CN1276916A - 多个光学元件在晶片层的集成 - Google Patents

多个光学元件在晶片层的集成 Download PDF

Info

Publication number
CN1276916A
CN1276916A CN98809805A CN98809805A CN1276916A CN 1276916 A CN1276916 A CN 1276916A CN 98809805 A CN98809805 A CN 98809805A CN 98809805 A CN98809805 A CN 98809805A CN 1276916 A CN1276916 A CN 1276916A
Authority
CN
China
Prior art keywords
wafer
optical element
mould
grand master
master pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98809805A
Other languages
English (en)
Other versions
CN1165994C (zh
Inventor
布雷恩·哈登
艾伦·凯瑟曼
迈克尔·费尔德曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
Tessera North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tessera North America Inc filed Critical Tessera North America Inc
Publication of CN1276916A publication Critical patent/CN1276916A/zh
Application granted granted Critical
Publication of CN1165994C publication Critical patent/CN1165994C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0085Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing wafer level optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • G02B6/4231Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment with intermediate elements, e.g. rods and balls, between the elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/4232Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using the surface tension of fluid solder to align the elements, e.g. solder bump techniques
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7042Alignment for lithographic apparatus using patterning methods other than those involving the exposure to radiation, e.g. by stamping or imprinting
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/123Integrated head arrangements, e.g. with source and detectors mounted on the same substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1362Mirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12102Lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4221Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera
    • G02B6/4224Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera using visual alignment markings, e.g. index methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4238Soldering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4239Adhesive bonding; Encapsulation with polymer material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1089Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1089Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina
    • Y10T156/1092All laminae planar and face to face

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Micromachines (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Head (AREA)

Abstract

通过将含有光学元件的衬底粘合或通过在晶片衬底的任一侧设置光学元件,可形成集成的多个光学元件。晶片被接着切成块以得到各自独立的单元。最好对每个切成的块密封以防止在晶片之间出现切割浆料。光学元件可以用光刻法直接形成,或用光刻法产生的掩模使元件模压出来。对准特征使这种集成的多个光学元件以及晶片层上的定位过程的生产效率得以提高。

Description

多个光学元件在晶片层的集成
本发明涉及将多个光学元件集成在晶片层上。更具体地说,本发明涉及集成的多个元件的高效率生产。
随着在广泛的领域内对较小型光学部件应用需求的增加,对高效地生产这种光学元件的能力的需求也在增加。在大批量生产中形成这种集成的多个光学元件时,更加需要精确地对准。而且,这种对准在集成超过一个的光学元件时是很重要的。
集成的多个光学元件是沿z轴(即光传播方向上)层叠在一起的多个光学元件。这样,沿着z轴通行的光依次穿过各光学元件。将这些元件集成是为了不再需要各元件的进一步对准,从而仅使集成的元件与典型地含有有源元件的所需系统对准。
很多光学系统要求多个光学元件。这类所需的多个光学元件包括多个折射元件、多个衍射元件和折射/衍射混合元件。在过去,这些多个元件的系统中很多是通过将独立的元件焊接在一起或将它们个别地焊接在一对准结构上。
在要被安装在用机械加工工具形成的机械对准结构中的大块的或肉眼可见的光学元件中,一般可以达到的对准精度是大约25-50微米。为了达到15-25微米的更高的精度,需要进行有源对准。有源对准一般包括打开光源例如激光,然后依次用未固化处理的紫外线(UV)粘合剂将各光学件放置各光学件。接着通常是用移动台移动各部件,直到达到来自激光的合适的响应为止。然后该部件被固定并用UV光对环氧树脂进行处理,从而装配好该元件。对系统中的各元件依次进行上述操作。
用有源对准方法可以实现对独立元件的小于15微米的对准精度,但这种精度大大地增加了移动元件所需的时间。当要对准不止一个光学元件时,这种时间的增加还会更大。这样,即使使用有源对准,这种对准精度一般也是不切实际的。
在光学元件的很多新的应用中,如在共同转让的同时待审的专利申请08/727,837(在此引用作为参考)中提出的光学头结构中,以及上述的集成光束定形应用中,需要制造由数个微型光学部件构成的光学系统,并且其中所需的公差要比用常规方法所能达到的更紧凑。除了要求更紧凑的公差外,还要求低成本的元件。所需要的对准公差可以是1微米到5微米,这如果用常规方法来实现成本就会非常高。
为了达到更好的对准公差,被动对准技术已被用于如授予Fe1dman的美国专利5,683,469中,该专利题为“具有光学和电气互连的微电子组件”。一种被动对准技术是将金属焊点设置在光学元件上和激光器上,并将焊剂置于它们之间,用自对准特征来实现对准。当焊剂软熔时,其中的表面张力使各部件自对准。但是被动对准并没有用于晶片与晶片的对准。特别是,所需焊剂块的高密度以及晶片的厚度和质量使这种对准是不实际的。
将形成在分离晶片上的多个光学元件在晶片层上集成的另一个问题是由于形成独立的集成元件时的切割工艺所引起的。由于使用切割浆料而使该切割工艺很脏乱。当切割单个晶片时,其表面可以被清洁以去除切割浆料。但是,当晶片被粘合在一起时,浆料进行入晶片之间的空隙里。从晶片之间的空隙中去除浆料是非常困难的。
集成元件有时还通过浇铸方法来制成。利用浇铸方法,可以制成塑料元件,其具有两个位于衬底相对侧上的成型元件。多个塑料元件可以用多空腔注入成型工具同时形成。
如同授予Carpenter的题为“用于浇铸玻璃光学元件的设备”的美国专利4,883,528中所提出的,也可以通过浇铸方法来形成玻璃元件。在这种情况下,就象塑料浇铸一样,通过在衬底的相对侧浇铸两个元件来形成多个集成元件。但玻璃浇铸具有制造工具价格高和可使用尺寸有局限的缺点。
为了使光学件便宜,一般采用复制技术。除了上面讨论过的塑料浇铸和玻璃浇铸外,还可以使个别元件模压。这种模压的例子可见于授予Ga1arneau的题为“用于复制大面积衍射光学元件的按比例扩大的工艺”的美国专利5,597,613。复制的光学元件开始并未与焊点自对准技术一起使用。对于每种复制方法,尽可能廉价地生产很多独立的元件。
这种复制工艺还没有在晶片层上与后继的切割一起使用。这主要是由于在切割期间加在模压层上的应力的缘故。当在晶片层上使用模压时,其独有的问题是,例如诸如保持被模压的聚合物与衬底有充分的配合,以便在小规模或在集成超过一个元件的情况时个别元键的对准不会混乱。
而且,这些复制工艺与晶片层光刻工艺是不相容的。特别是,复制工艺没有达到所需的对准精度。即使模压与光刻工艺相容,一次对一个元件光刻构图成本也太高了。而且,光刻工艺的化学处理部分将作用于模压材料。
常规工艺的塑料上模压以及光刻工艺还有其它的问题。具体地说,塑料还被光刻工艺的化学物质作用。塑料也会由于热效应而弯曲,这对于光刻工艺过程中的对准来说是有害的。
考虑到上述的背景,本发明的一个目的是高效地生产集成的多个光学元件。这种高效的生产通过形成在晶片层上形成集成的多个光学元件来实现。
本发明还有一个目的是解决当要实现这种集成的多个光学元件的晶片层生产时所引起的问题。这些问题包括保证精确地对准、当有多个晶片粘合在一起时可以精确地将晶片切割为各个集成的多个光学元件部分,以及提供另外的特点,使集成的多个光学元件能容易地组合为用于所需的整个系统。
本发明的另一个目的是提供模压,其具有充分的对准以用于光刻的特征,以及足够的粘性以承受切割。
本发明的这些和其它目的将从下面的详细说明中变得易于理解。但是,应当理解这些关于本发明优选实施例的详细说明所给出的详细的例子只是一种说明方式,因为通过这些详细说明,熟悉本技术的人员在本发明精神和范围内的各种变化和改进。
本发明将通过下面的详细说明和附图而得到更好的理解,它们只是对本发明的说明而非对本发明的限制。附图中,
图1表示了用于将两个晶片粘合在一起的第一实施例;
图2表示了用于将两个晶片粘合在一起的第二实施例;
图3a是待被粘合的晶片的透视图;
图3b是待被粘合的晶片上的一单个模子(die)的俯视图;
图4a和4b显示了将两个衬底粘合在一起的具体例子;
图5是本发明所述粘合过程的流程图;
图6a显示了一个待被晶片形式的原模元件模压的表面;
图6b显示了一个待被晶片形式的原模元件模压且其上含有可模压材料的表面;
图7显示出了一个晶片,在此晶片的两侧上都形成有光学元件;以及
图8是一个衬底的截面图,该衬底含有一个由一小透镜和一直接集成在小透镜上的衍射元件组成的混合元件。
如图1所示,第一衬底晶片10和第二衬底晶片12将会被粘合在一起,其目的是为了提供集成化的多光学元件。晶片一般是一个圆盘,其直径通常为4、6、8或12英寸,其厚度一般在400微米至6毫米之间。衬底晶片可具有任何所需的结构。根据所需应用的要求,衬底最好是透光且平坦的,即,衬底表面上的高度变化应很小,如,小于一个波长。
在这些晶片的一个或两个表面上具有一由各光学元件组成的阵列。各光学元件可以是衍射元件、反射元件或它们的组合。虚线8表示了将在晶片上进行切割的地方,其用途是为了提供单个集成元件。
一种粘合材料14被放置在各衬底的关键位置上以便于进行粘合。通过用它围绕将形成最终集成模子的光学元件,粘合剂14将在晶片的重要接合处形成密封。在切割分块期间,该密封可防止切割浆料进入元件之间,因其可造成对元件的污染。由于元件保持粘合,所以几乎不可能清除夹在元件之间的切割浆料。在粘合衍射元件时,切割浆料会带来更多的问题,因为衍射元件的结构容易夹住浆料。
粘合材料14最好使用粘合剂或焊剂。在很多应用中最好使用焊剂,因为它比粘合剂更为平滑,而且在粘合前更容易进行轻微的移动。而粘合剂的优点在于它们在一些应用中较为便宜,它们可用加热方式粘合,也可用不加热方式,它们不会氧化而且可以是透明的。
当使用液体粘合剂作为粘合材料时,液体粘合剂的粘性十分重要。粘合剂不能太稀,否则就会起泡,而这将使粘性不确定,并会使切割浆料进入到晶片上的元件之间,进而污染元件。粘合剂也不能太稠,否则就会使恢复力太大,从而不能实现待被粘合的衬底10和12之间的充分紧密接触。液体粘合剂的粘性最好在1,000至10,000厘泊之间。适宜的环氧树脂包括Norland 68和Masterbond UV 15-7。
当采用液体粘合剂时,必须用一种控制方式来提供粘合剂,例如从一个喷嘴喷出,该喷嘴根据待接收液体粘合剂的所需坐标而受到控制。当晶片对准之后,整个组件都得到处理,由此使液体粘合剂固化并完成粘合。
当使用焊剂时,可采用电镀或喷涂处理。例如,可把一个掩模材料放在衬底不需焊剂的地方上。然后将整个晶片放入一个浴室或喷涂室。接着将焊剂置于整个晶片之上并将掩模材料抽走,使得焊剂留在没有掩模材料的地方。一旦晶片被正确对准后,焊剂将被加热并进行软熔。在焊剂冷却并再固化后,粘合完成。
当在图1中单独使用的粘合材料为一种液体粘合剂时,为了保证粘合材料保留在其被淀积的地方,就需使用更为粘稠的粘合剂。即使用了粘稠的粘合剂,粘合剂仍然会在一个相对较大的面积上扩散开,其结果会导致在待被集成的元件之间需要更大的起泡空间以容纳这种扩散,而在此空间上将没有粘合剂对元件本身的干扰。
在单独使用粘合剂时,还很难控制粘合剂的高度。其结果常会使粘合剂的量过度,并且会使粘合剂的高度以及晶片之间的间隔大于所需距离。对粘合剂高度进行控制的困难还可导致空气进入包含有光学元件的空间。而这是由对于晶片对抽真空时高度和时间的不确定性所引起的。这样的空气不是所需的,因其会在受热时膨胀并破坏元件的粘合。
因此,在图2中显示了一个具有优点的替代方案,该图中仅显示了晶片的一个单个集成光学元件。在用于衬底晶片12的光学元件阵列被制作的同时,用于待被集成的各元件的支座16也被蚀刻或复制进底部衬底晶片12,支座16的材料一般与衬底晶片的材料相同。这些支座16最好在两个表面之间形成一个沟槽,其中将放置粘合剂14。这些沟槽可在待被粘合的衬底之间提供精确的空间,并可提供更多的粘合表面以供粘合剂14进行粘合。这个增加了的表面区域还可减少起泡问题。
在使用焊剂作为粘合材料14时,最好采用固体支座以在晶片间提供所需的间隔。然后焊剂被淀积入支座顶部的一个薄层内(如,4-5微米的薄层)。在可以单独使用焊剂时(如图1所示),将焊剂与支座一起使用可以更加灵活和经济。
使用支座可以获得更加均匀和可预测的高度,它能减少进入粘合元件之间的空气。因为分隔的可变性被减少,所以可在粘合材料与其它衬底接触时或之前就进行抽真空。
不含有支座的衬底可以在其上形成各个凹槽,用于在其中接纳支座16。这些凹槽可以在任何光学元件被形成于其表面上的同时被生成。在这种结构中,支座16及相应的凹槽将起到对准的作用,其目的是为了便于将晶片与其它晶片对准。
图3a显示了在进行粘合和切割之前的两个衬底10和12。待被集成的单个光学元件19可由一个或多个光学元件构成。另外,晶片上的光学元件可与其它晶片相同或不同。在连接晶片10和12之前,粘合材料14被按上述方法放置在其中至少一个晶片上。衬底10和12最好在其某处含有基准标记18,一般是在其外沿处,这是为了保证晶片的对准,从而使其上的所有单个元件被同时对准。另外,可用基准标记18在晶片11和12上产生机械对准特征18’。可使用一个或两个基准标记18以及18’使晶片对准。
图3b显示了一个待被粘合的衬底12的俯视图,该图还包括了用于特殊元件19的环绕粘合材料14的位置。从这个俯视图中可以看出,粘合材料14完全环绕了单个光学元件,图中用19表示。
对图1或图2所示的实施例来说,既可直接提供粘合材料,也可通过利用支座完全密封各待被单独使用的元件来提供粘合材料。因此,在对晶片进行切割以实现单个元件时,就可防止切割过程中所产生的切割浆料污染光学元件。这样,在切割期间,除了提供一功能组件以保持对准和刚性外,粘合材料密封也可使切割成为一个更加干净的过程以用于最终的集成的模子。
图4a中显示了集成光学元件的一个具体实例。在第一衬底12的一个表面上形成有一个折射面20。在另一个衬底10的一个表面上则形成有一个衍射面22。两个衬底之一的一个底面上还可形成有一个衍射面28。形成用于接纳粘合剂14的沟槽的支座16被同时形成以作为一个折射透镜。
当晶片12上的透镜20正对另一个晶片时,透镜20的顶端也可被用于在衬底10和12之间提供恰当的空间,则可将支座16做得更高一些以实现所需的适当空间。
除了利用图3a所示的基准标记18来对准衬底10和12以外,基准标记18还可用来在衬底不是其粘合表面的背侧提供金属化的焊点24以便于进行对准以及将集成多光学元件插入至目标端以供使用。这些焊点在用于为集成多光学元件铺垫一个活动元件或电子元件时特别有用,如,在激光器中使用的光学头,激光指针,探测器,等等。另外,为了阻挡光束,可在衍射器22本身使用基准标记18时将金属26放置在相同的表面上。
图4b中显示了一个替代光学系统,该系统混合使用了多个分立器件,这些器件被提供在一个安装衬底上。如图4b所示,对于一些结构来说,其优点在于,它是先对其中一个晶片进行切割以形成多个单独的模子,再被动地将单独模子与另一个晶片对准,然后提供粘合材料以密封集成光学系统的各个元件并接着切割出晶片模子对。如4b中,集成光学子系统包括一个侧发光激光二极管25(它含有一监视二极管29)以及一个镜子27,该镜子用于将激光二极管25发出的光引向形成在晶片10上的一个衍射光学元件22,此元件已被预先切割分块成一个单独模子11。分立元件25、27和29被安装在衬底12中。粘合材料14密封住各子系统。图中的虚线8表明了将要进行切割的位置。在仍需将模子单独摆放在晶片上时,仍可有效地采用被动对准特征,而且形成在被粘合晶片一模子对四周的密封仍可防止切割浆料进入晶片模子对之间。当在一安装衬底上提供单独元件时,该安装衬底上含有用于各个子系统的基准标记。相关的结构可在US专利申请No.08/727,837申请于1996年9月27日且名为“用于光盘驱动的集成光学头及其形成方法”以及US专利申请No.08/917,865名为“集成光束整形器及其使用”(于1997年8月27日申请)中找到,本文在此将其引入以作为参考。
图5显示了根据本发明所示将两块晶片粘合在一起的一般过程的流程图。在步骤30中,一块衬底晶片被相对于待用的粘合材料而放置。在步骤32中,粘合材料以一种图形被施加给晶片,以在光学元件的四周直接地或利用支座16提供密封。在步骤34中,第二衬底晶片被与第一衬底晶片对准。在实现接触之前,衬底之间将被抽真空与清除空气。在步骤36中,晶片被接触在一起。在步骤38中,两个晶片的对准得到确认。在步骤40中,对粘合剂进行处理或者使焊剂软熔然后再固化,一旦粘合牢固后,在步骤42中,粘合的晶片将被切割成多个单独的元件。
待被粘合的元件最好采用直接光刻技术生成,例如,在Swanson的US专利No.5,161,059(本文将其引入以作为参考)中,对于衍射光学元件所采用的技术,或者如在O.Wada的“InP的Ion-束蚀刻及其在高辐射InGAsP/Inp发光二极管结构中的应用”(通用电化学杂志,固态科学及技术,Vol.131,No.10,1984年10月,第2373-2380页)一文中,通过熔化光刻胶以生成球形折射元件所采用的技术,或者如在1997年3月21日申请的临时专利No.60/041,042(本文将其引入以作为参考)中所采用的用于制作任何形状的折射元件的光刻技术,该技术是一种在当所用的掩模为灰度掩模(gray scale mask)(如高能光束敏感(HEBS)或吸收灰度掩模)时用于制作衍射光学元件的技术。
另外,这些光刻技术可被用于在玻璃中制作原模元件48,该原模元件48可被用来在晶片层(level)上从一个可模压材料50构成的层中切割出所需的元件(待被置于衬底52之上),如图6a所示。层50最好由聚合物制成,而衬底52则可由玻璃(如:熔丝硅石(fusedsilica))或塑料(最好是多碳酸盐或聚丙烯)制成。聚合物最好是一种紫外线可固化聚丙烯光聚合物,它可从原模上良好地分离下来并能很好地附着在衬底上。这样,在切割期间,它就不会在被固化之后发生破裂或从衬底上脱落下来。合适的聚合物包括PHILIPS型的40029树脂或GAFGARD233。图中的虚线58表示了晶片上用于形成一单独集成元件的切割线。
在图6a所示的实施例中,原模元件48上提供有可模压材料层50。在衬底52上最好有一层粘合催化剂54并且/或者在原模元件与模压材料之间的原模元件48上最好有一层分离剂。当原模和衬底采用相同材料时,或者当原模自然地具有较高的亲和力以附着可模压材料时,使用粘合催化剂和/或分离剂尤为重要。
所采用的粘合催化剂的类型是待被用作可模压材料、原模材料和衬底材料的光聚合物的一个函数。适用于玻璃衬底的粘合催化剂为HMDS(hexamethyl disilizane)。这种粘合催化剂可促使可模压材料更好地粘合在衬底52上,这对在晶片层上进行模压尤其重要,因为被模压的晶片要承受上述的切割。
原模48上提供的可模压层50以及衬底52上的粘合催化层54最好具有光滑的表面,因该表面将用于模压接触,而光滑的表面则易于消除空气泡,如下所述。原模48上的可模压层还提供了一种方便的机制以用于保持与未被粘合的晶片之间的对准,后面将有说明。
如果衬底或原模中有一个是由塑料制成,则最好在另一个非塑料制成的组件上放置聚合物,因为塑料会在紫外线区产生强烈吸收,而紫外线区正好用于激发聚合物。因此,如果需要使紫外线辐射穿透塑料,就要有高强度的光束以达到所需的效果,而这显然缺乏效率。
当利用光刻处理在晶片上提供其它的功能时,在晶片层上进行模压的作法十分有益。即,可有选择地从晶片上增加或减少材料。这种进一步的功能可包括抗反射涂层功能或其它功能,例如,在模压上的金属化焊点,它用于对从一系统的衬底52上切割下来的模子进行对准。任何这类功能也可通过在衬底52的背面56进行光刻而获得。
抗反射涂层一般应被施加在整个表面上,而不是有选择地施加。但是,当同时使用抗反射涂层和金属焊点时,金属不应附着在涂层出现的地方并且让涂层覆盖金属也是不行的。另外,如果要将晶片与另一晶片粘合,也不应将粘合材料附着在具有抗反射涂层的表面上,这就需要在涂层上进行位置选择。
为了实现用于与模压处理一起进行的光刻处理所需的对准要求,可在衬底52和原模48上提供多个如图3所示的基准标记。当执行光刻处理时,它所需的对准容限使得衬底的材料更倾向于选择玻璃而不是塑料。因为玻璃具有相对较小的热膨胀系数并且玻璃比塑料更为光滑,即,它的这些特征对于当在晶片层上形成元件时尤为重要。
尽管在图6a中显示了被提供于原模48之上的可模压材料50,但当将其施加给原模48时,却很难控制可模压材料50的厚度。由于希望使可模压材料成为一个尽可能薄的层但同时又能得到图形,所以最好通过(例如)在光刻胶或树脂上旋涂的办法将可模压材料50放置在衬底52上,如图6b所示。可模压材料50的层越厚,就需要越长的蚀刻时间,从而导致费用的增加,由于暴露在蚀刻过程的时间增加,用于构图的材料的退化也会相应增加,而且由于在元件中蚀刻速度的变化,也会增加其不准确性。设置于衬底52上的可模压材料50的厚度可用传统方法进行精确控制。
当将原模放置于衬底之上时,不能让晶片直接进行接触。这是因为会出现能对模压产品产生负面影响的空气气泡,而且它们还无法消除。
因此,在将原模接触向衬底时,原模一开始只接触到衬底材料的一边,然后再被转动着向下接触衬底。这种倾斜的接触可将出现在模压材料中的空气气泡挤出去。由于原模是透明的,所以可目视观察到气泡,因而就可成功地消除它们。如上所述,这些气泡的存在使得最好让待被接触的表面是光滑的,因为在原模48表面上形成的衍射元件甚至在倾斜接触期间也会产生气泡。
用于消除空气泡的倾斜程度取决待被复制的装置的尺寸和深度。倾斜应足够大,以使最大的装置在初始接触时不会穿过整个晶片而碰到另一个晶片。
另外,如果被复制的晶片是可弯曲的,则复制品晶片可被弯曲以形成一个轻微凸出的表面。然后将原模向下接触复制晶片的中心,接着复制晶片被松脱以完成整个表面上的接触,从而消除了空气气泡。所需的弯曲量应正好足够,以使得最大的装置在初始接触时不会穿过整个晶片而碰到另一个晶片。
当根据本发明所示使用基准标记来将原模元件48与玻璃衬底52对准时,可使用一种改进样式的传统掩模对准器。一般在掩模对准器中,掩模被与一块平板接触,然后掩模和平板将进行对准真空密封。但是,当晶片顶部的可模压材料为液体(如聚合物)时,就不能产生真空。因此,就需采用上述的倾斜接触。一旦接触建立,晶片将在被处理之前利用基准标记以传统方式而被对准。
另外,固化聚合物所需的能量非常高,如:3-5W/cm2,并且需要在很短的时间例如,在少于30秒内将全部能量加上。如果在这个时间内没有施加足够的能量和强度,则聚合物的固化将不会实现。这是因为聚合物中的光引发剂(photoinitiator)会被这种不完全的暴露所消耗而不会被完全聚合。但是,要想提供这样一种具有掩模对准器的高强度源不是十分容易。这是由于所需高能光源的尺寸和温度而造成的。高能光源发出的热量会使掩模对准器在暴露于热辐射时发生卷曲变形。当掩模对准器可以得到热补偿或者就适于在高温下工作时,采用以下的解决方案将更为经济而且也可提供满意的结果。
除了用于使原模与衬底的掩模对准器完全接触所需的倾斜接触之外,一旦实现这种完全接触(而不是对整个表面进行固化处理),则将有一个传输系统(如光纤)从一紫外线源向与掩模对准器接触的原模一衬底提供辐射。该传输系统仅向聚合物的个别点上提供紫外线的辐射。
上述传输系统应足够小以便于安装在掩模对准器中,而且不会消耗太多的热量。这样就不需对掩模对准器进行重新设计。当使用一条光纤时,这些点约为2mm。另外,还需有一个小的紫外线激光源,也就是说,它不会对系统施加大量的热效应。
传输系统最好以一种对称形式来为晶片周边的点提供辐射。对一个4英寸的晶片来说,仅需6-12个点即可。如果为了增加稳定性而需要更多的点,也可在晶片的中心位置上放几个点。这些点最好被放置在晶片的外围,而且其数量越少越好,因为与没有点辐射的区域相比,有粘合点的区域不能实现均匀的聚合反应。
这些粘合点可在其所在位置上粘合衬底。用于对粘合点进行固化处理的照射仅被局部地施加,而且只需几个这样的粘合点就已足够,因而可使接受照射的区域足够小以对剩余的可模压材料产生较大的影响。一旦实现对准并且原模被粘合入位,则衬底-原模对将被从对准器上取下,并且其整个表面将在高强度的紫外线光源下得到固化处理以实现完全的聚合反应。在衬底-原模对被从掩模对准器移去以便用掩模对准器外部的高能光源对聚合物进行固化处理时,粘合点可防止由掩模对准器实现的对准发生偏移。
另外,基准标记可被用来在待被接触的表面周围形成机械对准特征。机械对准特征可沿任何轴向提供对准,而且可以有多个这样的机械对准特征。例如,图4中的支座就用于沿y轴对准晶片,而金属焊点则用于使晶片沿x和z轴与其它元件对准。对准特征最好通过模压自身而形成。
晶片背面上的模压和光刻处理可以按照任一顺序进行。如果模压先被执行,则其优点在于,它可使原模保持覆盖在模压层上,直至晶片背面的其它后续处理完成为止。然后原模将作为对模压结构的一种密封,这样就可防止聚合物在光刻过程期间熔化,并可在光刻过程期间的加热过程中始终保持装置的精确度。
如果光刻处理先被执行,则在模压期间就需要进行更加精密的对准,这样才可为光刻装置提供比正常模压期间所需的对准度更加精确的对准度。因此,就不需要将模压设备设置成执行这种对准。接下来,在模压期间就需要用到上述的对准技术。
一旦全部所需处理都已完成,晶片就会被切割以形成单独的元件。这种切割可将机械应力施加在被模压的晶片上。因此,为了保证模压部分在切割期间不发生脱落,模压部分与衬底之间的完全聚合以及充分粘合就变得尤为重要。所以,在选择具体的聚合物、粘合剂催化剂和衬底以及这些元件如何作用时应非常仔细。为了防止模压层在切割期间发生脱落,聚合物与衬底之间的粘合力应最好可承受约100克的剪切力强度。
当如图1-4所示的两个待被粘合在一起的晶片已被用一种紫外线固化聚合物模压时,适合用于这种粘合的普通紫外线树脂就不再是最好的选择。这是由于紫外线固化聚合物仍会在紫外线区域中产生较高的吸收,因而可使用于固化环氧树脂的有效紫外线光的强度降低,也就是说,为了向待被固化的环氧树脂提供充足的紫外线光,所需的紫外线光的强度就应非常高。所以,有些时候使用热固化树脂来粘合这样的晶片,其效果会更好。
另外,处于未构成元件本身的部分上的聚合物应被清除,然后可在这些不再含有紫外线聚合物的干净区域中采用紫外线环氧树脂以直接将具有紫外线聚合物的玻璃衬底晶片与另一晶片粘合起来。由此就防止了图案内的聚合物产生固化。当使用液体聚合物时,未被固化的聚合物清洗掉。用于晶片-晶片粘合的其它材料(如紫外线环氧树脂)或用于活动元件粘合或遮光的金属可被放置在聚合物已被清除的地方上。
除了用于粘合图1-4所示的两个衬底以外,基准标记也可被用于在衬底本身的另一侧生成光学元件,如图7所示。用于生成光学元件的生成方法可采用以上所述方法中的任何一种。图7中的双面单元70,其第一表面70a上具有一个衍射元件72,而其第二表面70b上则具有一个折射元件74,也可在其上提供任何所需的元件。还有,在进行光刻处理时可在混合元件上提供多个金属焊点76。
图8显示了一种集成多光学元件的进一步的结构。在图8中,衍射元件82被直接形成于一个折射元件84上。该折射元件可以采用上述光刻技术中的任一种技术制成。在图8所示的特定实例中,折射元件是通过利用一掩模将一由光刻胶86构成的圆形层放置在一种光学材料的表面上而形成的。然后光刻胶在控制加热下产生部分流动,从而形成了一个部分球形的形状87。接下来,其表面被蚀刻并且一个与光刻胶87形状基本相同的折射元件84通过在光刻胶87的厚度方向上进行连续变化的可变蚀刻速率而被形成。微透镜84接着得到进一步的处理以在其上形成衍射元件82。衍射元件可利用光刻处理或模压处理而形成。
被对准并粘合或模压的晶片可含有相同元件的阵列,或者也可含有不同的元件。另外,当对准需求允许时,晶片也可是塑料而不是玻璃的。根据本发明所述在晶片层上制作出来的集成元件,其尺寸约在100微米至几个毫米之间,其所需对准精度为±1-2微米,此精度可利用本发明所述的基准标记和/或对准特征而得以实现。
当光学元件被提供于一个衬底的背面之上而不是面对面地粘合时,可容许的对准精度为±10微米。这是因为当光穿过玻璃厚度时会产生一个需要纠正或引入的轻微倾斜量。
作为用于被动对准的基准标记的另一个用途,基准标记也可用于生成机械对准特征,如:由一个球体连接的相应枝丛(groves)、由一个焊球连接的金属化焊点、以及具有一个相应凹口的支座。要对整个晶片进行对准,只需几个这样的对准特征即可。
作为将粘合材料放置在各模子周边的另一个用途,也可在模子本身光路的至少一部分上覆盖粘合材料。这些增加的粘合材料可增加模子的稳定性。但是,光学元件与下一个表面之间的折射系数之差应尽可能大,或者说衍射元件应得到更深的蚀刻并且折射元件需有一个更大的下落高度,这样它们才可以相同的方式进行工作。所以,在其沟槽中需有空气,因为空气的系数为1.0。如果需要更高的稳定性,则可在当粘合材料要覆盖光学元件的一部分光路时,使用具有尽可能低的折射系数的粘合材料。然后,最好让光学元件在光刻胶中形成(光刻胶的折射系数大于玻璃),也就是说,在光刻胶中形成的元件并未被蚀刻入衬底,但它却可作为元件自身来使用。
另外,粘合材料区域的增大也会增加其中产生空气气泡的可能性,而气泡会对元件的光学性能造成影响。因此,就在粘合材料覆盖在整个模子上时,最好使粘合材料只覆盖模子光路的一部分,同时用它环绕光路中的一条完整光束,这样就可大大减少出现气泡的可能性。还有,如果在间隙中有有源元件,则不能放置粘合材料以免干扰这些有源元件的作用。
本发明所述的所有元件(包括对准特征)最好配备有多个金属化焊点以便于在通常含有多个有源元件的系统中使用。金属化焊点可通过在晶片层上进行光刻而得到有效实现。
另外,尽管上述衬底都是由单一材料制成,但也可采用具有多个层的衬底。例如,可采用一种夹心式的衬底,该衬底的两个偏振层之间夹有一层光敏材料,从而构成了一个光隔离器。
至此,对本发明的说明已基本完成。很明显,对于同一方法可变化出多种方法。这些变化都不能被认为是脱离了本发明的精神和范围,而且对熟练人员来说,这些修改很明显都应被包含在以下权利要求的范围之中。

Claims (57)

1.一种形成集成光学子系统的方法,包括:
在第一晶片上的第一模子阵列中围绕每一块模子设置粘合材料;
将多个第二模子与所述第一模子对准,每个第一模子具有一个与其对准的第二模子;
固化处理所述粘合材料,由此使所述对准的模子粘合;和
将粘合的模子分块,每对分块的、粘合的模子包括至少一个光学元件,从而形成集成光学子系统。
2.如权利要求1所述的方法,其中所述设置包括在第一晶片的整个表面上设置粘合材料。
3.如权利要求1所述的方法,其中所述第二模子在一第二晶片上,并且所述对准包括将第一和第二晶片对准。
4.如权利要求3所述的方法,还包括从至少所述第一和第二晶片中之一的用于接合另外元件的预定图形中有选择地去除材料或增加材料。
5.如权利要求1所述的方法,其中所述第二模子彼此分开,而所述对准包括将每个第二模子与相应的第一模子对准。
6.如权利要求1所述的方法,其中所述第一和第二模子之一是半导体模子。
7.如权利要求6所述的方法,其中半导体模子包含一发射激光的垂直空腔侧。
8.如权利要求6所述的方法,其中半导体模子包含一检测器。
9.如权利要求6所述的方法,还包括在所述第一和第二模子之一上安装分立的器件。
10.如权利要求9所述的方法,其中所述安装包括安装至少镜子和激光器之一。
11.如权利要求9所述的方法,其中所述安装包括安装光学件。
12.如权利要求1所述的方法,其中所述设置包括在模子的至少一个光学元件的光路部分设置粘合材料。
13.如权利要求1所述的方法,其中所述设置包括在模子的周围设置粘合材料,从而密封该模子。
14.如权利要求1所述的方法,还包括,在所述对准之前,在所述第一晶片上精确地设置支座,以保证在所述第一和第二晶片之间有合适的间隙。
15.如权利要求1所述的方法,其中所述粘合提供了充分的密封,从而防止在所述切割分块过程中产生的切割浆料进入衬底间的间隙中。
16.如权利要求1所述的方法,还包括通过将多个晶片直接粘合在一起而形成一个衬底。
17.如权利要求16所述的方法,其中所述晶片之一由光学有源材料制成,并夹在两个偏振晶片之间。
18.一种在晶片层上制成光学元件的方法,包括:
制造一包含光学元件阵列的原模;
通过将所述原模加到一可模压材料上而模压出所述光学元件阵列的复制品;和
将所述复制品分块以形成独立的光学元件。
19.如权利要求18所述的方法,还包括在模压之前在所述原模的表面上设置一所述可模压材料的薄膜。
20.如权利要求19所述的方法,还包括在模压之前在玻璃衬底上设置促进粘合的材料。
21.如权利要求19所述的方法,其中所述玻璃衬底包括基准标记,并且还包括将所述原模与所述基准标记对准。
22.如权利要求18所述的方法,还包括用抗反射涂料涂覆所述复制品。
23.如权利要求18所述的方法,还包括有选择地从预定图形的所述复制品去掉材料或添加材料。
24.如权利要求23所述的方法,其中所述有选择地去除或添加在所述模压之前发生。
25.如权利要求23所述的方法,其中所述有选择地去除或添加在所述模压之后发生。
26.如权利要求23所述的方法,其中所述有选择地去除或添加包括在与所述复制品受到所述模压的一侧相对的表面上设置金属焊点。
27.如权利要求18所述的方法,其中所述模压包括使所述玻璃衬底的两侧模压。
28.如权利要求27所述的方法,其中不同的晶片原模用于使所述两侧的任一侧模压。
29.如权利要求28所述的方法,其中第一晶片原模包括衍射光学元件,而第二晶片原模包括折射光学元件。
30.如权利要求18所述的方法,还包括在所述晶片原模和所述复制品上都设置基准标记。
31.如权利要求18所述的方法,还包括确认所述复制品和所述晶片原模在掩模对准器中对准,并且在确认对准之后将所述复制品和晶片原模粘合在一起。
32.如权利要求31所述的方法,还包括在所述粘合之后从掩模对准器上取下所述复制品和所述晶片原模,并固化处理模压材料。
33.如权利要求18所述的方法,其中所述添加包括使所述晶片原模在最初与所述复制品不完全地接触。
34.如权利要求18所述的方法,其中所述原模是晶片。
35.如权利要求23所述的方法,其中所述有选择地去除或添加采用的是光刻法。
36.如权利要求23所述的方法,其中所述有选择地去除或添加包括有选择地去除模压材料。
37.如权利要求36所述的方法,其中所述有选择地去除模压材料包括在所述原模的图形中设置金属,在所述模压之后,洗去未固化的模压材料。
38.如权利要求36所述的方法,其中所述有选择地去除或添加包括在去除可模压材料处添加材料。
39.如权利要求31所述的方法,其中所述粘合包括对所述可模压材料提供局部固化处理。
40.如权利要求18所述的方法,其中所述原模是用光刻方法制成的。
41.如权利要求18所述的方法,其中所述模压包括在衬底上提供可模压材料然后加上所述原模。
42.如权利要求41所述的方法,其中所述衬底是透光的和扁平的。
43.如权利要求23所述的方法,其中所述材料是金属的以用于其它元件的附接。
44.一种集成双侧多光学元件,包括:
具有两个表面的衬底;
在两个表面上用光刻法限定的光学件;和
在一次有选择地去除或添加材料的至少一个表面上另外用光刻法限定的特征。
45.如权利要求44所述的光学元件,其中所述衬底的一个表面包括一个衍射元件,用于提供分光、产生多个光点和扩散照射一个具体区域这些功能中的至少一种。
46.如权利要求45所述的光学元件,其中所述衍射元件是多个衍射元件。
47.如权利要求46所述的光学元件,其中所述衬底是晶片,而所述光学件是光学元件阵列。
48.如权利要求44所述的光学元件,其中所述另外的由光刻所限定的特征包括用于阻挡光线的金属部分。
49.如权利要求44所述的光学元件,其中所述另外的由光刻所限定的特征包括用于帮助将有源元件与集成的多光学元件结合的金属部分。
50.如权利要求44所述的光学元件,其中在一个表面的光学件是折射性的,而在另一表面上的光学件则是衍射性的。
51.如权利要求44所述的光学元件,其中在所述两个表面上的至少一个上的光学件由模压方法形成。
52.如权利要求44所述的光学元件,其中用光刻法限定的光学件包括用光刻法形成的原模和用所述原模模压的光学件。
53.如权利要求44所述的光学元件,还包括从光刻法产生的原模所模压出的特征。
54.一种光学元件,由权利要求1所述的工艺形成。
55.一种光学元件,由权利要求18所述的工艺形成。
56.一种混合光学元件,包括折射光学元件和形成在所述折射光学元件弯曲表面上的衍射图形。
57.如权利要求56所述的光学元件,其中所述折射光学元件用光刻法形成。
CNB988098059A 1997-10-03 1998-10-02 多个光学元件在晶片层的集成 Expired - Fee Related CN1165994C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/943,274 1997-10-03
US08/943,274 US6096155A (en) 1996-09-27 1997-10-03 Method of dicing wafer level integrated multiple optical elements

Publications (2)

Publication Number Publication Date
CN1276916A true CN1276916A (zh) 2000-12-13
CN1165994C CN1165994C (zh) 2004-09-08

Family

ID=25479355

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988098059A Expired - Fee Related CN1165994C (zh) 1997-10-03 1998-10-02 多个光学元件在晶片层的集成

Country Status (10)

Country Link
US (6) US6096155A (zh)
EP (2) EP1036415B1 (zh)
JP (1) JP4310410B2 (zh)
KR (1) KR20010030924A (zh)
CN (1) CN1165994C (zh)
AT (1) ATE366998T1 (zh)
AU (1) AU9597798A (zh)
CA (1) CA2304670C (zh)
DE (1) DE69838071T2 (zh)
WO (1) WO1999018612A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083999B2 (en) 2001-12-27 2006-08-01 Seiko Epson Corporation Optical device, method of manufacturing the same, optical module, circuit board and electronic instrument
CN102738013A (zh) * 2011-04-13 2012-10-17 精材科技股份有限公司 晶片封装体及其制作方法
CN103314313A (zh) * 2011-01-21 2013-09-18 富士胶片株式会社 堆叠型透镜阵列及透镜模块
CN110178064A (zh) * 2016-11-14 2019-08-27 原子能和替代能源委员会 用于集合制造多个光电芯片的方法
CN111225780A (zh) * 2017-10-17 2020-06-02 奇跃公司 用于铸造聚合物产品的方法和装置
US11320591B2 (en) 2018-10-16 2022-05-03 Magic Leap, Inc. Methods and apparatuses for casting polymer products

Families Citing this family (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8153957B2 (en) * 1996-09-27 2012-04-10 Digitaloptics Corporation East Integrated optical imaging systems including an interior space between opposing substrates and associated methods
US6096155A (en) * 1996-09-27 2000-08-01 Digital Optics Corporation Method of dicing wafer level integrated multiple optical elements
US20080136955A1 (en) * 1996-09-27 2008-06-12 Tessera North America. Integrated camera and associated methods
US6235141B1 (en) * 1996-09-27 2001-05-22 Digital Optics Corporation Method of mass producing and packaging integrated optical subsystems
US6669803B1 (en) 1997-10-03 2003-12-30 Digital Optics Corp. Simultaneous provision of controlled height bonding material at a wafer level and associated structures
US20080128844A1 (en) * 2002-11-18 2008-06-05 Tessera North America Integrated micro-optical systems and cameras including the same
US6426829B1 (en) * 1998-03-26 2002-07-30 Digital Optics Corp. Integrated micro-optical systems
US6239590B1 (en) * 1998-05-26 2001-05-29 Micron Technology, Inc. Calibration target for calibrating semiconductor wafer test systems
JP3248526B2 (ja) * 1998-09-11 2002-01-21 キヤノン株式会社 回折光学素子及びそれを有した光学系
JP3290631B2 (ja) * 1998-10-02 2002-06-10 キヤノン株式会社 光学ユニット、光学ユニットの製造方法、光学ユニットを用いた光学系、光学ユニットを用いた露光装置及びこの露光装置を用いたデバイスの製造方法
DE19956654B4 (de) * 1999-11-25 2005-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Strukturierung von Oberflächen von mikromechanischen und/oder mikrooptischen Bauelementen und/oder Funktionselementen aus glasartigen Materialien
US6351027B1 (en) * 2000-02-29 2002-02-26 Agilent Technologies, Inc. Chip-mounted enclosure
US6684010B1 (en) 2000-03-03 2004-01-27 Digital Optics Corp. Wavelength compensated optical wavelength division coupler and associated methods
US6661818B1 (en) * 2000-04-05 2003-12-09 Digital Optics Corporation Etalon, a wavelength monitor/locker using the etalon and associated methods
US7092416B2 (en) 2000-04-05 2006-08-15 Digital Optics Corporation Integrated wavelength locker for use with more than one wavelength and associated methods
JP2002050749A (ja) * 2000-07-31 2002-02-15 Canon Inc 複合部材の分離方法及び装置
DE10058074A1 (de) * 2000-11-23 2002-06-06 Vitalij Lissotschenko Verfahren zur Herstellung einer mikrooptischen Funktionseinheit
US6701038B2 (en) * 2001-03-05 2004-03-02 The Microoptical Corporation Micro-electromechanical optical switch assembly for optical data networks
US6798931B2 (en) * 2001-03-06 2004-09-28 Digital Optics Corp. Separating of optical integrated modules and structures formed thereby
US20020164129A1 (en) * 2001-04-05 2002-11-07 Jackson Michael K. Optical fiber passive alignment fixture
JP3696131B2 (ja) * 2001-07-10 2005-09-14 株式会社東芝 アクティブマトリクス基板及びその製造方法
JP4571405B2 (ja) * 2001-08-24 2010-10-27 ショット アクチエンゲゼルシャフト 電子部品の作製方法
DE10141571B8 (de) * 2001-08-24 2005-05-25 Schott Ag Verfahren zum Zusammenbau eines Halbleiterbauelements und damit hergestellte integrierte Schaltungsanordnung, die für dreidimensionale, mehrschichtige Schaltungen geeignet ist
US6683295B2 (en) 2001-10-01 2004-01-27 Digital Optics Corp. Reduced noise wavelength locker module
US7224856B2 (en) 2001-10-23 2007-05-29 Digital Optics Corporation Wafer based optical chassis and associated methods
US7961989B2 (en) * 2001-10-23 2011-06-14 Tessera North America, Inc. Optical chassis, camera having an optical chassis, and associated methods
KR100431181B1 (ko) * 2001-12-07 2004-05-12 삼성전기주식회사 표면 탄성파 필터 패키지 제조방법
US6765603B2 (en) 2001-12-20 2004-07-20 Eastman Kodak Company Method of forming fiducial marks on a micro-sized article
US6594084B1 (en) 2001-12-20 2003-07-15 Eastman Kodak Company Method and manufacturing a precisely aligned microlens array
US6587274B1 (en) 2001-12-20 2003-07-01 Eastman Kodak Company Double-sided microlens array and method of manufacturing same
US6748145B2 (en) 2001-12-20 2004-06-08 Eastman Kodak Company Fiber optic array and method of making same
US6515800B1 (en) 2001-12-20 2003-02-04 Eastman Kodak Company Microlens array
US20030118268A1 (en) * 2001-12-21 2003-06-26 Christopher Wimperis System and method for producing optical circuits
US7146064B2 (en) * 2001-12-21 2006-12-05 Gsi Group Corporation System and method for producing optical circuits
US6568098B1 (en) * 2001-12-28 2003-05-27 Microtool, Inc. Alignment wafer
US20040021214A1 (en) * 2002-04-16 2004-02-05 Avner Badehi Electro-optic integrated circuits with connectors and methods for the production thereof
JP2005523466A (ja) * 2002-04-16 2005-08-04 エクスルーム フォトニクス リミテッド 集積コネクタを有する電気光学回路およびその製造方法
US6683723B2 (en) 2002-06-13 2004-01-27 Eastman Kodak Company Solid immersion lens array and methods for producing and using solid immersion lens array with fiducial marks
US8059345B2 (en) * 2002-07-29 2011-11-15 Digitaloptics Corporation East Integrated micro-optical systems
KR100774775B1 (ko) * 2002-09-17 2007-11-07 앤터온 비.브이. 카메라 디바이스, 카메라 디바이스 제조 방법, 웨이퍼스케일 패키지 및 광학 어셈블리
WO2004068665A2 (en) * 2003-01-24 2004-08-12 The Board Of Trustees Of The University Of Arkansas Research And Sponsored Programs Wafer scale packaging technique for sealed optical elements and sealed packages produced thereby
EP1443344A1 (en) * 2003-01-29 2004-08-04 Heptagon Oy Manufacturing micro-structured elements
CN101789482B (zh) * 2003-03-10 2013-04-17 丰田合成株式会社 固体元件装置及其制造方法
ATE396418T1 (de) 2003-03-26 2008-06-15 Digital Optics Corp Gehäuse für optoelektronisches bauteil auf waferebene
US6921676B2 (en) * 2003-03-28 2005-07-26 Agilent Technologies, Inc. Wafer-scale manufacturing method
US20070110361A1 (en) * 2003-08-26 2007-05-17 Digital Optics Corporation Wafer level integration of multiple optical elements
US6934065B2 (en) * 2003-09-18 2005-08-23 Micron Technology, Inc. Microelectronic devices and methods for packaging microelectronic devices
US6953990B2 (en) * 2003-09-19 2005-10-11 Agilent Technologies, Inc. Wafer-level packaging of optoelectronic devices
US6998691B2 (en) * 2003-09-19 2006-02-14 Agilent Technologies, Inc. Optoelectronic device packaging with hermetically sealed cavity and integrated optical element
US7538358B2 (en) 2003-10-15 2009-05-26 Xloom Communications, Ltd. Electro-optical circuitry having integrated connector and methods for the production thereof
US7094304B2 (en) * 2003-10-31 2006-08-22 Agilent Technologies, Inc. Method for selective area stamping of optical elements on a substrate
US7583862B2 (en) * 2003-11-26 2009-09-01 Aptina Imaging Corporation Packaged microelectronic imagers and methods of packaging microelectronic imagers
EP1542074A1 (en) * 2003-12-11 2005-06-15 Heptagon OY Manufacturing a replication tool, sub-master or replica
US7253397B2 (en) * 2004-02-23 2007-08-07 Micron Technology, Inc. Packaged microelectronic imagers and methods of packaging microelectronic imagers
EP1569263B1 (de) * 2004-02-27 2011-11-23 OSRAM Opto Semiconductors GmbH Verfahren zum Verbinden zweier Wafer
US8092734B2 (en) * 2004-05-13 2012-01-10 Aptina Imaging Corporation Covers for microelectronic imagers and methods for wafer-level packaging of microelectronics imagers
US7253957B2 (en) * 2004-05-13 2007-08-07 Micron Technology, Inc. Integrated optics units and methods of manufacturing integrated optics units for use with microelectronic imagers
KR101260981B1 (ko) 2004-06-04 2013-05-10 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 인쇄가능한 반도체소자들의 제조 및 조립방법과 장치
US20050275750A1 (en) * 2004-06-09 2005-12-15 Salman Akram Wafer-level packaged microelectronic imagers and processes for wafer-level packaging
US7498647B2 (en) * 2004-06-10 2009-03-03 Micron Technology, Inc. Packaged microelectronic imagers and methods of packaging microelectronic imagers
US7262405B2 (en) * 2004-06-14 2007-08-28 Micron Technology, Inc. Prefabricated housings for microelectronic imagers
US7199439B2 (en) * 2004-06-14 2007-04-03 Micron Technology, Inc. Microelectronic imagers and methods of packaging microelectronic imagers
US7232754B2 (en) * 2004-06-29 2007-06-19 Micron Technology, Inc. Microelectronic devices and methods for forming interconnects in microelectronic devices
US7294897B2 (en) * 2004-06-29 2007-11-13 Micron Technology, Inc. Packaged microelectronic imagers and methods of packaging microelectronic imagers
US7416913B2 (en) * 2004-07-16 2008-08-26 Micron Technology, Inc. Methods of manufacturing microelectronic imaging units with discrete standoffs
US7189954B2 (en) * 2004-07-19 2007-03-13 Micron Technology, Inc. Microelectronic imagers with optical devices and methods of manufacturing such microelectronic imagers
US7402453B2 (en) * 2004-07-28 2008-07-22 Micron Technology, Inc. Microelectronic imaging units and methods of manufacturing microelectronic imaging units
US20060023107A1 (en) * 2004-08-02 2006-02-02 Bolken Todd O Microelectronic imagers with optics supports having threadless interfaces and methods for manufacturing such microelectronic imagers
US7364934B2 (en) 2004-08-10 2008-04-29 Micron Technology, Inc. Microelectronic imaging units and methods of manufacturing microelectronic imaging units
US7397066B2 (en) * 2004-08-19 2008-07-08 Micron Technology, Inc. Microelectronic imagers with curved image sensors and methods for manufacturing microelectronic imagers
US7223626B2 (en) * 2004-08-19 2007-05-29 Micron Technology, Inc. Spacers for packaged microelectronic imagers and methods of making and using spacers for wafer-level packaging of imagers
US7115961B2 (en) * 2004-08-24 2006-10-03 Micron Technology, Inc. Packaged microelectronic imaging devices and methods of packaging microelectronic imaging devices
US7425499B2 (en) * 2004-08-24 2008-09-16 Micron Technology, Inc. Methods for forming interconnects in vias and microelectronic workpieces including such interconnects
US7429494B2 (en) 2004-08-24 2008-09-30 Micron Technology, Inc. Microelectronic imagers with optical devices having integral reference features and methods for manufacturing such microelectronic imagers
US7276393B2 (en) 2004-08-26 2007-10-02 Micron Technology, Inc. Microelectronic imaging units and methods of manufacturing microelectronic imaging units
US7511262B2 (en) * 2004-08-30 2009-03-31 Micron Technology, Inc. Optical device and assembly for use with imaging dies, and wafer-label imager assembly
US20070148807A1 (en) * 2005-08-22 2007-06-28 Salman Akram Microelectronic imagers with integrated optical devices and methods for manufacturing such microelectronic imagers
US7646075B2 (en) * 2004-08-31 2010-01-12 Micron Technology, Inc. Microelectronic imagers having front side contacts
US7300857B2 (en) 2004-09-02 2007-11-27 Micron Technology, Inc. Through-wafer interconnects for photoimager and memory wafers
IL165212A (en) 2004-11-15 2012-05-31 Elbit Systems Electro Optics Elop Ltd Device for scanning light
US7800823B2 (en) 2004-12-06 2010-09-21 Moxtek, Inc. Polarization device to polarize and further control light
US7570424B2 (en) 2004-12-06 2009-08-04 Moxtek, Inc. Multilayer wire-grid polarizer
US7961393B2 (en) 2004-12-06 2011-06-14 Moxtek, Inc. Selectively absorptive wire-grid polarizer
US7271482B2 (en) * 2004-12-30 2007-09-18 Micron Technology, Inc. Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods
US7214919B2 (en) * 2005-02-08 2007-05-08 Micron Technology, Inc. Microelectronic imaging units and methods of manufacturing microelectronic imaging units
US7303931B2 (en) * 2005-02-10 2007-12-04 Micron Technology, Inc. Microfeature workpieces having microlenses and methods of forming microlenses on microfeature workpieces
US20060177999A1 (en) * 2005-02-10 2006-08-10 Micron Technology, Inc. Microelectronic workpieces and methods for forming interconnects in microelectronic workpieces
US7190039B2 (en) * 2005-02-18 2007-03-13 Micron Technology, Inc. Microelectronic imagers with shaped image sensors and methods for manufacturing microelectronic imagers
US20060290001A1 (en) * 2005-06-28 2006-12-28 Micron Technology, Inc. Interconnect vias and associated methods of formation
US7795134B2 (en) * 2005-06-28 2010-09-14 Micron Technology, Inc. Conductive interconnect structures and formation methods using supercritical fluids
JP5568236B2 (ja) 2005-07-22 2014-08-06 デジタルオプティクス・コーポレイション・イースト 光波長分割カプラおよび関連方法
US7466502B2 (en) 2005-12-07 2008-12-16 Tessera North America, Inc. Optical wavelength division coupler and associated methods
US7622377B2 (en) * 2005-09-01 2009-11-24 Micron Technology, Inc. Microfeature workpiece substrates having through-substrate vias, and associated methods of formation
US7262134B2 (en) * 2005-09-01 2007-08-28 Micron Technology, Inc. Microfeature workpieces and methods for forming interconnects in microfeature workpieces
US7288757B2 (en) * 2005-09-01 2007-10-30 Micron Technology, Inc. Microelectronic imaging devices and associated methods for attaching transmissive elements
US20070216049A1 (en) * 2006-03-20 2007-09-20 Heptagon Oy Method and tool for manufacturing optical elements
US20070216046A1 (en) * 2006-03-20 2007-09-20 Heptagon Oy Manufacturing miniature structured elements with tool incorporating spacer elements
US20070216048A1 (en) * 2006-03-20 2007-09-20 Heptagon Oy Manufacturing optical elements
US20070236591A1 (en) * 2006-04-11 2007-10-11 Tam Samuel W Method for mounting protective covers over image capture devices and devices manufactured thereby
US8755113B2 (en) 2006-08-31 2014-06-17 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer
KR100994845B1 (ko) * 2006-11-02 2010-11-16 도판 인사츠 가부시키가이샤 고체 촬상 장치 및 그 제조 방법
US8456560B2 (en) * 2007-01-26 2013-06-04 Digitaloptics Corporation Wafer level camera module and method of manufacture
US7692256B2 (en) * 2007-03-23 2010-04-06 Heptagon Oy Method of producing a wafer scale package
CA2685080A1 (en) 2007-04-24 2008-11-06 Flextronics Ap Llc Small form factor modules using wafer level optics with bottom cavity and flip-chip assembly
US7789515B2 (en) 2007-05-17 2010-09-07 Moxtek, Inc. Projection device with a folded optical path and wire-grid polarizer
US20080309900A1 (en) * 2007-06-12 2008-12-18 Micron Technology, Inc. Method of making patterning device, patterning device for making patterned structure, and method of making patterned structure
JP2009049051A (ja) * 2007-08-14 2009-03-05 Elpida Memory Inc 半導体基板の接合方法及びそれにより製造された積層体
CN101373224A (zh) * 2007-08-24 2009-02-25 鸿富锦精密工业(深圳)有限公司 镀膜镜片的制作方法
CN101784378A (zh) * 2007-08-31 2010-07-21 柯尼卡美能达精密光学株式会社 成型方法、光学元件制造方法及阵列状光学元件
KR20090033070A (ko) * 2007-09-27 2009-04-01 엘지이노텍 주식회사 카메라 모듈
US20090093137A1 (en) * 2007-10-08 2009-04-09 Xloom Communications, (Israel) Ltd. Optical communications module
WO2009067832A1 (en) * 2007-11-27 2009-06-04 Heptagon Oy Encapsulated lens stack
TWI402979B (zh) * 2007-12-13 2013-07-21 Sharp Kk 電子元件晶圓模組、電子元件模組、感測器晶圓模組、感測器模組、透鏡陣列盤、感測器模組之製造方法、及電子資訊裝置
US20090159200A1 (en) * 2007-12-19 2009-06-25 Heptagon Oy Spacer element and method for manufacturing a spacer element
TWI481496B (zh) * 2007-12-19 2015-04-21 Heptagon Micro Optics Pte Ltd 製造光學元件的方法
DE102008019600B4 (de) 2008-04-18 2021-03-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optische Vorrichtung in gestapelter Bauweise und Verfahren zur Herstellung derselben
DE102008020645A1 (de) 2008-04-24 2010-05-12 Sonopress Gmbh Verfahren zum justierten Fügen der Flächen von zwei Werkstücken
FR2931587B1 (fr) * 2008-05-21 2011-05-13 Commissariat Energie Atomique Procede de realisation d'un dispositif optique a composants optoelectroniques integres
US20090321861A1 (en) * 2008-06-26 2009-12-31 Micron Technology, Inc. Microelectronic imagers with stacked lens assemblies and processes for wafer-level packaging of microelectronic imagers
US7916396B2 (en) * 2008-06-27 2011-03-29 Micron Technology, Inc. Lens master devices, lens structures, imaging devices, and methods and apparatuses of making the same
CN101630053A (zh) * 2008-07-15 2010-01-20 鸿富锦精密工业(深圳)有限公司 微组合镜片装置及其制造方法
US8134589B2 (en) * 2008-07-17 2012-03-13 Eastman Kodak Company Zoom by multiple image capture
US20100123260A1 (en) * 2008-11-19 2010-05-20 Jacques Duparre Stamp with mask pattern for discrete lens replication
JP2010147359A (ja) * 2008-12-22 2010-07-01 Hitachi Ltd 光モジュール
US20100194465A1 (en) * 2009-02-02 2010-08-05 Ali Salih Temperature compensated current source and method therefor
US8248696B2 (en) 2009-06-25 2012-08-21 Moxtek, Inc. Nano fractal diffuser
US9419032B2 (en) 2009-08-14 2016-08-16 Nanchang O-Film Optoelectronics Technology Ltd Wafer level camera module with molded housing and method of manufacturing
TWI424213B (zh) * 2010-02-26 2014-01-21 Pacific Speed Ltd Method and structure of optical lens module
US8081388B2 (en) * 2010-04-14 2011-12-20 Pacific Speed Limited Photoelectric lens module and fabrication thereof
US8611007B2 (en) 2010-09-21 2013-12-17 Moxtek, Inc. Fine pitch wire grid polarizer
US8913321B2 (en) 2010-09-21 2014-12-16 Moxtek, Inc. Fine pitch grid polarizer
US8545114B2 (en) 2011-03-11 2013-10-01 Digitaloptics Corporation Auto focus-zoom actuator or camera module contamination reduction feature with integrated protective membrane
WO2012158709A1 (en) 2011-05-16 2012-11-22 The Board Of Trustees Of The University Of Illinois Thermally managed led arrays assembled by printing
US8873144B2 (en) 2011-05-17 2014-10-28 Moxtek, Inc. Wire grid polarizer with multiple functionality sections
US8913320B2 (en) 2011-05-17 2014-12-16 Moxtek, Inc. Wire grid polarizer with bordered sections
SG2014005805A (en) 2011-08-10 2014-06-27 Heptagon Micro Optics Pte Ltd Opto-electronic module and method for manufacturing the same
US20130122247A1 (en) * 2011-11-10 2013-05-16 Omnivision Technologies, Inc. Spacer Wafer For Wafer-Level Camera And Method For Manufacturing Same
TW201339630A (zh) 2011-11-30 2013-10-01 Anteryon Internat B V 設備與方法
US9348120B2 (en) 2012-01-23 2016-05-24 Flir Systems Trading Belgium Bvba LWIR imaging lens, image capturing system having the same, and associated method
US9651417B2 (en) 2012-02-15 2017-05-16 Apple Inc. Scanning depth engine
US8922890B2 (en) 2012-03-21 2014-12-30 Moxtek, Inc. Polarizer edge rib modification
CN104221058B (zh) 2012-03-22 2017-03-08 苹果公司 装有万向接头的扫描镜阵列
KR102208832B1 (ko) 2012-05-17 2021-01-29 에이엠에스 센서스 싱가포르 피티이. 리미티드. 웨이퍼 스택 조립
JPWO2013191034A1 (ja) * 2012-06-22 2016-05-26 コニカミノルタ株式会社 ウエハレンズ、ウエハレンズ用の成形型及びウエハレンズの製造方法
AU2013294616B2 (en) 2012-07-26 2016-04-28 Apple Inc. Dual-axis scanning mirror
KR20150063540A (ko) 2012-10-23 2015-06-09 애플 인크. 마이크로 기계 디바이스의 제조
US8817394B2 (en) * 2013-01-17 2014-08-26 Himax Technologies Limited Lens module and manufacturing method thereof
JP6301067B2 (ja) * 2013-04-26 2018-03-28 富士通コンポーネント株式会社 光学部材、光モジュール
US9632223B2 (en) 2013-10-24 2017-04-25 Moxtek, Inc. Wire grid polarizer with side region
US9835853B1 (en) 2014-11-26 2017-12-05 Apple Inc. MEMS scanner with mirrors of different sizes
US9784838B1 (en) 2014-11-26 2017-10-10 Apple Inc. Compact scanner with gimbaled optics
US9798135B2 (en) 2015-02-16 2017-10-24 Apple Inc. Hybrid MEMS scanning module
US10234695B2 (en) * 2015-02-16 2019-03-19 Apple Inc. Low-temperature hermetic sealing for diffractive optical element stacks
JP6611450B2 (ja) * 2015-03-31 2019-11-27 キヤノン株式会社 インプリント装置、インプリント方法、及び物品の製造方法
US9897801B2 (en) 2015-09-30 2018-02-20 Apple Inc. Multi-hinge mirror assembly
US9703096B2 (en) 2015-09-30 2017-07-11 Apple Inc. Asymmetric MEMS mirror assembly
CN108369338B (zh) 2015-12-09 2021-01-12 快图有限公司 图像采集系统
US11465375B2 (en) * 2015-12-15 2022-10-11 Vadient Optics, Llc Nanocomposite refractive index gradient variable focus optic
US10394004B2 (en) 2016-04-05 2019-08-27 Qualcomm Incorporated Systems and devices having single-sided wafer-level optics
US20180017741A1 (en) * 2016-07-15 2018-01-18 Advanced Semiconductor Engineering, Inc. Semiconductor package device and method of manufacturing the same
US10488652B2 (en) 2016-09-21 2019-11-26 Apple Inc. Prism-based scanner
US10483215B2 (en) * 2016-09-22 2019-11-19 International Business Machines Corporation Wafer level integration including design/co-design, structure process, equipment stress management and thermal management
US10677964B2 (en) 2017-10-23 2020-06-09 Omnivision Technologies, Inc. Lens wafer assembly and associated method for manufacturing a stepped spacer wafer
KR102536821B1 (ko) 2018-04-16 2023-05-26 어플라이드 머티어리얼스, 인코포레이티드 임시 및 영구 접합을 사용하는 다중 적층 광학 요소들
KR102705224B1 (ko) 2019-08-18 2024-09-11 애플 인크. 광의 빔들을 스캐닝하기 위한 디바이스 및 방법
WO2022020257A1 (en) * 2020-07-20 2022-01-27 Apple Inc. Photonic integrated circuits with controlled collapse chip connections
GB202019552D0 (en) * 2020-12-11 2021-01-27 Ams Sensors Singapore Pte Ltd Forming an optical system
US20240248322A1 (en) * 2021-05-04 2024-07-25 Fingerprint Cards Anacatum Ip Ab Optical fingerprint sensor comprising a diffractive element
US12111210B2 (en) 2021-07-08 2024-10-08 Apple Inc. Light source modules for noise mitigation
US12111207B2 (en) 2022-09-23 2024-10-08 Apple Inc. Despeckling in optical measurement systems

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579816A (en) * 1968-12-23 1971-05-25 Sylvania Electric Prod Method of producing semiconductor devices
US3691707A (en) * 1969-11-12 1972-09-19 Sola Basic Ind Semiconductor material cutting apparatus and method of making the same
US3674004A (en) * 1969-12-30 1972-07-04 Ibm Precision cutting apparatus and method of operation therefor
US3698080A (en) * 1970-11-02 1972-10-17 Gen Electric Process for forming low impedance ohmic attachments
US4104297A (en) 1976-05-12 1978-08-01 Ciba-Geigy Corporation Thermoplastic polyesters prepared from dicarboxylic acids containing N-heterocyclic rings
US4222070A (en) * 1978-03-13 1980-09-09 Eastman Kodak Company Recording video information on a flexible master disc
JPS60103308A (ja) * 1983-11-11 1985-06-07 Pioneer Electronic Corp マイクロフレネルレンズの製造方法
EP0164834B1 (en) * 1984-04-06 1989-03-01 Plessey Overseas Limited Improvements relating to the fabrication of optical devices
GB8420182D0 (en) * 1984-08-08 1984-09-12 Pa Consulting Services Diffraction gratings
DE3524301A1 (de) * 1985-07-06 1987-01-15 Semikron Gleichrichterbau Verfahren zum herstellen von halbleiterelementen
JPH0642291B2 (ja) * 1986-08-25 1994-06-01 キヤノン株式会社 集積化光ヘツド
US4731155A (en) * 1987-04-15 1988-03-15 General Electric Company Process for forming a lithographic mask
US5161059A (en) 1987-09-21 1992-11-03 Massachusetts Institute Of Technology High-efficiency, multilevel, diffractive optical elements
US5182055A (en) * 1988-04-18 1993-01-26 3D Systems, Inc. Method of making a three-dimensional object by stereolithography
US5171392A (en) * 1988-11-08 1992-12-15 Pioneer Electronic Corporation Method of producing an optical information record carrier
US4883528A (en) 1989-03-08 1989-11-28 Corning Incorporated Apparatus for molding glass optical elements
CA2020180C (en) * 1989-06-30 2000-01-04 Stephen A. Zager Method for making optically readable media containing embossed information
US5157001A (en) * 1989-09-18 1992-10-20 Matsushita Electric Industrial Co., Ltd. Method of dicing semiconductor wafer along protective film formed on scribe lines
US5034083A (en) * 1989-10-16 1991-07-23 Xerox Corporation Process and apparatus for assembling smaller scanning or printing arrays together to form an extended array
EP0426441B1 (en) * 1989-10-30 1996-12-11 Sharp Kabushiki Kaisha An optical device having a microlens and a process for making microlenses
JP2808794B2 (ja) * 1990-02-22 1998-10-08 ソニー株式会社 両面光ディスク
US5214535A (en) * 1991-12-17 1993-05-25 Xerox Corporation Lens cover assembly for binary diffractive optic lenses
US5330799A (en) * 1992-09-15 1994-07-19 The Phscologram Venture, Inc. Press polymerization of lenticular images
US5448014A (en) 1993-01-27 1995-09-05 Trw Inc. Mass simultaneous sealing and electrical connection of electronic devices
JPH07225303A (ja) * 1993-12-16 1995-08-22 Sharp Corp マイクロレンズ基板及びそれを用いた液晶表示素子ならびに液晶プロジェクタ装置
US5510633A (en) * 1994-06-08 1996-04-23 Xerox Corporation Porous silicon light emitting diode arrays and method of fabrication
US5575878A (en) * 1994-11-30 1996-11-19 Honeywell Inc. Method for making surface relief profilers
US5630902A (en) * 1994-12-30 1997-05-20 Honeywell Inc. Apparatus for use in high fidelty replication of diffractive optical elements
US5597613A (en) 1994-12-30 1997-01-28 Honeywell Inc. Scale-up process for replicating large area diffractive optical elements
US5609642A (en) 1995-02-15 1997-03-11 Smith & Nephew Richards Inc. Tibial trial prosthesis and bone preparation system
DE69632882T2 (de) * 1995-02-27 2005-07-14 Symbol Technologies, Inc. Abtastmodul für einen optischen Abtaster
DE59604779D1 (de) * 1995-03-31 2000-04-27 Karlsruhe Forschzent Verfahren und vorrichtung zur herstellung von zweischichtigen, lichtleitenden mikrostrukturen durch abformtechnik
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
US6096155A (en) * 1996-09-27 2000-08-01 Digital Optics Corporation Method of dicing wafer level integrated multiple optical elements
US6235141B1 (en) * 1996-09-27 2001-05-22 Digital Optics Corporation Method of mass producing and packaging integrated optical subsystems
US5771218A (en) 1996-09-27 1998-06-23 Digital Optics Corporation Passively aligned integrated optical head including light source, detector, and optical element and methods of forming same
US6128134A (en) 1997-08-27 2000-10-03 Digital Optics Corporation Integrated beam shaper and use thereof
US6066218A (en) * 1998-04-23 2000-05-23 3M Innovative Properties Company Method and apparatus for assembling an optical recording medium
US6027595A (en) * 1998-07-02 2000-02-22 Samsung Electronics Co., Ltd. Method of making optical replicas by stamping in photoresist and replicas formed thereby

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083999B2 (en) 2001-12-27 2006-08-01 Seiko Epson Corporation Optical device, method of manufacturing the same, optical module, circuit board and electronic instrument
CN1329952C (zh) * 2001-12-27 2007-08-01 精工爱普生株式会社 光器件制造方法
CN103314313A (zh) * 2011-01-21 2013-09-18 富士胶片株式会社 堆叠型透镜阵列及透镜模块
CN102738013A (zh) * 2011-04-13 2012-10-17 精材科技股份有限公司 晶片封装体及其制作方法
US9136241B2 (en) 2011-04-13 2015-09-15 Yu-Lin Yen Chip package and manufacturing method thereof
CN102738013B (zh) * 2011-04-13 2016-04-20 精材科技股份有限公司 晶片封装体及其制作方法
CN110178064A (zh) * 2016-11-14 2019-08-27 原子能和替代能源委员会 用于集合制造多个光电芯片的方法
CN110178064B (zh) * 2016-11-14 2021-07-02 原子能和替代能源委员会 用于集合制造多个光电芯片的方法
CN111225780A (zh) * 2017-10-17 2020-06-02 奇跃公司 用于铸造聚合物产品的方法和装置
US11318692B2 (en) 2017-10-17 2022-05-03 Magic Leap, Inc. Methods and apparatuses for casting polymer products
US11787138B2 (en) 2017-10-17 2023-10-17 Magic Leap, Inc. Methods and apparatuses for casting polymer products
US12030269B2 (en) 2017-10-17 2024-07-09 Magic Leap, Inc. Methods and apparatuses for casting polymer products
US11320591B2 (en) 2018-10-16 2022-05-03 Magic Leap, Inc. Methods and apparatuses for casting polymer products

Also Published As

Publication number Publication date
US6844978B2 (en) 2005-01-18
US20030011889A1 (en) 2003-01-16
US8318057B2 (en) 2012-11-27
EP1785746B1 (en) 2014-04-30
JP4310410B2 (ja) 2009-08-12
DE69838071T2 (de) 2008-03-13
EP1785746A2 (en) 2007-05-16
CN1165994C (zh) 2004-09-08
US20130083397A1 (en) 2013-04-04
US6610166B1 (en) 2003-08-26
ATE366998T1 (de) 2007-08-15
EP1036415A2 (en) 2000-09-20
CA2304670A1 (en) 1999-04-15
US20040040648A1 (en) 2004-03-04
EP1036415B1 (en) 2007-07-11
WO1999018612A2 (en) 1999-04-15
AU9597798A (en) 1999-04-27
JP2001519601A (ja) 2001-10-23
WO1999018612A3 (en) 1999-07-29
DE69838071D1 (de) 2007-08-23
EP1785746A3 (en) 2007-05-30
US6406583B1 (en) 2002-06-18
CA2304670C (en) 2005-03-29
KR20010030924A (ko) 2001-04-16
US6096155A (en) 2000-08-01

Similar Documents

Publication Publication Date Title
CN1165994C (zh) 多个光学元件在晶片层的集成
US6235141B1 (en) Method of mass producing and packaging integrated optical subsystems
US7094304B2 (en) Method for selective area stamping of optical elements on a substrate
CN1722553A (zh) 具有集成透镜的垂直腔表面发射激光器
US8153957B2 (en) Integrated optical imaging systems including an interior space between opposing substrates and associated methods
US20080136955A1 (en) Integrated camera and associated methods
US20070110361A1 (en) Wafer level integration of multiple optical elements
US10663698B2 (en) Optical assemblies including a spacer adhering directly to a substrate
JP4371777B2 (ja) 樹脂硬化方法及び樹脂成型品の製造方法
JP3631508B2 (ja) 光造形簡易型及びその製造方法
JPH0295831A (ja) 三次元形状の形成方法および装置
CA2492335C (en) Wafer level integration of multiple optical elements
JP4218682B2 (ja) 光導波路モジュールの製造方法
JP4219677B2 (ja) 光学装置の製造方法
JP3504701B2 (ja) 光学デバイスおよびその製造方法
JPH0924557A (ja) 光学部品の作製方法
JPH07209506A (ja) マイクロレンズアレイ
JPH09277267A (ja) 樹脂製の型およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: DECELLA NORTH AMERICA CO., LTD.

Free format text: FORMER NAME: DIGITAL OPTICS CORPORATION

CP01 Change in the name or title of a patent holder

Address after: North Carolina

Patentee after: Tessera North America Inc.

Address before: North Carolina

Patentee before: Digital Optics Corp.

C56 Change in the name or address of the patentee

Owner name: DIGITAL OPTICAL EAST COMPANY

Free format text: FORMER NAME: TESSERA NORTH AMERICA INC.

CP01 Change in the name or title of a patent holder

Address after: North Carolina

Patentee after: Digitaloptics Corp. East

Address before: North Carolina

Patentee before: Tessera North America Inc.

ASS Succession or assignment of patent right

Owner name: FLIR SYSTEMS TRADING BELGIUM BVBA

Free format text: FORMER OWNER: DIGITAL OPTICAL EAST COMPANY

Effective date: 20150409

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150409

Address after: Belgium Mel

Patentee after: FLIR SYSTEMS TRADING BELGIUM BVBA

Address before: North Carolina

Patentee before: Digitaloptics Corp. East

ASS Succession or assignment of patent right

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) CORPORAT

Free format text: FORMER OWNER: FLIR SYSTEMS TRADING BELGIUM BVBA

Effective date: 20150729

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150729

Address after: Singapore Singapore

Patentee after: Avago Technologies Fiber IP Singapore Pte. Ltd.

Address before: Belgium Mel

Patentee before: FLIR SYSTEMS TRADING BELGIUM BVBA

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040908

Termination date: 20161002

CF01 Termination of patent right due to non-payment of annual fee