CN1272857C - 具有独立制作的垂直掺杂分布的栅极结构及其形成方法 - Google Patents

具有独立制作的垂直掺杂分布的栅极结构及其形成方法 Download PDF

Info

Publication number
CN1272857C
CN1272857C CNB2003101164316A CN200310116431A CN1272857C CN 1272857 C CN1272857 C CN 1272857C CN B2003101164316 A CNB2003101164316 A CN B2003101164316A CN 200310116431 A CN200310116431 A CN 200310116431A CN 1272857 C CN1272857 C CN 1272857C
Authority
CN
China
Prior art keywords
polysilicon region
crystal silicon
concentration
upper polysilicon
silicon area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2003101164316A
Other languages
English (en)
Other versions
CN1503374A (zh
Inventor
奥默·H·多库马西
奥利格·格鲁申科夫
杰克·A·曼德尔曼
卡尔·拉登斯
布鲁斯·B·多丽丝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Usa Second LLC
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1503374A publication Critical patent/CN1503374A/zh
Application granted granted Critical
Publication of CN1272857C publication Critical patent/CN1272857C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种用于半导体晶体管的栅极结构。在一示例性实施例中,栅极结构包括以第一掺杂剂浓度掺杂的下部多晶硅区、以及以第二浓度掺杂的上部多晶硅区,该第二浓度不同于第一浓度。导电阻挡层设置在下部和上部多晶硅区之间,其中,导电阻挡层防止了下部和上部多晶硅区之间的杂质扩散。

Description

具有独立制作的垂直掺杂分布的栅极结构及其形成方法
技术领域
本发明总体上涉及半导体器件加工,更具体地,涉及具有独立制作的垂直掺杂分布(vertical doping profile)的半导体晶体管栅极结构(semiconductor transistor gate structure)。
背景技术
多晶硅(polysilicon)已经成为了MOSFET(金属氧化物半导体场效应晶体管)结构中栅极电极(gate electrode)的优选材料。具体地,多晶硅比金属栅极电极优异之处在于其在达到共晶(eutectic)温度前能抵御更高的后续加工温度。此外,多晶硅易于利用低压化学气相沉积(LPCVD)沉积在块体硅(bulk silicon)或二氧化硅(SiO2)上。
现有技术的MOSFET晶体管通过在栅极氧化物(gate oxide)和衬底上沉积栅极叠层材料(gate stack material)来制成。光刻(lithography)和蚀刻(etch)工艺用于定义多晶硅栅极结构,然后栅极结构和硅衬底两者得以热氧化。接着,注入源极/漏极(S/D)延伸区(extension)和环形区(halo)。这样的注入通常利用间隔壁(spacers)来进行,以在栅极和注入的结(junction)之间形成特定的距离。在某些情况中,注入NFET器件的S/D延伸区将无需间隔壁,但PFET器件的S/D延伸区的注入在间隔壁存在的情况下进行。在注入S/D延伸区之前通常形成厚间隔壁。之后,利用已有的厚间隔壁来进行深S/D的注入。然后进行高温退火(anneal)以将结活化。
由于在单一集成电路上集成更多有源器件(active devices)的趋势需要制造越来越小的MOSFET结构,所以MOSFET栅极的电阻成为了器件速度的限制因素。于是,有利的是采用具有可能的最小片电阻率(sheet resistivity)的材料来与多晶硅栅极结构相接触。为此,公知的是,耐火金属硅化物可以利用传统溅射、沉积和退火工艺而容易地在多晶硅MOSFET栅极结构上形成。耐火金属硅化物在退火后具有较低的片电阻率,并且还与通常使用的互连金属形成低电阻欧姆接触。因此,一旦结通过高温退火活化,则S/D区域和栅极顶部均被硅化。
为了既充分提高多晶硅活化,又使多晶硅的耗尽效应(depletion effect)减到最小,栅极以较高的掺杂剂浓度掺杂。不幸地,当栅极被重度掺杂时,高的掺杂剂浓度还会对栅极上的硅化作用产生不利影响,尤其是栅极线宽降低到0.1μm阈值以下时。由于适当的硅化物的形成是获得低电阻栅极(因而降低信号传播延迟)所必须的,所以还需要具有一种栅极结构,其中,栅极底部被重度掺杂以使多晶硅的耗尽效应最小化,而同时栅极顶部得以更轻度的掺杂以形成适当的硅化物。然而,采用当前的器件加工方法,即使对栅极顶部进行单独的、轻度掺杂的注入,后续退火工艺也会导致栅极中掺杂剂的再分布,从而导致较一致的垂直掺杂剂浓度。
发明内容
前述讨论的现有技术的缺点和不足通过半导体晶体管的一种栅极结构来克服或减小。在一示例性实施例中,该栅极结构包括以第一掺杂剂浓度掺杂的下部多晶硅区(lower polysilicon region)和以第二浓度掺杂的上部多晶硅区(upper polysilicon region),第二浓度不同于第一浓度。导电阻挡层(conductive barrier layer)设置在下部和上部多晶硅区之间,其中,导电阻挡层防止了下部和上部多晶硅区之间的杂质扩散。
另一方面,MOS晶体管器件包括源极扩散区(source diffision region)和漏极扩散区(drain diffusion region)。栅极叠层结构设置在栅极介电层(gatedielectric)上,栅极叠层结构还包括以第一掺杂剂浓度掺杂的下部多晶硅区、设置在下部多晶硅区上的导电阻挡层、以及设置在导电阻挡层上的上部多晶硅区。该上部多晶硅区以与第一浓度不同的第二浓度掺杂,且其中该导电阻挡层防止了下部和上部多晶硅区之间的杂质扩散。
再一方面,形成半导体晶体管的栅极结构的方法包括在栅极介电层上形成下部多晶硅区。该下部多晶硅区中注入第一掺杂剂浓度的掺杂剂。然后,在下部多晶硅区上形成导电阻挡层,且在该导电阻挡层上形成上部多晶硅区。该上部多晶硅区以第二掺杂剂浓度进行注入,所述第二浓度小于所述第一浓度。
附图说明
参见示例性附图,其中在该多个图中相同的元件标以相同的标记,其中:
图1-12示出了根据本发明一实施例的可用于形成MOS晶体管器件的栅极结构的示例性加工步骤的顺序,该栅极结构具有独立制作的垂直掺杂分布。
具体实施方式
此处公开的是一种用于MOS晶体管器件的栅极结构,其具有改善的栅极活化特性(gate activation characteristics),且没有栅极线电阻的下降,其中防止了所不需要的杂质不利地影响高性能MOS晶体管的栅极特性。简而言之,该栅极结构包括通过导电扩散阻挡层彼此隔开的下部多晶硅区和上部多晶硅区。下部多晶硅区掺以第一浓度,该浓度非常地不同于(例如高于)掺杂上部多晶硅区所用的第二浓度。
于是,该扩散阻挡层允许独立调节栅极的下部和上部多晶硅区之间的掺杂分布(doping profile),且还防止了退火过程中上部和下部区域之间杂质的扩散。从而,由高掺杂剂浓度导致的硅化问题在上部区域得以减轻,且不会危及栅极的通过下部区域的高掺杂剂浓度的活化。因此,延伸区、源极/漏极、和/或环形区(halo)注入可得以优化,而没有任何相应的有害的多晶硅耗尽和掺杂剂渗透问题。
现在参见附图,其示出可用于形成MOS晶体管的垂直制作的栅极结构的示例性工艺步骤的顺序。图1中,多晶硅(poly-Si)块体(block)102首先形成在栅极介电层104上(例如诸如栅极氧化层),该栅极介电层又形成在衬底106上。衬底106可以是本领域技术人员所知的任何合适的半导体衬底,诸如硅衬底或多层绝缘体上硅(silicon-on-insulator)(SOI)衬底,栅极介电层104形成在其上。栅极介电层104可以例如通过氧化衬底106或通过在衬底106上沉积氧化物层来形成。然后,第一层多晶硅得以沉积、构图和蚀刻以形成多晶硅块体102,该块体将成为以上所概括描述的新栅极叠层结构的一部分。
一旦形成了多晶硅块体102,则牺牲层(sacrificial layer)(例如氧化物层)108沉积在栅极介电层104和多晶硅块体102上,然后被平坦化而下降至多晶硅块体的顶部,如图2所示。然后,在图3中,通过选择性蚀刻使多晶硅块体102凹陷,以形成栅极结构的第一层,以下称为下部多晶硅区110。此时,进行下部多晶硅区110的第一离子注入工艺,如图4所示,以提供足以用于栅极活化和防止耗尽效应的高掺杂剂浓度。如果下部多晶硅区110的所需厚度较薄,则注入的尾部(tail of the implant)会延伸到沟道区(channel)中。在此情形下,第一离子注入可以在使多晶硅块体102下陷之前完成。
适当的掺杂剂包括但不限于硼(B)、磷(P)、砷(As)和BF2。根据具体的掺杂剂或掺杂剂的组合,其浓度将会不同。然而,下部多晶硅区的示例性掺杂剂浓度为约1×1021原子/立方厘米(atoms/cm3)。
图5示出导电阻挡层112在氧化物层108和下部多晶硅区110上的形成。如下文讨论的那样,导电阻挡层112将用于防止上部和下部多晶硅区之间掺杂剂的扩散(多晶硅掺杂剂以及环形区/延伸区注入掺杂剂)。诸如氮化钨(WN)的金属因其电导性能和其作为阻挡层的功能性而为阻挡层112的优选材料,且可以通过化学气相沉积(CVD)沉积在氧化物层108和下部多晶硅区110的上面。其它适用于阻挡层的材料包括氮化钽(TaN)、氮化钛(TiN)、硅氮化钨(WSiN)、硅氮化钽(TaSiN)、氮化钛铝(AlTiN)、硅化钛(TiSi)、以及由超薄电介质(例如SiN或SiON)形成的量子导电半绝缘(quantumconductive semi-insulating)阻挡层、及其组合物。阻挡层112在下部多晶硅区110上的形成以基本上一致的厚度来进行,以留下其中将形成栅极的上部多晶硅区的凹陷(recess)114。
接着,如图6所示,在第一阻挡层112上沉积第二层多晶硅116,然后对其平坦化向下至氧化物层108,如图7所示,以形成上部多晶硅区118。第二层多晶硅116可以是与用于形成图1和2的多晶硅块体102的第一多晶硅层具有相同的导电类型。作为选择地,第二层116可以是第一多晶硅层的相反导电类型。图8中,示出了第二离子注入工艺,其中,其掺杂剂浓度优选小于第一注入工艺的掺杂剂浓度,以不危及对后续硅化物形成的完整性。再者,具体的注入浓度取决于所用的具体掺杂剂,但是第二层116的示例性浓度为约3×1020原子/cm3左右。
现在参见图9,氧化物层108通过蚀刻去除,以用于形成扩散区(即源极和漏极区),并用于作为MOS器件的特征的延伸区和环形区注入。具体地,图10示出了延伸注入区120、以及环形注入区122的成角度注入。然后,如图11所示,在注入源极/漏极扩散区126之前,以传统方式形成源极/漏极间隔壁124。然后,该器件在高温(例如自约700℃至约1300℃,优选地自约900℃至约1100℃)下退火,以活化扩散区126。
由于导电阻挡层112的存在,在退火过程中,在高剂量下部多晶硅区108和低剂量上部多晶硅区118之间没有明显的掺杂剂浓度变化。也就是说,没有阻挡层112的存在,退火过程将导致下部和上部多晶硅区中掺杂的均等化。此外,在退火过程中,源极/漏极或延伸区/环形区形成过程中注入的任何氟或碳原子将保留在上部多晶硅区118中。因此,获得了栅极顶部和栅极底部之间掺杂剂和杂质的完全分隔。
最后,图12示出了硅化步骤之后形成栅极结构(总体上用128来表示)和MOS晶体管130的完成,在该硅化步骤中,硅化物层132形成在源极/漏极扩散区120上、以及在栅极结构形成的上部多晶硅区118上。适用于硅化物层132的材料包括但不必限于:硅化钴(CoSi)、硅化钛(TiSi)和硅化镍(NiSi)。作为上部多晶硅区118中较轻度掺杂剂浓度的结果,避免了硅化的困难。
如将进一步理解的那样,上述栅极结构还可用于Si/SiGeC(上部/下部)多晶硅叠层,其中,由于SiGeC多晶中掺杂剂的溶解度较高,多晶硅耗尽效应进一步减小。因此,如果SiGeC用于上部或下部多晶区,则优选地在较高浓度下掺杂,以利用其溶解度的增加,同时上部多晶区中的硅应当更轻度地掺杂,以防止硅化问题。
所公开的栅极结构的另一好处源自以下事实:也注入到栅极中的延伸区、源极/漏极、和/或环形区注入会导致MOS器件的某些问题。例如在PFET器件中,延伸区和源极/漏极注入会包含BF2,因为随之会获得更浅的结,这与相同热负担(thermal budget)的硼相反。另一方面,栅极中氟的出现还增强了掺杂剂自栅极起通过栅极电介质向下面沟道区中的扩散。沟道区中过多的掺杂剂对高性能MOS器件是有害的,尤其是当前半导体产业中正在开发的具有超薄氧化物(例如<15)和高k电介质的MOS器件。
然而,采用以上栅极结构的导电阻挡层,栅极的底部将得以保护而免于氟穿过栅极电介质的渗透。这还适用于诸如碳的扩散阻挡物质的存在。在某些情形中,需要用扩散阻挡物质来注入源极/漏极和/或延伸区,以获得超浅结和超锐利环形区。但是,如果碳存在于下部区域栅极中,则阻碍了掺杂剂扩散到栅极底部,于是所得的多晶耗尽(poly depletion)将对MOS器件的性能有害。再者,导电阻挡层用于保护栅极的下部多晶硅区域而使之没有任何扩散阻挡物质。
虽然已经参照优选实施例描述了本发明,但是本领域技术人员将理解,在不脱离本发明的范围的情况下,对其各元件可以作各种改变和作各种等价替换。此外,在不脱离本发明的实质内容的情形下,可以作诸多改变,以使具体的情形或材料与发明的教导相适应。因此,本发明并不限于为实施本发明而设计的作为最好方式公开的具体实施例,相反,本发明包括所附权利要求的范围所涵盖的所有实施方案。

Claims (18)

1.一种用于半导体晶体管的栅极结构,包括:
以第一浓度掺杂的下部多晶硅区;
以第二浓度掺杂的上部多晶硅区,所述第二浓度小于所述第一浓度;以及
导电阻挡层,其设置在所述下部和所述上部多晶硅区之间;
其中,所述导电阻挡层防止了所述下部和所述上部多晶硅区之间的杂质扩散。
2.如权利要求1的栅极结构,还包括设置在所述上部多晶硅区上的硅化物层。
3.如权利要求2的栅极结构,其中,所述硅化物层选自以下的组:硅化钴CoSi、硅化钛TiSi、硅化镍NiSi、以及包括前述物质中的至少一种的组合。
4.如权利要求1的栅极结构,其中,所述下部多晶硅区和所述上部多晶硅区中的至少一个包括硅锗碳SiGeC。
5.如权利要求1的栅极结构,其中,所述下部多晶硅区以1×1021原子/立方厘米的浓度掺杂,所述上部多晶硅区以3×1020原子/立方厘米的浓度掺杂。
6.如权利要求1的栅极结构,其中,所述导电阻挡层选自以下组:氮化钨WN、氮化钽TaN、氮化钛TiN、硅氮化钨WSiN、硅氮化钽TaSiN、氮化钛铝AlTiN、硅化钛TiSi、量子导电半绝缘阻挡层、以及包括前述物质中的至少一种的组合。
7.一种金属氧化物半导体晶体管器件,包括:
源极扩散区和漏极扩散区;以及
设置在栅极介电层上的栅极叠层结构,所述栅极叠层结构还包括:
下部多晶硅区,其以第一掺杂剂浓度掺杂;
导电阻挡层,其设置在所述下部多晶硅区上;以及
上部多晶硅区,其设置在所述导电阻挡层上,所述上部多晶硅区以第二浓度掺杂,所述第二浓度小于所述第一浓度,
其中,所述导电阻挡层防止了所述下部和所述上部多晶硅区之间杂质的扩散。
8.如权利要求7的晶体管器件,还包括设置在所述上部多晶硅区上的硅化物层。
9.如权利要求8的晶体管器件,其中,所述硅化物层选自以下的组:硅化钴CoSi、硅化钛TiSi、硅化镍NiSi、以及包括前述物质中的至少一种的组合。
10.如权利要求7的晶体管器件,其中,所述下部多晶硅区和所述上部多晶硅区中的至少一个包括硅锗碳SiGeC。
11.如权利要求7的晶体管器件,其中,所述下部多晶硅区以1×1021原子/立方厘米的浓度掺杂,所述上部多晶硅区以3×1020原子/立方厘米的浓度掺杂。
12.如权利要求7的晶体管器件,其中,所述导电阻挡层选自以下组:氮化钨WN、氮化钽TaN、氮化钛TiN、硅氮化钨WSiN、硅氮化钽TaSiN、氮化钛铝AlTiN、硅化钛TiSi、量子导电半绝缘阻挡层、以及包括前述物质中的至少一种的组合。
13.一种形成半导体晶体管的栅极结构的方法,包括:
在栅极介电层上形成下部多晶硅区;
以第一掺杂剂浓度向所述下部多晶硅区中注入掺杂剂;
在所述下部多晶硅区上形成导电阻挡层;
在所述导电阻挡层上形成上部多晶硅区;以及
以第二掺杂剂浓度向所述上部多晶硅区中注入掺杂剂,所述第二浓度小于所述第一浓度。
14.如权利要求13的方法,还包括在所述上部多晶硅区上形成硅化物层。
15.如权利要求13的方法,其中,所述导电阻挡层选自以下组:氮化钨WN、氮化钽TaN、氮化钛TiN、硅氮化钨WSiN、硅氮化钽TaSiN、氮化钛铝AlTiN、硅化钛TiSi、量子导电半绝缘阻挡层、以及包括前述物质中的至少一种的组合。
17.如权利要求13的方法,其中,所述下部多晶硅区包括硅锗碳SiGeC。
18.如权利要求13的方法,其中,所述下部多晶硅区以1×1021原子/立方厘米的浓度掺杂,所述上部多晶硅区以3×1020原子/立方厘米的浓度掺杂。
19.如权利要求13的方法,其中,所述下部多晶硅区由以下步骤形成:
在所述栅极介电层上形成多晶硅块体;
在所述栅极介电层和所述多晶硅块体上形成牺牲层;
平坦化所述牺牲层向下至所述多晶硅块体的顶部;以及
使所述多晶硅块体下陷至比平坦化的牺牲层的顶部低。
CNB2003101164316A 2002-11-21 2003-11-21 具有独立制作的垂直掺杂分布的栅极结构及其形成方法 Expired - Fee Related CN1272857C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/301,436 US6686637B1 (en) 2002-11-21 2002-11-21 Gate structure with independently tailored vertical doping profile
US10/301,436 2002-11-21

Publications (2)

Publication Number Publication Date
CN1503374A CN1503374A (zh) 2004-06-09
CN1272857C true CN1272857C (zh) 2006-08-30

Family

ID=30443917

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101164316A Expired - Fee Related CN1272857C (zh) 2002-11-21 2003-11-21 具有独立制作的垂直掺杂分布的栅极结构及其形成方法

Country Status (3)

Country Link
US (2) US6686637B1 (zh)
CN (1) CN1272857C (zh)
TW (1) TWI260782B (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3982218B2 (ja) * 2001-02-07 2007-09-26 ソニー株式会社 半導体装置およびその製造方法
US7199011B2 (en) * 2003-07-16 2007-04-03 Texas Instruments Incorporated Method to reduce transistor gate to source/drain overlap capacitance by incorporation of carbon
US7223679B2 (en) * 2003-12-24 2007-05-29 Intel Corporation Transistor gate electrode having conductor material layer
KR100562303B1 (ko) * 2003-12-27 2006-03-22 동부아남반도체 주식회사 낮은 접합 커패시턴스를 갖는 모스 트랜지스터 및 그 제조방법
US7030431B2 (en) * 2004-03-19 2006-04-18 Nanya Technology Corp. Metal gate with composite film stack
US7422968B2 (en) * 2004-07-29 2008-09-09 Texas Instruments Incorporated Method for manufacturing a semiconductor device having silicided regions
US7037818B2 (en) * 2004-08-20 2006-05-02 International Business Machines Corporation Apparatus and method for staircase raised source/drain structure
US7157341B2 (en) * 2004-10-01 2007-01-02 International Business Machines Corporation Gate stacks
US7611943B2 (en) * 2004-10-20 2009-11-03 Texas Instruments Incorporated Transistors, integrated circuits, systems, and processes of manufacture with improved work function modulation
KR100564434B1 (ko) * 2004-12-03 2006-03-28 주식회사 하이닉스반도체 리세스 게이트 및 그 제조 방법
US20060154428A1 (en) * 2005-01-12 2006-07-13 International Business Machines Corporation Increasing doping of well compensating dopant region according to increasing gate length
DE102005011722B4 (de) * 2005-03-15 2010-04-08 Clariant Produkte (Deutschland) Gmbh Verfahren zur chemischen Reinigung von Textilmaterial
US7952149B2 (en) * 2005-05-12 2011-05-31 International Business Machines Corporation Anti-halo compensation
US7776725B2 (en) * 2005-09-12 2010-08-17 International Business Machines Corporation Anti-halo compensation
US20070063277A1 (en) * 2005-09-22 2007-03-22 International Business Machines Corporation Multiple low and high k gate oxides on single gate for lower miller capacitance and improved drive current
US7723205B2 (en) * 2005-09-27 2010-05-25 Semiconductor Energy Laboratory Co., Ltd Semiconductor device, manufacturing method thereof, liquid crystal display device, RFID tag, light emitting device, and electronic device
JP4929753B2 (ja) * 2006-02-22 2012-05-09 オムロン株式会社 薄膜構造体の形成方法並びに薄膜構造体、振動センサ、圧力センサ及び加速度センサ
JP2007281038A (ja) * 2006-04-03 2007-10-25 Toshiba Corp 半導体装置
US7473626B2 (en) * 2006-04-11 2009-01-06 International Business Machines Corporation Control of poly-Si depletion in CMOS via gas phase doping
US7595233B2 (en) * 2006-06-01 2009-09-29 International Business Machines Corporation Gate stress engineering for MOSFET
KR100902512B1 (ko) * 2007-05-17 2009-06-15 삼성코닝정밀유리 주식회사 실리콘 기판 상에 GaN 단결정의 성장 방법, GaN기반의 발광소자의 제조방법 및 GaN 기반의 발광소자
CN101656255B (zh) * 2008-08-18 2011-12-07 中芯国际集成电路制造(上海)有限公司 Nand闪存及其制作方法
KR20110090442A (ko) * 2010-02-04 2011-08-10 삼성전자주식회사 비휘발성 메모리 소자 및 그 제조 방법
KR102015866B1 (ko) * 2012-06-29 2019-08-30 에스케이하이닉스 주식회사 리세스게이트를 구비한 트랜지스터 및 그 제조 방법
CN103972275B (zh) * 2013-01-30 2017-08-04 旺宏电子股份有限公司 半导体装置及用以制造半导体装置的方法
US9165944B2 (en) 2013-10-07 2015-10-20 Globalfoundries Inc. Semiconductor device including SOI butted junction to reduce short-channel penalty
CN108122974B (zh) * 2016-11-29 2020-07-07 中芯国际集成电路制造(北京)有限公司 半导体装置及其制造方法
CN113921386A (zh) * 2020-07-10 2022-01-11 长鑫存储技术有限公司 半导体器件及其制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576579A (en) 1995-01-12 1996-11-19 International Business Machines Corporation Tasin oxygen diffusion barrier in multilayer structures
US5981367A (en) 1996-10-17 1999-11-09 Micron Technology, Inc. Method for making an access transistor
JP3635843B2 (ja) * 1997-02-25 2005-04-06 東京エレクトロン株式会社 膜積層構造及びその形成方法
US5885887A (en) 1997-04-21 1999-03-23 Advanced Micro Devices, Inc. Method of making an igfet with selectively doped multilevel polysilicon gate
FR2765394B1 (fr) 1997-06-25 1999-09-24 France Telecom Procede d'obtention d'un transistor a grille en silicium-germanium
US5925918A (en) * 1997-07-30 1999-07-20 Micron, Technology, Inc. Gate stack with improved sidewall integrity
US6291868B1 (en) 1998-02-26 2001-09-18 Micron Technology, Inc. Forming a conductive structure in a semiconductor device
US6492694B2 (en) * 1998-02-27 2002-12-10 Micron Technology, Inc. Highly conductive composite polysilicon gate for CMOS integrated circuits
US6208004B1 (en) 1998-08-19 2001-03-27 Philips Semiconductor, Inc. Semiconductor device with high-temperature-stable gate electrode for sub-micron applications and fabrication thereof
US6271590B1 (en) 1998-08-21 2001-08-07 Micron Technology, Inc. Graded layer for use in semiconductor circuits and method for making same
US6380055B2 (en) * 1998-10-22 2002-04-30 Advanced Micro Devices, Inc. Dopant diffusion-retarding barrier region formed within polysilicon gate layer
DE19906292C1 (de) 1999-02-15 2000-03-30 Siemens Ag Elektrische Teststruktur auf einem Halbleitersubstrat und Testverfahren
JP2001024194A (ja) * 1999-05-06 2001-01-26 Toshiba Corp 半導体装置の製造方法及び半導体装置
US6274467B1 (en) 1999-06-04 2001-08-14 International Business Machines Corporation Dual work function gate conductors with self-aligned insulating cap
US6730584B2 (en) * 1999-06-15 2004-05-04 Micron Technology, Inc. Methods for forming wordlines, transistor gates, and conductive interconnects, and wordline, transistor gate, and conductive interconnect structures
US6372618B2 (en) * 2000-01-06 2002-04-16 Micron Technology, Inc. Methods of forming semiconductor structures
US6333244B1 (en) 2000-01-26 2001-12-25 Advanced Micro Devices, Inc. CMOS fabrication process with differential rapid thermal anneal scheme
US6281059B1 (en) 2000-05-11 2001-08-28 Worldwide Semiconductor Manufacturing Corp. Method of doing ESD protective device ion implant without additional photo mask
US6335248B1 (en) 2001-04-30 2002-01-01 International Business Machines Corporation Dual workfunction MOSFETs with borderless diffusion contacts for high-performance embedded DRAM technology
US6737320B2 (en) * 2002-08-29 2004-05-18 Micron Technology, Inc. Double-doped polysilicon floating gate

Also Published As

Publication number Publication date
TWI260782B (en) 2006-08-21
US20040106274A1 (en) 2004-06-03
US6686637B1 (en) 2004-02-03
TW200414546A (en) 2004-08-01
US6911384B2 (en) 2005-06-28
CN1503374A (zh) 2004-06-09

Similar Documents

Publication Publication Date Title
CN1272857C (zh) 具有独立制作的垂直掺杂分布的栅极结构及其形成方法
US8354321B2 (en) Method for fabricating semiconductor devices with reduced junction diffusion
US6753230B2 (en) Method for fabricating semiconductor device with ultra-shallow super-steep-retrograde epi-channel by decaborane doping
KR100440840B1 (ko) 반도체 장치의 제조 방법 및 반도체 장치
JP4697991B2 (ja) 低cgdの有益性を有する改良型cmos、改良したドーピングプロファイル、及び化学的処理に対する非鋭敏性のための注入の側壁プロセス及び方法
US5677214A (en) Raised source/drain MOS transistor with covered epitaxial notches and fabrication method
US7315051B2 (en) Method of forming a source/drain and a transistor employing the same
US6248637B1 (en) Process for manufacturing MOS Transistors having elevated source and drain regions
US6451693B1 (en) Double silicide formation in polysicon gate without silicide in source/drain extensions
US6297115B1 (en) Cmos processs with low thermal budget
KR101361424B1 (ko) 반도체 장치의 제조 방법
US20060284249A1 (en) Impurity co-implantation to improve transistor performance
US20050158927A1 (en) Structure and method of forming a notched gate field effect transistor
US20100013015A1 (en) Metal source/drain schottky barrier silicon-on-nothing mosfet device
CN101877317B (zh) 非平坦晶体管及其制造方法
US6004849A (en) Method of making an asymmetrical IGFET with a silicide contact on the drain without a silicide contact on the source
US5864163A (en) Fabrication of buried channel devices with shallow junction depth
US7189644B2 (en) CMOS device integration for low external resistance
JP2002539638A (ja) Mis電界効果型トランジスタの製造方法
US5141895A (en) Semiconductor device process using diffusant penetration and source layers for shallow regions
US6057583A (en) Transistor with low resistance metal source and drain vertically displaced from the channel
JP3768871B2 (ja) 半導体装置の製造方法
US6777300B2 (en) Method to improve silicide formation on polysilicon
KR100572209B1 (ko) 반도체 소자의 실리사이드막 형성방법
KR20100016172A (ko) 다수 타입의 쇼트키 접합을 갖는 트랜지스터를 형성하기 위한 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20171129

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171129

Address after: American New York

Patentee after: Core USA second LLC

Address before: American New York

Patentee before: International Business Machines Corp.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060830

Termination date: 20181121