案,在交流驱动式等离子体显示器中,由于放电气体只包括氙(Xe)气或只包括氪(Kr)气,或放电气体包括氙(Xe)气和氪(Kr)气的混合气体,那么可以获得高亮度,可以减小放电电压,可以减小放电气体的总压,并且可以提高交流驱动式等离子体显示器的可靠性。另外,根据本发明的第四和第五方案,在交流驱动式等离子体显示器中,由于放电气体包括混合气体,并且确定第一气体或氙气的浓度,其中第一气体或氙气的浓度主要与放电相关,那么可以获得高亮度,并且可以减小放电电压。第一气体或氙气的浓度增加,换句话说,第二气体或其它气体的浓度减小,并当第一气体或氙气的分压为常数时,可以减小放电气体的总压,使交流驱动式等离子体显示器的可靠性可以提高。进一步,由于放电电压可以减小,在交流驱动式等离子体显示器中,驱动电路的负载可以减小,进一步,放电稳定性得以改善。

Claims (14)

1.交流驱动式等离子体显示器,其特征在于充入放电空间的放电气体只包括氙气,并且放电气体具有9.0×104Pa或更低的压强,其中放电发生在上述放电空间中。
2.根据权利要求1的交流驱动式等离子体显示器,其中所述等离子体显示器具有多对保持电极,放电发生在上述每对保持电极之间,并且上述一对保持电极之间的距离小于5×10-5m。
3.交流驱动式等离子体显示器,其特征在于充入放电空间的放电气体只包括氪气,并且放电气体具有9.0×104Pa或更低的压强,其中放电发生在上述放电空间中。
4.根据权利要求3的交流驱动式等离子体显示器,其中所述等离子体显示器具有多对保持电极,放电发生在上述每对保持电极之间,并且上述一对保持电极之间的距离小于5×10-5m。
5.交流驱动式等离子体显示器,其特征在于充入放电空间的放电气体包括氙气和氪气的混合气体,并且混合气体具有小于6.6×104Pa的总压,其中放电发生在上述放电空间中。
6.根据权利要求5的交流驱动式等离子体显示器,其中所述等离子体显示器具有多对保持电极,放电发生在上述每对保持电极之间,并且上述一对保持电极之间的距离小于5×10-5m。
7.交流驱动式等离子体显示器,其特征在于充入放电空间的放电气体,包括由至少一种第一气体和至少一种第二气体组成的混合气体,上述第一气体从包括氙气和氪气的组中选择,而上述第二气体从包括氖气、氦气和氩气的组中选择,上述第一气体具有至少1×103Pa的分压和至少10%体积的浓度,并且上述放电气体具有小于6.6×104Pa的总压,其中放电发生在上述放电空间中。
8.根据权利要求7的交流驱动式等离子体显示器,其中上述第一气体具有至少30%体积比的浓度。
9.根据权利要求7的交流驱动式等离子体显示器,其中上述第一气体具有至少4×103Pa的分压。
10.根据权利要求7的交流驱动式等离子体显示器,其中上述第一气体包括氙气,而上述第二气体包括氖气。
11.根据权利要求7的交流驱动式等离子体显示器,其中所述等离子体显示器具有多对保持电极,放电发生在上述每对保持电极之间,并且上述一对保持电极之间的距离小于5×10-5m。
12.交流驱动式等离子体显示器,其特征在于充入放电空间的放电气体包括混合气体,上述混合气体包括氙气,氙气具有至少10%体积比的浓度,并且上述混合气体具有小于6.6×104Pa的总压,其中放电发生在上述放电空间中。
13.根据权利要求12的交流驱动式等离子体显示器,其中上述氙气具有至少1×103Pa的分压。
14.根据权利要求12的交流驱动式等离子体显示器,其中所述等离子体显示器具有多对保持电极,放电发生在上述每对保持电极之间,并且上述一对保持电极之间的距离小于5×10-5m。
CNB011108088A 2000-01-12 2001-01-12 交流驱动式等离子体显示器 Expired - Fee Related CN1224995C (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP6285/00 2000-01-12
JP6285/2000 2000-01-12
JP2000006285 2000-01-12
JP86673/00 2000-03-27
JP2000086673 2000-03-27
JP86673/2000 2000-03-27
JP184415/2000 2000-06-20
JP2000184415 2000-06-20
JP184415/00 2000-06-20
JP222006/00 2000-07-24
JP222006/2000 2000-07-24
JP2000222006A JP3384390B2 (ja) 2000-01-12 2000-07-24 交流駆動型プラズマ表示装置

Publications (2)

Publication Number Publication Date
CN1304158A true CN1304158A (zh) 2001-07-18
CN1224995C CN1224995C (zh) 2005-10-26

Family

ID=27480924

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011108088A Expired - Fee Related CN1224995C (zh) 2000-01-12 2001-01-12 交流驱动式等离子体显示器

Country Status (6)

Country Link
US (1) US6713958B2 (zh)
EP (1) EP1130619A3 (zh)
JP (1) JP3384390B2 (zh)
KR (1) KR100838669B1 (zh)
CN (1) CN1224995C (zh)
TW (1) TW594820B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101218657B (zh) * 2005-07-08 2010-06-09 松下电器产业株式会社 等离子体显示面板和等离子体显示面板装置
CN101189695B (zh) * 2005-06-02 2010-09-08 松下电器产业株式会社 等离子体显示面板以及等离子体显示面板装置
US8166175B2 (en) 2005-09-12 2012-04-24 Microsoft Corporation Sharing a port with multiple processes
CN103681170A (zh) * 2012-09-01 2014-03-26 李德杰 具有高放电效率的等离子体显示屏

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628077B2 (en) * 2000-10-27 2003-09-30 Sony Corporation Alternating current driven type plasma display
JP3471782B2 (ja) * 2001-02-13 2003-12-02 Nec液晶テクノロジー株式会社 平面型蛍光ランプユニット及びそれを用いた液晶表示装置
JP2003077399A (ja) * 2001-08-31 2003-03-14 Sony Corp プラズマ表示装置
KR100659012B1 (ko) * 2002-11-29 2006-12-21 마쯔시다덴기산교 가부시키가이샤 화상 표시 장치 및 그 제조 방법
TW200409164A (en) * 2002-11-29 2004-06-01 Hon Hai Prec Ind Co Ltd Plasma display panel
KR100537615B1 (ko) * 2003-08-14 2005-12-19 삼성에스디아이 주식회사 효율이 향상된 플라즈마 디스플레이 패널
US7466079B2 (en) * 2003-09-18 2008-12-16 Lg Electronics Inc. Plasma display panel and method for manufacturing the same
KR20050074792A (ko) * 2004-01-14 2005-07-19 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
KR100649188B1 (ko) * 2004-03-11 2006-11-24 삼성에스디아이 주식회사 플라즈마 표시 장치 및 플라즈마 표시 패널의 구동 방법
JP2005322507A (ja) * 2004-05-10 2005-11-17 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル
US7274333B1 (en) * 2004-12-03 2007-09-25 Igor Alexeff Pulsed plasma element
KR20070063476A (ko) * 2005-05-17 2007-06-19 마쯔시다덴기산교 가부시키가이샤 플라즈마 디스플레이 패널
JP2007103017A (ja) * 2005-09-30 2007-04-19 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイ装置
JP2009037781A (ja) * 2007-07-31 2009-02-19 Nippon Hoso Kyokai <Nhk> プラズマディスプレイパネル及びこれを用いたプラズマディスプレイモジュール、画像表示装置及びテレビジョン受信機
KR20090118265A (ko) * 2008-05-13 2009-11-18 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
JPWO2009141983A1 (ja) * 2008-05-19 2011-09-29 パナソニック株式会社 プラズマディスプレイパネル
CN102668011A (zh) 2010-06-04 2012-09-12 松下电器产业株式会社 等离子体显示面板和显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05266804A (ja) 1992-03-23 1993-10-15 Noritake Co Ltd カラープラズマディスプレイパネル
FI953965A (fi) * 1994-08-24 1996-02-25 Sony Corp Plasmapurkauslaite
JP3442876B2 (ja) * 1994-08-31 2003-09-02 パイオニア株式会社 交流型プラズマディスプレイ装置
JP3339554B2 (ja) * 1995-12-15 2002-10-28 松下電器産業株式会社 プラズマディスプレイパネル及びその製造方法
JP3145309B2 (ja) * 1996-06-12 2001-03-12 富士通株式会社 平面表示装置及びプラズマディスプレイパネルの近赤外線放出影響防止方法
JPH1062762A (ja) 1996-08-22 1998-03-06 Sony Corp プラズマアドレス液晶表示装置
JP3331907B2 (ja) 1997-05-30 2002-10-07 松下電器産業株式会社 プラズマディスプレイパネルおよびその製造方法
KR100290839B1 (ko) * 1997-06-27 2001-10-23 구자홍 3성분의 혼합가스가 충전된 칼라 피디피
JPH1125863A (ja) * 1997-06-30 1999-01-29 Fujitsu Ltd プラズマディスプレイパネル
US6194831B1 (en) * 1997-09-12 2001-02-27 Lg Electronics Inc. Gas discharge display
JPH11153969A (ja) 1997-11-19 1999-06-08 Sony Corp 表示装置
JP3019832B2 (ja) 1998-02-27 2000-03-13 日本電気株式会社 プラズマディスプレイパネル
KR20070088816A (ko) * 1998-10-20 2007-08-29 코닌클리케 필립스 일렉트로닉스 엔.브이. 플라즈마 디스플레이 패널
JP2000357462A (ja) * 1998-10-23 2000-12-26 Sony Corp 平面型プラズマ放電表示装置と駆動方法
JP2001005425A (ja) 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd 気体放電表示装置
JP2001110324A (ja) * 1999-10-12 2001-04-20 Sony Corp プラズマ表示装置
JP2001236884A (ja) 1999-12-14 2001-08-31 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルおよびその駆動方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101189695B (zh) * 2005-06-02 2010-09-08 松下电器产业株式会社 等离子体显示面板以及等离子体显示面板装置
CN101218657B (zh) * 2005-07-08 2010-06-09 松下电器产业株式会社 等离子体显示面板和等离子体显示面板装置
US8166175B2 (en) 2005-09-12 2012-04-24 Microsoft Corporation Sharing a port with multiple processes
US8438260B2 (en) 2005-09-12 2013-05-07 Microsoft Corporation Sharing a port with multiple processes
CN103681170A (zh) * 2012-09-01 2014-03-26 李德杰 具有高放电效率的等离子体显示屏

Also Published As

Publication number Publication date
EP1130619A2 (en) 2001-09-05
JP3384390B2 (ja) 2003-03-10
TW594820B (en) 2004-06-21
EP1130619A3 (en) 2001-09-12
US6713958B2 (en) 2004-03-30
KR20010070485A (ko) 2001-07-25
JP2002083543A (ja) 2002-03-22
KR100838669B1 (ko) 2008-06-16
US20010015621A1 (en) 2001-08-23
CN1224995C (zh) 2005-10-26

Similar Documents

Publication Publication Date Title
CN1224995C (zh) 交流驱动式等离子体显示器
US6657396B2 (en) Alternating current driven type plasma display device and method for production thereof
KR100683331B1 (ko) 발광특성이 우수한 플라즈마 디스플레이 패널
JP2001076629A (ja) ガス放電パネルとその製造方法
CN100472702C (zh) 交流驱动型等离子显示器及其制造方法
US6469451B2 (en) Alternating-current-driven-type plasma display
CN102099886A (zh) 等离子体显示面板
US20020180355A1 (en) Plasma display device
EP1093148A1 (en) Plasma display device
JP3992089B2 (ja) ガス放電パネル
US7687994B2 (en) Plasma display panel (PDP)
CN100538980C (zh) 等离子体显示器
US20060082301A1 (en) Image display
US20040038615A1 (en) Production method for plasma display panel unit-use panel and production method for plasma display unit
JP2002042663A (ja) 交流駆動型プラズマ表示装置及びその製造方法
JPH11185631A (ja) プラズマディスプレイパネル
EP1445787A2 (en) Plasma display panel
JP2001135241A (ja) ガス放電パネル及びその製造方法
US20070228969A1 (en) Green phosphor for plasma display panel and plasma display panel including phosphor layer formed of the green phosphor
JP2001266758A (ja) プラズマ表示装置及びその製造方法
KR20010016652A (ko) 플라즈마 표시장치의 형광막
KR20020006378A (ko) 전광판용 교류구동형 플라즈마 표시소자 및 그 제조방법
JPH09120779A (ja) ガス放電型表示パネル
KR20010018876A (ko) 플라즈마 디스플레이 패널 형성방법
JP2005310576A (ja) プラズマディスプレイパネル

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20051026

Termination date: 20140112