CN1280521A - 带有两组分三维催化剂的催化膜反应器 - Google Patents

带有两组分三维催化剂的催化膜反应器 Download PDF

Info

Publication number
CN1280521A
CN1280521A CN98811854A CN98811854A CN1280521A CN 1280521 A CN1280521 A CN 1280521A CN 98811854 A CN98811854 A CN 98811854A CN 98811854 A CN98811854 A CN 98811854A CN 1280521 A CN1280521 A CN 1280521A
Authority
CN
China
Prior art keywords
membrane
catalyst
reactor
oxidation
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98811854A
Other languages
English (en)
Other versions
CN1147353C (zh
Inventor
M·施瓦茨
J·H·怀特
A·F·萨米尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eltron Research Inc
Original Assignee
Eltron Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eltron Research Inc filed Critical Eltron Research Inc
Publication of CN1280521A publication Critical patent/CN1280521A/zh
Application granted granted Critical
Publication of CN1147353C publication Critical patent/CN1147353C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • B01J35/33
    • B01J35/59
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/046Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process without intermediate formation of sulfur dioxide
    • C01B17/0465Catalyst compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide
    • C01C3/0208Preparation in gaseous phase
    • C01C3/0212Preparation in gaseous phase from hydrocarbons and ammonia in the presence of oxygen, e.g. the Andrussow-process
    • C01C3/0216Preparation in gaseous phase from hydrocarbons and ammonia in the presence of oxygen, e.g. the Andrussow-process characterised by the catalyst used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/18Membrane materials having mixed charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00601Controlling the conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/0018Controlling or regulating processes controlling the conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00189Controlling or regulating processes controlling the stirring velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/20Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
    • B01J2523/24Strontium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/32Gallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/37Lanthanides
    • B01J2523/3706Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/845Cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1035Catalyst coated on equipment surfaces, e.g. reactor walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及具有能传递氧离子不透气膜(2)的催化反应器膜。膜(2)具有氧化表面和还原表面。在膜的氧化表面涂布有粘合催化剂层,在其还原表面还可涂布促进含氧物质(如O2、NO2、SO2等)还原,在膜上产生氧离子的催化剂。反应器(20)中有被膜(2)分开的氧化区(4)和还原区(6)。还原区(6)中的含氧气体的组分在膜(2)上还原,反应物气体中的还原物质在反应器的氧化区(4)中氧化。反应器(20)在其氧化区(4)中或可还有三维催化剂(5)。选择粘合催化剂层和三维催化剂(5)以促进所要进行的氧化反应,尤其是烃的部分氧化。本发明较好的膜材料是源自钙铁石的混合金属氧化物,本身具有钙铁石结构。较好的实施方案中,氧还原催化剂是La0.8Sr0.2CoO3-x上的Pd(5%重量)。粘合催化剂层是La0.8Sr0.2CoO3-x上的Ni(20%重量),三维催化剂是氧化铝上的Ni(5%重量)。

Description

带有两组分三维催化剂的催化膜反应器
发明领域
本发明涉及使用催化膜反应器进行烃和有关还原物质的催化部分氧化和完全氧化。揭示的反应器中有与固定床(或填充床)催化剂结合使用的不透气的固态膜,该固态膜上有粘合的催化剂层。选择膜材料、催化剂层以及固定床(或填充床)催化剂,以达到要求的选择性氧化反应。催化膜反应包括甲烷或天然气部分氧化为合成气的反应。本发明还涉及使用催化膜反应器对反应物气体进行氧化以及对含氧气体进行还原的方法。
发明背景
过去,人们已经研究并使用了用于氧化或分解各种化学物质采用固态膜的催化膜反应器。这类反应器一种有价值的潜在用途是生产合成气。例如,可参阅Cable等人的欧洲专利申请90305684.4(于1990年11月28日公开)和Mazanec等人的美国专利5,306,411。合成气是CO和H2的混合物,广泛用作生产散装化学品如甲醇和液体燃料氧化的物质的化工厂的原料。为了有效地用于合成甲醇,合成气中H2∶CO的比值应调节至2∶1。
在进行氧化/还原反应的催化膜反应器中,催化膜将含氧气体和要被氧化的反应物气体隔开。氧(O2)或其它含氧物质(例如NOx或SOx)在膜的一面还原为氧离子,然后氧离子穿过该膜至另一面与反应物气体接触。
催化膜反应器中的膜材料必须是氧离子的传导体,并且在反应器操作所要求的高操作温度和苛刻条件下必须是化学稳定和机械稳定的。另外,在反应器中必须采取措施实现电子传导,以保持膜的电中性。反应器中的电子传导是保持电中性,使阴离子通过膜所必需的。可以对反应器采用一个外部线路,让电流通过来实现电子传导。可参阅美国专利4,793,904、4,802,958和4,933,054(Mazanec等人)。
如美国专利4,791,079和4,827,071(Hazbun)中说明的,用一种金属离子掺入氧离子传导材料也可以实现电子传导,从而产生双重(电子和氧离子)传导材料。这种方法的缺点是掺杂剂金属离子会对迁移的氧离子起捕集作用,抑制了膜的离子传导。
将传导氧的材料与电子传导材料混合形成一种复合的多组分非单相的材料,可制得双重传导材料(传导电子和离子的混合材料)。这种方法的问题,包括由于混合物不同组分间的反应可能使传导性能变差,并且可能产生机械上的不稳定性,如果这些组分具有不同的热膨胀性能。
要获得电子传导,较好的方法是使用本身就具备双重传导性能的膜材料。
如美国专利申请08/639,781和08/163,620中所述,可以使用具有钙铁石(brownmillerite)结晶结构即源自钙铁石的金属氧化物,来制备膜反应器中使用的不透气陶瓷膜,用于在该膜的还原表面上自动地从气体如空气分离氧,将氯以氧离子形式迁移到膜的氧化表面,氧离子在氧化表面上则参与选择性氧化过程。例如,天然气(主要含甲烷)可自发地转化为合成气即一氧化碳(CO)和氢(H2)的混合物,用作制备液体燃料的原料。
形成合成气的反应是一个部分氧化的反应,如下式所示:
图1示意说明在一个陶瓷膜反应器中如何进行这一反应的。图1所示的膜在其还原表面上具有还原催化剂,在膜的氧化表面上具有部分氧化催化剂。图1表明,在膜的还原表面上氧(O2)还原形成氧离子(O2-),该氧离子传导通过膜(由于存在氧梯度)。O2-在膜的氧化表面上与甲烷反应,产生部分氧化的产物CO和H2,其H2∶CO之比为2∶1。高级烃也可以被部分氧化得到合成气。
陶瓷膜反应器的一个问题,是膜材料本身可能对氧离子有催化活性,改变可用于膜表面反应的氧物质的具体种类,从而影响反应产物。例如,膜材料可能对氧离子再次氧化为分子氧起催化作用。结果膜是将分子氧传递到反应器的氧化区。分子氧的存在会显著影响一给定反应的选择性。例如,甲烷与分子氧的反应会导致甲烷深度氧化产生CO2
对氧离子没有明显反应活性,且仍保持离子传导和电子传导的膜,即本身对氧没有催化活性的膜可以在膜反应器中提供较好的反应选择性。这种情况下,通过选择粘合在膜氧化表面的催化剂层可以获得反应活性。选择合适的这种粘合催化剂层,对要求的氧化反应就可获得高的选择性。
使用对氧催化活性最小的膜材料,就是将膜的氧传递性能与其催化剂活性分开。可以通过选择催化剂层来细致地调节催化活性,具体是控制表面氧物质,即选择膜表面上的各种氧物质,O2-、O2 -(过氧化物)、O·(自由基)、过氧化(O2 2-)等
发明概述
本发明提供一种用于对还原物质尤其是烃进行部分氧化或完全氧化的催化膜反应器。该反应器中有一层不透气的膜,所述膜具有离子传导性。还对该膜提供电子传导性用以保持膜的电中性。可以由外部线路提供电子传导,也可以是膜材料本身是电子传导体。反应器中有由膜分开的氧化区和还原区,该膜本身有暴露于氧化区的氧化表面以及暴露于还原区的还原表面。膜的氧化表面至少部分覆盖有粘合的催化剂层。膜的还原表面上也可以有氧还原的催化剂。反应器的氧化区中还可以有一种三维催化剂,与膜的氧化表面上的粘合催化剂层紧密接触。
本发明较好的膜是单相的混合离子传导和电子传导的陶瓷材料。这种情况下,不需要外部线路来保持膜的电中性。要进行部分氧化,较好的膜应是对氧离子氧化催化活性很小的膜,例如在氧离子通过膜时对氧离子再氧化为分子氧的催化活性很小的膜。通过种膜传递到膜氧化表面上以及反应器氧化区中的分子氧很少,使烃(如CH4氧化为CO2)的深度氧化很小。
本发明较好的膜材料是具有下面化学计量式的单相材料:
A2-xA'xB2-yB′yO5+z    Ⅰ其中A是碱土金属离子或多种碱土金属离子的混合物;A'是选自镧系或钇的金属离子或这些金属离子的混合物;B是选自3d过渡金属或13族金属的金属离子或这些金属离子的混合物;B′是选自3d过渡金属、13族金属、镧系或钇的金属离子或这些金属离子混合物;x和y各自独立地是大于或等于0,但小于或等于2的数字;z是使此化合物为电中性的数字。z值一般大于0但小于1.0,较好是大于0但小于或等于约0.5,最好是大于0但小于或等于0.3。z的确切值取决于A、A'、B和B′这些金属的价数以及化学计量。较好的x大于或等于0但小于1,y大于或等于1但小于2。
粘合的催化剂层较好的是混合的离子传导和电子传导层。适当选择该层的催化剂,使得O2-能从膜有效地传递给要被氧化的化学物质。或者,选择催化剂以便控制会与被氧化物质相互作用的氧物质的具体种类。能实施O2-有效传递,因此对烃部分氧化有利的优选粘合催化剂是兼具有离子传导和电子传导作用的陶瓷,其组成如下:
XaRe1-aZbZ′1-bOe其中X是Ca、Sr或Ba;Re是稀土金属或镧系金属,包括钇;Z是Al、Ga、In、或它们的组合;Z′是Cr、Mn、Fe、Co、或它们的组合;0≤a≤1,0≤b≤1,c的值取决于其它组分的氧化态以及a和b的值,应使组合物为电中性。
可用具有沉积金属的催化剂颗粒形成粘合的催化剂层,制得混合型传导(离子和电子传导)的陶瓷催化剂。较好的沉积金属包括Ni、Pt、Pd、Rh、Ir、Ag、或它们的组合。在载体催化剂上可沉积约1-50%(重量)的金属。沉积在相对碱性的混合型传导载体如LaaSr1-aMnO3(其中0≤a≤1,最好是0.7≤a≤0.9)上的Ni,是用于将甲烷部分氧化为合成气的较好粘合催化剂。
粘合催化剂层还可以是一种如表1或表2中所列的那些催化剂,它们能促进甲烷部分氧化为CO和H2,促进烷烃尤其是甲烷氧化偶合为烯烃,促进烷烃的氧化脱氢,或促进氧化物质的生成,包括烷烃部分氧化为醇、醛或酮,烯烃部分氧化为环氧化物,或烷烃部分氧化为酐。式Ⅰ的膜与适当选择的粘合催化剂结合,可用作进行上述部分氧化反应的催化反应器的膜。
粘合的催化层还可以提供对膜材料的保护,防止其在操作条件下的分解。
或可采用的三维催化剂可以是填充床或流化床催化剂,较好的是填充床催化剂,它和粘合催化剂层紧密接触。选择这种催化剂是为了促进所要进行的氧化反应。三维催化剂例如可以是沉积在载体上的金属催化剂。较好的金属包括Ni、Pt、Pd、Rh、Ir、Ag或它们的组合。载体可以是惰性氧化物或混合的金属氧化物。惰性氧化物包括氧化铝。混合离子传导和电子传导的材料也可以用作载体。三维催化剂可以但不必是和粘合催化剂层相同的材料。
本发明提供如上所述的反应器,提供具有粘合催化剂层的膜,还提供使用这类反应器和膜来使还原物质尤其是烃进行氧化的方法。具体而言,本发明提供了上述的反应器,用于从一种含甲烷气体生产合成气。
附图简述
图1是说明由甲烷形成合成气的催化膜反应的示意图。
图2是其氧化区中有填充床催化剂的单室膜反应器(未按比例绘制)图。
图3A和3B更详细地说明图2和图4的膜、粘合催化剂和填充床反应器。
图4是结合多个图2反应器的多室催化剂膜反应器的说明图。
本发明的详细模描述
本发明涉及用于对各种还原化学物质进行选择性部分氧化的改进的催化膜反应器。含还原物质如烃或部分氧化的烃的反应物气流与含氧作用物气流进行反应,产生相对于最初反应物中的物质是氧化态的反应产物,本发明的这种反应器对此即起中介促成作用。
本文中含氧气体这个术语广义包括气体和气体混合物,其中至少一种组分气体是氧或氧化物。气体中的氧或氧化物组分在本发明膜的还原表面上可以被还原。该术语包括碳、氮和硫的氧化物(COx、NOx和SOx),并包括气体混合物,它是一种氧化物如NOx在惰性气体或不与膜反应的另一种气体中的混合气体。该术语还包括分子氧(O2)在空气中、在惰性气体如He、Ar等中的气体混合物。本发明的反应器中,含氧气体通过与膜的还原表面接触,其气体中含氧组分在还原表面上被至少部分还原,如NOx还原至N2。由反应器还原区流出的气体可含有残余的氧或含氧组分。
本文中术语“反应物气体”广义指气体或气体混合物,其中含有至少一种能在本发明反应器的氧化表面上被氧化的组分。反应物气体组分包括还原物质,包括但不限于甲烷、天然气(其主要成分是甲烷)、气态烃包括轻质烃(按化学领域中所定义的,包括烷烃、烯烃和炔烃)、高级烃(有一个以上碳原子的那些烃)以及经部分氧化的烃如醇。反应物气体包括还原物质与惰性气体的混合物、或这些组分与含氧物质如CO、CO2或H2O的混合物。
在本文中还用术语“耗氧气体”来描述能与膜氧化表面产生的氧离子进行反应的反应物气体。合成气生产中,反应物气体是含甲烷气体,其可以是甲烷、天然气、或甲烷与烷烃或其它烃的混合物。
“含氧气体”、“反应物气体”、“耗氧气体”这些术语以及本文中讨论的任何其它气体混合物,包括在低于本发明有关方法的温度范围的温度以下不是气体的物质,包括室温下为液体或固体的物质。室温下为液体的含氧气体的例子是水蒸汽。
“不透气的”这个术语用于本发明的膜,是指膜基本上不渗透反应器中的含氧气体和反应物气体。只有气体穿过膜的量很小,才无损于反应器效率。本发明的膜可以使低分子量的气体如H2通过。本发明的膜可传导氧离子,在这个意义上它是透氧的。但膜对氧气本身是不透的。
下面将对附图进行说明,图中相同的数字代表相同的部件或部位,本发明的单室催化膜反应器示于图2的截面图,更详细可见图3A和3B(未按比例绘制)。
反应器室(20)包括陶瓷膜(2)和粘合催化剂层(3),以及封闭在反应器壳(7)内的三维催化剂(5)。反应器室包括氧化区(4)与还原区(6),这两个区由不透气的膜分开。该膜所示的形式为一端封闭的圆柱形管,但任何形状都可以,只要能将两个区域隔开。还原区的外周长由膜(2)决定,氧化区的外周长由反应器壳(7)决定。膜的还原表面(8)即管的内表面对着还原区(6),膜的氧化表面(9)即管的外表面对着氧化区(4)。进料管(10)传送反应物气体(12)如甲烷到氧化区(4)。反应后的气体(13)包括氧化产物,通过至少一个出口(14)排出。含氧气体(16)如空气通过进口(18)传送到还原区(6)。经过反应的含氧气体(19)如消耗了氧后的空气,通过至少一个出口(15)排出还原区(6)。
膜(2)的氧化表面上至少部分涂有粘合催化剂层(3)。按下面所述,选择这一层中的催化剂以便促进所要进行的氧化反应。反应器室还包括在氧化区(4)中的三维催化剂(5),它与粘合催化剂层(3)接触。膜在其还原表面上还可有一层氧化还原催化剂(图中未示),其目的是促进O2还原为氧离子。
氧离子(O2-)是由分子氧O2(或其它含氧物质)在膜的还原表面上先行还原生成的,氧离子通过膜迁移到膜的氧化表面。粘合催化剂层能促进氧离子(O2-)物质从膜氧化表面迁移给反应物气体中的物质,进行氧化反应。粘合催化剂层还可以选择得能控制对反应物气体进行反应的氧物质的具体种类。例如,氧离子可被粘合催化剂层转化为过氧化物、氧代、氧自由基、过氧或其它反应性的氧物质,并在催化剂层中供反应物气体中的还原物质进行氧化之用。发生的氧化反应的具体是那些反应,极大地取决存在于催化剂层中的反应性氧物质是什么。
当含氧气体中的含氧物质不是O2例如是NO2时,膜的还原表面可涂以一层能促进含氧物质还原的催化剂,如USSN 08/639,781所。
膜以及粘合催化剂的厚度都要根据所要求的反应器性能确定。膜必须足够厚以提供结构稳定性,能在反应条件下长期操作。粘合催化剂层的厚度例如可厚达几百微米。
三维催化剂(5)不在膜上面,但其至少一部分与膜的氧化表面和/或粘合催化剂层密切接触。由于三维催化剂与氧化表面或其粘合催化剂层密切接触,从该表面或该层逸出的氧物质可传递到填充床形式或其它形式的三维催化剂,得到更大的用于氧化的表面积。一般,填充床催化剂就是在膜氧化表面周围填充的催化剂颗粒层。反应器室的这个部件是用来提高生产速率和转化率。图3A和3B更加详细地显示膜、粘合催化剂层和三维催化剂的结构和作用,其中三维催化剂是填充床形式的催化剂。
在图2所示反应器室的实施方案中,管式膜的外表面为氧化表面。另一个实施方案的反应器室中,管式膜的内表面为氧化表面,三维催化剂则置于管中。
图2的反应器是单室反应器,其膜是一端封闭的管的形式。该反应器可以在结构上扩充为图4所示的多膜催化反应器。
图4的反应器(50)中有许多个图2所述类型的反应室(30)。许多个由一端封闭形式的管式膜(与图2相似)构成的反应室(30)装在反应器壳(24)中,并一起与集气室(26)连接。通过这个集气室(26),进料管(28)将含氧气体(22)传送到各个反应室(30),而消耗氧后的气体(32)从反应室进入出口管(34)。反应物气体(36)通过反应器壳上的进口(40)传送到氧化区(38)。含氧化产物的反应后气体(42)则通过出口(44)从还原区(38)排出。在该反应器的氧化区中提供三维催化剂,以填充床、流化床或其它形式提供(图中未示),围绕在每个膜氧化表面的周围并与其密切接触。三维催化剂可以装在一个位于反应器氧化区内围绕各膜反应室的结构。三维催化剂在反应器内与膜的氧化表面密切接触,而反应物气体通常就流过三维催化剂床。
本发明较好的膜材料是具有下式的混合的金属氧化物:
A2-xA′xB2-yB′yO5+z
其中A、A'、B、B′、x、y和z按照上面的定义。这些混合的金属氧化物源自钙铁石,因此本身具有钙铁石结构。
钙铁石是一类矿物,是混合的金属氧化物,具有类似于钙钛矿Ca2AlFeO5的结构。钙铁石的通式是A2B2O5,其中A和B原子的总价数为5。钙铁石结构的特征,是具有一些类似于钙钛矿的共角点的诸多八面体构成的片,这些片垂直于b晶轴,由单链的四面体层隔开,这些层平行于C轴,四面体中具有有序空位。因此钙铁石是具有特定序列氧缺陷的缺陷钙钛矿。而且,在取代的钙铁石AA′BB′O5+z中,若其中B∶B′的比值为1,B是13族金属,B′是3d过渡金属,则所有B′离子将主要占据晶格中八面体位置,所有B离子主要占据四面体位置。
本发明的膜材料含有缺氧的晶格空位,这些空位有利于传导离子。膜材料源自钙铁石的意思,是指其组分是根据钙铁石的组成A2B2O5结合的(其中A可是A+A′,B可是B+B′)。烧结后的单相膜材料可用XRD或相关技术分析确定其为钙铁石的、变形钙钛矿的还是其它的结构。
钙铁石结构的化合物与钙钛矿不同。可用X射线衍射(XRD)区分这两种结构。可参阅Y. Teraoka,H.-M.Zang,S.Furkawa和N.Yamazoe(1985)Chemistry Lett.supra。本发明一些膜材料的XRD图谱是与钙铁石结构所预期的Pcmm晶胞符合的。参阅P.K.Gallagher,J.B.MacChesney和D.N.E.Buchanan(1964)J.Chem.Phys.41:2429;C.Greaves,A.J.Jacobson,B.C.Tofield和B.E.F.Fender(1 975)Acta Cryst.B31:641。表1提供了本发明各种膜材料的晶格参数。
钙钛矿是具有以钙钛矿CaTiO3晶格为基础的一类矿物。理想的钙钛矿晶格为立方晶格,其每个晶胞在其每个角点和其中间都含有金属离子,而氧离子位于晶胞边的中点。钙钛矿的通式是ABO3,其中A和B是金属离子,它们的总价数为6。Cable等人的EP 90305684和美国专利5,306,411进一步描述钙钛矿中A和B金属离子的半径必须符合下面的关系: r A ÷ r O = t 2 ( r B ÷ r O ) 其中rA、rB和rO分别是A、B和O离子的半径,t是容差因子,在约0.7-1.0范围。
在一单相材料中,其各各组分的原子混存在同一个固体相中。用XRD或测定结构的其它类似技术可以确定材料是否为单相。例如,单相的钙铁石化合物,其特征是其XRD的所有峰都可由钙铁石结构来说明。
具体而言,本发明的膜材料是式Ⅰ的化合物,其中B金属选自13族金属或它们的混合物,B′选自3d过渡金属或它们的混合物。较好的13族金属是Al、Ga、In、或它们的混合物,Al和Ga的混合物尤其好。对本发明材料适用的过渡金属是Co、Ti、V、Cr、Mn、Ni和Fe。较好的过渡金属是Cr、Mn、Ni和Fe,更好的是Cr、Mn、和Fe,最好是Fe。较好的A′金属离子是La和Y,La更好。较好的A金属离子是Sr和Ba,Sr更好。式Ⅰ中,一般0≤x≤2,0≤y≤2,该式中0.2≤y≤0和1.9≤y≤2的化合物最好。所述式Ⅰ的膜材料源自钙铁石,也可以包括钙铁石本身。
本发明的膜材料包括式Ⅱ的化合物。
A2-xLaxB2-yFeyO5+z  Ⅱ其中A是碱土金属离子或碱土金属离子混合物,较好的是Sr和Ba,B是选自3d过渡金属或13族金属的金属离子或这些金属离子混合物,较好的是13族金属,Al和Ga更好;x和y各自独立地是大于或等于0但小于或等于2的数字,较好的x大于或等于0但小于或约等于1.0,y大于或等于1但小于或等于2;z是使化合物为电中性的数,一般为x/2。
具体而言,本发明的膜材料包括式ⅢA或ⅢB的化合物:
Sr2-xLaxGa2-yCyO5+z    ⅢA
Sr2-xLaxAl2-yCyO5+z    ⅢB其中C是3d的过渡金属,较好的3d过渡金属选自Fe、Cr或Mn。式ⅣA和ⅣB的化合物更好:
Sr2-xLaxGa2-yFeyO5+z    ⅣA
Sr2-xLaxAl2-yFeyO5+z    ⅣB其中x和y是大于或等于0但小于或等于2的数字。较好的x大于或等于0但约小于1,y大于或等于1但小于或等于2。式ⅢA/ⅢB和ⅣA/ⅣB最好的化合物具有0.2≤x≤1.0≤y≤2.0。
本发明的膜材料还包括式Ⅴ的材料。
A2-xLaxB2-yFeyO5+z    Ⅴ其中A是Sr、Ba、Ca或它们的混合物,B是Al、Ga、In或它们的混合物,x、y和z按照上面式Ⅰ所定义。膜材料包括其中x为0,A是Ba或Ca,B是Ga或Al的那些材料。
本发明的一些具体膜材料包括:
Sr1.6La0.4Ga0.6Fe1.4O5.2
Sr1.6La0.4Ga0.8Fe1.2O5.2
Sr1.7La0.3Ga0.6Fe1.4O5.2
Sr1.7La0.3GaFeO5.15
Sr1.6La0.4Ga0.4Fe1.6O5.2
Sr1.8La0.2GaFeO5.1
Sr1.6La0.4Al0.6Fe1.4O5.2
Sr1.6La0.4Al0.8Fe1.2O5.2
Sr1.7La0.3Al0.6Fe1.4O5. 15
Sr1.7La0.3AlFeO5.15
Sr1.6La0.4Al0.4Fe1.6O5.2
Sr1.8La0.2AlFeO5.1
Sr1.6La0.4Fe2O5.2
Ba2CeIn0.5Fe0.5O5.5
Ba2Ce0.8Gd0.2In0.5Fe0.5O5.4
Ba2GdIn0.5Fe0.5O5
Ba2Gd0.8Ce0.2In0.5Fe0.5O5.1
Ba2Gd0.5Ce0.5In0.5Fe0.5O5.25
Ba2Gd0.5Pr0.5In0.5Fe0.5O5.25
Ba2PrIn0.5Fe0.5O5.5
Ba2GdIn0.2Fe0.8O5
本发明的催化膜有利于含氧气体的还原,并让氧离子通过膜传递,从而与粘合催化剂、填充床催化剂和反应物气体相互作用,将反应物气体中的还原组分进行氧化。催化膜有两个表面:还原表面和氧化表面。膜应制得足够厚,使其基本上不透气,并具有足够的机械稳定性,得以承受反应器操作时的应力,但也不应太厚,以免明显限制氧离子通过膜的渗透速率。膜可以制成适合具体反应器设计的各种形状,包括圆片、管、一端封闭的管或作为交叉流动反应器的芯子。
甲烷生成合成气的具体反应如下:
如图1所示,可以认为这个反应通过O2-的中介作用。使用本发明膜反应器可进行的其它氧化反应包括:烷烃的氧化偶合,具体有甲烷氧化偶合形成乙烯;烷烃的氧化脱氢,具体有烷烃转化为相应的烯烃(如乙烷转化为乙烯);各种能制得附加值产品的部分氧化反应,具体有烷烃氧化为醇、醛或酮,或烷烃氧化为酐。
选择粘合催化剂,使O2-迁移给反应物气体中的还原物质。或者,选择粘合催化剂,促使形成要求的反应氧物质,用于与反应物气体中的还原物质反应。表1和表2列出一些已知的催化剂以及用于各种烃氧化反应的参考文献。这两个表中所列的参考文献给出了这些催化剂组成、结构、制备和反应活性的详细情况。
与反应物气体作用的表面氧物质的本性极大地取决于采用的粘合催化剂。而发生的氧化反应的类型则取决于与反应物气体作用的氧物质是什么。
若有促进金属氧代(M=O)物形成的物质存在(这种促进作用或者是通过氧离子直接转化为氧代形式或者是通过过氧键(O-O)的断裂),就有利于形成碳的氧化物,尤其是CO2。在弱碱性基体中含有第一排过渡金属离子如Co2+、Ni2+、Fe2+的组合物,预料能促进单原子表面氧物质的形成,并使氧转移到烃,结果例如使甲烷部分氧化成CO。二氧物质如过氧化(M-O-O-M)或过氧化物(O2 -)对催化氢的除去是有效的。在强碱基体(即含有高浓度Sr2+或Ba2+的基体)中相对不易还原的S、P和其它类型金属离子(如Ce4+、pb4+、Bi3+)的存在,有利于形成二聚的表面物质。这种类型的催化剂会促进烃的偶合反应。
如上面指出的,本发明较好的粘合催化剂选自下式的混合离子传导和电子传导的陶瓷:
XaRe1-aZbZ′1-bOc其中A是Ca、Sr或Ba,Re是稀土金属或镧系金属包括钇,Z是Al、Ga或In,Z′是Cr、Mn、Fe或Co,a和b的数字要求是0≤a≤1和0≤b≤1,c是取决其它组分氧化态以及a和b值的数,使组合物为电中性。
下式的金属陶瓷(陶瓷和金属之间的组合物)催化剂也适合用作粘合催化剂:
M/XaRe1-aZbZ′1-bOc其中X、Re、Z和Z′,a、b和c均按上面的定义,M是选择用来促进所要求氧化反应的金属。用于此金属陶瓷催化剂的金属,较好的是选自Ni、Pt、Pd、Rh、Ir、Ag、Cr、V、Mo或W。混合传导催化剂中金属的重量百分数约为1-50%,混合传导催化剂中的金属含量较好约为5-20%。所得的氧化产物取决于选择的载体和金属。例如,银有利于氧的析出。然而,在极碱性载体(含高浓度Sr或Ba)中加入银时,有利于表面过氧化物的形成和氢的除去过程。在中等碱性载体如La0.8Sr0.2MnO3中加入Ni,有利于烃的部分氧化,将如本文实施例所说明的。
根据选择的载体以及过程参数如反应物气体在反应器中停留时间的不同,氧化物载体上的铂族金属(Pt、Pd、Rh或Ir)可促进不同的反应。当金属是在中等碱性至中性载体上时,短的停留时间有利于脱氢产物的形成。而铂族金属在碱性载体上,长的停留时间则会有利于深度氧化。
为保持膜/粘合催化剂结合的机械整体性,宜选择能提供耐火性能的晶格取代物,使得在混合传导粘合催化剂与混合传导膜之间形成稳定的固态界面。使用与粘合催化剂层和膜相同的取代物可防止催化剂层与膜之间产生有害的固态反应或扩散。
在膜上还可提供一种氧还原催化剂如LaaSr1-aCoO3-x(其中0≤a≤1,x是使化合物电中性的数字,a为0.5或更大为宜,0.7-0.9更好);Ag、Pt或Pd金属(作为沉积在膜上的金属):或下式的催化剂:ACo1-xMxO3-δ(其中A是Ca、Sr、Ba或它们的组合,x是小于1的数字,δ是使催化剂为电中性的数字)。M是具有空金属eg轨道和填充金属t2g轨道的金属离子,较好的是第一排过渡金属离子中的Fe、Co和Ni(如Fe2+和Co3+)。氧还原催化剂还可以包括在LSC(La0.8Sr0.2CoO3-x)上具有如金属涂层(约1-50%(重量))的那些。较好的涂布金属的氧还原催化剂有约5-20%(重量)的金属。较好的膜上面是提供有氧还原催化剂的。
可采用各种方法在膜上施加或粘合以催化剂层。例如,可以制备在有机溶剂中的催化剂粉末浆料,将其涂布在膜表面上。通过改变涂布在膜上的浆料量或调节浆料中的催化剂量,可以调节该层的厚度。然后在合适的高温下对经涂布的膜进行退火,除去残留的溶剂。
本发明较好的反应器在其氧化区中提供有三维催化剂,且与粘合催化剂层密切接触。三维催化剂可以填充床、移动床、夹带床或流化床催化剂的形式提供。根据具体的催化剂种类,催化剂颗粒的形状可以改变(球形、不规则形状、圆柱体形等),其粒度可在数微米至数毫米内变化。
较好的三维催化剂是填充床催化剂,它是在膜的氧化表面周围填充以催化剂颗粒。反应器的填充床部分可以显著提高一给定膜反应的生产速率和转化率。通过与粘合催化剂密切接触,粘合层上的氧物质可迁移到该填充床,在填充床中有更大的用于反应的表面积。
选择三维催化剂和选择粘合层一样,要能促进要进行的氧化反应。三维催化剂可以是惰性氧化物上的金属催化剂,如在Al2O3或其它惰性载体上的Ni。此催化剂也可以是承载在混合离子传导和电子传导材料上的金属,如在La0.8Sr0.2MnO3-x上的Ni。催化剂中金属的存在量约为1-50%(重量)。填充床中的催化剂与粘合催化剂层中的催化剂可以相同,也可不同,可根据用途以及反应条件,从表1和表2所列的催化剂中选择。
具有粘合催化剂层,或者还具有氧还原催化剂层的膜的特点在于有下列可测性能,包括总传导率、阴离子传导率和氧渗透速率,以及在催化膜反应器中促进要进行的反应的性能。本领域已知测定传导率和氧渗透速率的方法,在PCT/US96/14841中提供了这些方法的例子。例如,0.97毫米厚的Sr1.7La0.3Ga0.6Fe1.4O5.15管,其两面涂有La0.8Sr0.2CoO3-x,其中x是使混合物为电中性的数字,在反应器的还原区暴露于空气,氧化区暴露于He的条件下,于900℃测得该管的氧渗透速率为0.21毫升/分钟·厘米2
在下面一些实施例中具体说明催化反应器膜在900℃,由甲烷生产合成气。根据反应的类型,本发明催化膜反应器可以在约500-1100℃的温度范围内操作。就要进行的反应以及给定的膜材料/催化剂,可选择最佳的具体温度和反应物气体流量。温度必须足够高,使可用的氧离子通过膜,不致产生明显的产物分解以及对膜和催化剂材料明显的损害。
根据本文提供的规则,膜、粘合催化剂、或可还有的氧还原催化剂以及三维催化剂,都能方便地适用于各种设计的膜反应器。
下面的实施例对本发明是说明性的,绝不构成对本发明的限制。
实施例
实施例1:在有或没有粘合催化剂层的反应器中生产合成气。
由化学式Sr1.7La0.3Ga0.6Fe1.4O5.15的单相材料制造一端封闭的管式膜。是采用常规的固态合成方法先制备这种组成的粉末,具体如PCT/US96/14841和实施例5所述。再通过等静压方法将这种单相粉末压成管形,随后烧结制得致密和牢固的管式膜。如果需要,可重复进行研磨和烧结步骤,以确保材料在等静压形成管之前为单相。
管式膜内表面部(还原表面)上涂布一层La0.8 Sr0.2CoO3(LSC)用作氧化/还原催化剂;或者涂布以在氧化/还原催化剂上的金属,如LSC上有5%(重量)的Pd。
管式膜外表面涂布以其上有Ni(20%(重量))的La0.8 Sr0.2MnO3。这种催化剂用作膜氧化表面上的粘合催化剂层。
在图1所示的合成气反应器中,比较有或没有粘合催化剂的管式膜。对这两种情况,反应器均在其氧化区提供其上有Ni(5%(重量))的Al2O3填充床。将空气用作通过管式膜内部的含氧气体,将甲烷(80%(体积))在氦中的混合物用作流经管式膜外部通过填充床的反应物气体。这两种反应器均在900℃操作。表3给出这一比较结果。
表3对于900℃操作的Sr1.7La0.3Ga0.6Fe1.4O5.15的一端封闭的管式膜反应器
比较在有和没有粘合催化剂下所获的结果
反应器构造 生产速率(毫升/分钟-厘米2)   H2∶CO  CO选择性(%) 转化率(%)
没有粘合催化剂层     0.16     2.4     86     <1
上有Ni(20%(重量))的La0.8Sr0.2MnO3粘合催化剂层     44.9     1.8     97     77
没有粘合催化剂层的膜反应器,显示基本上没有对甲烷部分氧化或深度氧化的活性,即使存在填充床催化剂。在膜的氧化表面有粘合催化剂层的膜反应器,对部分氧化反应有极大的活性,即具有高的合成气产率和转化率,CO的高选择性和高H2∶CO比表明选择性并无损失。
实施例2:在有和没有填充床催化剂的反应器中生产合成气
与实施例1相同,由化学式Sr1.7La0.3Ga0.6Fe1.4O5.15的单相材料制造一端封闭的管式膜。
管式膜内表面上涂布一层La0.8Sr0.2CoO3(LSC)用作氧化还原催化剂。管式膜外表面上涂布粘合催化剂:在La0.8Sr0.2MnO3上的Ni(20%(重量))。
在图1所示的合成气反应器中比较管式膜。一个反应器在其氧化区提供有Al2O3颗粒的填充床,该颗粒上曾先涂以La0.8Sr0.2MnO3上面有Ni(10%(重量))的粉末:而一个反应器无填充床。对这两种情况,均使用空气作为通过管式膜内部的含氧气体,使用氦中80%(体积)的甲烷混合物作为流经管式膜外部通过填充床催化剂的反应物气体。两种反应器都在900℃操作。表4列出比较的结果。
表4对于900℃操作的Sr1.7La0.3 Ga0.6Fe1.4O5.15的一端封闭的管式膜反应器
比较在有和没有填充床催化剂下所获的结果
    反应器构造     生产速率(毫升/分钟-厘米2 H2∶CO  CO选择性(%) 转化率(%)
    没有填充床催化剂     2.55  2.0     50     13
有填充床催化剂,是Al2O3颗粒,其上面覆以La0.8Sr0.2MnO3上面有Ni(20%(重量))的粉末     11.04  1.9     97     39
有填充床催化剂的膜反应器显示很高的产率、转化率和CO的选择性,由高的H2∶CO比表明H2选择性并无损失。
实施例3:在具有不同粘合催化剂层的反应器中生产合成气
按实施例1所述,由化学式Sr1.7La0.3Ga0.6Fe1.4O5.15的单相材料制造一端封闭的管式膜。
管式膜内表面涂布一层La0.8Sr0.2CoO3用作氧化还原催化剂。
一个管式膜外表面涂布La0.8Sr0.2MnO3。另一个管式膜外表面涂布以其上面有Ni(20重量%)的La0.8Sr0.2MnO3。这两种催化剂分别用作两个膜氧化表面的粘合催化剂层。
在如图1所示的合成气反应器中比较有不同粘合催化剂层的管膜。对这两种情况,反应器都在其氧化区中提供的是覆有Ni(5%(重量))的Al2O3颗粒填充床。均使用空气作为通过管式膜内部的含氧气体,使用氦中80%(体积)的甲烷混合物作为流经管式膜外部通过填充床催化剂的反应物气体。两种反应器都在900℃操作。表5列出这一比较的结果。
表5对于900℃操作的Sr1.7La0.3 Ga0.6Fe1.4O5.15的一端封闭的膜管反应器
比较使用不同粘合催化剂所获的结果
反应器构造 生产速率(毫升/分钟-厘米2) H2∶CO  CO选择性(%)     转化率(%)
La0.8Sr0.2MnO3粘合催化剂层     23.0     1.8     99     44
在La0.8Sr0.2MnO3上Ni(20%(重量))的粘合催化剂层     30.4     1.8     99     68
这两种膜反应器都显示很高的产率、转化率和选择性,高的H2∶CO比表明没有损失H2选择性。使用上面有Ni(20%(重量))的在La0.8Sr0.2MnO3作为粘合催化剂层时,产率高约30%。这表明粘合催化剂层不仅可起氧催化剂的作用,而且可用来促进要发生的氧化反应。
实施例4:粘合催化剂层用于保护膜表面的作用
按实施例1所述,由化学式Sr1.7La0.3Ga0.6Fe1.4O5.15的单相材料制造一端封闭的管式膜。管式膜内表面涂布La0.8Sr0.2CoO3用作氧化还原催化剂。管式膜外表面的一部分上涂布粘合催化剂:上面有Ni(40%(重量))的La0.8Sr0.2MnO3。膜外表面的其余部分不涂布。具有这种部分涂布的管式膜的反应器在和实施例1-3同样的条件下操作。反应器运行一年后自动停止。在不曾涂布粘合催化剂的膜的氧化表面上形成了一白色涂层,而涂有粘合催化剂的膜的氧化表面上没有这白色层。随后,对这白色粉末进行了能量色散光谱和X射线光电子光谱分析,证实其为SrCO3。由SrO与CO2的反应极可能形成这种化合物。这一结果表明,膜材料在操作过程中分离成其组分。在反应器膜涂布的区域上未观察到这种分离反应。可以认为,在粘合催化剂层加入Mn或其它过渡金属如Cr、V或Ti,可防止膜中Sr的分离。或者,La含量高或在膜材料中掺入其它镧系金属也可以减轻这种分离现象。
实施例5:膜的制造
按要求的化学计量,由合适的金属氧化物和金属碳酸盐的混合物制备所有的膜材料。先将各种粉末放入一个小的聚乙烯容器中,同时容器内加入与粉末等体积的异丙醇。在该容器中还加入圆柱形氧化钇稳定的氧化锆(YSZ)研磨介质。将所得的浆料在一球磨机中充分混合数小时。然后使乙醇蒸发,形成均匀的原料混合物。
将均匀混合物煅烧,获得要求的相。将此粉末放入氧化铝坩埚中,在环境气氛中高达约1450℃温度下进行焙烧。冷却后,用研钵和捣锤将粉末研磨至-100目。X射线衍射(XRD)分析经研磨的粉末证实形成了合适的相。如果需要可重复煅烧,直到获得要求的单相材料。如果需要重复煅烧,应在每两次煅烧之间彻底研磨粉末。采用Rigaku Miniflex X-Ray Spectrometer,Model CN2005,用Cu辐射(λ=1.542A)进行XRD。扫描速度对这种预先进行的XRD为2°(2θ)/分钟,对晶格参数的测定为0.5°(2θ)/分钟。
在压制和烧结之前,通过研磨减小粉末粒度。使用的是具有YSZ罐和YSY搅拌臂的Union Process Model 01磨碎机。在常规的磨碎时,罐中放有约1.5磅5毫米的球形YSZ研磨介质。在罐中加入异丙醇(约120毫升),随后加入约100克-100目粉末。研磨1小时再次减小粉末,之后让乙醇蒸发。粉末再次进行XRD,确保研磨过程不会引起分解。对任何材料都未观察到分解。XRD图显示有相当的峰扩展,这是细小颗粒的表征。可以认为此阶段的粒度是亚微米的。
研磨以后,将粉末压制成圆片,进行烧结。为些,先用研钵和捣锤将粉末与粘合剂,例如标准的陶瓷粘合剂如Ceracer C640(Shamrock,是一种聚乙烯蜡)混合,获得均匀混合物。另一种合适的陶瓷粘合剂是甲基纤维素。将粘合剂/粉末混合物(约1克)放入直径12.5毫米的模中。在15,000psi压力下对混合物加压数分钟压制成圆片。然后将“生坯”圆片放入一Al2O3坩埚中进行烧结。此时用同样材料的粉末围住圆片盘,确保圆片不与坩埚反应或烧结在一起。在大气条件下坩埚中的圆片于合适的烧结温度(对一给定材料在约为1300-1450℃的范围内选定)烧结4小时,获得较好为≥90%理论密度的的烧结圆片。用本领域已知的方法实验确定给定材料的烧结温度。各代表性材料的烧结温度列于表1。在烧结前后的加热和冷却时,温度变化速率一般为3℃/分钟。
为形成本发明的膜,是按要求的化学计量比组合金属氧化物或金属碳酸盐。例如,对Sr1.2La0.8GaFeO5.4,可混合60.0克La2O3、40.7克SrCo3、21.6克Ga2O3和8.3克Fe2O3。将所得粉末混合物在高达400℃的温度重复煅烧,直至获得单相材料。将所得的单相材料压制成圆片,于1450℃烧结。烧结后,用XRD检查烧结圆片的一个面,确认未发生分解。另外,对在同样条件下制得的粉末获得0.5℃(2θ)/分钟扫描速度下的XRD图,测定晶格参数。正如本领域所熟知的,使用市售的Microindex软件(Materials Data,Inc.,Livermore,CA),应用观察到的图确定了晶格参数。见C.Greaves等人(1975)的前述文献。
使用合适的成形模具,通过等静压压制法还可以将膜材料成形为管和一端封闭的管。
可使用市售的等静压压机(Fluition CP2-10-60)成形一端封闭的管式膜。这种压机能在最高压力54,000psi下操作,成形外径4厘米,长10厘米的管。按照上述制备粉末和减小其粒度。在粉末中加入粘合剂(3%,C640粘合剂)。按照要求的管子外形制造橡皮模具。将足以形成一端封闭的管的顶部的少量粉末加入模具中。然后在模具中插入具有管子内表面形状的心轴。
在模具顶端插入一漏斗,在心轴的周围均匀地加入粉末。具体做法是,使用的漏斗设计成能套在模具中心轴的端部,并且中心与心轴对准。然后通过漏斗将粉末倒入模具,同时振动保证均匀装填。装填后,将模具用塞子塞住并通过塞子脱气。将装好粉末的模具插入压机,对模具施加约30,000-40,000psi压力约2分钟。施压后取出模具,从模具中取出生坯管。用亚基米得原理法测出生坯的密度,换算成的相对密度高达80%。
将一端封闭的生坯管(其封闭端在下面)放在坩埚内烧结,在管的周围用惰性的氧化钇稳定的氧化锆小直径球料填充,为的是保持生坯管在烧结期间是笔直的。烧结后的管表面显示在小球填料和管之间没有发生反应。采用这种方法一般可制得烧结相对密度一般约为90-95%的端封闭的直管。
本领域的技术人员可以理解,不使用本文公开的具体反应器、膜、催化剂、反应试剂和反应物也能实现本发明的目的。而且,在不偏离本发明的精神和范围下,可以采用本文具体描述内容之外的膜、粘合催化剂和三维催化剂的制备技术以及反应器设计。
表1部分氧化、蒸气重整和CO2重整用的催化剂
参考文献号
A)    钙钛矿和相关相1.含钴的钙钛矿LnCoO3,其中Ln是稀土元素 1
    2.钛酸盐钙钛矿Ca1-xSrxTiO3上的Ni(尤其是在还原条件下)     2
    Ca1-xSrxTi1-yNiyO3上的Ni     3
    含Cr、Fe、Co或Ni的Ca1-xSrxTiO3     4,5
    3.Ni基钙钛矿     6
    LaNiO3、La0.8Ca(或Sr)0.2NiO3、LaNi1-xCoxO3,这些是混合传导体     6
    LaNiOx、LiNiLaOx     7
    LaNiO3和LaNiAl11O19     8
    NiO-LnO 1∶1(Ln=镧)     9
    4.其它钙钛矿a.Ba3NiRuTaO9,可以是混合传导体     10
    b.La-M-O,其中M=Co、Cr、Ni、Rh     11
    c.Ba-Pb,Ba-Bi和Ba-Sn钙钛矿     12
    5.未说明的钙钛矿     13,14,15
B)    CeO2和载于CeO2上的金属掺杂的二氧化铈是离子传导体,在还原条件下也能成为电子传导体。
    1.氧化还原循环中的CeO2     16
    2.掺杂有氧化钐的二氧化铈上的Ru或Ir     17
    3.CeO2上的Pt黑     18
    4.CeO2上的Rh     19
 C)    用氧化钇稳定的氧化锆载体YSZ是氧化物离子传导体。在还原条件下经掺杂可制得电子传导体
    1.YSZ上的Ru     20
    2.YSZ上的Ni     21
    3.YSZ上的Rh     22,23
 D)    在燃料电池或电化学反应器中进行的部分氧化。尽管不是用膜,但基于氧化物离子的燃料电池传递氧(或氧化物离子)到部分氧化的表面,这与本发明的混合传导膜类似,因此,催化剂也可应用
    1.Pt电催化剂
    a.YsZ电解质     24
    b.未说明的电解质     25
    2.Ni电催化剂
    a.在掺杂的LaGaO3     26
    b.YSZ上     27
    3.YSZ电解质上的Rh电催化剂     28
    4.YSZ上的Fe  29,30,31
    5.YSZ上的Rh  32,33
    6.YSZ上的Pd     34
    7.YSZ上的Ag     35
    8.YSZ上的CeO2和Rh/CeO2     36
    9.YSZ上的YBa2Cu3Ox这是混合的离子/电子传导体,但是在还原条件下不稳定     37
 E)    氧化钛上的金属如果金属与氧化钛形成化合物,可产生具有混合离子和电子传导性的钛酸盐
    1.TiO2上的Ni  38,39
    2.TiO2上的Ir     40
    3.TiO2上的Ru     41
    4.TiO2上的Pd     42
 F)    其它催化剂
    1.已知稀土过渡金属烧绿石-烧绿石是已知的离子和电子传导体     43
    2.Rh黑-一种显示混合传导性的Rh氧化物     44
    3.Pt-Pt是优良的氧催化剂     45
    4.碳化组和碳化钨     46
表2各种氧化反应的催化剂
参考号
A)    甲烷的氧化偶合(OCM)
    1)碱土金属化合物(Mg、Ca、Sr和Ba的氧化物)每种材料均可以本身使用、或掺杂后、或与共催化剂使用
    a)MgO和MgSO4     47
    b)有或没有MoO3共催化剂的铝酸锂/MgO     48
    c)掺杂有稀土Nd2O3的MgO     49
    有CaO和BaO的La2O3     50
    Sm2O3     51,52
    La2O3     53
    d)经促进的碱金属经促进的Li、Na、K、Rb和Cs     54
    经促进的Li和Li/CeO     55,56
    经促进的Li和Li/Sn     57
    经促进的Li  58,59,60,61
    用K/Ni促进的CaO和MgO     62
    Li和过渡金属 63,64
    膜反应器中的Li/MgO     65
    e)掺杂过渡金属的Ni     66
    f)煅烧的珊瑚砂     67
    g)硅铝酸盐上的SrCO3     68
    h)Sr连同SiO2上的Li     69
    2)稀土和稀土化合物
    a)稀土氧化物 70,71,72
    在膜反应器中     73,74
    b)BaLa2O4     75
    c)Pr2O3     76
    d)Al2O3上的Sm2O3     77
    e)La的氧化物、硫酸盐和磷酸盐     78
    f)碱土金属掺杂Li2O、CaO和MgO     79
    CaO     80
    g)卤化物BaCO3/LaOBr     81
    LaF3/SrO和SrF2/La2O3     82
    h)经促进的Na     83
    i)Sm2Sn2O7     84
    3)钼酸盐和钨酸盐化合物
    a)碱促进的MnMoO4 85,86,87,88,89
    LiCl和Na2MoO4     90
    b)在有Na的SiO2上的WO4     91
    4)氧化锆基催化剂
    a)碱处理的     92,93
    5)Ag基催化剂
    a)带有磷酸钠助催化剂
    b)在电化学池内     95,96
    6)铅基催化剂
    a)有或没有NaCl的PbTiO3     97
    b)PbAl2O4     98
    c)Pb中的PbO或碱式盐熔体     99
    d)羟基磷酸灰石中的Pb  100,101
    e)膜反应器中的Pb  102,103
    7)过渡金属氧化物基催化剂
    a)Fe2O3有B2O3和NaCl     104
    有LiCl     105
    b)SrCoO3     106
    c)钙钛矿离子传导体La0.8Sr0.2CoO3和SrCo0.8Fe0.2O3     107
    膜反应器中的钙钛矿     108
    掺杂La/Mn的钙钛矿 109,110,111
    d)Al2O3上的Zn     112,113
    8)铋基和锑基催化剂
    a)Bi2Sn2-xBixO7-x/2     114
    b)掺杂Y2O3的Bi2O3的离子传导体     115
    c)Ba2Sb(La0.5Bi0.5)O6和Ba4SbTa2LiO12     116
 B)    烷烃的氧化脱氢包括如乙烷、丙烷和丁烷的烷烃转化为相应的烯烃,乙烯、丙烯和丁烯
    1)钒基催化剂
    a)有MgO的氧化钒M-氧化钒     117
    膜反应器中的V-Mg-O  119,120
    V2O5/MgO     121
    镁-钒     122
    钒-镁氧化物     123
    Mg3V2O8     124
    用于乙苯的钒镁相     125
    b)其它载体在金属和铝磷酸盐上的钒 126,127,128,129
    含钒沸石     130
    γ-Al2O3上的V2O3  131,132
    BaCO3上的氧化钒     133
    Al2O3、海泡石、水滑石上的钒     134
    承载在氧化铌上的氧化钒     135
    有或没有碱金属添加剂的V2O5/TiO2     136
    在有或没有K的Al2O3上的氧化钒     137
    V2O5/TiO2     138
    V2O5/TiO2和(VO)2P2O7     139
    AlPO4上的钒     140
    c)其它化合物Mg4V2Sb2Ox 141-142
    钒酸稀土盐     143
    含铁的钼钒酸铋     144
    (VO)2P2O7  145,146
    含钒的硅酸盐     147
    2)钼基催化剂
    a)化合物     148
    MgMoO4-MoO3     149
    Cs、V、Mn加到H3PMo12O40     150
    Cs2.5Cu0.08H3.3PV3Mo9O40     151
    有或没有碱金属助催化剂的钼酸镍     152
    钼酸镁     153
    金属钼酸盐     154
    Cr[PMo12O40]     155
    b)其它钼基     156
    3)贵金属催化剂
    a)银承载于流化床中的Al2O3上以及整料上     157
    b)铂、铑、钯陶瓷整料上的Pt-Sn和Pt-Cu     158
    Pt/Rh网     159
    陶瓷整料上的Pt、Pd、Rh  160,161,162
    承载于Al2O3     163
    4)过渡金属化合物
    MgFe2O4     164
    La1-xSrxFeO3-y钙钛矿和离子传导体     165
    Cr-Mn组合物     166
    Cu-Th氧化物     167
    沸石ZSW-5中的过渡金属     168
    MFI-Ferrisilicate     169
    氧化铝或硅石上的Mn和Cr氧化物     170
    Fe-Cr双金属硅酸盐     171
    膜反应器中的氧化铬-氧化铝     172
    5)锑和铋化合物
    铁锑氧化物     173
    层状氯化铋SrBi3O4Cl3和KSr2Bi3O4Cl6     174
    含锑Keggin类杂多氧钼酸盐     175
    6)含卤化物
    金属氧化物/金属氟化物     176
    掺杂BaF2的LaOF     177
    Sm2O3和MgO上的有机氯添加剂     178
    7)含氧化硼
    氧化铝-氧化硼     179
    氧化硼-氧化铝     180
    用钇稳定的氧化锆上的氧化硼     181
    8) Li/MgO     182
    膜反应器中     183
 C)    氧化物质的生产包括如甲烷转化成甲醛或甲醇,乙烯或丙烯转化成相应环氧化物,或丁烷转化成马来酐的一些反应
    钼酸铁     184
    MoO3-SiO2  185,186,187
    有MoO3-SiO2的碱金属阳离子     188
    V2O5-SiO2     189,190
1   R.Lago,G.Bini,M.A.Pena和J.L.G.Fierro,催化,167,198(1997)。2   T.Hayakawa,H.Harihara,A.G.Andersen,K.Suzuki,H.Yasuda,T.Tsunoda,S.Harnakawa,A.P.E.York,Y.S.Yoon,M.Shimizu和K.Takehira,-Appl. Cat. A-Gen..149,391(1997).3.  K.Takehira,T.Hayakawa,H.Harihara,A.G.Andersen,K.Suzuki和M.Shimmizu,当代催化24,237(1995).4.  T.Hayakawa,A.G.Andersen,M.Shimizu,K.Suzuki和K.Takehira,Cat.Lett.,22,307(1993).5.  A.G.Andersen,T.Hayakawa,T.Tsunoda,H.Orita,M.Shimizu和K.Takehira,Cat.Lett.,18,37(1993).6.  V.R.Choudhary,B.S.Upyhadc和A.A.Belhekar,催化,163,312(1996).7.  Q.Miao,G.X.Xiong,X.S.Li,S.S.Sheng和X.X.Guo,Cat.Lett.,41,165(1996).8.  A.Slagtern,U.Olsbye,R.Blom,I.M.Dahl和H.Fjellvag,Appl. Cat.A-Gen.,145,375(1996)9.  V.R.Choudhary,V.H.Rane和A.M.Rajput,Cat.Lett.,22,289(1993).10. P.D.Battle,J.B.Claridge,F.A.Copplestone,S.W.Carr和S.C.Tang,Appl.Cat.A.Gen.,118,217(1994).11. A.Slagtern和U.Olsbye,Appl.Cat.A-Gen.,110.99(1994).12. D. Dissanayake, K.C.C. Kharas,J.H. Lunsford和M.P. Rosynek,催化139,652(1993).13. L.A. Isupova,V.A. Sadykov,S.F. Tikhov,O.N. Kimkhai,O.N. Kovalenko,G.N.Kustova,I.A. Ovsyannikova,Z.A. Dovbii,G.N. Kryukova,A.Y. Rozovskii,V.F.Tretyakoov和V.V. Lunin,当代催化 27,249 (1996).14. T. Shimizu,“pf 钙钛矿类氧化物的性能和应用”L.G. Tejuca,ed. Marcel Dekker,NY,289(1993).15. T. Shimizu,Cat. Rev. - Sci. Eng.,34,355 (1992).16. K. Otsuka,E. Sunada,T. Ushiyama和I. Yamanaka,Stud,Surf. Sci. Cat.,107,531(1997).17. M.J. Saeki,H. Uchida和M. Watanabe,Cat. Lett.,26,149(1994).18. K. Otsuka,T. Ushiyama 和I. Yamanaka,Chem. Lett.,1517(1993).19. V.A. Tsipouriari,A.M. Efstathiou. Z.L. Zhan和X.E. Verykios,催化,158,64(1996).20. J. Boucouvalas,A.M. Efstathiou,Z.L. Zhang和X.E. Verykios,Stud. Surf. Sci.Cat.,107,435(1997).21. A.S. Ivanova,I.I. Bobrova,E.M. Moroz,V.A. Sobyanin,和V.Y. Gavrilov,Kin催化,38,98(1997).22. A.M. Efstathiou,A. Kladi,V.A. Tsipouriari和X.E. Verykios,催化,158,64(1996).23. V.A. Tsipouriari,A.M. Efstathiou,Z.L. Zhang和X.E. Verykios,当代催化,21,579(1994).24. V.V. Galvita,V.D. Belyaev和V.A. Sobyanin,Reaction Kin. Cat. Lett.,58,407(1996).25.   V.V. Galvita, V.D. Belyaev, V.N. Parmon和V.A. Sobyanin, Cat. Lett.,39,209(1996).26.   Y. Hiei, T. Ishihara和Y. Takita, Solid State Ionics, 86-8, 1267 (1996).27.   T. Horita, N. Sakai, T. Kawada, H. Yokokawa和M. Dokiya, 电化学学会143,1161(1996).28.   K. Takehira,T. Hayakawa. S. Harnakawa, T. Tsunoda, K. Sato, J. Nakarnura 和T. Uchijirna,当化催化 29, 397 (1996).29.   T. Horita, N. Sakai, T. Kawada, H. Yokokawa和M. Dokiya, 电化学学会43. 1161 (1996).30.   H. Alqahtany, D. Eng和M. Stoukides, 能源和燃料  7 495(1993).31.   H. Alqahtany, D. Eng和M. Stoukides, 电化学学会, 140, 1677(1993).32.   K. Sato, J. Nakamura, T. Uchijima, T. Hayakawa, S. Hamakawa, T. Tsunoda 和K. Takehira, J. Chem. Soc. - Faraday. Trans., 91. 1655(1995).33.   T. Hayakawa, K. Sato, T. Tsunoda, S. Harnakawa, K. Suzuki, J. Nakamura,K.Takehira和T. Uchijima, J. Chem .Soc. - Chem. Comm., 1899(1994).34.   T. Hibino, A. Masegi和H. Iwahara, 电化学学会, 142, 3262(1995).35.   K. Sato, J. Nakamura, T. Uchijima, T. Hayakawa, S. Hamakawa, T. Tsumoda和K. Takehira, 化学学会 - Faraday. Trans., 91. 1655 (1995).36.   Langmuir,11,4832(1995).37.   T.M. Gur,H. Wise和R.A. Huggins, Cat. Lett., 23 387 (1994).38.   T. Osaki, J. Chem. Soc. - Faraday Trans., 93,643(1997).39.   M.C.J. Bradfor和M.A. Vannice,Appl. Cat. A - Gen., 142. 97 (1996).40.   K. Nakagawa, T. Suzuki, T. Kobayashi和M. Haruta, Chem. Lett., 1029 (1996).41.   Y. Boucouvalas, Z.L. Zhang和X.E. Verykios, Cat.. Lett., 40, 189 (1996).42.   A. Erdohelyi, J. Cserenyi, E. Papp和F. Solymosi, Appl. Cat. A-Gen.,108, 205(1994).43.   A.T. Ashcroft, A.K. Cheetham, R.H. Jones, S. Natarajan, J.M. Thomas, D. Waller和S.M. Clark, J.物理化学  97, 3355(1993).44.   O.V.Buyevskaya, K. Walter, D. Wolf和M. Baerns,Cat. Lett.,38,81(1996).45.   K.H. Hofstad, O.A. Rokstad和A. Holmen, Cat. Lett., 36, 25 (1996).46.   A.P.E. York, J.B. Claridge, A.J. Brungs, S.C. Tsang和M.L.H. Green, Chem.Comm.,39 (1997).47.   S. Sugiyama, S. Miyamoto, T. Hayashi和J.B. Moffat, Bull.化学学会 Jpn, 69.235(1996).48.   B.K. Mirernadi, K. Colbow和S.R. Morrison, Can.  化学75,465(1997).49.   A. Burrows, C.J. Kiely,G.J.Hutchings,R.W. Joyner和M.Y. Sinev, 催化,167.77(1997).50.   V.R. Choudhary和V.H. Rane,J. Chem. Tech. Biotech., 69,63(1997).51.   O.V. Buyevskaya, M. Rothaemel, H.W. Zanthoff和M. Baerns, 催化, 146, 346(1994).52.   O.V. Buyevskaya, M. Rothaemel, H.W. Zanthoff和M. Baerns,催化, 150, 71(1994).53.   R.Q. Long, S.Q. Zhou, Y.P. Huang, W.Z. Weng, H.L. Wan 和 K.R. Tsai, Appl.Cat. A-Gen., 133,269 (1995).54.   V.R. Choudhary, V.H. Rane和M.Y. Pandit, J. Chem. Tech. Biotech.,68,177(1997).55.   Y. Mortazavi. R.R. Hudgins和P.L. Silveston, Can. 化学, 74, 683 (1996).56.   K.K. Tiwari, T.N. Roy, S. Banerjee, S, Ganguly和D.P. Bhattacharyya, J.Chem.Tech. Biotech.. 63, 190 (1995).57.   E.P.J. Mallens, E.P.J. Hoebink和G.B. Marin, 催化 , 160, 222 (1996).58.   J. Galuszka, Cat. Today, 21, 321 (1994).59.   D.J. Wang, M.P.Rosynek和J.H. Lunsford, 催化, 151. 155 (1995).60.   M. Taniewski, A. Lachowicz, R. Lachowicz, D. Czechowicz和K. Skutil, Ind.Eng. Chem. Res., 33, 185(1994).61.   E. Ruckenstein和A.Z. Khan,催化 , 141,628 (1993).62.   A. Toebes, K.M. Dooley和J.R.H Ross, 当化催化 21,401 (1994).63.   F.P. Larkins和M.R. Nordin. Studies Surf. Sci. Cat., 81. 249 (1994).64.   R. Mariscal, J. Soria. M.A. Pena和J.L.G. Fierro, 催化 , 147, 535 (1994).65.   J. Coronas, M. Menendez和J. Santamaria, 化学工程科学 24A, 4749 (1994).66.   F. Gomezgarcia, J.P. Gomez, J.M. Jimenezmateos, S. Vic, J.L.G. Fierro, M.A. Pena和P. Terreros, Solid State Ionics, 63-5, 325 (1993).67.  N. Yamagata, K. Usami和S. Okazaki, Bull.化学学会 Jpn., 67, 2278 (1994).68.   J.S. Church和N.W. Cant, Studies Surf. Sci. Cat., 81,199 (1994).69.  R. Voyatzis和J.B. Moffat,能源和燃料,9,240(1995).70.   O.V. Buyevskaya,M. Rothaernel,H.W. Zanthoff和M. Baerns,催化, 146, 346(1994).71.   O.V. Buyevskaya,M. Rothaemel,H.W. Zanthoff和M. Baerns,催化, 150,71(1994).72.   S. Lacombe, H. Zanthoff和C. Mirodatos,催化, 155, 106 (1995).73.   A.M. Ramachandra, Y. Lu, Y.H. Ma, W.R. Moser和A.G. Dixon, J. Memb. Sci,116, 253 (1996).74.   A.L. Tonkovich, R.W. Carr和R. Aris, Science, 262, 221 (1993).75.   N. Yamagata, K. Igarashi, H. Saitoh和S. Okazaki, Bull. Chem. Soc. Jpn., 66,1799 (1993)76.   Y. Matsumara,S. Sugivama和J.B. Moffat,ACS Symp. Series, 523, 326 (1993).77.   M.J. Capitan,P. Malet, M.A. Centeno,A. Munozpaez, I. Carrizosa和J.A.Odriozola,物理化学,97,9233(1993).78.   S. Sugiyama和J.B. Moffat,能源和燃料7, 279(1993).79.   G. Roussy,J.M. Thiebaut,M. Souiri,E. Marchal,A. Kiennemann和G. Maire,当代催化 21, 349 (1994).80.   L. Mleczko, U. Pannek, M. Rothaemel和M. Baerns, Can. 化学工程 , 74,279(1996).81.   C.T. Au, H. He, S.Y. Lai和C.F. Ng, 催化, 163, 399 (1996).82.   R.Q. Long,S.Q. Zhou,Y.P. Huang,W.Z. Weng,H.L. Wan和K.R. Tsai,ApplCat. A-Gen., 133, 269 (1995).83.   N.B. Wong, K.C. Tin, Q.N. Zhu, M.Z. Zhang和X.Q. Qiu, J. Chem. Tech.Biotech, 67. 164 (1996).84.   A.C. Roger, C. Petit和A. Kiennemann, 催化, 167, 447 (1997).85.   S.A. Driscoll和U.S. Ozkan, Studies Surf. Sci. Cat., 82. 367 (1994).86.   S.A. Driscoll. D.K. Gardner和U.S. Ozkan, Cat. Lett., 25, 191 (1994).87.   S.A. Driscoll, D.K. Gardner和U.S. Ozkan,催化, 147, 379 (1994).88.  S.A. Driscoll 和 U.S. Ozkan,物 理 化 学 , 97, 11524 (1993).89.   S.A. Driscoll, L. Zhang 和 U.S. Ozkan, ACS Symp. Series, 523, 341 (1994).90.   J. Kiwi, K.R. Thampi, N. Mouaddib, M. Graetzel 和 P. Albers, Cat. Lett., 18, 15(1993).91.  J.G. Wu 和 S.B. Li,物 理 化 学, 99, 4566 (1995).92.   S. Sugiyama, K. Shimodan, A. Ookubo, N. Shigemoto, H. Hayashi 和 J.B.Moffat, Bull. Chem. Soc. Jpn., 66, 2391 (1993).93.   A.Z. Khan和!E. Ruckenstein, 催化, 139, 304 (1993).94.   X. Bao, M. Muhler, R. Schlogl和G. Ertl, Cat. Lett., 32, 185 (1995).95.   P.Tsiakaras和C.G. Vayenas,催化, 144. 333 (1993).96.   Y. Jiang, I.V. Yentekakis和C.G. Vayenss, 科学,  264, 1563 (1994).97.   M. Yamamura, N. Tsuzuki, H. Okado, T. Wakatsuki和K. Otsuka, Appl. Cat. A-Gen.,115, 269(1994).98.   J.S, Chang和S.E. Park, Bull. Kor. 化学学会 16,1148 (1995).99.   O. Yamazaki, K. Omata和K. Fujimoto, Stud. Surf. Sci. Cat., 81,277 (1994).100.  Y. Matsumura, J.B. Moffat, S. Sugiyama, H. Hayashi, N. Shigemoto 和 K. Saitoh,化学学会 - Far. Trans., 90, 2133 (1994).101.  Y. Matsumura和J.B. Moffat, Cat. Lett., 17, 197 (1993).102.  T. Nozaki, S. Hashirnoto, K, Omata和K. Fujimoto, Ind. Eng. Chem. Res., 32.1174 (1993).103.  T. Nozaki和K. Fujimoto, AIChE J.. 40. 870(1994).104.  X.R. Xia, G.X. Xiong, Q. Miao和X.X. Guo, Cat. Lett., 31, 183 (1995).105.  D. Lazarov, V. Rives, R.Klissurska, I. Mitov和D. Klissurki, Mat. Lett., 27, 129(1996).106.  K. Omata, O. Yarnazaki, K. Tomita and K. Fujimoto, J. Chem. Soc., Chem.Comm., 1647 (1994).107.  Y.S. Lin和Y. Zeng, J. Cat., 164, 220 (1996).108.  J.E. ten Elshof, H.J.M. Bouwmeester和H. Verweij, Appl. Cat. A-Gen., 130, 195(1995).109.  J.E. France, A. Shamsi和M.O. Ahsan. 能源和燃料, 2, 235 (1988).110.  A. Shamsi和K. Zahir, 能源和燃料 ,3, 727 (1989).111.  R.V. Siriwardane和A. Shamsi, Appl. Cat., 60, 119 (1990).112.  S.C. Kim, L.E. Erickson和E.Y. Yu, J. Haz. Mat., 41327 (1995).113.  S.C. Kim, S.J. Kim和E.Y. Yu, Appl. Cat. A-Gen., 150, 63 (1997).114.  C.A. Mins, A.J. Jacobson, R.B. Hall和J.T. Lewandowski,催化  153, 197(1995).115.  Y. Zeng和Y.S. Lin, Ind. Eng. Chem. Res., 36, 277 (1997).116.  P.D. Battle, S.W. Carr, F.A. Copplestone和R.S. Mellen, J. Mat. Chem., 4, 421(1994).117.  E. Finicchio, G. Ramis, G. Busca, V. Loorezelli和R.J. Willey, 当代催化, 28,381(1996).118.  A. Guerroeroruiz, I. Rodriguezramos, P. Ferreiraaparicio和J.C. Volta, Cat, Lett,45. 113(1997).119.  C. Tellez, M. Menendez和J. Santamaria, AIChE J., 43. 777 (1997).120.  D. Creaser和B. Andersson, Appl. Cat. A-Gen., 141, 131 (1996).121.  M.K. Yurdakoc, R. Haffner和D. Honicke. Mat. Chem. Phys., 44, 273 (1996).122.  S.A. Korili, P. Ruiz和B. Delmon, Abs. Papers Am. Chem. Soc., 211, Ptl, 202-COLL(1996).123.  A. Pantazidis和C. Mirodatos, ACS Symp Series, 638, 207 (1996).124.  S.R.G. Carrazan, M. Ruwet, P. Ruiz和B. Delmon, Abs. Papers Am. Chem. Soc.,211. Ptl, 204-COLL (1996).125.  W.S. Chang, Y.Z. Chen和B.L. Yang, Appl. Cat A-Gen., 124, 221 (1995).126.  P. Concepcion, A. Corma, J.M.L. Nieto和J. Perezpariente, Appl. Cat A-Gen.,143,17(1996).127.  P. Concepcion, J.M.L. Nieto, A. Mifsud和J. Perezpariente, Appl. Cat A-Gen.,151,373(1997)128.  P. Concepcion,J.M.L. Nieto和J. Perezpariente, Stud. Surf. Sci. Cat., 94, 681(1995).129.  P. Concepcion, A. Galli, J.M.L. Nieto, A Dejoz和M.I. Vazquez, Topics Cat., 3,451(1996).130.  G. Centi和F. Trifiro, Appl. Cat A-Gen., 143,3 (1996).131.  G. Capannelli, E. Carosini, O. Monticelli, F. Cavani和F. Trifiro, Cat. Lett., 39.241 (1996).132.  J.G. Eon, R. Olier和J.C. Volta, 催化  145. 318 (1994).133.  Z.Y. Dang. J.F. Gu, J.Z. Lin和D.X. Yang, Chem. Comm., 1901 (1996).134.  T. Blasco, J.M.L. Nieto, A. Deioz和M.I. Vazquez, J. Cat., 157, 271 (1995).135.  T.C. Watling, G. Deo, K. Seshan. I.E. Wachs和J.A. Lercher, 当代催化 28.139 (1996).136.  R. Grabowski, B. Grzybowska, A. Kozlowska, J. Sloczynski, K. Wcislo和Y.Barbaux, Topics in Cat., 3, 277(1996).137.  A. Galli, J.M.L. Nieto, A. Dejoz和M.I. Vazquez, Cat Lett., 34, 51 (1995).138.  N. Boisdron, A. Monnier, L. Jalowieckiduhamel和Y. Barbaux, J. Chem. Soc.-Faraday Trans., 91, 2899 (1995).139.  G. Busca, V. Lorenzelli, G. Oliveri和G. Ramis, Stud. Surf. Sci. Cat., 82, 253(1994).140.  S.L.T. Andersson, Appl. Cat. A-Gen., 112, 209 (1994).141.  J.N. Michaels, D.L. Stern和R.K. Grasselli, Cat. Lett., 42 139 (1996).142.  J.N. Michaels, D.L. Stern和R.K. Grasselli, Cat. Lett, 42 135 (1996)143.  B. Zhaorigetu, R. Kieffer和J.P. Hindermann, Stud. Surf. Sci. Cat., 101, 1049(1996).144.  S. Derossi, M. Loiacono, M. Gardini和P.Porta, 催化 , 146, 126 (1994).145.  P.M. Michalakos,M.C. Kung, I. Jahan和H. Kung, 催化 , 140, 226 (1993).146.  H.H. Kung, P.M. Michalkos, L. Owens, M. Kung, P. Anderson, O. Owen和I.Jahan, ACS Symp. Ser., 523, 389 (1993).147.  G. Belussi, G. Geati, S. Perathoner和F. Trifiro, ACS Symp. Ser., 523, 281(1993).148.  D.L. Stern和R.K. Grasselli, 催化 , 167, 550 (1997).149.  L.E. Cadus, M.F. Gomez和M.C. Abello, Cat. Lett., 43, 229 (1997).150.  N. Mizuno, W. Han和T. Kudo, Chem. Lett., 1121 (1996).151.  N. Miznuno和D.J. Suh, Appl. Cat. A-Gen., 146, L249 (1996).152.  R.M. MartinarandaM.F. Portela, L.M. Madeira, F. Freire和M. Oliveira, Appl.Cat. A-Gen., 127, 201(1995).153.  Y.S. Yoon, W. Ueda和Y. Morooka, Cat. Lett., 35,57 (1995).154.  Y.S. Yoon, N. Fujikawa, W. Ueda, Y. Morooka和K.W. Lee, 当代催化 24,327 (1995).155.  K. Bruckman, J. Haber, F. Trifiro, J.C. Vedrine, R.K. Grasselli, H. Idriss和H.Kung, Stud. Surf. Sci. Cat., 75, Part A, 741 (1993).156.  F.C.Meunier, A. Yasmeen和J.R.H. Ross, Abs. Papers Amer. Chem. Soc., 211,Pt 1, 184-Coll. (1996).157.  S.S.Bharadwaj,C. Yokoyama和L.D. Schmidt, Appl. Cat. A-Gen., 140, 73(1996)158.  C. Yokoyama, S.S. Bharadwaj和L.D. Schmidt, Cat. Lett., 38, 181 (1996).159.  D.K. Goetsch, P.M. Witt和L.D. Schmidt, ACS Symp. Series, 638, 124 (1996).160.  M. Huff和L.D. Scbmidt,催化, 155,82 (1995).161.  M. Huff和L.D. Schmidt, 催化 , 149, 127 (1994).162.  M. Huff和L.D. Schmidt,物理化, 97, 11815 (1993)163.  S.S. Bharadwaj 和 L.D. Schaidt, J. Cat., 155, 403 (1995).164.  G. Busca, E. Finocchio, V. Lorenzelli, M. Trombetta 和 S.A. Rossini, J. Chem.Soc., - Faraday Trans., 92, 4687 (1996).165.  G.H. Yi, T. Hayakawa, A.G. Andersen, K. Suzuki, S. Mamakawa, A.P.E. York, M.Shimizu 和 K. Takehira, Cat. Lett., 38, 189 (1996).166.  S.R. Mirzabekova 和 A.K. Mamedov, Kin.催 化 35, 834 (1994).167.  A. Aboukis, M. Loukah 和o J.C. Vedrine, React, Kin. Cat. Lett., 53, 107 (1994).168.  L.X. Tao,L.S. Wang, M.S. Xie, G.F. Xu 和 X.L. Wang, React. Kin. Cat. Lett.,53, 205 (1994).169.  M.A. Uddin, T. Komatsu 和 T. Yashima, 催化 , 150, 439 (1994).170.  O.V. Krylov, A. Kh. Mamedov和S.R. Mirzabekova, Ind. Eng. Chem. Res., 34,474 (1995).171.  H. Nagata和T Inui, Appl. Cat. A-Gen., 94, 17 (1993).172.  T Ioannides和G.R. Gavalas, J. Memb Sci., 77, 207 (1993).173.  E. Vansteen, H. Schmobel和T.C. O’Connor, ACS Symp Series, 638, 276 (1996).174.  W. Ueda, S.W. Lin和I. Tohmoto, Cat. Lett., 44, 241 (1997).175.  F. Cavani, M. Koutryev和F. Trifiro, 当代催化  24, 365 (1995).176.  X.P. Zhou, S.Q. Zhou, W.D. Zhang, Z.S. Chao, W.Z. Weng, R.Q. Long,D.L. Tang, H.Y. Wang, S.J. Wang, J.X. Cai, H.L. Wan 和 K. R. Tsai,“甲烷和烷烃转化化学”M.M. Bhasin,编辑. Plenum Press NY, 19 (1995).177.  H.L. Wan, Z.S. Chao, W.Z. Weng, X.P. Zhou, J.X. Cai和K.R. Tsai, 当代催化30, 67 (1996).178.  R. Butch, S. Chalker, P. Loader, H. Iariss, P. Tetenyi, V. Ragaini, R.W. Joyner,J.H. Lunsford, E. Bordes和J.B. Moffat, Stud. Surf. Sci. Cat., 75, Pt B, 1079(1993).179.  G. Colorio, J.C. Vedrine, A. Auroux和B. Bonnetot, Appl. Cat. A-Gen., 137, 55(1996).180.  O.V. Buyevskaya, M. Kubik和M. Baerns, Abs. Papers Amer. Chem. Soc., 211,Pt1, 182-Coll (1996).181.  K. Otsuka, T. Ando, S. Suprapto, Y. Wang, K. Ebitani和I. Yamanaka,当代催化 24 315 (1995).182.  D.J. Wang, M.T. Xu, C.L. Shi和J.H. Lunsford, Cat. Lett., 18, 323 (1993).183.  J. Coronas, M. Menendez和J. Santamaria, Ind. Eng. Chem. Res., 34, 4229(1995).184.  A.S. Chellappa和D.S. Viswanath, Ind. Eng. Chem. Res., 34, 1933 (1995).185.  N.D. Spencer和C.J. Pereira, AIChE J., 33, 1808 (1987).86.   N.D. Spencer, 催化  109, 187 (1988).187.  M.D. Amiridis, J.E. Rekoske, J.A. Dumesic, D.F. Rudd, N.D. Spencer 和 C.J.Pereira, AIChE J., 37, 87 (1991).188.  M.A. Banares, N.D. Spencer, M.D. Jones和I.E. Wachs, 催化 , 146, 204 (1994).189.  N.D. Spencer和C.J. Pereira, 催化 , 116, 399 (1989).190.  M.D. Amiridis, J.E. Rekoske, J.A. Dumesic, D.F. Rudd, N.D. Spencer和C.J.Pereira, AIChE J., 37, 87 (1991).

Claims (30)

1.一种催化膜反应器,它包括:
由不透气的膜分开的氧化区和还原区,所述膜具有与氧化区接触的氧化表面以及与还原区接触的还原表面;
在膜的氧化表面上的粘合催化剂层;
在氧化区中的三维催化剂,
其特征在于所述膜是单相的混合离子和电子传导陶瓷,催化剂层和三维催化剂对氧化反应有促进作用。
2.如权利要求1所述的催化膜反应器,其特征还在于所述粘合催化剂层和三维催化剂对烃的部分氧化有促进作用。
3.如权利要求1所述的催化膜反应器,其特征还在于所述陶瓷膜具有下式:
A2-xA′xB2-yB′O5+z其中A是碱土金属离子或碱土金属离子的混合物;A'是选自镧系或钇的金属离子或这些金属离子的混合物;B是选自3d过渡金属或13族金属的金属离子或这些金属离子的混合物;B′是选自3d过渡金属、13族金属、镧系或钇的金属离子或这些金属离子的混合物;x和y各自独立地是大于或等于0,但小于或等于2的数字;z是使化合物为电中性的数字。
4.如权利要求1所述的催化膜反应器,其特征还在于所述粘合催化剂层是具有下式的混合离子和电子传导陶瓷:
XaRe1-aZbZ′1-bOe其中X是Ca、Sr、Ba或它们的混合物,Re是稀土金属或镧系金属,包括钇,或它们的混合物;Z是Al、Ga、In、或它们的混合物,Z′是Cr、Mn、Fe、Co、或它们的混合物;0≤a≤1,0≤b≤1,c是取决于其它组分氧化态的值以及a和b值的数字,应使该组合物为电中性。
5.如权利要求1所述的催化膜反应器,其特征还在于所述粘合催化剂层是具有下式的混合离子和电子传导陶瓷:
M/XaRe1-aZbZ′1-bOc其中X是Ca、Sr、Ba或它们的混合物,Re是稀土金属或镧系金属,包括钇,或它们的混合物;Z是Al、Ga、In、或它们的混合物,Z′是Cr、Mn、Fe、Co、或它们的混合物;0≤a≤1,0≤b≤1,c是取决于其它组分氧化态的值以及a和b值的数字,应使该组合物为电中性;M是选自Ni、Pt、Pd、Rh、Ir、Ag、Cr、V、Mo、W、或它们的混合物,其中金属占混合传导催化剂重量百分数的范围约为1-50%。
6.如权利要求1所述的催化膜反应器,其特征在于所述反应器还包括在膜还原表面上的氧还原催化剂层。
7.如权利要求6所述的催化膜反应器,其特征还在于所述氧还原催化剂是LaaSr1-aCoO3-x,其中a是0≤a≤1的数字,x是使该化合物为电中性的数字。
8.如权利要求6所述的催化膜反应器,其特征还在于氧还原催化剂是选自Ag、Pt或Pd的金属。
9.如权利要求6所述的催化膜反应器,其特征还在于所述氧还原催化剂是具有下式的催化剂:ACo1-xMxO3-δ,其中A是Ca、Sr、Ba、或它们的混合物,x是小于1的数字,δ是使催化剂为电中性的数字;M是具有空金属轨道eg和填充金属轨道t2g的金属离子。
10.如权利要求1所述的催化膜反应器,其特征还在于所述的膜陶瓷材料具有下式:
A2-xLaxB2-yFeyO5+z其中A是碱土金属离子或碱土金属离子混合物,B是选自3d过渡金属或13族金属的金属离子或这些金属离子混合物;x和y各自独立地是大于或等于0但小于或等于2的数字;z是使该陶瓷为电中性的数字。
11.如权利要求1所述的催化膜反应器,其特征还在于所述三维催化剂是填充床催化剂。
12如权利要求1所述的催化膜反应器,其特征还在于所述三维催化剂是承载于惰性氧化物,或混合离子和电子传导氧化物上的金属。
13.如权利要求1所述的催化膜反应器,其特征还在于所述粘合催化剂层和三维催化剂选自能促进甲烷或高级烃部分氧化为CO和氢的催化剂。
14.如权利要求1所述的催化膜反应器,其特征还在于所述粘合催化剂层和三维催化剂选自能促进烃部分氧化为氧化物质的催化剂。
15.如权利要求1所述的催化膜反应器,其特征还在于所述粘合催化剂层和三维催化剂选自能促进烃部分氧化为环氧化物的催化剂。
16.如权利要求1所述的催化膜反应器,其特征还在于所述粘合催化剂层和三维催化剂选自能促进烷烃氧化脱氢的催化剂。
17.如权利要求1所述的催化膜反应器,其特征还在于所述粘合催化剂层和三维催化剂选自能促进甲烷或高级烃氧化偶合的催化剂。
18.如权利要求1所述的催化膜反应器,其特征还在于所述粘合催化剂层可防止膜的分解。
19.一种催化反应器膜,该膜有氧化表面和还原表面,在其氧化表面上有粘合催化剂层,其特征在于所述膜的材料是下式的陶瓷:
A2-xA′xB2-yB′yO5+z其中A是碱土金属离子或碱土金属离子的混合物;A'是选自镧系或钇的金属离子或这些金属离子的混合物;B是选自3d过渡金属或13族金属的金属离子或这些金属离子的混合物;B′是选自3d过渡金属、13族金属、镧系或钇的金属离子或这些金属离子的混合物;x和y各自独立地是大于或等于0,但小于或等于2的数字;z是使陶瓷材料为电中性的数字。
20.如权利要求19所述的催化反应器膜,其特征还在于所述粘合催化剂层是具有下式的混合的离子和电子传导陶瓷;
XaRe1-aZbZ′1-bOe其中X是Ca、Sr、Ba或它们的混合物,Re是稀土金属或镧系金属,包括钇,或它们的混合物;Z是Al、Ga、In、或它们的混合物,Z′是Cr、Mn、Fe、Co、或它们的混合物;a和b为数字,0≤a≤1,0≤b≤1,c是取决于其它组分氧化态的值以及a和b值的数字,应使该组合物为电中性。
21.如权利要求19所述的催化反应器膜,其特征还在于所述粘合催化剂层是具有下式混合的离子和电子传导材料:
M/XaRe1-aZbZ′1-bOe其中X是Ca、Sr、Ba或它们的混合物,Re是稀土金属或镧系金属,包括钇,或它们的混合物;Z是Al、Ga、In、或它们的混合物,Z′是Cr、Mn、Fe、Co、Cr、V、Mo、W或它们的混合物;a和b是数字,0≤a≤1,0≤b≤1,c是取决于其它组分氧化态的值以及a和b值的数字,应使该组合物为电中性;M是选自Ni、Pt、Pd、Rh、Ir、Ag、或它们的混合物,其中金属占混合传导材料的重量百分数范围约为1-50%。
22.如权利要求19所述的催化反应器膜,其特征还在于所述粘合催化剂层可防止膜的分解。
23.如权利要求3所述的催化膜反应器,用于通过氧化含甲烷气体来生产合成气,其特征在于所述粘合催化剂层是具有离子传导和电子传导的陶瓷,所述三维催化剂的结构是在弱碱性基体中有第一排过渡金属离子。
24.如权利要求6所述的催化膜反应器,其特征还在于所述氧还原催化剂是选自金属Pd、或LaaSr1-aCoO3-x,其中的a是0≤a≤1的数字,x是使该化合物为电中性的数字。
25.如权利要23所述的催化膜反应器,其特征还在于氧还原催化剂是La0.8Sr0.2CoO3-x上的Pd(5%重量),粘合催化剂层是La0.8Sr0. 2NmO3上的Ni(20%重量),三维催化剂是氧化铝上的Ni(5%重量)。
26.一种反应物气体进行氧化的方法,所述方法包括下列步骤:
(a)提供权利要求1所述的催化膜反应器;
(b)在反应器的氧化区引入反应物气体;
(c)在反应器的还原区引入含氧气体;
(d)加热将氧化区与还原区分开的传导氧离子的不透气膜,进行含氧气体的还原,让氧离子传递到氧化区,并进行反应物气体的氧化。
27.一种对反应物气体进行氧化并对含氧气体进一步还原的方法,所述方法包括下列步骤:
(a)提供将氧化区和还原区分开的传导氧离子的不透气膜;
(b)在氧化区提供三维催化剂,它不在膜上但与膜表面接触;
(c)使反应物气体与膜表面以及氧化区中的三维催化剂接触;
(d)使含氧气体与还原区的膜表面接触;
(e)加热膜,使含氧气体还原,在氧化区的膜表面上产生氧离子,并在膜表面、三维催化剂或者这两个部位进行反应物气体的氧化。
28.如权利要求27所述的方法,其特征还在于在步骤(a)中,不透气膜在其表面提供有粘合催化剂与氧化区接触。
29.如权利要求28所述的方法,其特征还在于所述反应物气体是能氧化生产合成气的甲烷或含甲烷气体。
30.如权利要求28所述的方法,其特征还在于所述反应物气体是高级烃、高级烃混合物或高级烃与甲烷的混合物。
CNB988118548A 1997-10-29 1998-10-29 带有两组分三维催化剂的催化膜反应器 Expired - Fee Related CN1147353C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/960,182 1997-10-29
US08/960,182 US6355093B1 (en) 1993-12-08 1997-10-29 Two component-three dimensional catalysis

Publications (2)

Publication Number Publication Date
CN1280521A true CN1280521A (zh) 2001-01-17
CN1147353C CN1147353C (zh) 2004-04-28

Family

ID=25502907

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988118548A Expired - Fee Related CN1147353C (zh) 1997-10-29 1998-10-29 带有两组分三维催化剂的催化膜反应器

Country Status (12)

Country Link
US (1) US6355093B1 (zh)
EP (1) EP1027149B1 (zh)
JP (1) JP4272812B2 (zh)
KR (2) KR100584278B1 (zh)
CN (1) CN1147353C (zh)
AT (1) ATE269156T1 (zh)
AU (1) AU737249B2 (zh)
DE (1) DE69824620T2 (zh)
DK (1) DK1027149T3 (zh)
EA (1) EA002444B1 (zh)
ES (1) ES2221998T3 (zh)
WO (1) WO1999021649A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665950B (zh) * 2009-10-14 2011-03-16 欧派斯环保科技(北京)有限公司 一种氧化锆载体复合涂层粒子电极及其制造方法
CN102762292A (zh) * 2009-11-06 2012-10-31 Cuf-化学工业股份有限公司 氢或氧电化学抽吸催化膜反应器及其用途
TWI391364B (zh) * 2005-02-04 2013-04-01 Thyssenkrupp Uhde Gmbh 中空陶瓷纖維之複合物,其製造方法及其用途
US8460432B2 (en) 2007-08-31 2013-06-11 Technical University Of Denmark Cheap thin film oxygen membranes
CN104190339A (zh) * 2014-08-18 2014-12-10 华南理工大学 一种等离子体电解氧化陶瓷膜催化转酯化反应器
CN107108207A (zh) * 2014-10-30 2017-08-29 弗劳恩霍夫应用研究促进协会 用于产生且热学增压氧气的方法和装置
CN107216295A (zh) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 由氧气和乙烯制备环氧乙烷的方法
CN110658186A (zh) * 2019-10-22 2020-01-07 北京联合大学 同时测定甲醛、苯和一氧化碳的敏感材料
CN110813208A (zh) * 2019-11-21 2020-02-21 重庆大学 具有堆叠式结构的气液固三相膜式微反应器
CN116328798A (zh) * 2022-12-29 2023-06-27 中国民航大学 一种共转化碘化合成三氟碘甲烷的方法

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592782B2 (en) * 1993-12-08 2003-07-15 Eltron Research, Inc. Materials and methods for the separation of oxygen from air
US6471921B1 (en) 1999-05-19 2002-10-29 Eltron Research, Inc. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing
US6302402B1 (en) 1999-07-07 2001-10-16 Air Products And Chemicals, Inc. Compliant high temperature seals for dissimilar materials
US6146549A (en) * 1999-08-04 2000-11-14 Eltron Research, Inc. Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties
US6793711B1 (en) * 1999-12-07 2004-09-21 Eltron Research, Inc. Mixed conducting membrane for carbon dioxide separation and partial oxidation reactions
DE19959873A1 (de) 1999-12-10 2001-06-13 Basf Ag Oxidationsreaktionen unter Verwendung von gemischtleitenden sauerstoffselektiven Membranen
JP2001269578A (ja) * 2000-01-19 2001-10-02 Toyota Motor Corp 排気ガス浄化用触媒
FR2807421B1 (fr) 2000-04-07 2002-07-12 Rhodia Terres Rares Composes derives de la2mo2o9 et leur utilisation comme conducteurs ioniques
JP2004507339A (ja) * 2000-04-21 2004-03-11 ウォーターヴィジョンズ インターナショナル, インコーポレイティッド 膨張性物質を有する複合材料の形成
DE10026940A1 (de) * 2000-05-30 2001-12-06 Creavis Tech & Innovation Gmbh Elektrochemische Zelle zur Oxidation organischer Verbindungen und elektrokatalytischer Oxidationsprozess
WO2002024571A1 (fr) * 2000-09-20 2002-03-28 Teikokuoil.Co.,Ltd. Procede permettant d'oxyder partiellement du methane a l'aide d'une membrane ceramique de permeation dense selective pour l'oxygene
US20050098495A1 (en) * 2001-03-02 2005-05-12 Hughes Kenneth D. Purification materials and method of filtering using the same
JP3657542B2 (ja) * 2001-07-24 2005-06-08 独立行政法人産業技術総合研究所 化学反応器
WO2003033431A1 (fr) 2001-10-15 2003-04-24 Nippon Steel Corporation Composition de porcelaine, materiau composite contenant un catalyseur et de la ceramique, reacteur de film, procede et appareil de production de gaz synthetique, et procede d'activation de catalyseur
US6613299B2 (en) * 2001-11-13 2003-09-02 Sud-Chemie Prototech, Inc. Catalyzed diesel particulate matter exhaust filter
US20040159605A1 (en) * 2002-02-01 2004-08-19 Hughes Kenneth D. Compositions of insoluble magnesium containing minerals for use in fluid filtration
US20050153835A1 (en) * 2002-03-29 2005-07-14 Yoshitaka Uchida Modification catalyst composition
US6861002B2 (en) * 2002-04-17 2005-03-01 Watervisions International, Inc. Reactive compositions for fluid treatment
US7125528B2 (en) 2002-05-24 2006-10-24 Bp Corporation North America Inc. Membrane systems containing an oxygen transport membrane and catalyst
WO2004020901A1 (de) * 2002-08-30 2004-03-11 Alstom Technology Ltd Hybridbrenner und zugehöriges betriebsverfahren
US7201841B2 (en) * 2003-02-05 2007-04-10 Water Visions International, Inc. Composite materials for fluid treatment
US7011898B2 (en) * 2003-03-21 2006-03-14 Air Products And Chemicals, Inc. Method of joining ITM materials using a partially or fully-transient liquid phase
GB0310281D0 (en) * 2003-05-03 2003-06-11 Univ Robert Gordon A membrane apparatus and method of preparing a membrane and a method of producing synthetic gas
US7425231B2 (en) 2003-08-06 2008-09-16 Air Products And Chemicals, Inc. Feed gas contaminant removal in ion transport membrane systems
US7658788B2 (en) 2003-08-06 2010-02-09 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system with directed internal gas flow
US7179323B2 (en) * 2003-08-06 2007-02-20 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system
FR2859115B1 (fr) 2003-08-28 2005-10-28 Centre Nat Rech Scient Membranes de conduction electronique et oxygene ionique comprenant une couche d'oxyde mixte de vanadium et de magnesium
US20050092175A1 (en) * 2003-10-29 2005-05-05 Meacham G.B. K. Noble metal gas barriers
US7074255B2 (en) * 2003-10-29 2006-07-11 Meacham G B Kirby Noble metal gas barriers
FR2862005B1 (fr) 2003-11-06 2006-01-06 Air Liquide Ajout d'agent(s) bloquant(s) dans une membrane ceramique pour bloquer la croissance cristalline des grains lors du frittage sous atmosphere
FR2866695B1 (fr) * 2004-02-25 2006-05-05 Alstom Technology Ltd Chaudiere oxy-combustion avec production d'oxygene
US9334098B1 (en) 2004-03-26 2016-05-10 Kenneth D. Hughes Reactive materials packaging
US8636919B1 (en) 2004-03-26 2014-01-28 Kenneth D. Hughes Reactive solutions
US7771519B2 (en) 2005-01-03 2010-08-10 Air Products And Chemicals, Inc. Liners for ion transport membrane systems
JP2007224747A (ja) * 2006-02-21 2007-09-06 Mitsubishi Motors Corp ディーゼルエンジンの排ガス浄化用フィルタおよび排ガス浄化装置
WO2007118237A2 (en) * 2006-04-07 2007-10-18 President And Fellows Of Harvard College Nano-scale gas separation device utilizing thin film structures for hydrogen production
WO2009055654A1 (en) * 2007-10-26 2009-04-30 Eltron Research & Development, Inc. A metal oxide system for adsorbent applications
DE102009039149A1 (de) * 2009-08-31 2011-03-03 Uhde Gmbh Katalytische Membranmaterial-Beschichtung
BR112012030016B8 (pt) 2010-05-24 2021-05-18 Siluria Technologies Inc processo para preparar etileno a partir de metano e método para preparar um produto a jusante de etileno
FI126249B (fi) * 2011-05-10 2016-08-31 Aalto-Korkeakoulusäätiö Polttomenetelmä ja poltin
EA029867B1 (ru) 2011-05-24 2018-05-31 Силурия Текнолоджиз, Инк. Катализаторы для нефтехимического катализа
DE102011082073A1 (de) 2011-09-02 2013-03-07 Technische Universität Berlin Verfahren zur oxidativen Umwandlung von Alkanen und Reaktoranordnung zur Durchführung dieses Verfahrens
US20130158322A1 (en) 2011-11-29 2013-06-20 Siluria Technologies, Inc. Polymer templated nanowire catalysts
US9133079B2 (en) 2012-01-13 2015-09-15 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
US9446397B2 (en) 2012-02-03 2016-09-20 Siluria Technologies, Inc. Method for isolation of nanomaterials
CA2874526C (en) 2012-05-24 2022-01-18 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
CA3125016C (en) 2012-05-24 2024-04-30 Lummus Technology Llc Catalytic forms and formulations
US9969660B2 (en) 2012-07-09 2018-05-15 Siluria Technologies, Inc. Natural gas processing and systems
US20150252272A1 (en) * 2012-09-28 2015-09-10 Aditya Birla Science And Technology Company Limited Methods and compositions for desulfurization of compositions
WO2014089479A1 (en) 2012-12-07 2014-06-12 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
JP2016505501A (ja) 2012-12-19 2016-02-25 プラクスエア・テクノロジー・インコーポレイテッド 酸素輸送膜集合体をシールするための方法
US20140219884A1 (en) * 2013-01-07 2014-08-07 Sean M. Kelly High emissivity and high temperature diffusion barrier coatings for an oxygen transport membrane assembly
NO20130145A1 (no) * 2013-01-28 2014-07-29 Yara Int Asa En ammoniakkoksidasjonskatalysator for fremstillingen av salpetersyre basert på metalldopet yttrium
EP2969184A4 (en) 2013-03-15 2016-12-21 Siluria Technologies Inc CATALYSTS FOR PETROCHEMICAL CATALYSIS
EP2980050B1 (en) * 2013-03-29 2019-10-23 NGK Insulators, Ltd. Aluminophosphate-metal oxide bonded body and production method for same
US9296671B2 (en) 2013-04-26 2016-03-29 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
US9611144B2 (en) 2013-04-26 2017-04-04 Praxair Technology, Inc. Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that is free of metal dusting corrosion
US9938145B2 (en) 2013-04-26 2018-04-10 Praxair Technology, Inc. Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
WO2014194101A1 (en) * 2013-05-29 2014-12-04 Clean Diesel Technologies, Inc. Zpgm diesel oxidation catalyst systems
US9150476B1 (en) * 2013-08-02 2015-10-06 U.S. Department Of Energy Method of CO and/or CO2 hydrogenation using doped mixed-metal oxides
RU2680048C2 (ru) 2013-10-07 2019-02-14 Праксайр Текнолоджи, Инк. Реактор с комплектом керамических транспортирующих кислород мембран и способ риформинга
WO2015081122A2 (en) 2013-11-27 2015-06-04 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
CN106068323B (zh) 2014-01-08 2019-09-06 希路瑞亚技术公司 乙烯成液体的系统和方法
WO2015106023A1 (en) 2014-01-09 2015-07-16 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10822234B2 (en) 2014-04-16 2020-11-03 Praxair Technology, Inc. Method and system for oxygen transport membrane enhanced integrated gasifier combined cycle (IGCC)
WO2015168601A2 (en) 2014-05-02 2015-11-05 Siluria Technologies, Inc. Heterogeneous catalysts
HUE054014T2 (hu) 2014-09-17 2021-08-30 Lummus Technology Inc Katalizátorok metán oxidatív csatolására és etán oxidatív dehidrogenálására
WO2016057164A1 (en) 2014-10-07 2016-04-14 Praxair Technology, Inc Composite oxygen ion transport membrane
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
KR101726608B1 (ko) 2015-04-01 2017-04-26 한국에너지기술연구원 고투과성 복합체 산소 분리막 및 그 제조방법
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US10441922B2 (en) 2015-06-29 2019-10-15 Praxair Technology, Inc. Dual function composite oxygen transport membrane
EP3362425B1 (en) 2015-10-16 2020-10-28 Lummus Technology LLC Separation methods and systems for oxidative coupling of methane
US10118823B2 (en) 2015-12-15 2018-11-06 Praxair Technology, Inc. Method of thermally-stabilizing an oxygen transport membrane-based reforming system
US9938146B2 (en) 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor
JP2019513081A (ja) 2016-04-01 2019-05-23 プラクスエア・テクノロジー・インコーポレイテッド 触媒含有酸素輸送膜
CA3019396A1 (en) 2016-04-13 2017-10-19 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
FI20165493L (fi) * 2016-06-14 2017-12-15 Teknologian Tutkimuskeskus Vtt Oy Menetelmä ja reaktori hiilivetyjen osittaiseen katalyyttiseen hapetukseen
US20180169561A1 (en) 2016-12-19 2018-06-21 Siluria Technologies, Inc. Methods and systems for performing chemical separations
US10532927B2 (en) * 2017-01-09 2020-01-14 Alliance For Sustainable Energy, Llc Graded catalytic-protective layer for an efficient and stable water-splitting photocathode
US11001542B2 (en) 2017-05-23 2021-05-11 Lummus Technology Llc Integration of oxidative coupling of methane processes
US10688472B1 (en) 2017-06-02 2020-06-23 U.S. Department Of Energy Method of exhaust cleanup from combustion processes using mixed-metal oxide based catalysts
WO2019010498A1 (en) 2017-07-07 2019-01-10 Siluria Technologies, Inc. SYSTEMS AND METHODS FOR OXIDIZING METHANE COUPLING
EP3797085A1 (en) 2018-05-21 2021-03-31 Praxair Technology, Inc. Otm syngas panel with gas heated reformer
US11767600B2 (en) * 2018-11-06 2023-09-26 Utility Global, Inc. Hydrogen production system

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607863A (en) 1967-02-28 1971-09-21 Dyckerhoff Zementwerke Ag Clathrate compounds
US3754951A (en) 1971-07-26 1973-08-28 Kaiser Aluminium Chem Corp Periclase refractory grain
GB1533125A (en) 1975-07-22 1978-11-22 Perlmooser Zementwerke Ag Cement and process and apparatus for its production
US4330633A (en) 1980-08-15 1982-05-18 Teijin Limited Solid electrolyte
US4791079A (en) 1986-06-09 1988-12-13 Arco Chemical Company Ceramic membrane for hydrocarbon conversion
US4827071A (en) 1986-06-09 1989-05-02 Arco Chemical Technology, Inc. Ceramic membrane and use thereof for hydrocarbon conversion
US5306411A (en) 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US5723035A (en) 1987-03-13 1998-03-03 The Standard Oil Company Coated membranes
US4933054A (en) 1987-03-13 1990-06-12 The Standard Oil Company Electrocatalytic oxidative dehydrogenation of saturated hydrocarbons to unsaturated hydrocarbons
US5714091A (en) 1987-03-13 1998-02-03 The Standard Oil Company Process for the partial oxydation of hydrocarbons
US5591315A (en) 1987-03-13 1997-01-07 The Standard Oil Company Solid-component membranes electrochemical reactor components electrochemical reactors use of membranes reactor components and reactor for oxidation reactions
US4802958A (en) 1987-03-17 1989-02-07 The Standard Oil Company Process for the electrocatalytic oxidation of low molecular weight hydrocarbons to higher molecular weight hydrocarbons
US4793904A (en) 1987-10-05 1988-12-27 The Standard Oil Company Process for the electrocatalytic conversion of light hydrocarbons to synthesis gas
CA2017243C (en) 1989-05-25 2003-09-30 Terry J. Mazanec Novel solid multi-component membranes, electrochemical reactor and use of membranes and reactor for oxidation reactions
DK0766330T3 (da) 1989-12-27 2002-10-07 Standard Oil Co Bestanddele til anvendelse i elektroniskemiske celler og deres anvendelse ved oxygenseparation
US5160713A (en) 1990-10-09 1992-11-03 The Standard Oil Company Process for separating oxygen from an oxygen-containing gas by using a bi-containing mixed metal oxide membrane
US5210059A (en) 1991-10-10 1993-05-11 Exxon Research & Engineering Company Multilayered catalyst for controlled transport of reactant
US5779904A (en) 1992-03-31 1998-07-14 Inrad Synthesis of inorganic membranes on supports
US5240480A (en) 1992-09-15 1993-08-31 Air Products And Chemicals, Inc. Composite mixed conductor membranes for producing oxygen
DE69416507T2 (de) * 1993-03-02 1999-08-26 Stanford Res Inst Int Exothermisches verfahren mit porösem mittel zur regelung der reaktionsgeschwindigkeit und der exothermischen wärme
US5580497A (en) 1993-04-16 1996-12-03 Amoco Corporation Oxygen ion-conducting dense ceramic
US5356728A (en) 1993-04-16 1994-10-18 Amoco Corporation Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions
US5397541A (en) 1993-09-10 1995-03-14 National Research Council Of Canada Thin film oxygen sensor
US6033632A (en) 1993-12-08 2000-03-07 Eltron Research, Inc. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
US5569633A (en) 1994-01-12 1996-10-29 Air Products And Chemicals, Inc. Ion transport membranes with catalyzed dense layer
US5534471A (en) 1994-01-12 1996-07-09 Air Products And Chemicals, Inc. Ion transport membranes with catalyzed mixed conducting porous layer
US5821185A (en) 1994-01-14 1998-10-13 Eltron Research, Inc. Solid state proton and electron mediating membrane and use in catalytic membrane reactors
AU706663B2 (en) 1994-09-23 1999-06-17 Standard Oil Company, The Oxygen permeable mixed conductor membranes
US5573737A (en) * 1994-09-27 1996-11-12 The United States Of America As Represented By The United States Department Of Energy Functionally gradient material for membrane reactors to convert methane gas into value-added products
US5681373A (en) 1995-03-13 1997-10-28 Air Products And Chemicals, Inc. Planar solid-state membrane module
US5846641A (en) * 1997-03-20 1998-12-08 Exxon Research And Engineering Company Multi-layer membrane composites and their use in hydrocarbon partical oxidation
US6146549A (en) 1999-08-04 2000-11-14 Eltron Research, Inc. Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI391364B (zh) * 2005-02-04 2013-04-01 Thyssenkrupp Uhde Gmbh 中空陶瓷纖維之複合物,其製造方法及其用途
CN101795756B (zh) * 2007-08-31 2013-06-12 丹麦科技大学 廉价的薄层氧膜
US8460432B2 (en) 2007-08-31 2013-06-11 Technical University Of Denmark Cheap thin film oxygen membranes
CN101665950B (zh) * 2009-10-14 2011-03-16 欧派斯环保科技(北京)有限公司 一种氧化锆载体复合涂层粒子电极及其制造方法
CN102762292B (zh) * 2009-11-06 2015-09-30 Cuf-化学工业股份有限公司 氢或氧电化学抽吸催化膜反应器及其用途
CN102762292A (zh) * 2009-11-06 2012-10-31 Cuf-化学工业股份有限公司 氢或氧电化学抽吸催化膜反应器及其用途
CN104190339A (zh) * 2014-08-18 2014-12-10 华南理工大学 一种等离子体电解氧化陶瓷膜催化转酯化反应器
CN104190339B (zh) * 2014-08-18 2016-03-02 华南理工大学 一种等离子体电解氧化陶瓷膜催化转酯化反应器
CN107108207A (zh) * 2014-10-30 2017-08-29 弗劳恩霍夫应用研究促进协会 用于产生且热学增压氧气的方法和装置
CN107108207B (zh) * 2014-10-30 2019-08-27 弗劳恩霍夫应用研究促进协会 用于产生且热学增压氧气的方法和装置
CN107216295A (zh) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 由氧气和乙烯制备环氧乙烷的方法
CN110658186A (zh) * 2019-10-22 2020-01-07 北京联合大学 同时测定甲醛、苯和一氧化碳的敏感材料
CN110658186B (zh) * 2019-10-22 2021-08-13 北京联合大学 同时测定甲醛、苯和一氧化碳的敏感材料
CN110813208A (zh) * 2019-11-21 2020-02-21 重庆大学 具有堆叠式结构的气液固三相膜式微反应器
CN116328798A (zh) * 2022-12-29 2023-06-27 中国民航大学 一种共转化碘化合成三氟碘甲烷的方法

Also Published As

Publication number Publication date
EP1027149B1 (en) 2004-06-16
ES2221998T3 (es) 2005-01-16
KR20050123184A (ko) 2005-12-29
JP4272812B2 (ja) 2009-06-03
EA200000459A1 (ru) 2000-12-25
KR20010031617A (ko) 2001-04-16
DE69824620T2 (de) 2005-06-23
EA002444B1 (ru) 2002-04-25
EP1027149A1 (en) 2000-08-16
JP2001520931A (ja) 2001-11-06
KR100584278B1 (ko) 2006-05-26
CN1147353C (zh) 2004-04-28
AU737249B2 (en) 2001-08-16
AU1206899A (en) 1999-05-17
DK1027149T3 (da) 2004-09-06
ATE269156T1 (de) 2004-07-15
DE69824620D1 (de) 2004-07-22
KR100584277B1 (ko) 2006-05-26
WO1999021649A1 (en) 1999-05-06
US6355093B1 (en) 2002-03-12

Similar Documents

Publication Publication Date Title
CN1280521A (zh) 带有两组分三维催化剂的催化膜反应器
JP3212304B2 (ja) 新規な固体多成分膜、電気化学的リアクター、並びに酸化反応に対する膜およびリアクターの使用
JP2001520931A5 (zh)
AU737377B2 (en) Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
US5356728A (en) Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions
US6949230B2 (en) Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
EP1507581B1 (en) Membrane systems containing an oxygen transport membrane and catalyst
US5639437A (en) Oxygen ion-conducting dense ceramic
ES2100877T5 (es) Reactores electroquimicos y membranas de varios componentes utiles para reacciones de oxidacion.
CN1253511A (zh) 含有氧离子传导致密陶瓷膜的自热反应器和使用自热反应器生产合成气的方法
US7151067B2 (en) Porcelain composition, composite material comprising catalyst and ceramic, film reactor, method for producing synthetic gas, apparatus for producing synthetic gas and method for activating catalyst
JP2003190792A (ja) 触媒化されたセラミックス複合材及び合成ガス製造方法
JP2005281077A (ja) 磁器組成物、複合材料及び化学反応装置
Courson et al. Ion oxide conductor as a catalytic membrane for selective oxidation of hydrocarbons

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040428

Termination date: 20131029