CN1295964C - 被动的空间驱虫带 - Google Patents

被动的空间驱虫带 Download PDF

Info

Publication number
CN1295964C
CN1295964C CNB008101485A CN00810148A CN1295964C CN 1295964 C CN1295964 C CN 1295964C CN B008101485 A CNB008101485 A CN B008101485A CN 00810148 A CN00810148 A CN 00810148A CN 1295964 C CN1295964 C CN 1295964C
Authority
CN
China
Prior art keywords
base material
insect control
insect
active
transfluthrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB008101485A
Other languages
English (en)
Other versions
CN1364057A (zh
Inventor
M·S·姆纳加瓦拉萨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SC Johnson and Son Inc
Original Assignee
SC Johnson and Son Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SC Johnson and Son Inc filed Critical SC Johnson and Son Inc
Publication of CN1364057A publication Critical patent/CN1364057A/zh
Application granted granted Critical
Publication of CN1295964C publication Critical patent/CN1295964C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/18Vapour or smoke emitting compositions with delayed or sustained release

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)
  • Laminated Bodies (AREA)

Abstract

一种控制飞虫的昆虫控制制品。该昆虫控制制品具有涂敷了可用于被动蒸发的活性昆虫控制成分的非吸收性惰性基材。所述活性昆虫控制成分选自由四氟菊酯、七氟菊酯及其混合物组成的组中。本发明的控制飞虫的方法包括提供一种昆虫控制制品,该昆虫控制制品具有涂敷了可用于被动蒸发的活性昆虫控制成分的非吸收性惰性基材。所述活性昆虫控制成分选自由四氟菊酯、七氟菊酯及其混合物组成的组中。然后把该活性昆虫控制制品放在环境中,其放置方法使得昆虫控制制品的基材暴露于非强制空气流中,使得在基材上涂敷的活性昆虫控制成分可以被动蒸发到空气中。

Description

被动的空间驱虫带
                        发明背景
本发明一般涉及昆虫控制,更特别地涉及在杀死或驱避蚊子方面有效的被动昆虫控制制品。
对于某些用途,在确定的区域内,例如卧室的封闭空间内,能够控制飞虫6-10小时甚至更长时间是重要的。例如,为了一整夜保护没有纱窗的房间内的睡眠者,这样的昆虫控制时间是希望的。能够连续多个夜晚每夜散发昆虫控制量的活性成分也是有用的。成功的飞虫控制在其它生活空间也是有用的,包括无论何种原因仍然受到飞虫侵袭的有纱窗区域,以及室外的区域,如庭院等。
传统上,在这样的环境中释放出杀虫剂蒸气来控制昆虫的制品或装置,要求加热或燃烧一种液体或固体物质来蒸发活性成分。例如,传统的香茅烛(citronella candles)长期以来一直用于这种目的。燃烧蚊香通常也用于获得夜晚的昆虫控制或者控制室外区域的蚊子或其它昆虫。S.C.Johnson & Son,Inc.Racine,Wisconsin以商标“45Nights”出售的产品是在反复的使用周期内释放昆虫控制剂(例如在没纱窗的卧室内每夜使用)的现有技术已知的一类产品的实例。“45Nights”产品是传统的加热使液体蒸发的昆虫控制产品的一种实例。
上面提到的所有产品在一定程度内是有效的,但是,要求热源的产品还需要一个安全的燃烧位置(例如,在蚊香的情况下),或者对于典型的加热蒸发产品,可能需要一种室内电源。存在通过使用昆虫控制活性成分的被动蒸发而不使用加热来避免这些困难的产品。然而,与使用需要加热的产品的昆虫控制方法相比时,它们存在一些问题和缺陷。
例如,Regan的美国专利339,810使用烟草制剂作为驱虫剂,首先浸入布或纸中,然后干燥。据报道驱虫剂活性成分从基材蒸发,来驱除昆虫。在Landsman等人的美国专利3,295,246中公开的更新的技术包括了使用除虫菊或合成除虫菊酯材料作为被动蒸发昆虫控制活性成分。Ensing的美国专利4,178,384使用合成除虫菊酯作为应用于防护场所的驱虫剂。
Whitcomb的美国专利4,130,450描述了一种浸渍杀虫剂的、开放的、低密度网状物,提供一种膨胀表面,可以载入触杀性的杀虫剂,包括除虫菊和人工合成的杀虫剂。Whitcomb优选使用微胶囊包封的除虫菊,来避免在暴露于紫外线和氧气时除虫菊的不稳定性。Whitcomb提到可以挂起网状物使活性成分蒸发来防止苍蝇。类似地,Chadwick等人的美国专利5,229,122利用微胶囊包封的和非微胶囊包封的活性成分的混合物,并提请注意,任何已知的杀虫剂都可以用于该目的。除虫菊和合成除虫菊酯等效物是可能的杀虫剂。使用制剂涂敷表面,不过还注意到,杀虫剂的蒸气相可能是有价值的。
Kauth等人的美国专利4,796,381是浸渍杀虫剂的纸或织物带的一个实例,杀虫剂可以蒸发来控制害虫。Kauth等人的材料利用合成除虫菊酯和特别是烯炔菊酯、氯菊酯和生物烯丙菊酯。然而,Kauth等人的装置被设计成悬挂在壁橱内或放在橱柜中,说明可以理解为它们不能充分防护更大、更开放的空间。在Kauth等人的专利中,没有表明它们的纸或织物带在较大空间中控制昆虫的任何性能。
Samson等人的美国专利5,198,287和5,252,387公开了用于帐篷的织物,该织物包括一个含有可蒸发杀虫剂(特别是氯菊酯)的涂层。同样,有限的空间被防护。
Aki等人的美国专利4,966,796利用在牛皮纸上的合成除虫菊酯杀虫剂,附加未处理的牛皮纸的附加层,产生一种用于制造抗昆虫的包装材料或包装袋的材料。
Landsman等人的美国专利3,295,246教导了杀虫剂浸渍然后干燥的纸的使用,这种纸用树脂涂敷以减缓活性成分的蒸发。树脂涂层被认为是重要的,它使得杀虫剂产品可以长期有效。Landsman等人引用的实施例配方包括除虫菊酯作为活性成分。Landsman等人的产品没有想要防护大的空间体积,由于活性成分的蒸发速度,因此也是获得长期防护的技术中已知的困难的一种实例。
Ronning等人的美国专利4,765,982是使用微胶囊包封的活性成分来获得持续释放昆虫控制作用的一个实例。合成除虫菊酯、合成的或者“天然的”都被引用。Ronning等人的杀虫装置可以悬挂在野外,在有限的区域内获得驱虫作用,从休息处等驱除昆虫。
Yano等人的美国专利5,091,183和Matthewson的美国专利4,940,729和5,290,774引用了特殊的挥发用杀虫化合物。Yano等人具体讨论了用于杀虫剂的非热蒸发的浸渍纸的使用。
Clarke的美国专利2,720,013描述了压入或熔入活性成分的织物材料的使用。引用除虫菊不是其本身单独使用,而是作为杀虫剂混合物中的至少一种成分。Clarke的织物材料被设计成粘在电扇的叶片上,因此,杀虫剂被引入到通过电扇通风的区域内。
Emmrich等人的WO96/32843描述了一种控制飞虫的昆虫控制制品,包括一种浸渍了被动蒸发用的活性昆虫控制成分的基材,其中,活性昆虫控制成分选自四氟菊酯(transfluthrin)、右旋炔丙菊酯、烯炔菊酯、七氟菊酯(tefluthrin)、右旋反式烯丙菊酯、敌敌畏(DDVP)及其混合物。Emmrich等人教导,该昆虫控制制品必须放在有明显空气流的环境中,其方式为昆虫控制制品的基材暴露于空气流中,使得在基材中浸渍的活性昆虫控制成分被动蒸发到空气中。这些空气流指的是“明显的”,因为它们或者通过风扇、鼓风机等强制空气流动产生,或者不强制空气流动但是有较强的自然空气流,如风通过打开的窗子或门吹入时产生的空气流。Emmrich等人的昆虫控制制品不需要对制品施加任何外部热量来蒸发活性成分,尽管热量当然有助于提高活性成分从基材中蒸发的速度。
Ito在EP0775441中提出了不需要热量但是需要较强强制空气流的另一种装置。该装置包括一种支持含有杀虫剂的基材的载体和一个在基材上产生空气流的鼓风机,该杀虫剂在常温下难以蒸发。
从上述现有技术可以看出,虽然杀虫剂的的被动蒸发在现有技术中是已知的,但是,这些材料的性质使得现有技术的注意力一般集中于在密闭有限空间或在材料附近的区域内的应用,或者需要使用风扇、明显的空气流等。在那些文献中,现有技术集中于通过使用某种缓慢释放的结构或方式等提供人为延长昆虫控制的使用寿命的需求上。加热或强制空气流动和非被动蒸发是获得杀虫剂在大体积空间中的实用分布的主要手段,从液体储存器中加热蒸发是获得多天防护的实用措施。
如上所讨论的,目前可用的昆虫空间驱除剂产品一般需要加热来使活性成分进入周围环境中(例如蚊香、电热垫、液体蒸发器和香茅油蜡烛)。这些产品需要电能或化学能来蒸发较低挥发性的活性成分。靠电能使用的产品在缺少电力供应的地方不能有效使用。此外,由于这种产品对于这种区域内的消费者来说比较昂贵,在这些地区一般使用较便宜的蚊香。然而,过多的烟雾、燃烧的末端和残留的灰是令人不快的。对于这部分市场,不需要加热用的电源或电池、没有燃烧的末端或残留的灰并且不释放烟雾的低成本被动型产品是最合适的。但是,正如本文前面所述,这种被动昆虫控制制品的一个主要问题是由于活性成分的挥发性低并且它们在基材中有明显的溶解性,释放速率不够,这将以被动蒸发技术为基础的市场上可用的产品的用途限制于壁橱等小空间中,或者需要强制空气流动来增加活性成分释放速率的装置中。
                        本发明概述
理论上,如果足够大量的活性成分施用在较大的宏观表面积上,可以使施用在任何表面上的任何杀虫剂活性成分有效地控制昆虫。因为一般大量杀虫剂被吸收或溶解或者截留在基材中,只有一部分容易释放到空气中,在这种情况下,该技术变得不实用,并且成本上也不允许。此外,基材需要非常大,增加了成本。所以,这种理论知识不能投入实际的商业使用。本发明具体涉及使被动蒸发技术以在合理面积上分布的非常低的剂量水平有效地工作。为此,不仅需要选择合适的活性成分,而且需要选择合适的基材和合适的溶剂。合适的活性成分是低浓度下最有效抵抗飞虫并且具有足够的挥发性来获得该浓度的活性成分。合适的基材是对活性成分向周围环境中扩散提供最小阻力的基材。合适的溶剂是溶解活性成分并使活性成分均匀分布在基材表面上、不腐蚀基材并且本身快速挥发而基本上不挥发活性成分本身的溶剂。
本发明的控制飞虫的昆虫控制制品主要含有一种非吸收性的惰性基材,涂敷有被动蒸发可用的活性昆虫控制成分。该活性昆虫控制成分选自四氟菊酯(transfluthrin)、七氟菊酯(tefluthrin)及其混合物。优选的是,活性昆虫控制成分包括四氟菊酯和七氟菊酯中的至少一种,最优选的是,该活性控制成分至少包含四氟菊酯。
当活性成分被吸收或溶解在基材中时,由于遇到基材的额外传质阻力,被动蒸发变得明显困难。然而,如果活性成分的溶解度低于40微克/平方厘米基材,优选的是小于或等于约20微克/平方厘米,在实际应用过程中,活性成分主要存在于基材表面,所以,容易用于蒸发。在这种情况下的基材对于活性成分向环境中的扩散不会产生任何额外的明显阻力。这种特别的基材特性也能使活性成分最均匀地挥发,直到所有的活性成分从基材表面上蒸发完毕。另外,一般来说,吸收性基材或活性成分溶解度高的基材(或者同时具有这两种特性的基材)只能部分释放活性成分,并且还是以一种不均匀的方式释放活性成分。
本发明的控制飞虫的方法包括提供具有非吸收性的惰性基材的昆虫控制制品的初始步骤,基材上涂敷一种可用于被动蒸发的活性昆虫控制成分,其中,活性控制成分选自由四氟菊酯和七氟菊酯及其混合物组成的组中。优选的是,活性昆虫控制成分包括四氟菊酯和七氟菊酯中的至少一种,最优选的是,活性成分至少包含四氟菊酯。优选的是,通过具有低Hansen氢键合参数的载体溶剂施用活性成分。然后把昆虫控制制品放在例如卧室等环境中,其放置方式使得昆虫控制制品的基材暴露于非强制的空气运动中。然后,使得施用在基材上的活性昆虫控制成分无需借助于加热器或风扇等机械装置被动蒸发到空气中,优选的是,对于任何希望的时间,释放速率至少为0.2毫克/小时。
四氟菊酯(也称为Bayothrin或NAK 4455)具有高的抗蚊虫、飞虫、蟑螂和飞蛾的效力。四氟菊酯的化学名称是(IR-反式)-(2,3,5,6-四氟苯基)甲基3-(2,2-二氯乙烯基)-2,2-二甲基环丙烷羧酸酯。其即使在非常低的浓度和施用速度下的极快的击倒性能使这种化学物质特别适合于被动蒸发技术。与现有技术不同,根据本发明的被动蒸发技术,即使只使用非强制的和不显著的自然空气运动并且以扩散作为提供希望的驱避作用的释放有效量活性成分的手段,也可以有效地控制飞虫。本发明提供了以最小成本给出最佳功效的基材、溶剂和涂敷密度的合适组合。具体地,本发明提出(a)某些材料由于其对活性成分的物理和化学抵抗性,作为基材比其它材料更好,(b)非吸收性基材比吸收性基材更均匀地释放活性成分,(c)具有低Hansen氢键合和分散参数和低挥发性的载体溶剂改善驱虫带的效力,和(d)当涂敷密度在一定范围内时,随着时间延长生物效力保持基本恒定。
几个附图简述
在附图中:
图1(a)是根据本发明的涂敷活性昆虫控制成分且用无织构化(untextured)的表面构造的一种被动空间驱虫带(strip)的示意说明;
图1(b)是根据本发明的未涂敷活性昆虫控制成分且用其中形成毛细管凹槽的表面构成的被动空间驱虫带的第二种实施方案所用的基材的示意说明;
图1(c)是根据本发明的未涂敷活性昆虫控制成分且用其中形成网格结构的表面构造的被动空间驱虫带的第三种实施方案所用的基材的示意说明;
图1(d)是根据本发明的未涂敷活性昆虫控制成分且用织构化(textured)的表面构造的被动空间驱虫带的第四种实施方案所用的基材的示意说明;
图1(e)是根据本发明的未涂敷活性昆虫控制成分且用在基材中形成的孔的内表面上有毛细管凹槽的网状表面构造的被动空间驱虫带的第五种实施方案所用的基材的示意说明;
图1(f)是表明在孔的内表面上形成的毛细管凹槽的图1(e)的基材中的一对孔的放大的部分视图;
图1(g)是根据本发明的未涂敷活性昆虫控制成分的且用在基材中形成的孔的内表面上有纹路(texture)的网状表面构造的被动空间驱虫带的第六种实施方案的基材的示意说明;
图1(h)是表明在孔的内表面上形成的纹路的图1(g)的基材中的一对孔的放大部分视图;
图1(i)是根据本发明的未涂敷活性昆虫控制成分并用基材外表面上有纹路且在基材内形成的孔的内表面上有纹路的网状表面构成的被动空间驱虫带的第七种实施方案的基材的示意说明;
图1(j)是表明在孔的内表面上形成的纹路和以及在基材外表面上的纹路的图1(i)的基材中的一对孔的放大部分视图;
图1(k)是根据本发明的未涂敷活性昆虫控制成分且用在基材内形成的孔的内表面上或在基材的外表面上没有任何纹路或毛细管凹槽的网状表面构成的被动空间驱虫带的第八种实施方案的基材的示意说明;
图1(l)是根据本发明的未涂敷活性昆虫控制成分且用在基材外表面上有毛细管凹槽并在基材内形成的孔的内表面上有毛细管凹槽的网状表面构成的被动空间驱虫带的第九种实施方案所用的基材的示意说明;
图1(m)是说明在孔的内表面上形成的毛细管凹槽以及在基材外表面上的毛细管凹槽的图1(l)的基材中的一对孔的放大部分视图;
图2是测定图1(a)-1(m)的带的活性成分释放的计算机控制风洞的示意说明;
图3是表示蒸发百分数与四氟菊酯在塑料中的溶解度的关系图;
图4是表示用非多孔的Barex带的四氟菊酯残留量与时间的关系的图;和
图5是表示用多孔滤纸的四氟菊酯残留量与时间的关系的图。
                本发明的详细描述
正如本说明书中所用的,飞虫的“昆虫控制”定义为至少驱避,优选的是使飞虫垂死。“被动蒸发”是指活性昆虫控制成分通过分子分离从基材中蒸发到空气中,而无需对基材施加外加热能(无论通过燃烧基材还是使用加热元件或其它措施)的过程。如果活性昆虫控制成分的粒子不能用Climet Instruments Company Redlands,California制造的Climet Model CI-7300光散射计数仪通过传统的光散射技术检测到,则可以认为获得了“分子分离”。这种仪器能检测小到0.3微米的空气传播的颗粒。“有效量”是指足够实现至少驱避但是优选为使飞虫垂死的希望目的的量。如果活性昆虫控制成分部分或完全普遍分布在基材材料内,其分布方式使得活性昆虫控制成分直接保持在基材内,从而被基材支持,则认为基材“浸渍了”活性昆虫控制成分。如果活性成分渗入材料的微孔并通过毛细管力保持在其中,则认为材料是“吸收性的”。如果活性昆虫控制成分普遍直接分布在基材表面上,其分布方式使得活性昆虫控制成分在基材上提供一个层并被基材支持,则认为该基材“涂敷了”活性昆虫控制成分。通过插入载体或延迟释放措施(如微胶囊、主要由该成分以外的材料、塑料材料等组成的颗粒),然后分布在基材中而保持或者容纳在其中的成分不应该认为是“直接”保持在其中或在基材上。“非吸收性”材料应该理解为描述活性材料在基材中的溶解度小于40微克/平方厘米。本文所用的“溶解度”指的是当活性成分在25℃保持与基材直接接触14天时,由于基材材料对活性成分的吸收而产生的基材的增重。
正如本说明书所用的,如果(a)一种材料不与另一种材料发生化学反应,(b)它不被另一种材料溶解,或者(c)它不溶解另一种材料,则这种材料相对于另一种材料来说是“惰性的”。
本发明的控制飞虫的昆虫控制制品落在包含一种涂敷有从基材被动蒸发用的有效量活性昆虫控制成分的基材的昆虫控制制品类型范围内。本发明的基材可以用能够先接收并保持活性昆虫控制成分,然后通过被动蒸发释放该成分的任何材料制成。没有限制性,合适的材料包括非吸收性塑料成型的结构。优选的塑料薄膜可以是以商标“Barex”从BP Chemicals获得的丙烯腈甲基丙烯酸酯共聚物,但是,其它非吸收性聚合物薄膜,如聚酯(PE)、聚偏氯乙烯(例如Saran(PVDC))、取向的高密度聚乙烯(取向的HDPE)、尼龙、聚乙烯醇(PVOH)、取向的聚丙烯(OPP)和乙烯基乙烯醇(EVOH)薄膜,也可以用作基材材料。
如上面的讨论所述,虽然不是排它性的,但是在极大程度上现有技术说明了控制昆虫用的各种被动蒸发杀虫剂在橱柜、壁橱、帐篷和其它有限空间中的使用或者在与处理过的载体带等非常接近的地方作为杀虫屏障来影响昆虫。现有技术的这种教导将引导人们同样期望由于除虫菊的被动蒸发而进行的飞虫控制,有时是微胶囊(例如Landsman、Clarke、Whitcomb、Chadwick等人);一般是合成除虫菊酯(例如,Ensing、Ronning等人的一般参考);特别是合成除虫菊酯,如氯菊酯(Samson等人的美国专利5,189,287);右旋烯炔菊酯、氯菊酯、生物苄呋菊酯、生物烯丙菊酯、噻嗯菊酯、溴氰菊酯、氟氯氰菊酯和五氟苯菊酯(Kauth等人);和氯菊酯、溴氰菊酯、氯氟氰菊酯和氯氰菊酯(Chadwick等人)。这些实例用于说明,并且不是详尽的。
在有限程度上,现有技术是成功的启示或预测,所有这些杀虫剂似乎都有吸引力,同时明显同样有吸引力的是非合成除虫菊酯杀虫剂(Whitcomb、Clarke等)。但是,在下面讨论的研究中,本发明人已经发现,实际上,除了四氟菊酯和七氟菊酯以外,所试验的这些活性成分的实例不能充分有效地在,例如象典型的卧室那样大的空间中或者在庭院的户外区域中,也不使用风扇或加热器等机械装置来分散活性成分的条件下,成功用于实用的蚊虫控制。
“实用控制”指的是可与传统蚊香相媲美的控制水平,已经发现相当于四氟菊酯释放速率为0.2毫克/小时。
现在已经发现,当本发明的昆虫控制制品中所用的昆虫控制成分选自由四氟菊酯、七氟菊酯及其混合物组成的组中时,在飞虫的实用控制中,获得了意外的良好效果。为了更容易获得实用控制标准,优选的是活性昆虫控制成分至少包含四氟菊酯和七氟菊酯中的一种。在这两种之中,四氟菊酯是优选的,因为刺激性更小,否则在有人时使用是令人讨厌的。
已经发现现在公开的特定活性昆虫控制成分作为昆虫控制活性成分是充分有效的,因为当本发明的基材放在10-45℃的空气温度下的非强制空气流动的环境中时,在这些成分通过被动蒸发散发到空气中时,它们的空气传播浓度足以获得对飞虫的控制,特别是对蚊子和苍蝇的控制。同时,在这些温度下,这些选择的材料的蒸气压足够低,使得可以经济实用地使用它们作为适宜尺寸的基材上的活性成分,其量足以在足够长的时间内获得这样的昆虫控制浓度,即,充分地整夜、甚至数夜防护一个房间。一种有用的商业目标是获得至少使用三十个连续的夜晚的防护。通过使用本发明的活性成分,该目的在实际达到的范围内。
可以使用任何有效的传统方法,用所述活性昆虫控制成分涂敷基材。典型地,通过把适量活性昆虫控制成分溶解在溶剂中,用该溶剂彻底润湿基材,然后干燥基材,蒸发在基材中含有的溶剂,留下涂敷有活性昆虫控制成分的基材,来用活性昆虫控制成分涂敷基材。涂敷活性成分的非吸收性基材的总释放率直接取决于可用于蒸发的面积。在本发明的昆虫控制制品中,有效控制飞虫必须的每平方厘米基材的活性昆虫控制成分的量将取决于希望的控制释放的寿命。优选的是,活性昆虫控制成分的大致存在量不小于1μg/cm2,优选的是每平方厘米宏观表面积1-320微克。对于本讨论的目的,“宏观表面积”指的是用尺子或类似的装置测量的表面积。当在一个典型的卧室内将基材悬挂或放在室内,获得3-1080小时(每天12小时操作,相当于90天)的实际昆虫控制时,在每平方厘米宏观表面积上确定的活性昆虫控制成分的优选量可以用在方便操作和处理的尺寸的基材上。基材可以是任何形状的,例如带、圆盘、正方形、矩形、平行四边形、可展开的(例如折叠形的)等等,如图1(a)-1(m)所示,基材可以具有无纹路的表面(图1(a))、带毛细管凹槽的表面(图1(b))、网格表面(图1(c))、有纹路的表面(图1(d))、或者在基材的孔的内表面上有毛细管凹槽的网状表面(图1(e)和1(f))、在基材的孔的内表面上有纹路的表面(图1(g)和1(h)),在基材外表面和基材中的孔的内表面上都有纹路的表面(图1(i)和1(j)),没有纹路或者没有毛细管凹槽的表面(图1(k))、或者在基材的外表面和基材中的孔的内表面上都有毛细管凹槽的表面(图(1(l)和1(m))。如本文所述,所说明的每种基材均由非吸收性的惰性材料构成。但是,本发明不局限于这些特定尺寸和形状。
本发明的昆虫控制制品可以放在任何环境中,其中,非强制空气流通过涂敷的基材,从而使得活性昆虫控制成分在较长时间内连续被动蒸发到空气中。合适的环境包括密闭的房间以及由自然空气运动提供的空气运动的室外空间,如庭院等。
在本发明的一种实施方案中,昆虫控制制品包括用于在提供非强制空气运动的合适环境中悬挂涂敷的基材,使得活性昆虫控制成分被动蒸发到空气中的悬挂装置。合适的悬挂或固定装置的实例包括钩子、细绳、磁性夹子、夹具、尼龙搭扣、机械夹子和扣钉、粘合剂等。在基材上提供的任何这种装置应该基本不阻碍空气在基材上的通过。
本发明控制飞虫的方法包括:作为第一个步骤,提供一种控制飞虫的昆虫控制制品,它包括涂敷有活性昆虫控制成分的非吸收性惰性基材,所述活性昆虫控制成分选自由四氟菊酯、七氟菊酯及其混合物组成的组中,含量小于或等于40μg/cm2基材宏观表面积。然后,把昆虫控制制品放在有非强制空气运动的环境中,昆虫控制制品的基材暴露于空气中。然后使得用来涂敷基材的活性昆虫控制成分被动蒸发到空气中。
本发明的空间驱避制品概念区别于其它连续作用的产品的一个方面是:连续作用的产品,如液体蒸发器、蚊香、电热垫等都或多或少与周围的环境无关。这是因为活性成分释出的驱动力从系统内部提供。对于被动蒸发空间驱避制品,释放速度强烈依赖周围环境。活性成分蒸发的驱动力基本由环境因素提供,如空气通过驱虫带的速度、周围温度、活性成分在产品附近的浓度积累、和空气交换速度。因此,产品的耐用性变得非常困难,因为消费者希望制品能够在世界上的所有不同气候下有效。
被动空间驱避剂基产品在大房间中的效力取决于充足量的活性成分的释放速度。因此,发展这种技术主要在于确定合适的活性成分且同样重要的是确定控制活性成分释放速度的因素。某些将在下文中解决的关键问题是:
1.确定可以通过室温蒸发释放的、能充分有效地驱避飞虫的杀虫剂活性成分。
2.测定基材材料对释放速度的影响并确定增强总释放速度的基材材料。
3.对于不同类型的基材材料,测定释放速度曲线并检查释放速度随时间是否恒定。
4.测定溶剂对四氟菊酯的释放的影响,并确定增大释放速度的那些溶剂。
5.测定剂量水平对产品效力的影响,估计产品寿命范围(整夜与数天的产品等)。
下面的非限制性实施例说明了本发明的昆虫控制制品和方法。本发明应该理解为不限于这些特定实施例,这些实施例只是说明性的。
实施例1:实验方法
用活性成分的中间溶液涂敷各种材料的带。在用于蒸发损失的风洞中和击倒效力的玻璃箱内测试这些带。使用分析工具测定带上的残留量。
(a)涂敷的带的制备
从图1所示的基材薄膜10上切下2英寸×10英寸的带2。做出标记,以确定用活性成分涂敷的面。还做出标记,在带10的任一个端部12和14上留下1英寸的空白,使得便于操作。制备活性成分在有机溶剂中的中间溶液。使用向带上转移已知量中间溶液的已校准的微移液管,向带上加载活性成分。在转移到带10上以后,使溶液润湿在端部12与14之间的2英寸×8英寸的区域16,放在工作台上使大部分溶剂可以蒸发,并且这些带看起来是干燥的(这需要15-30分钟)。然后把带10对折两次,用金属夹子保持在一起并保存在玻璃瓶中或包装在铝箔中并保存在密封塑料袋中。然后储存在-10℃的冰箱中,直到进一步使用。
(b)活性成分在风洞中的释放
计算机控制的风洞是常规设计的,使用风扇抽入用箭头20表示的新鲜空气,通过导流板22进入包含多个带10的室28中,测定在可控的环境条件下活性成分从这些带中的释放(参见图2)。
在试验过程中,预定的风速可以输入计算机中并被保持而没有操作者的干预。蜂窝气流整流器24和26放在风洞的两端,以便获得均匀的速度分布。带10以交错的方式放在3个相同的12英寸×12英寸截面物体的底板上,以便补偿由于空气速度的空间相关性产生的任何可能的误差。所有的研究在用室28内的速度探头30测量为2米/秒的恒定气流速度和70的环境温度下进行72小时。用风洞的箭头32表示的废气直接与建筑物通风管连接,来防止实验室的四氟菊酯污染。按照预定的时间间隔取出带10并储存在冰箱中,用于随后的分析或生物试验。
(c)在玻璃箱中对蚊虫的击倒效力
一个玻璃箱(0.75m×0.75m×0.75m)用于该试验,并保持在80和50%的相对湿度下。把三个处理过的带放在用铝箔覆盖的卡片盘上,然后移入玻璃箱中。把带在箱内暴露3分钟,使得杀虫剂在密闭的空气中积累蒸气。然后,快速取出这些带,折叠并储存在冰箱中。把10只实验室培育的成年雌性埃及伊蚊(Aedes Aegypti)放入该箱内。以最多20分钟的指示间隔观察蚊子的击倒情况。在暴露20分钟后,收集所有的蚊子并放在带有蔗糖垫的容器中。在24小时后处理时,观察死亡率值。获得试验的KD50、KD80和%死亡率值用于分析。KD50和KD80定义为50%和80%的蚊子被击倒所需要的时间,%死亡率只是在24小时之后死亡的蚊子的百分数。然后拆开玻璃箱并用肥皂溶液彻底清洗,去除活性成分的污染。然后用纸巾擦洗箱壁并使其在重新组装用于下次试验之前干燥。
为了验证使用上述玻璃箱法对于试验驱避带效力的有效性,用不同数量的Barex带进行了剂量响应研究,每个带以相同的方式涂敷5mg的四氟菊酯。表1所示的结果表明,KD50和KD80对带的数量,也就是对四氟菊酯的总释放量表现出良好的响应,因此,证实了玻璃箱用于生物试验的有效性。
表1:带面积对生物响应的影响
  带编号   死亡率(%)   KD50(min)   KD80(min)
  1Barex带   0   20.0   20.0
  2Barex带   100   13.3   15.0
  4Barex带   100   6.5   9.0
  7Barex带   80   5.0   6.3
  10Barex带   100   3.8   4.5
(d)残留分析
用气相色谱法,使用有效的分析方法来确定活性成分在带上的残留量。使用这种方法分析所有的试样,来测定在风洞中的蒸发损失和释放速度。
实施例2:IC活性成分的影响
在用于致死效力的玻璃箱中试验19种不同的杀虫剂活性成分,来确定本发明的空间驱虫带技术的可能的候选材料。通过微移液2%的中间溶液,用5mg的这些活性成分的每一种涂敷Barex带。除了生物烯丙菊酯、天然除虫菊、残杀威和溴氰菊酯这些发现在合成异构烷油E(Isopar E)中形成沉淀的活性成分以外,对于所有的活性成分使用合成异构烷油E作为溶剂来制备这些中间溶液。在这些情况下,对于前三种活性成分,用异丙醇(IPA)作溶剂,第四种用甲苯作溶剂。在击倒效力的玻璃箱内试验这些带。结果表示于表2。在20分钟的试验时间内,只有四氟菊酯和七氟菊酯表现出所有的击倒活性。四氟菊酯表现出最高的活性,具有4.6分钟的KD50值,七氟菊酯表现出相对较低的活性,具有13分钟的KD50值。在20分钟的试验时间内,其余的活性成分(右旋炔丙菊酯(Etoc)、右旋反式烯丙菊酯(EBT)、PF、苯醚菊酯、New Neo-PF、氯氰菊酯(Tech.)、生物烯丙菊酯、毒死蜱、氰戊菊酯、桉树油、避蚊胺(DEET)、香茅油、Permanone Tech.、苄呋菊酯、天然除虫菊、溴氰菊酯、残杀威和右旋烯炔菊酯)或者表现出最小的活性或者根本没有活性。
表2:活性成分对生物反应的影响
  活性成分   死亡(%)   KD50(min)   KD80(min)
  ETOC   0   >20   >20
  右旋反式烯丙菊酯   0   >20   >20
  PF   0   >20   >20
  苯醚菊酯   0   >20   >20
  New Neo-PF   0   >20   >20
  七氟菊酯   100   13.00   16.67
  氯氰菊酯   0   >20   >20
  生物烯丙菊酯   0   >20   >20
  毒死蜱   0   >20   >20
  氰戊菊酯   0   >20   >20
  桉树油   0   >20   >20
  避蚊胺   0   >20   >20
  香茅油   0   >20   >20
  Permanone   0   >20   >20
  苄呋菊酯   10   >20   >20
  天然除虫菊   0   >20   >20
  溴氰菊酯   20   >20   >20
  右旋烯炔菊酯   0   >20   >20
  四氟菊酯   100   4.58   6.83
由于活性成分含量只有5mg,可能相对更高挥发性的活性成分(如桉树油)甚至在所述带在玻璃箱中暴露之前就已经完全从所述带上蒸发。
实施例3:基材材料的影响
在试图研究更便宜但是具有同样效力的材料过程中,获得了一些基材,即塑料薄膜、纤维素和玻璃纤维滤布和无纺布,并在风洞和玻璃箱中试验,来测定它们对四氟菊酯释放速度的影响。目的是确定产生优异性能的参数,并寻找和获得更便宜且容易获得的新型基材材料。
(a)理想的基材
两种理想化的基材,即铝箔片和玻璃表面与Barex一起在玻璃箱内试验。结果示于表3,其中,对于在室温条件下有效释放四氟菊酯而言,Barex似乎是最好的基材之一。
表3:铝箔、玻璃和Barex基材在玻璃箱中的生物响应
  基材材料   死亡(%)   KD50(min)   KD80(min)
  铝箔   60   6.00   8.00
  玻璃表面   100   4.25   5.00
  Barex   100   4.6   6.8
(b)塑料基材
从BP、Allied、DuPont、Exxon、Dow、Mobil、Tredegar、Huntsman和Kururay获得了15种市售塑料薄膜。如实施例1的部分(a)所述,使用合成异构烷油E溶剂,将这些试样的带如实施例1的部分(a)所述涂敷5mg的四氟菊酯,进行在图2中的用于活性成分向流动空气中自发蒸发的风洞中的暴露。然后评价试样的残余损失,测定蒸发的活性成分总量。所有基材的性能在表4中给出。
表4:塑料材料对四氟菊酯释放的影响
  产品名称   薄膜类型   涂敷面   生产商   厚度(密耳)   %蒸发量   相对于Barex基材的释放指数
  Mylar   PET  PET   DuPont   2   77.8   1.01
  Barex   丙烯腈甲基丙烯酸酯共聚物  Barex   BP   2   77.1   1.00
  Monax HD-A   取向的HDPE  HDPE   Tredcgar   1   74.9   0.97
  M34   带莎纶(PVDC)涂层的PET  PVDC面   DuPont   0.5   74.9   0.97
  Capran-Emblem 2500   尼龙薄膜  尼龙   Allied   1   71.9   0.93
  Bicor 84AOH   OPP,一侧PVOH,一侧丙烯酸  PVOH面   Mobil   0.84   71.9   0.93
  Eval EF-F   EVOH薄膜  EVOH   Kururay   0.6   71.2   0.92
  Extrel 15   一面上处理的聚丙烯共聚物  处理面   Exxon   3   50.5   0.65
  LDPE   LDPE  LDPE   DowPlastics   2   41.6   0.54
  Extrel 15   一面上处理的聚丙烯共聚物  PP   Exxon   3   41.6   0.54
  LMAX-200-1(LOW SLIP)   一面上处理的LLDPE  LLDPE处理面   Huntsman   3   33.5   0.43
  Lio-20   一面上处理的Surlyn  Surlyn面   Huntsman   2   33.5   0.43
  LMAX-200-1(Low Slip)   一面上处理的LLDPE  LLDPE处理面   Huntsman   3   30.5   0.40
  Lio-20   一面上处理的Surlyn  Surlyn面   Huntsman   2   26.8   0.35
虽然蒸发速度在26.8%和77.8%之间,但是,根据在风洞中的暴露时间和鼓风速度,这些数字可以更低或更高。然而,相对数值比其它任何事情都重要,因为这表明在类似条件下,基材能够释放活性成分的优良程度。
实施例4中将说明,直到释放出所有的活性成分以前,释放速度是均匀的,所以,释放速度正比于“%蒸发量”。所以,蒸发速度在表4中用“释放指数”表示,其中对于所有的塑料的蒸发损失已经用Barex塑料的蒸发损失归一化。虽然“%蒸发量”使空气流量和暴露时间的函数,但是“释放指数”只取决于在恒定环境条件下相对于Barex材料基材释放活性成分的优良程度。“释放指数”越高,基材释放活性成分的能力越强。因为Barex被认为最接近理想化的基材,所以,释放指数最接近1的所有基材最适合于作为被动蒸发技术的基材。结果表明,除了Barex(一种丙烯腈甲基丙烯酸酯共聚物)以外,由聚酯(PE)、聚对苯二甲酸乙二醇酯(PET)、取向高密度聚乙烯(HDPE)、聚偏二氯乙烯(PVDC)、尼龙、取向聚丙烯(OPP)、聚乙烯醇(PVOH)和乙烯-乙烯醇共聚物(EVOH)构成的基材在释放四氟菊酯方面是优良的材料,并且这些聚合物的释放速度与理想化的基材Barex一样好。
在试图确定提供最高四氟菊酯释放速度的一般类型的基材材料过程中,进行了研究,目的是弄清楚决定四氟菊酯从这些材料中蒸发的参数。发现四氟菊酯的溶解度与其从塑料中的蒸发非常有关系。溶解度越低,总的释放速度越高。使用25%活性成分的中间溶液,在103平方厘米面积上用75mg的四氟菊酯涂敷15种不同的塑料。通过只用合成异构烷油E溶剂涂敷这些带,还制备这种塑料每一种的对比试样。在涂敷过程中,记录了在溶剂蒸发前后合成异构烷油E和四氟菊酯在带上的润湿特性。所有试样在涂敷之前预先称重。把试样干燥20小时,折叠起来并且在25℃的密封玻璃瓶中储存14天。然后取出试样,并使用不含Accuwipe纸巾的软抹布在带的两个面上用合成异构烷油E充分擦试。然后,在每个面上干燥,总时间为20小时,再次称重,测定吸入每个带中的四氟菊酯和溶剂的量。在另一个单独的实验中,使用Accu-Dyne-Test Marker Pens测定每种塑料基材的表面能。
以重量测定数据为基础,通过修正由于溶剂本身产生的重量变化,确定吸入每个塑料带中的四氟菊酯量。数据示于表5中。确定在薄膜厚度、带的重量、四氟菊酯的%蒸发量、四氟菊酯的总吸收量、单位薄膜厚度的四氟菊酯的吸收量、单位重量的四氟菊酯吸收量、四氟菊酯相对于(wrt)带的重量的%吸收量、和带的表面能等参数之间的相关系数(见表6),以便减少数据分析中的变量数量。
结果表明,响应变量“%蒸发量”与吸收的四氟菊酯总量强烈相关。吸收的四氟菊酯总量又与薄膜厚度相关,并在某种程度上与带的表面能相关。多元线性回归分析表明,如果“%蒸发量”只对“由于四氟菊酯产生的增重”回归,拟合最好。这两个变量的曲线表示于图3。
表5:四氟菊酯在各种塑料中的溶解度、各种塑料的表面能和润湿性
  产品名称   薄膜类型  涂敷面   生产商   厚度(密耳)  表面能(达因/厘米)   平均带重(mg)   由于四氟菊酯和溶剂的增重(mg)   由于溶剂的增重(mg)   仅由于四氟菊酯的增重(mg)   每密耳的增重(mg/密耳)  %增重(相对于带重)   %蒸发量   四氟菊酯的润温性   溶剂润湿性
  Barex   丙烯腈甲基丙烯酸酯共聚物  Barex   BP   2   60   750.08   -1.1   -0.66   -0.44   -0.22   -0.0587   77   良好   良好
  Capran-Emblem2500   尼龙薄膜  尼龙   Allied   1   58   376.29   -1.43   -1.4   -0.03   -0.03   -0.0080   72   良好   良好
  Mylar   Pet  PET   DuPont   2   42   98790   0.14   -0.92   1.06   0.53   0.1073   78   良好   良好
  Monax HD-A   取向HDPE  HDPE   Tredegar   1   42   385.72   1.96   0.43   1.53   1.53   0.3967   75   良好   良好
  Extrel 15   一面处理的聚丙烯共聚物  处理面   Exxon   3   35   880.71   8.74   0.54   8.2   2.73   0.9311   50   良好   良好
  LMAX-200-1(LOW SLIP)   一面处理的LLDPE  LLDPE面   Huntsman   3   33   931.18   8.74   0.09   8.65   2.88   0.9289   33   差   良好
  LMAX-200-1(LOW SLIP)   一面处理的LLDPE  LLDPE处理面   Huntsman   3   41   924.59   10.04   -0.28   10.32   3.44   1.1162   31   良好   良好
  LDPE   LDPE  LDPE   Dow Plastics   2   33   667.09   4.91   0.38   4.53   2.27   0.6791   42   差   良好
  M34   带莎纶(PVDC)涂层的PET  PVDC面   DuPont   0.5   35   240.63   0.07   0.14   -0.07   -0.14   -0.0291   75   良好   良好
  Eval EF-F   EVOH薄膜  EVOH   Kururay   0.6   58   185.03   -0.62   -1.78   1.16   1.93   0.6269   71   良好   良好
  Blcor 84AOH   OPP,一面PVOH,一面丙烯酸  PVOH面   Mobil   0.84   >60   260.87   0.09   -0.21   0.3   0.36   0.1150   72   良好   良好
  产品名称  薄膜类型   涂敷面   生产商   厚度(密耳)   表面能(达因/厘米)   平均带重(mg)   由于四氟菊酯和溶剂的增重(mg)   由于溶剂的增重(mg)   仅由于四氟菊酯的增重(mg)   每密耳的增重(mg/密耳)   %增重(相对于带重)   %蒸发量   四氟菊酯的润湿性   溶剂的润湿性
  Bicor 8AOH  OPP,一面PVOH和一面丙烯酸   丙烯酸面   Mobil   0.84   52   259.28   -8.28   -0.12   -8.16   -9.71   -3.1472   56   良好   良好
  Extrel 15  一面处理的聚丙烯共聚物   PP   Exxon   3   <30   900.10   9.73   0.59   9.14   3.05   1.0154   42   差   良好
  Lio-20  一面处理的Surlyn   Surlyn面   Huntsman   2   42   583.95   8.33   0.45   7.88   3.94   1.3494   27   差   良好
  Lio-20  一面处理的Surlyn   Surlyn处理面   Huntsman   2   36   581.35   9.4   .063   8.77   4.38   1.5086   33   差   良好
*缩写“wrt”指的是“相对于”
表6:响应与预测变量之间的相关系数
  厚度(密耳)   表面能(达因/厘米)   平均带重   仅由于四氟菊酯的增重(mg)   每密耳增重   %增重(相对于带重)   %蒸发量
  厚度   1.000
  表面能(达因/厘米)   -0.565   1.000
  平均带重   0.930   -0.505   1.000
  仅由于四氟菊酯的增重(mg)   0.822   -0.673   0.612   1.000
  每密耳增重   0.606   -0.574   0.381   0.919   1.000
  %增重(相对于带重)   0.601   -0.554   0.366   0.919   0.997   1.000
  %蒸发量   -0.701   0.601   -0.477   -0.934   -0.907   -0.911   1.000
这表明杀虫剂在基材中的溶解度是其随后释放到周围环境中的决定性因素。令人惊讶地,塑料的表面能在这种现象中似乎没有起重要作用。四氟菊酯溶解度小于2毫克/带(20微克/平方厘米)的基材似乎表现出最好的释放速率,四氟菊酯溶解度大于4毫克/带(40微克/平方厘米)不能有效地释放四氟菊酯。虽然在测定“%蒸发量”过程中用5毫克四氟菊酯涂敷这些带时,这个结论是严格正确的,但是,具有低四氟菊酯溶解度的基材在释放活性成分方面表现更好一般应该是成立的,尤其是活性成分含量小于5毫克/带时。活性成分含量越低,基材对四氟菊酯释放的作用越突出,即释放速度的差异对溶解度的依赖性更强。当活性成分含量≥5毫克/带时,“%蒸发量”数值变得相互接近,并且当基材薄时,在非常高的剂量水平上,最终会合并成单一的数值。在非常高的剂量水平或涂敷密度时,至少直到大部分涂敷的四氟菊酯从薄基材中蒸发之前,溶解度对释放速度的影响可以忽略。当基材非常厚时,即使在高的剂量水平,释放速度也会依赖于活性成分在塑料材料中的溶解度。这是因为与初始的涂敷量相比,厚塑料板能够溶解高含量的四氟菊酯。
因此,任何非吸收性材料适合于用作在非强制空气运动中释放杀虫剂的基材。例如,玻璃状聚合物薄膜、铝箔、玻璃表面等阻碍性材料具有最小的活性成分溶解度,因此是最好的基材。
(c)吸收性基材
为了测定吸收性基材对效力的影响,对于具有各种程度孔隙率、孔隙尺寸和厚度的滤纸、玻璃纤维、老化的玻璃纤维和无纺布试样,在玻璃箱中试验在103平方厘米表面积上涂敷5毫克四氟菊酯的每个试样。结果表明,玻璃纤维的新鲜试样性能只与Barex一样好,而无纺布性能更差。纤维素基滤纸与玻璃纤维相比,多少表现出更低的性能,这可能是由于纤维素对四氟菊酯的部分吸收所致(见表7和8)。
表7:新鲜滤纸基材在玻璃箱中的生物效力
  产品名称   孔隙尺寸   厚度   供应商   VWR类别编号   死亡(%)   KD50(min)   KD80(min)
  410级滤纸(光滑的)   1微米   7.5密耳   VWR   28297-830   60   7.00   9.25
  413级滤纸(光滑的)   5微米   7.0密耳   VWR   28310-208   90   5.50   7.00
  2型滤纸(光滑的)   8微米   7.5密耳   Whatman   1002-240   100   6.50   7.00
  415级滤纸(绉纹)   25微米   11密耳   VWR   28320-223   100   7.00   7.50
  417级滤纸(绉纹)   40微米   15密耳   VWR   28313-181   70   7.09   9.27
表8:新鲜玻璃纤维基材在玻璃箱中的生物效力
  产品名称   孔隙尺寸   厚度   供应商   VWR类别编号   死亡(%)   KD50(min)   KD80(min)
  A/B型无粘合剂玻璃纤维滤纸   1微米   26密耳   VWR   28150-978   80   4.75   6.50
  A/C型无粘合剂玻璃纤维滤纸   1微米   11密耳   VWR   28150-984   90   5.00   6.50
  A/D型无粘合剂玻璃纤维滤纸   3.1微米   27密耳   VWR   28150-999   100   4.50   6.50
评价老化的玻璃纤维试样(见表9)的尝试表明,性能是最低的(如高的KD50和KD80值表示的不充分的生物活性),表明释放速度随着在风洞中的老化而减退。“老化的”试样指的是在风洞中于21℃暴露72小时的试样,其中空气以2米/秒的速度运动。
表9:老化的玻璃纤维基材在玻璃箱中的生物效力
  描述   孔隙尺寸   厚度   供应商   类别编号   死亡(%)   KD50(min)   KD80(min)
  A/B型无粘合剂玻璃纤维滤纸   1微米   26密耳   VWR   28150-978   0   20.00   20.00
  A/C型无粘合剂玻璃纤维滤纸   1微米   11密耳   VWR   28150-984   10   20.00   20.00
  A/D型无粘合剂玻璃纤维滤纸   3.1微米   27密耳   VWR   28150-999   60   15.00   18.75
多孔基材的新鲜试样的性能未表现出对孔隙尺寸或厚度的强烈依赖性。这可能是真实的,因为驻留在最上层的四氟菊酯会从新鲜的试样表面蒸发,因此,亚结构不提供对蒸发的任何阻力。然而,预期老化试样的性能强烈依赖于这些参数。在老化试样的试验方法上的局限性使得不能对这些作用进行定量。
表10:无纺布在玻璃箱中的生物效力
  产品名称   纤维类型   纤维尺寸   树脂类型   结构   重量   死亡(%)   KD50(min)   KD80(min)
  NP Poly 45   聚酯   6DPF   PVA   粘合、针刺的   3.2OZ/Sq.Yd.   0   >20   >20
  NP Poly(MF-100)   聚酯   1.5DPF   丙烯酸   粘合、针刺的   3OZ/Sq.Yd.   20   >20   >20
  NP聚丙烯   聚烯烃(pp)0.4OZ pp麻棉布   3DPF   N/A   针刺的   40Z/Sq.Yd.   0   >20   >20
  H.L.棉   90%未漂白棉和10%聚酯   6DPF   PVA   粘合、针刺的   3OZ/Sq.Yd.   70   16.67   >20
新鲜的无纺布材料在玻璃箱中没有表现出很多生物活性(见表10)。
所以,可以总结出,如无纺布纤维纸、塑料纸、布、皱纹纸、合成或天然多孔材料等多孔结构不适用于有效释放活性成分,因为释放速率低并且随时间降低。大量活性成分将被截留并被浪费。
实施例4:释放速率特性
该研究的目的是确定四氟菊酯从吸收性基材和非吸收性惰性基材中的释放的线性度。用合成异构烷油E中间溶液涂敷5mg四氟菊酯的滤纸和Barex带经过在图2的风洞中的蒸发,以预定的时间间隔取出试样并评估残留量。试验测定的释放曲线表示于图4和5中。Barex(图4)和滤纸(图5)带的释放曲线由残留量计算,并表示于表11中。
表11:从Barex和滤纸中的释放速率
  时间   Barex   滤纸
  0hr   0.58μg/hr/cm2   0.68mg/cm2/hr
  3hr   0.58μg/hr/cm2   -
  8hr   0.58μg/hr/cm2   0.58mg/cm2/hr
  24hr   0.58μg/hr/cm2   0.48mg/cm2/hr
  32hr   0.58μg/hr/cm2   -
  48hr   0.58μg/hr/cm2   0.38mg/cm2/hr
  72hr   -   0.29mg/cm2/hr
  156hr   -   0.10mg/cm2/hr
四氟菊酯从以48μg/cm2的密度涂敷的Barex带的释放速度在试验条件下保持高度均匀,而滤纸的释放速度随时间指数下降。使用非吸收性惰性基材(如Barex)相对于吸收性基材(如滤纸)的优点是在整个产品寿命范围内一致的均匀性能。这消除了残余损耗并保证活性成分的最佳使用。
实施例5:溶剂的作用
选择两种不同基材材料,即Barex(非吸收性惰性基材材料)和滤纸(吸收性材料),和15种基于挥发性和Hansen的三维溶解度参数(Hansen D是分散分量,Hansen P是极性分量、Hansen H是氢键合分量)差异的有机溶剂,来确定溶剂对四氟菊酯从多孔和非多孔基材中释放的影响。将103平方厘米尺寸的Barex和滤纸带用5mg的四氟菊酯涂敷,并对其进行在图2的风洞中的蒸发和在玻璃箱中的生物研究。
表12:溶剂对四氟菊酯释放的影响
  溶剂   VP(mm)   HansenD   HansenP   HansenH   %蒸发量滤纸   %蒸发量Barex
  丙酮   185.0   7.6   5.1   3.4   57.7   58.3
  THF   143.0   8.2   2.8   3.9   56.4   59.6
  MEK   70.2   7.6   4.4   2.5   62.4   67.5
  乙酸甲酯   171.0   7.6   3.5   3.7   55.7   57.6
  乙酸乙酯   86.0   7.7   2.6   3.5   61.1   57.6
  乙酸异丁酯   12.5   7.4   1.8   3.1   63.8   70.9
  甲醇   100.0   7.4   6.0   10.9   47.0   58.3
  乙醇   43.0   7.9   4.4   9.7   45.0   70.3
  IPA   32.8   7.7   3.0   8.0   49.0   50.3
  2-丁醇   9.0   7.4   2.8   7.8   67.1   60.3
  庚烷   40.0   7.4   0.0   0.0   78.5   86.8
  甲苯   38.0   8.8   0.7   1.0   58.4   60.9
  合成异构烷油C(ISOPar C)   37.8   7.2   0.0   0.0   65.8   76.2
  合成异构烷油E(ISOPar E)   15.7   7.3   0.0   0.0   63.1   68.7
对于滤纸和Barex试样,四氟菊酯在风洞中的百分蒸发量表示于表12中,包括溶剂的性质,如Hansen三维溶解度参数(分散、极性和氢键合分量),和蒸气压。
明显的是,溶剂以明显的方式影响四氟菊酯的释放速度。对于Barex带,根据所用的溶剂,四氟菊酯的蒸发在50%和87%之间,对于滤纸,它在45%-79%范围内。
进行详细的统计分析,确定在响应变量和独立变量之间的显著性线性关系。为了便于建立多元线性回归、模型,计算了在四个“预测”变量,即“VP”、“Hansen D”、“Hansen P”和“Hansen H”(蒸气压和Hansen的3维溶解度参数的分散、极性及氢键合分量)之间的相关系数,并表示于表13中。
表13:预测值变量之间的相关系数
  VP(mm)   Hansen D   Hansen P   Hansen H
  VP(mm)   1.0000
  Hansen D   0.1495   1.0000
  Hansen P   0.5539   0.0150   1.0000
  Hansen H   0.0616   -0.0023   0.7486   1.0000
“Hansen P”和“VP”之间以及“Hansen P”与“Hansen H”之间的相关系数较高,说明在这两对参数之间的线性相关性的程度高。所以,该“预测”变量不包含在多元线性回归分析中,因为这将导致多重共线性问题,并使得其非常难以分辨各个解释变量的影响。该变量传达的信息由“Hansen H”和“VP”传达。
然后,在感兴趣的响应变量,即“%蒸发量”和独立变量,即“VP”、“Hansen H”、和“Hansen D”之间使用Excel 5.0c版本进行多元线性回归。ANOVA结果表明,对于滤纸和Barex试样,P值(显著水平F)低,说明在两种情况下的回归是有意义的。对于滤纸试样,R2值为0.6757表明,“%蒸发量”方差的67.57%可以用该响应变量对“VP”、“Hansen D”、和“Hansen H”的拟合多元回归解释。类似地,对于Barex试样,该模型解释了方差的47.74%。其余不清楚的方差可能是由于数据上的噪音或者由于这里还没有考虑的有待确定的一些其它因素所导致。每个独立变量的P值表明在响应变量与预测值变量之间的线性关系有多强。对于“Hansen H”,P值明显较低,而对于“VP”,P值较大,说明响应变量“%蒸发量”与“Hansen H”之间的线性关系最强,而它相对于“VP”的线性关系最弱。从该分析得到的模型公式表示于表14中。
表14:多元线性回归模型
  对于滤纸%蒸发量=-0.03183VP(mm)-6.22466 HansenD-1.72725 Hansen H+116.34228
  对于Barex%蒸发量=-0.05412VP(mm)-6.4257 Hansen D-1.26108 Hansen H+122.69958
回归模型中的负斜率表明,当选择具有低蒸气压、低Hansen氢键合参数和低Hansen分散参数的溶剂时,释放速率最高。在滤纸与Barex试样之间的这些系数的直接比较表明,滤纸的释放速率比Barex的释放速度更强烈依赖于溶解度参数的氢键合分量,而蒸气压的作用则相反。Hansen分散性分量的作用在两种基材上非常相似。
上面开发的回归模型用于预测各种溶剂性能之下的“%蒸发量”值。基于该模型和“%蒸发量”的值,确定了溶剂性能的最优选的、第二最优选的、第三最优选的、和最不优选的范围(见表15)。这种确定基于滤纸和Barex的“%蒸发量值”与对应于理想溶剂的“%蒸发量”值的接近程度,理想溶剂具有可忽略的挥发性、分散性分量为7.2且没有氢键合分量。同样应该注意,这些“%蒸发量”值仅用于相互比较,实际的蒸发速率根据周围条件可能更高或更低。
表15:回归模型预测
  Hansen溶解度参数   由回归模型得到的%蒸发量
  优选的范围   蒸汽压,mmHg   分散性分量   氢键合   滤纸   Barex
  理想的   -0   7.2   -0   71.5   76.4
  最优选的   ≤20   ≤7.4   ≤2   ≥66.2   ≥71.5
  第二最优选的   ≤50   ≤7.6   ≤4.0   ≥60.5   ≥66.1
  第三最优选的   ≤100   ≤8.0   ≤6.0   ≥53.0   ≥58.3
  最不优选   ≤200   ≤8.8   ≤12   ≥34.5   ≥40.2
基于所进行的研究,发现:
●即使大部分溶剂在初始干燥阶段蒸发,溶剂也明显影响四氟菊酯释放速率。
●决定溶剂有效性的参数是Hansen氢键合参数、Hansen分散性分量和挥发性。这些参数值低的溶剂在从滤纸和Barex基材中释放四氟菊酯方面是最有效的,和
●滤纸的释放速率较之于Barex更强烈地依赖于氢键合分量。
这些发现的实用性在于,在制备可以作为“驱避剂溶液”卖给消费者使用的有效的稀中间溶液过程中,可考虑其应用。用户可以喷洒用最有效释放四氟菊酯的溶剂制造的溶液,此时,可以喷洒在任何表面上,如水泥墙、窗玻璃或抛光的木制表面。
实施例6:大箱实验和实地研究
(a)大箱中的实验室研究
对于本发明的昆虫控制制品的逼真模拟实际使用条件,开发了箱实验程序。使用一个密闭的,一般是无特征的,约28m3的小房间大小的盒式试验箱。六个蚊子击倒笼子垂直分布在试验箱内,悬挂靠近相对的试验箱侧壁的杆子上,在那里,可以通过箱的窗户从试验箱外面观察它们。在试验过程中观察笼子中的蚊子,来评价试验的材料使蚊子击倒的能力。昆虫“击倒”是其不能飞且通常外表上呈死亡的状态。昆虫实际上可以是死了或者没死。击倒笼子是圆柱形的,约6cm长,直径8cm,带有纱窗的端部。
还提供两个驱避蚊子的笼子,驱避笼是箱状的有纱窗的笼子,约73厘米长,截面积16平方厘米。驱避笼所有的壁都是用纱布遮蔽的。每个驱避笼用透明塑料隔板分成第一容纳区和第二容纳区,第一容纳区占笼子长度的约45厘米,第二容纳区占剩余的28厘米。塑料隔板在其中心有一个直径4厘米的孔,提供蚊子在两个容纳区之间可以通过的唯一通道。驱避笼子用在试验箱壁平面上的塑料隔板安装在试验箱壁上,其取向使得第一容纳区向内延伸到试验箱内,而第二容纳区通过实验箱壁伸出到正常的室内空气中。
基本与蚊子击倒笼子一样的鼠笼安装在每个驱避试验笼朝向试验箱内部的第一容纳室端部。鼠笼与驱虫试验笼之间仅通过防蚊纱窗分开。在试验过程中把一只老鼠放在鼠笼中,为保持在驱虫试验笼中的蚊子提供引诱物。因此,一方面,在驱虫试验笼的第一个容纳区内的蚊子被老鼠吸引,另一方面却被所试验的昆虫控制制品所驱避。
在试验进行时,把50只雌性蚊子放在每个蚊子笼的第一容纳区内,通过一个可移动的门关闭隔板的孔。在每个击倒笼中放10只雌性蚊子。把试验的昆虫控制制品放在试验箱内的中心,并开始空气流动。在最多2小时的总试验时间内,以一定的时间间隔,目测检查每个击倒笼和每个驱避笼,记录蚊子的位置、数量和状态。被驱赶到第二个容纳区的蚊子数量提供了所试验的昆虫控制制品的驱避作用的量度。还记录了在击倒笼中被击倒的蚊子数。通过驱避的蚊子和击倒的蚊子数量判断昆虫控制制品的总体效果,这两方面的作用都减少了可以叮咬的蚊子总数。
用5毫克四氟菊酯涂敷尺寸为103平方厘米的Barex带,并对笼中的成年埃及伊蚊(Aedes aegypti)试验击倒和驱避效力。在0-2小时试验中,所试验的带是新制的和预先使用8小时的试样。每个带安装到一个以3.5米/秒运行的风扇上。同时在相同的箱中在没有运行风扇的情况下来试验市售的蚊香。表16中给出了击倒结果,表17中给出了驱避效力。
表16:平均击倒百分数(0-2小时)
  试样   15min   30min   60min   120min   24hr致死率
  新鲜的Barex   0   33   95   100   96
  Barex-8hr   1   9   78   98   96
  蚊香   47   63   91   100   98
  对照   0   0   0   0   0
表17:不能叮咬的平均百分数(0-2小时)
  试样   15min   30min   60min   120min
  新鲜的Barex   38   70   88   95
  Barex-8hr   26   61   80   91
  蚊香   58   89   100   100
  对照   0   1   2   4
新制的和陈化的驱虫带都提供了可与含有0.3%d-顺式,反式烯丙菊酯的标准或传统蚊香相媲美的击倒和防叮咬效力。8小时陈化的带也送去进行残留量分析。结果总结在表18中,表明在8小时过程中四氟菊酯的平均释放量为~0.2毫克/小时。四氟菊酯从驱虫带中的~0.2毫克/小时的释放速率因此提供了可与传统市售蚊香相媲美的生物效力。
表18:分析结果
  新鲜的Barex   :残留量5.2mg
  Barex-8hr   :残留量3.7mg
  8小时内的四氟菊酯损耗   :1.5mg
  四氟菊酯释放速率   :-0.2mg/hr
在用280毫克四氟菊酯浸渍的皱纹圆片的便携式电装置上也进行了实验室研究。把圆片放在有靠电池运行的风扇的装置中。空气流通过圆片的孔把四氟菊酯释放到环境中。在该装置上进行实验室研究来确定其效力。结果如表19和20所示,表明在1.6伏和1.3伏,便携式电装置与市售驱蚊垫作用一样好。还进行了重量损失实验来确定该装置的释放速率。当该装置在1.43伏的电压下在80运行180小时时,在开始装入280毫克的再注入装置上检测到233毫克四氟菊酯的残留量。这两项研究结合在一起,说明0.26毫克/小时的释放速率在实验室试验箱内提供与标准驱避垫一样好的驱避和击倒效力。
表19:在80不能叮咬的平均百分数(0-2小时)
  伏特   15min   30min   60min   120min
  1.6   4   11   47   82
  1.3   6   7   45   82
  标准垫(在Vape Fumakilla加热器上的36mg Py.Forte*)   5   39   81   86
表20:在80的平均击倒百分数(0-2小时)
 伏特   15min   30min   60min   120min   %死亡
 1.6   3   38   61   91   80
 1.3   3   16   49   86   86
 标准垫(在Vape Fumakilla加热器上的36mg Py.Forte*)   7   47   73   81   58
*Pynamin Forte是“3-烯丙基-2-甲基环戊-2-烯-4-酮-1-基D-顺式/反式-菊酸酯”。
因此,大箱研究表明,0.2-0.26毫克/小时的四氟菊酯释放速率可以提供击倒和驱避性能,获得与传统蚊香或标准驱蚊电热垫一样的实用控制和效果。
(b)实地研究
在马来西亚的西北半岛上的Ujung Batu,Butterworth定居区域内的住房的起居室内对涂敷四氟菊酯的塑料带进行对抗五带淡色库蚊(Culex quinquefasciatur)的现场试验。在预处理试验过程中,收集在该区域的室内蚊子表明,90%以上所收集的蚊子是五带淡色库蚊。总共试验四种配置。
配置A在四面墙的每一面上,两片挂在一起
配置B在四面墙的每一面上悬挂一片
配置C在相对的两面墙的每一面上悬挂一片
配置D在墙上悬挂一片
上述每个片尺寸为0.7平方厘米,用2mil的Barex薄膜制成,涂敷35毫克四氟菊酯(55微克/平方厘米的涂敷密度)。进行试验的房间的平均体积是75.5立方米(相当于约16英尺×10英尺)。人体诱饵坐在离所有处理的片1-2米远的地方,在房间内放置试片开始的0-2小时、24小时、96小时和168小时过程中,使用人的裸腿诱捕技术评价效力。
这些实验在严酷的试验环境下进行。在试验过程中收集的主要物种是五带淡色库蚊(Culex quinquefasciatus),这是在全球的热带和亚热带地区常见的蚊子中最能耐受基于合成除虫菊酯的家用杀虫剂产品的蚊子。由于局部气候变化,试验所选择的定居地区在预处理和处理试验过程中表现出较低的室内蚊子密度。
结果表明,在整个7天应用中,配置A是最有效的,在严酷的热带环境下,落下/叮咬的总减少率大于78%。分析在现场试验的所有带的残留量,来确定平均释放速度,以便比较它们的生物效力。结果示于表21中。
表21:马来西亚实地研究结果
  蚊子叮咬的减少百分数   四氟菊酯释放
  0-1hr   1-2hr   2-3hr   总计   mg/hr   μg/hr/cm2
  配置A(8个带)   78.9   80.5   93.2   84.0   1.46   0.28
  配置B(4个带)   -9.0%   8.9%   73.5   34.2   0.79   0.31
  配置C(2个带)   19.4   35.1   68.6   42.6   0.40   0.31
  配置D(1个带)   28.2   28.2   43.8   37.8   0.18   0.28
马来西亚实地研究的试验条件是非常苛刻的。进行试验的房间大,并且大部分与房子内的其它房间相通。这些房间还有通风窗,促进空气自由与室外环境交换,因此造成产品损耗。在白天,门也是打开的,进一步增大了产品损失。这种开放的区域导致尤其在蚊子叮咬不是问题的白天产生产品的浪费。即使在这些苛刻条件下,0.18毫克/小时的四氟菊酯释放速度也足以获得实用的控制。
实施例7:剂量响应研究
在用于击倒效力的玻璃箱中,试验涂敷不同剂量四氟菊酯的Barex和滤纸试样。结果表示于表22和23中。这些结果表明对于Barex,在1微克/平方厘米一340微克/平方厘米范围内,生物效力几乎恒定。在1微克/平方厘米的剂量水平,效力临界较低,在0.1微克/平方厘米的剂量水平,效力明显较低。另一方面,滤纸试样在低于50微克/平方厘米剂量时表现出对剂量的依赖性。高于此剂量,最高到2500微克/平方厘米,响应是类似的。
表22:Barex上的剂量响应
  在16平方面积上的四氟菊酯含量   涂敷密度(μg/cm2)   死亡(%)   KD50(min)   KD80(min)
  .01mg Barex   0.097   0   >20   >20
  .1mg Barex   0.969   0   8.25   11.33
  1mg Barex   9.688   87   5.9   7.7
  5mg Barex   48.438   100   4.6   6.8
  10mg Barex   96.875   90   4.5   6.8
  25mg Barex   242.188   100   5.5   8.2
  35mg Barex   339.063   100   5.8   6.8
表23:滤纸上的剂量响应
  在16平方面积上的四氟菊酯含量   涂敷密度(μg/cm2)   死亡(%)   KD50(min)   KD80(min)
  1mg滤纸   9.688   13   20.0   20.0
  5mg滤纸   48.438   57   8.0   11.4
  25mg滤纸   242.188   77   6.7   7.8
  100mg滤纸   968.752   73   6.5   8.3
  250mg滤纸   2421.880   80   7.3   8.6
获得有效防护蚊子叮咬的典型释放速率约为0.2毫克/小时(见表16、17和18)。在没有强制对流的房间内象标贴一样挂在墙上的Barex的释放速率约为0.3微克/小时/平方厘米(见表21)。根据产生最小要求四氟菊酯释放速率需要的带面积的这种知识,可以调节涂敷密度。
表24:对于被动Barex带,在各种涂敷密度下的估计产品寿命
  涂敷密度(μg/cm2)   产品寿命
  1.0   3小时20分钟
  2.4   1天(8小时/天)
  16.8   7天(8小时/天)
  36.0   15天(8小时/天)
  72.0   30天(8小时/天)
  144.0   60天(8小时/天)
  216.0   90天(8小时/天)
在上述涂敷密度的任一种下,667平方厘米(0.72平方英尺)的带面积将以0.2毫克/小时的速率释放四氟菊酯,足以提供可与蚊香或驱蚊电热垫相媲美的对蚊子叮咬的防护效果。尽管在高于1微克/平方厘米的所有涂敷密度下,特别是在1微克/平方厘米-250微克/平方厘米范围内都可以获得效力,但是,方便的涂敷密度范围为2.4微克/平方厘米-72微克/平方厘米,因为这一范围相当于1天-1个月的产品寿命。
工业实用性
本发明提供了实用的控制蚊子和其它害虫的材料和方法,以及制造和使用方法。

Claims (10)

1.一种控制飞虫的昆虫控制制品,包含一种非多孔的、非吸收性基材和涂覆于所述基材上的可用于被动蒸发的活性昆虫控制成分的涂层,其中所述活性昆虫控制成分选自由四氟菊酯、七氟菊酯及其混合物组成的组中,并且其中在所述非吸收性基材中所述活性昆虫控制成分的溶解度小于或等于约40微克/平方厘米基材表面积,其中所述涂层这样形成:将所述活性昆虫控制成分和溶剂的溶液涂敷到所述基材上,所述溶剂的蒸气压小于或等于100毫米汞柱且Hansen氢键合参数小于或等于6.0,以及随后除去所述溶剂,从而提供剂量水平为2.4微克/平方厘米-72微克/平方厘米基材表面积的所述活性昆虫控制成分。
2.根据权利要求1的昆虫控制制品,其中所述基材由选自聚合物膜、铝和玻的阻挡层材料组成。
3.根据权利要求1的昆虫控制制品,其中所述基材是一种选自由丙烯腈甲基丙烯酸酯共聚物、聚酯、聚偏二氯乙烯、高密度聚乙烯、尼龙、聚丙烯、聚乙烯醇和乙烯乙烯醇薄膜组成的组中的聚合物薄膜。
4.根据权利要求1的昆虫控制制品,其中所述非吸收性基具有选自无织构化、织构化、网格、凹槽和网状的表面。
5.根据权利要求1的昆虫控制制品,其中所述昆虫控制制品包括用于在合适的使用环境中悬挂所涂敷的基材的悬挂装置。
6.根据权利要求1的昆虫控制制品,其中所述非吸收性基材具有不小于0.7平方米的表面积。
7.根据权利要求1的昆虫控制制品,其中所述活性昆虫控制成分包含四氟菊酯。
8.根据权利要求1的昆虫控制制品,其中所述活性昆虫控制成分包含七氟菊酯。
9.根据权利要求1的昆虫控制制品,其中所述活性昆虫控制成分具有至少约0.2毫克/小时的释放速率。
10.根据权利要求1的昆虫控制制品,其中所述活性昆虫控制成分在所述基材中的溶解度小于或等于约20微克/平方厘米基材表面积。
CNB008101485A 1999-06-04 2000-06-02 被动的空间驱虫带 Expired - Lifetime CN1295964C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/326,446 1999-06-04
US09/326,446 US6534079B1 (en) 1999-06-04 1999-06-04 Passive space insect repellant strip

Publications (2)

Publication Number Publication Date
CN1364057A CN1364057A (zh) 2002-08-14
CN1295964C true CN1295964C (zh) 2007-01-24

Family

ID=23272246

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008101485A Expired - Lifetime CN1295964C (zh) 1999-06-04 2000-06-02 被动的空间驱虫带

Country Status (23)

Country Link
US (1) US6534079B1 (zh)
EP (1) EP1182932B1 (zh)
JP (1) JP2003501366A (zh)
KR (1) KR100488319B1 (zh)
CN (1) CN1295964C (zh)
AR (1) AR020299A1 (zh)
AT (1) ATE247904T1 (zh)
AU (1) AU763256B2 (zh)
BR (1) BR0011320B1 (zh)
CA (1) CA2374074C (zh)
CO (1) CO5210895A1 (zh)
DE (1) DE60004821T2 (zh)
EG (1) EG22796A (zh)
ES (1) ES2204635T3 (zh)
MX (1) MXPA01012479A (zh)
NZ (1) NZ515906A (zh)
PL (1) PL352026A1 (zh)
RU (1) RU2002100077A (zh)
TR (1) TR200200209T2 (zh)
TW (1) TW576716B (zh)
UY (1) UY26191A1 (zh)
WO (1) WO2000074490A1 (zh)
ZA (1) ZA200110065B (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2143331B1 (en) * 2000-03-06 2018-06-20 Fumakilla Limited Fan type chemicals diffusing apparatus
US6360477B1 (en) 2000-07-19 2002-03-26 S. C. Johnson & Son, Inc Insect control pouch
EP1216615A1 (en) * 2000-12-23 2002-06-26 Aventis CropScience GmbH Substrate for insect control
US6846449B2 (en) * 2001-09-07 2005-01-25 S. C. Johnson Home Storage, Inc. Method of producing an electrically charged film
US20030060350A1 (en) * 2001-09-07 2003-03-27 Taylor Pamela J. Method of protecting a surface
US20030047844A1 (en) * 2001-09-07 2003-03-13 Jose Porchia Method of producing an electrically charged film
US20030047044A1 (en) * 2001-09-07 2003-03-13 Jose Porchia Processing method using a film material
US20030049410A1 (en) * 2001-09-07 2003-03-13 Munagavalasa Murthy S. Film material and method of dispensing a volatile substance
US6790670B2 (en) * 2001-10-09 2004-09-14 S.C. Johnson & Son, Inc. End of use and time duration indicator system and method based on volatile dye
US20040254322A1 (en) * 2003-06-10 2004-12-16 Trent John S. Easily torn charged or uncharged films and methods and compositions for producing same
US20050005504A1 (en) * 2003-06-30 2005-01-13 Munagavalasa Murthy S. Volatile insect control sheet and method of manufacture thereof
US7582245B2 (en) * 2004-06-29 2009-09-01 S.C. Johnson & Son, Inc. Method of manufacturing an insect coil
KR20070110302A (ko) * 2005-02-24 2007-11-16 에스.씨. 존슨 앤드 선, 인코포레이티드 착용가능한 곤충퇴치 패치
US7988984B2 (en) * 2005-05-18 2011-08-02 Energy Related Devices, Inc. Insect repellent and attractant and auto-thermostatic membrane vapor control delivery system
JP2007131574A (ja) * 2005-11-10 2007-05-31 Sumika Enviro-Science Co Ltd 害虫駆除剤
EP2201841A1 (de) * 2008-12-29 2010-06-30 Bayer CropScience AG Synergistische insektizide Mischungen
CN102152506A (zh) * 2010-11-24 2011-08-17 吴江花皇印花制品有限公司 一种驱虫复合面料
US8936030B2 (en) 2011-03-25 2015-01-20 Katherine Rose Kovarik Nail polish remover method and device
USD733275S1 (en) 2012-07-24 2015-06-30 S.C. Johnson & Son, Inc. Dispensing device
US9498554B2 (en) 2012-07-24 2016-11-22 S.C. Johnson & Son, Inc. Dispensing device
US9204625B2 (en) 2012-08-17 2015-12-08 S.C. Johnson & Son, Inc. Dispenser
US9649400B2 (en) 2012-08-17 2017-05-16 S.C. Johnson & Son, Inc. Method and system for dispensing a composition
US8894044B2 (en) 2012-08-17 2014-11-25 S.C. Johnson & Son, Inc. Dispenser
US10694747B2 (en) 2012-11-21 2020-06-30 S. C. Johnson & Son, Inc. Dispenser comprising only one single hinge
CN104837346B (zh) * 2012-11-23 2018-04-27 拜尔农作物科学股份公司 包含多氟苄基部分的化合物抵抗具有杀虫剂抗性的害虫的用途
USD704813S1 (en) 2013-06-17 2014-05-13 S. C. Johnson & Son, Inc. Dispenser
US9258988B2 (en) 2013-07-16 2016-02-16 University Of Florida Research Foundation, Inc. Methods and devices for sustained release of substances
US9603352B2 (en) 2014-03-31 2017-03-28 S. C. Johnson & Son, Inc. Dispenser
WO2015179440A1 (en) * 2014-05-20 2015-11-26 Novel Textiles & Treatments Llc Insect control device and associated methods
US10238097B2 (en) 2014-05-29 2019-03-26 S.C. Johnson & Son, Inc. Candle dispenser
US10377556B2 (en) 2015-02-04 2019-08-13 S.C. Johnson & Son, Inc. Retaining apparatus
US10561127B2 (en) * 2016-09-09 2020-02-18 Verily Life Sciences Llc Blood feeding system using nonwoven fabric materials
US10856540B2 (en) 2016-11-22 2020-12-08 Novel Textiles & Treatments Llc Devices and methods for controlling insects
WO2018134079A1 (en) 2017-01-23 2018-07-26 Unilever N.V. Passive emanator for controlling flying insects
WO2019112416A1 (en) * 2017-12-06 2019-06-13 Sumitomo Chemical Enviro-Agro Asia Pacific Sdn. Bhd. Mosquito repellent composition
JP7060970B2 (ja) * 2018-02-01 2022-04-27 リケンテクノス株式会社 防虫機能を有する樹脂組成物及びこれを用いたフィルム並びに壁紙、化粧シート
US11825837B2 (en) 2019-06-04 2023-11-28 S. C. Johnson & Son, Inc. Dispenser and method of use thereof
CN113475738A (zh) * 2021-07-29 2021-10-08 宋全江 一种对于晒、黄烟烟叶收割后烟茎的再利用工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8825091A (en) * 1990-11-27 1992-05-28 Ici Australia Operations Proprietary Limited Insecticide formulation
CN1183709A (zh) * 1995-04-10 1998-06-03 约翰逊父子公司 用来防治飞行昆虫的杀虫剂浸渍制品
CN1198658A (zh) * 1995-08-16 1998-11-11 拜尔公司 杀虫活性组合物
EP0916262A1 (en) * 1997-11-18 1999-05-19 Sumitomo Chemical Company, Limited Cockroach repellent

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US339810A (en) 1886-04-13 John p
US3116201A (en) 1952-02-29 1963-12-31 Shell Oil Co Organo-phosphorus insecticide
US2720013A (en) 1953-11-02 1955-10-11 Judith C Clarke Insecticide dispenser
US3044885A (en) 1958-09-15 1962-07-17 Crown Zellerbach Corp Impregnated sheets for preserving perishable foodstuffs
US2956073A (en) 1960-04-13 1960-10-11 Shell Oil Co Insecticidally active esters of phosphorus acids and preparation of the same
US3318769A (en) 1963-05-31 1967-05-09 Shell Oil Co Resin compositions comprising organo-phosphorus pesticides
US3295246A (en) 1965-09-27 1967-01-03 Landsman Irving Insect repellent tapes
FR1590647A (zh) 1968-07-12 1970-04-20
US3620453A (en) * 1968-09-26 1971-11-16 Abraam Gancberg Shaped article with insecticidal properties
US4103450A (en) 1975-12-29 1978-08-01 Minnesota Mining And Manufacturing Company Insecticidal device
US4178384A (en) 1976-03-22 1979-12-11 Fmc Corporation Pyrethroid insect repellent
US5290770A (en) 1976-12-24 1994-03-01 Burroughs Wellcome Co. Synergistic compositions
DE2967512D1 (en) 1978-05-30 1985-10-17 Wellcome Found Synergistic pyrethroid formulations and their preparation
IN152745B (zh) 1980-03-21 1984-03-24 Airwick Ag
US4765982A (en) 1982-04-30 1988-08-23 Minnesota Mining And Manufacturing Company Insect control device
FR2555408B2 (fr) 1983-04-14 1986-11-21 Rombi Max Collier insecticide et son procede de fabrication
DE3333657A1 (de) 1983-09-17 1985-04-25 Bayer Ag, 5090 Leverkusen Pyrethroide enthaltende formkoerper zur bekaempfung von ektoparasiten
JPS60139606A (ja) 1983-12-27 1985-07-24 Sumitomo Chem Co Ltd 蒸散性組成物
DE3531795A1 (de) 1985-09-06 1987-03-12 Celamerck Gmbh & Co Kg Mottenschutzmittel und verfahren zu deren herstellung
US5229122A (en) 1986-02-07 1993-07-20 Burroughs Wellcome Co. Pesticidal compositions
EG18025A (en) 1986-07-18 1993-06-30 Sumitomo Chemical Co A method for killing insects by heating fumigation
DE3705224A1 (de) * 1987-02-19 1988-09-01 Bayer Ag (+)1r-trans-2,2-dimethyl-3-(2,2-dichlorvinyl) -cyclopropancarbonsaeure-2,3,5,6- tetrafluorbenzylester
US4860488A (en) 1987-06-23 1989-08-29 Nihon Naishi Co., Ltd. Volatile insecticide emitter
AU607321B2 (en) 1988-04-15 1991-02-28 Sumitomo Chemical Company, Limited Grains-storing bag
US4901674A (en) 1988-07-11 1990-02-20 S. C. Johnson & Son, Inc. Multi-sectional powder emitting animal collar and method of making
US4900876A (en) 1988-07-11 1990-02-13 S. C. Johnson & Son, Inc. Powder emitting animal collar and method of making
US5156843A (en) 1989-03-20 1992-10-20 Advanced Polymer Systems, Inc. Fabric impregnated with functional substances for controlled release
JP3052142B2 (ja) 1989-09-14 2000-06-12 住友化学工業株式会社 殺虫、殺ダニ組成物
US5252387A (en) 1991-04-01 1993-10-12 Graniteville Company Fabrics with insect repellent and a barrier
US5198287A (en) 1991-04-01 1993-03-30 Graniteville Company Insect repellent tent fabric
JPH06192020A (ja) 1992-11-05 1994-07-12 Sumitomo Chem Co Ltd 殺虫組成物
JPH06279205A (ja) 1993-03-25 1994-10-04 Sumitomo Chem Co Ltd 線 香
DE69532035T2 (de) 1994-08-08 2004-05-19 Earth Chemical Co., Ltd. Verfahren zur bekämpfung von schadinsekten
JPH09289855A (ja) * 1996-02-29 1997-11-11 Sumitomo Chem Co Ltd 防虫材
CN1288971C (zh) * 1997-07-10 2006-12-13 地球制药株式会社 害虫防治装置
DE19947146A1 (de) 1998-10-31 2000-05-04 Bayer Ag Verwendung Insektizid-getränkter Träger zur Bekämpfung von Insekten
JP4005092B2 (ja) * 2004-08-20 2007-11-07 東京応化工業株式会社 洗浄除去用溶剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8825091A (en) * 1990-11-27 1992-05-28 Ici Australia Operations Proprietary Limited Insecticide formulation
CN1183709A (zh) * 1995-04-10 1998-06-03 约翰逊父子公司 用来防治飞行昆虫的杀虫剂浸渍制品
CN1198658A (zh) * 1995-08-16 1998-11-11 拜尔公司 杀虫活性组合物
EP0916262A1 (en) * 1997-11-18 1999-05-19 Sumitomo Chemical Company, Limited Cockroach repellent

Also Published As

Publication number Publication date
AU5725800A (en) 2000-12-28
EP1182932A1 (en) 2002-03-06
DE60004821T2 (de) 2004-07-08
EP1182932B1 (en) 2003-08-27
US6534079B1 (en) 2003-03-18
DE60004821D1 (de) 2003-10-02
EG22796A (en) 2003-08-31
AR020299A1 (es) 2002-05-02
CA2374074A1 (en) 2000-12-14
CA2374074C (en) 2006-12-05
ZA200110065B (en) 2003-01-06
WO2000074490A1 (en) 2000-12-14
CN1364057A (zh) 2002-08-14
UY26191A1 (es) 2000-12-29
TR200200209T2 (tr) 2002-05-21
PL352026A1 (en) 2003-07-14
KR20020020722A (ko) 2002-03-15
NZ515906A (en) 2003-06-30
AU763256B2 (en) 2003-07-17
CO5210895A1 (es) 2002-10-30
ES2204635T3 (es) 2004-05-01
BR0011320A (pt) 2002-05-28
MXPA01012479A (es) 2002-07-30
RU2002100077A (ru) 2003-09-10
KR100488319B1 (ko) 2005-05-17
JP2003501366A (ja) 2003-01-14
TW576716B (en) 2004-02-21
BR0011320B1 (pt) 2012-12-25
ATE247904T1 (de) 2003-09-15

Similar Documents

Publication Publication Date Title
CN1295964C (zh) 被动的空间驱虫带
CN1087140C (zh) 用来防治飞行昆虫的杀虫剂浸渍制品
RU2543257C2 (ru) Сетки, пропитанные инсектицидами, и их применение для защиты от вредителей
KR20080026171A (ko) 증기 활성 물질 발산용 제품 및 방법
ZA200603510B (en) Product and method for controlling flying insects
US4715536A (en) Dispenser for the slow release of volatile products
WO1996026642A1 (en) Compositions containing aggregation pheromones, their production and uses
US5229126A (en) Flying insect attractant composition
US20180153153A1 (en) Devices and methods for controlling insects
JP6774717B2 (ja) 害虫防除材およびそれを用いた害虫防除方法
JP7478484B2 (ja) 樹脂製品
WO2024162386A1 (ja) 匍匐害虫防除方法
AU2003255061A1 (en) Passive Space Insect Repellant Strip
JP2023101394A (ja) 飛翔害虫飛来阻止剤及び飛翔害虫飛来阻止方法
JPH05132402A (ja) 防虫忌避処理剤及び防虫忌避構造体
JP2003073625A (ja) 害虫防除塗料
JP2004043404A (ja) 害虫忌避シートおよびその製造方法
HRP20020661A2 (en) Debugging method of expelling hramful insects by chemical volatilization

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070124